Textination Newsline

Reset
15 results
Empa researcher Simon Annaheim is working to develop a mattress for newborn babies. Image: Empa
11.03.2024

Medical textiles and sensors: Smart protection for delicate skin

Skin injuries caused by prolonged pressure often occur in people who are unable to change their position independently – such as sick newborns in hospitals or elderly people. Thanks to successful partnerships with industry and research, Empa scientists are now launching two smart solutions for pressure sores.

If too much pressure is applied to our skin over a long period of time, it becomes damaged. Populations at high risk of such pressure injuries include people in wheelchairs, newborns in intensive care units and the elderly. The consequences are wounds, infections and pain.

Skin injuries caused by prolonged pressure often occur in people who are unable to change their position independently – such as sick newborns in hospitals or elderly people. Thanks to successful partnerships with industry and research, Empa scientists are now launching two smart solutions for pressure sores.

If too much pressure is applied to our skin over a long period of time, it becomes damaged. Populations at high risk of such pressure injuries include people in wheelchairs, newborns in intensive care units and the elderly. The consequences are wounds, infections and pain.

Treatment is complex and expensive: Healthcare costs of around 300 million Swiss francs are incurred every year. "In addition, existing illnesses can be exacerbated by such pressure injuries," says Empa researcher Simon Annaheim from the Biomimetic Membranes and Textiles laboratory in St. Gallen. According to Annaheim, it would be more sustainable to prevent tissue damage from occurring in the first place. Two current research projects involving Empa researchers are now advancing solutions: A pressure-equalizing mattress for newborns in intensive care units and a textile sensor system for paraplegics and bedridden people are being developed.

Optimally nestled at the start of life
The demands of our skin are completely different depending on age: In adults, the friction of the skin on the lying surface, physical shear forces in the tissue and the lack of breathability of textiles are the main risk factors. In contrast, the skin of newborns receiving intensive care is extremely sensitive per se, and any loss of fluid and heat through the skin can become a problem. "While these particularly vulnerable babies are being nursed back to health, the lying situation should not cause any additional complications," says Annaheim. He thinks conventional mattresses are not appropriate for newborns with very different weights and various illnesses. Annaheim's team is therefore working with researchers from ETH Zurich, the Zurich University of Applied Sciences (ZHAW) and the University Children's Hospital Zurich to find an optimal lying surface for babies' delicate skin. This mattress should be able to adapt individually to the body in order to help children with a difficult start in life.

In order to do this, the researchers first determined the pressure conditions in the various regions of the newborn's body. "Our pressure sensors showed that the head, shoulders and lower spine are the areas with the greatest risk of pressure sores," says Annaheim. These findings were incorporated into the development of a special kind of air-filled mattress: With the help of pressure sensors and a microprocessor, its three chambers can be filled precisely via an electronic pump so that the pressure in the respective areas is minimized. An infrared laser process developed at Empa made it possible to produce the mattress from a flexible, multi-layered polymer membrane that is gentle on the skin and has no irritating seams.

After a multi-stage development process in the laboratory, the first small patients were allowed to lie on the prototype mattress. The effect was immediately noticeable when the researchers filled the mattress with air to varying degrees depending on the individual needs of the babies: Compared to a conventional foam mattress, the prototype reduced the pressure on the vulnerable parts of the body by up to 40 percent.

Following this successful pilot study, the prototype is now being optimized in the Empa labs. Simon Annaheim and doctoral student Tino Jucker will soon be starting a larger-scale study with the new mattress with the Department of Intensive Care Medicine & Neonatology at University Children's Hospital Zurich.

Intelligent sensors prevent injuries
In another project, Empa researchers are working on preventing so-called pressure ulcer tissue damage in adults. This involves converting the risk factors of pressure and circulatory disorders into helpful warning signals.

If you lie in the same position for a long time, pressure and circulatory problems lead to an undersupply of oxygen to the tissue. While the lack of oxygen triggers a reflex to move in healthy people, this neurological feedback loop can be disrupted in people with paraplegia or coma patients, for example. Here, smart sensors can help to provide early warning of the risk of tissue damage.

In the ProTex project, a team of researchers from Empa, the University of Bern, the OST University of Applied Sciences and Bischoff Textil AG in St. Gallen has developed a sensor system made of smart textiles with associated data analysis in real time. "The skin-compatible textile sensors contain two different functional polymer fibers," says Luciano Boesel from Empa's Biomimetic Membranes and Textiles laboratory in St. Gallen. In addition to pressure-sensitive fibers, the researchers integrated light-conducting polymer fibers (POFs), which are used to measure oxygen. "As soon as the oxygen content in the skin drops, the highly sensitive sensor system signals an increasing risk of tissue damage," explains Boesel. The data is then transmitted directly to the patient or to the nursing staff. This means, for instance, that a lying person can be repositioned in good time before the tissue is damaged.

Patented technology
The technology behind this also includes a novel microfluidic wet spinning process developed at Empa for the production of POFs. It allows precise control of the polymer components in the micrometer range and smoother, more environmentally friendly processing of the fibers. The microfluidic process is one of three patents that have emerged from the ProTex project to date.

Another product is a breathable textile sensor that is worn directly on the skin. The spin-off Sensawear in Bern, which emerged from the project in 2023, is currently pushing ahead with the market launch. Empa researcher Boesel is also convinced: "The findings and technologies from ProTex will enable further applications in the field of wearable sensor technology and smart clothing in the future."

Source:

Dr. Andrea Six, Empa

(c) NC State
07.08.2023

Wearable Connector Technology - Benefits to Military, Medicine and beyond

What comes to mind when you think about “wearable technology?” In 2023, likely a lot, at a time when smartwatches and rings measure heart rates, track exercise and even receive text messages. Your mind might even drift to that “ugly” light-up sweater or costume you saw last Halloween or holiday season.

At the Wilson College of Textiles, though, researchers are hard at work optimizing a truly new-age form of wearable technology that can be proven useful in a wide range of settings, from fashion and sports to augmented reality, the military and medicine.

Currently in its final stages, this grant-funded project could help protect users in critical situations, such as soldiers on the battlefield and patients in hospitals, while simultaneously pushing the boundaries of what textiles research can accomplish.

What comes to mind when you think about “wearable technology?” In 2023, likely a lot, at a time when smartwatches and rings measure heart rates, track exercise and even receive text messages. Your mind might even drift to that “ugly” light-up sweater or costume you saw last Halloween or holiday season.

At the Wilson College of Textiles, though, researchers are hard at work optimizing a truly new-age form of wearable technology that can be proven useful in a wide range of settings, from fashion and sports to augmented reality, the military and medicine.

Currently in its final stages, this grant-funded project could help protect users in critical situations, such as soldiers on the battlefield and patients in hospitals, while simultaneously pushing the boundaries of what textiles research can accomplish.

“The goals set for this research are quite novel to any other literature that exists on wearable connectors” says Shourya Dhatri Lingampally, Wilson College of Textiles graduate student and research assistant involved in the project alongside Wilson College Associate Professor Minyoung Suh.

Ongoing since the fall of 2021, Suh and Lingampally’s work focuses on textile-integrated wearable connectors, a unique, high-tech sort of “bridge” between flexible textiles and external electronic devices. At its essence, the project aims to improve these connectors’ Technology Readiness Level — a key rating used by NASA and the Department of Defense used to assess a particular technology’s maturity.

To do this, Lingampally and her colleagues’ research examines problems that have, in the past, affected the performance of wearable devices.

Sure, these advances may benefit fashion, leading to eccentric shirts, jackets, or accessories — “to light up or change its color based on the wearer’s biometric data,” Lingampally offers — the research has roots in a much deeper mission.

Potential benefits to military, medicine and beyond
The project is funded through more than $200,000 in grant money from Advanced Functional Fabrics of America (AFFOA), a United States Manufacturing Innovation Institute (MII) located in Cambridge, Massachusetts. The mission of AFFOA is to support domestic manufacturing capability to support new technical textile products, such as textile-based wearable technologies.

A key purpose of the research centers around improving the functionality of wearable monitoring devices with which soldiers are sometimes outfitted to monitor the health and safety of their troops remotely.

Similar devices allow doctors and other medical personnel to remotely monitor the health of patients even while away from the bedside.

Though such technology has existed for years, it’s too often required running wires and an overall logistically-unfriendly design. That could soon change.

“We have consolidated the electronic components into a small snap or buckle, making the circuits less obtrusive to the wearer,” Lingampally says, explaining the team’s innovations, which include 3D printing the connector prototypes using stereolithography technology.

“We are trying to optimize the design parameters in order to enhance the electrical and mechanical performance of these connectors,” she adds.

To accomplish their goals, the group collaborated with NC State Department of Electrical and Computer Engineering Assistant Research Professor James Dieffenderfer. The team routed a variety of electrical connections and interconnects like conductive thread, epoxy and solder through textile materials equipped with rigid electronic devices.

They also tested the components for compatibility with standard digital device connections like USB 2.0 and I2C.

Ultimately, Lingampally hopes their work will make wearable technology not only easier and more comfortable to use, but available at a lower price, too.

“I would like to see them scaled, to be mass manufactured, so they can be cost efficient for any industry to use,” she explains.

In a bigger-picture sense, though, her team’s work is reinforcing the far-reaching boundaries of what smart textile research can accomplish; a purpose that stretches far beyond fashion or comfort.

Pushing the boundaries of textiles research
Suh and Lingampally’s work is just the latest breakthrough research originating from the Wilson College of Textiles that’s aimed at solving critical problems in the textile industry and beyond.

“The constant advancements in technology and materials present immense potential for the textile industry to drive positive change across a range of fields from fashion to healthcare and beyond,” Lingampally, a graduate student in the M.S. Textiles program, says, noting the encouragement she feels in her program to pursue innovation and creativity in selecting and advancing her research.

Additionally, in the fiber and polymer science doctoral program, which Suh does research with, candidates focus their research on a seemingly endless array of STEM topics, ranging from forensics to medical textiles, nanotechnology and, indeed, smart wearable technology (just to name a few).

In this case, Suh says, the research lent itself to “unexpected challenges” that required intriguing adaptations “at every corner.” But, ultimately, it led to breakthroughs not previously seen in the wearable technology industry, attracting interest from other researchers outside the university, and private companies, too.

“This project was quite exploratory by nature as there hasn’t been any prior research aiming to the same objectives,” Suh says.

Meanwhile, the team has completed durability and reliability testing on its textile-integrated wearable connectors. Eventually, the group would like to increase the sample size for testing to strengthen and validate the findings. The team also hopes to evaluate new, innovative interconnective techniques, as well as other 3D printing techniques and materials as they work to further advance wearable technologies.

Source:

North Carolina State University, Sean Cudahy

A shirt that monitors breathing. Bild EMPA
28.12.2022

Wearables for healthcare: sensors to wear

Stylish sensors to wear 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.
 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.

Stylish sensors to wear 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.
 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.

The desire for a healthy lifestyle has triggered a trend towards self-tracking. Vital signs should be available at all times, for example to consistently measure training effects. At the same time, among the continuously growing group of people over 65, the desire to maintain performance into old age is stronger than ever. Preventive, health-maintaining measures must be monitored if they are to achieve the desired results. The search for measurement systems that reliably determine the corresponding health parameters is in full swing. In addition to the leisure sector, medicine needs suitable and reliable measurement systems that enable efficient and effective care for an increasing number of people in hospital and at home. After all, the increase in lifestyle diseases such as diabetes, cardiovascular problems or respiratory diseases is putting a strain on the healthcare system.

Researchers led by Simon Annaheim from Empa's Biomimetic Membranes and Textiles laboratory in St. Gallen are therefore developing sensors for monitoring health status, for example for a diagnostic belt based on flexible sensors with electrically conductive or light-conducting fibers. However, other, less technical properties can be decisive for the acceptance of continuous medical monitoring by patients. For example, the sensors must be comfortable to wear and easy to handle – and ideally also look good.

This aspect is addressed by a cooperation between the Textile and Design Alliance, or TaDA for short, in eastern Switzerland and Empa. The project showed how textile sensors can be integrated into garments. In addition to technical reliability and a high level of comfort, another focus was on the design of the garments. The interdisciplinary TaDA designer Laura Deschl worked electrically conductive fibers into a shirt that change their resistance depending on how much they are stretched. This allows the shirt to monitor how much the subjects' chest and abdomen rise and fall while they breathe, allowing conclusions to be drawn about breathing activity. Continuous monitoring of respiratory activity is of particular interest for patients during the recovery phase after surgery and for patients who are being treated with painkillers. Such a shirt could also be helpful for patients with breathing problems such as sleep apnea or asthma. Moreover, Deschl embroidered electrically conductive fibers from Empa into the shirt, which are needed to connect to the measuring device and were visually integrated into the shirt's design pattern.

The Textile and Design Alliance is a pilot program of the cultural promotion of the cantons of Appenzell Ausserrhoden, St.Gallen and Thurgau to promote cooperation between creative artists from all over the world and the textile industry. Through international calls for proposals, cultural workers from all disciplines are invited to spend three months working in the textile industry in eastern Switzerland. The TaDA network comprises 13 cooperation partners – textile companies, cultural, research and educational institutions – and thus offers the creative artists direct access to highly specialized know-how and technical means of production in order to work, research and experiment on their textile projects on site. This artistic creativity is in turn made available to the partners as innovative potential.

Photo: Marlies Thurnheer
25.10.2022

Textile Electrodes for Medtech Applications

  • Successful financing round for Empa spin-off Nahtlos

Nahtlos, an Empa spin-off, has received 1 million Swiss francs in a first round of financing from a network of business angels from Switzerland and Liechtenstein and from the Startfeld Foundation. With this funding, Nahtlos aims to drive the market entry of its newly developed textile-based electrode for medical applications.

  • Successful financing round for Empa spin-off Nahtlos

Nahtlos, an Empa spin-off, has received 1 million Swiss francs in a first round of financing from a network of business angels from Switzerland and Liechtenstein and from the Startfeld Foundation. With this funding, Nahtlos aims to drive the market entry of its newly developed textile-based electrode for medical applications.

Over the past two years, Nahtlos, an Empa spin-off, has developed novel textile-based electrodes for recording heart activity (electrocardiogram, ECG) – for example, to detect atrial fibrillation – and for electrostimulation therapies, for example, to preserve the muscle mass in paralyzed patients. Textile-based electrodes enable gentle and skin-friendly application, even if the electrodes have to be worn for several days or even weeks. The textile electrode is thus the first alternative to the gel electrode, which was developed 60 years ago and is still considered the standard for medical applications today.

Nahtlos founder and former Empa researcher Michel Schmid and co-founder and business economist José Näf have further developed the textile-based technology, which was developed and patented at Empa in various projects funded by Innosuisse, among others. The goal was to produce a product for long-term medical applications that reliably records ECG signals for up to several weeks, achieves a high level of patient acceptance and is cost-effective for the healthcare provider. Today, the patent for textile-based electrode technology is owned by Nahtlos after reaching a milestone.

Financing by business angels and Startfeld Foundation
Schmid and Näf were looking for investors to certify their product, set up production and develop the market – and recently found what they were looking for: In a seed financing round, the two young entrepreneurs were able to acquire 1 million Swiss francs from business angels from Switzerland and Liechtenstein as well as from the Startfeld Foundation. Nahtlos was supported in setting up its company by Startfeld, the start-up promotion arm of Switzerland Innovation Park Ost (SIP Ost), in the form of coaching, consulting and early-stage financing. Nahtlos is also based in the Innovation Park Ost, where innovations are initiated and accelerated through collaboration between start-ups, companies, universities and research institutions.

Together with Empa and Nahtlos, SIP Ost was present at OLMA this year. Visitors could learn live and on the spot about Empa's research activities in the field of Digital Health as well as about the Nahtlos technology and its textile electrodes for health monitoring.

(c) Vincentz Network GmbH & Co. KG / ALTENPFLEGE
26.04.2022

ALTENPFLEGE 2022: Intelligently equipped rooms for more independence in old age

Most people want to live as independently as possible in old age. Exhibitors at the industry's leading trade fair ALTENPFLEGE from April 26 to 28 in Essen, Germany will be showing how senior facilities with modern interior design and smart equipment meet this need.

Demand for forms of housing such as service living is on the rise. Studies predict a need for around 540,000 new service living units in the coming years. One of the major trends at this year's 32nd edition of the Altenpflege trade fair is how senior facilities are meeting the rapidly growing demand with flexible room design and digital support. They can be seen in the Aveneo special show, including intelligent systems for stove shut-off, lighting control and room temperature, as well as for fall sensors and emergency calls.

Most people want to live as independently as possible in old age. Exhibitors at the industry's leading trade fair ALTENPFLEGE from April 26 to 28 in Essen, Germany will be showing how senior facilities with modern interior design and smart equipment meet this need.

Demand for forms of housing such as service living is on the rise. Studies predict a need for around 540,000 new service living units in the coming years. One of the major trends at this year's 32nd edition of the Altenpflege trade fair is how senior facilities are meeting the rapidly growing demand with flexible room design and digital support. They can be seen in the Aveneo special show, including intelligent systems for stove shut-off, lighting control and room temperature, as well as for fall sensors and emergency calls.

Future tenants or buyers of serviced apartments are prepared to invest specifically in their own living environment (source: Terragon study 2021). The focus is on a feel-good atmosphere, a high level of security and the option of using care services if required. "This can be facilitated by a cleverly thought-out arrangement of the rooms within a serviced apartment, for example by arranging the bathroom and bedroom right next to each other and making the wall with the washbasin rotatable," explains Carolin Pauly, managing director of Universal Rooms, which considers itself to be the interface between the wishes of the operators and the products in the serviced apartment market. "The furniture and furnishings industry is called upon to design modern collections with hidden product features that make life easier in old age," Pauly demands. This could be, for example, a grab handle built into the washbasin or a dining table that can be accessed by a wheelchair.

Lighting management also plays an important role. It should convey a sense of well-being and security as well as provide orientation and safety. Age-related clinical pictures in particular place high demands on lighting. Here, lighting systems that simulate the natural day and night rhythm can provide help.

Living, care and digitalization combined
The Chief Executive Officer of the Evangelische Heimstiftung (EHS - Evangelical Home Foundation), Bernhard Schneider, sees "an individually and comfortably furnished apartment that uses intelligent technology to provide a great deal of security and self-determination" as the senior living of the future. "I am certain: In the future, in a sector-free setting, we will have to understand housing, nursing and care, and digitalization even more strongly as building blocks that can be combined as needed."

According to Schneider, this starts with housing: In a nursing apartment or an assisted living apartment, in a shared apartment or other form of communal living, in a residence or an intergenerational project. All forms of housing should be well integrated into the neighborhood - this requires reliable, financed advisory structures, for example through neighborhood managers. In addition, there is care, support and assistance, in the form of day or night care, a mobile service or volunteers. "And technology, for example through our Aladien system, i.e. with intelligent home emergency call, fall sensors, stove shut-off, roller shutters and light control, video door telephony, etc. In the future, Aladien will evolve into a service robot," predicts Schneider.

This makes it possible for people to live a self-determined life and participate in society, even in old age. That's what people want, he says: a pleasant living environment, social contacts, cultural offerings and the certainty that someone will take care of them if necessary. "What we need for this is political commitment in the form of an ambitious funding program for modern forms of housing in old age," demands the EHS CEO. This would not only help the older generation, but young families could also benefit because this would free up the far too spacious apartments and terraced houses of the older generation for them.


ALTENPFLEGE – Trade fair and congress for the care industry since 1990
The traditional leading trade show for the care industry has so far been held alternately in Hanover and Nuremberg. From this year it alternates between Essen and Nuremberg. It covers all segments of professional geriatric care: services and products for care and therapy, occupation and education, IT and management, nutrition and home economics, textiles and hygiene as well as space and technology. In more than 30 lecture blocks, the accompanying trade congress covers the current topics of the industry, such as digitalization, the future of professional nursing care, hospice and palliative care, training or the new collectively agreed payment under the Healthcare Development Act (Gesundheitsversorgungsweiterentwicklungsgesetz - GVWG).

Photo: Pixabay
12.04.2022

Disrupted supply chains: Only nearshoring and digital technologies will help in the long term

  • McKinsey survey: Globally, more than 90 percent of supply chain managers are investing in the resilience of their supply chains during the Corona crisis.
  • But more often than not, they are simply increasing inventories instead of focusing on long-term effective measures such as regionalization of suppliers.
  • Only the healthcare industry has consistently relied on nearshoring and regionalization of suppliers so far.

Supply chain managers worldwide are under pressure: More than 90 percent invested during the Corona crisis to make their supply chains more resilient to external disruptions. More often than planned, however, supply chain managers resorted to the ad hoc measure of simply increasing inventories. And less often than planned, they also relied on long-term effects by regionalizing their supply base.

  • McKinsey survey: Globally, more than 90 percent of supply chain managers are investing in the resilience of their supply chains during the Corona crisis.
  • But more often than not, they are simply increasing inventories instead of focusing on long-term effective measures such as regionalization of suppliers.
  • Only the healthcare industry has consistently relied on nearshoring and regionalization of suppliers so far.

Supply chain managers worldwide are under pressure: More than 90 percent invested during the Corona crisis to make their supply chains more resilient to external disruptions. More often than planned, however, supply chain managers resorted to the ad hoc measure of simply increasing inventories. And less often than planned, they also relied on long-term effects by regionalizing their supply base. These are the key findings of a comparative study for which management consultants McKinsey & Company surveyed more than 70 supply chain managers from leading companies worldwide - for the first time in 2020 and again this year. Further results: Digital technologies are used much more frequently today than at the beginning of the pandemic, for example real-time monitoring or analytics based on artificial intelligence (AI).

The survey also quantifies the striking shortage of IT specialists in the area of supply management: in 2021, only one percent of the companies surveyed had enough IT specialists. "In the wake of the digitalization push, the need for IT skills is becoming even more of a bottleneck than it already has been," reports Vera Trautwein, McKinsey expert for supply chain management and co-author of the study. "As a result, the scope for action is also decreasing dramatically." In 2020, ten percent of the supply chain managers surveyed still had access to sufficient experts with the relevant IT know-how in their departments. How did the supply chain managers act during the crisis? Almost all respondents (92 percent) have invested in the resilience of their supply chains, and 80 percent have also invested in digital supply chain technologies. But while 40 percent of the 2020 respondents in McKinsey's first "Supply Chain Pulse" had still planned nearshoring and expanding their supplier base, only 15 percent ultimately put this into action. Instead, significantly more managers than expected - 42 percent versus 27 percent - expanded their inventories.

The 2020/21 comparative study also shows that supply chain managers have acted very differently in the crisis, depending on the industry. Healthcare can be considered a pioneer in the regionalization of the supply chain: 60 percent of the respondents in the industry have actually concentrated procurement, production and sales in a region such as Europe or North America, which they have also announced. In 2020, 33 percent of companies in the automotive, aerospace and defense industries had also announced this. However, according to their own figures, only 22 percent actually did so. This was despite the fact that more than three quarters of supply chain managers had given this measure priority. The chemicals and raw materials sectors made the fewest changes to their supply chains.

After the crisis is before the crisis
Over the years, supply chains have evolved into a high-frequency sensitive organism. Consistently globalized, optimized to fluctuations in consumer demand and with as little inventory as possible to cut costs. "This strategy has left companies vulnerable," notes McKinsey partner Knut Alicke. "And during the crisis, measures were taken that were more effective in the short term." As a result, supply chains are not yet resilient enough to prevent future disruptions. "For companies, nearshoring of suppliers remains a key factor in increasing their crisis resilience in the medium to long term." In addition, however, he said, the expansion and use of digital technologies are the key factors for resilient supply chains.

The pressure to act is great: Massive supply chain disruptions occur on average every 3.7 years and disrupt supply chains for at least one month. This was the conclusion of another McKinsey study on supply chains entitled "Risk, resilience, and rebalancing in global value chains" back in 2020.

Source:

McKinsey & Company [Düsseldorf, Germany]

Photo: Rostyslav Savchyn, Unsplash
22.03.2022

Again more Chinese company takeovers in Europe

  • Increase from 132 to 155 transactions - transaction value increases eightfold to 12.4 billion US dollars
  • Number of Chinese acquisitions in Germany rises from 28 to 35
  • UK most popular investment destination for Chinese companies followed by Germany

After the pandemic-related decline in Chinese company acquisitions in Europe in 2020, the number of transactions increased again in 2021: from 132 to 155. The transaction volume also increased: The value of investments and acquisitions has increased more than eightfold from $1.5 billion to $12.4 billion.

  • Increase from 132 to 155 transactions - transaction value increases eightfold to 12.4 billion US dollars
  • Number of Chinese acquisitions in Germany rises from 28 to 35
  • UK most popular investment destination for Chinese companies followed by Germany

After the pandemic-related decline in Chinese company acquisitions in Europe in 2020, the number of transactions increased again in 2021: from 132 to 155. The transaction volume also increased: The value of investments and acquisitions has increased more than eightfold from $1.5 billion to $12.4 billion.

Chinese investors also appeared more frequently again in Germany: After only 28 transactions by Chinese companies were counted in 2020, there were 35 of such investments or acquisitions in 2021. The investment volume rose from USD 0.4 billion to USD 2.0 billion. This figure does not include venture capital investments in German startups totaling USD 1.9 billion in 2021, in which Chinese companies were active as part of international investor groups.

These are the findings of a study by the audit and consulting firm EY, which examines investments by Chinese companies in Germany and Europe.

"Chinese companies remain cautious about investing in Europe overall," observes Yi Sun, partner and head of China Business Services in the Europe West region at EY. "One contributing factor is still the pandemic, which continued to cause disruptions in 2021 - partly because of mitigation measures such as travel restrictions, strict quarantine rules for people traveling to China from abroad, and lockdowns both in Europe and in China itself. Most Chinese companies that have already acquired companies abroad have been more concerned with restructuring in Europe in recent years rather than expanding further - especially in the automotive supply and machinery sectors."

According to Sun, the now high hurdles for foreign investments, especially in certain critical industries, as well as increasing competition from financial investors with strong capital, also had a dampening effect. "Purchase prices on the M&A market have risen sharply recently - in some cases, the Chinese interested parties didn't want to go along with that. Listed Chinese companies in particular fear putting pressure on their own share price with expensive acquisitions," Sun said. "In addition, some of the potential takeover candidates own production facilities or R&D centers in the US. In such cases, they may fear rejection by the Committee on Foreign Investment in the U.S. (CFIUS) - and potential Chinese bidders may not even be invited."

Declining interest in industrial companies
Traditional industrial companies continue to account for the majority of deals - especially in Germany: 12 of the 35 transactions in Germany and 30 of the 155 transactions in Europe took place in the industrial sector.

However, their number is declining: In 2020, 36 industrial transactions were counted across Europe. "Chinese investors are still interested in European automotive suppliers or mechanical engineering companies - but now more in the subsectors of electromobility, autonomous driving and high-tech materials," says Sun.

However, Yi Sun identifies a significant increase in interest elsewhere: "Chinese private equity funds and venture capitalists are becoming increasingly active. In Germany in particular, there were some very large investments in startups last year in which Chinese investors were significantly involved. In addition to German engineering skills, e-commerce expertise is increasingly in demand."

High tech/software companies accounted for 27 transactions across Europe last year (previous year: 20). "We see an increased interest in game developers and software programmers, for example. Especially the most active Chinese investor last year, Tencent, has recently become heavily involved in this segment," observes Sun.

The number of acquisitions and investments in the healthcare sector also increased: from 16 to 26 transactions. "The healthcare sector - whether pharma, biotech or medical technology - is increasingly becoming one of the most important target sectors for Chinese companies because there is a lot of pent-up demand in this sector in China, especially in research and development."

Great Britain replaces Germany as top destination in Europe
Most transactions were recorded in the UK last year. With 36 acquisitions and investments, the UK is just ahead of Germany (35 transactions) and well ahead of the third-placed Netherlands (13).

In the previous year, the order at the top was reversed: in 2020, Germany with 28 transactions was ahead of the UK with 21 deals.

"To the extent that the interest of Chinese investors is moving away from classic industrial companies toward technology, software and media companies, the target market of Great Britain is gaining in importance," says Sun. However, she is convinced that Germany remains an attractive market for Chinese investors: "Many Chinese companies have had good experiences with their investments in Germany in particular. In addition, there are now close and resilient ties between China and Germany at many levels. We will see more Chinese transactions in Germany in the coming months - especially when the impact of the pandemic on the economy subsides," Sun expects.

The largest investment in Europe last year was the sale of Philips' home appliances division to Hong Kong-based investment firm Hillhouse Capital for $4.4 billion.

The second largest transaction was Tencent's acquisition of the British developer studio Sumo Digital for US$1.1 billion, followed by China International Marine Containers' takeover of the Danish reefer container manufacturer Maersk Container Industry for also US$1.1 billion.

Study Design:

  • Sources: EY research, Thomson ONE, Merger Market, communications from the companies or consulting firms and law firms involved.
  • Acquisitions and investments originating from companies headquartered in China and Hong Kong or their subsidiaries were examined.
  • The target companies are headquartered in Europe and are operationally active.
  • Pure real estate transactions were not included.
  • The analysis also included transactions that had not yet been completed as of the reporting date of Feb. 17, 2022

Increasingly, Chinese investors are also participating in venture capital financing rounds, mostly as part of investor groups. In these cases, it is often not possible to determine the amount provided by the Chinese investor. Therefore, these transactions are included in the number of transactions but not in the total values.

Source:

Ernst & Young Global Limited (EYG)

Graphik: Pixabay
11.01.2022

FIMATEC innovation network enters second funding phase

The network for the development of fiber materials technology for healthcare and sports will receive funding from the Central Innovation Programme for SMEs (ZIM) for another two years.

The Federal Ministry for Economic Affairs and Climate Action (BMWi) approved a corresponding application in December 2021. This will continue to provide funding for the development of innovative functional fibers, smart textiles and application-optimized fiber composite materials until June 2023 and strengthen the technological competitiveness and innovative strength of small and medium-sized enterprises (SMEs).

The network for the development of fiber materials technology for healthcare and sports will receive funding from the Central Innovation Programme for SMEs (ZIM) for another two years.

The Federal Ministry for Economic Affairs and Climate Action (BMWi) approved a corresponding application in December 2021. This will continue to provide funding for the development of innovative functional fibers, smart textiles and application-optimized fiber composite materials until June 2023 and strengthen the technological competitiveness and innovative strength of small and medium-sized enterprises (SMEs).

For this purpose, the FIMATEC innovation network combines competences from different engineering and scientific disciplines with small and medium-sized manufacturers and service providers from the target sectors in medicine and sports (e.g. orthopaedics, prosthetics, surgery, smart textiles) as well as players from the textile and plastics industry.      

This interdisciplinary combination of industrial partners and application-oriented research institutions increases competitiveness and enables the players to realise their technical research and development projects quickly and in a targeted manner. The focus for the joint R&D projects of the companies and research institutions is on the development of innovative materials and efficient manufacturing technologies. 
          
Fiber-based materials have become indispensable in many applications in medicine and sports. As a pure fiber, processed into a textile or as a fiber composite plastic, they offer an almost unlimited variety for adjusting property and functional profiles. At the same time, the demands on the range of functions, performance and cost-effectiveness are constantly increasing, so that there is great potential for innovation. Developments are driven on the one hand by new materials and manufacturing processes, and on the other by innovative applications. Products with new and superior functions create a technological advantage over international competitors and enable higher sales revenues. In addition, efficient processes, application-optimized materials or even the integration of functions into the basic structure of textile materials lead to lower production costs and improved marketing opportunities in the future.
For developments in this context, the partners have joined forces in the FIMATEC innovation network, thus combining their expertise. Within the network, innovative materials and processes are being developed jointly in the following areas and tested in future-oriented products and services:

  • Functional fibers
    Innovative fiber materials with integrated functionalities
  • Preforming
    Highly load path optimized fiber orientations for complex fiber composite components.    
  • Smart Textiles
    Textile-based sensors and actuators
  • Hybrid material and manufacturing technologies
    Application-optimized components through cross-technology solution approaches.    
  • Fiber composites  
    Intelligent matrix systems and function-optimized fiber materials.    
  • Fiber-reinforced 3D printing  
    High-quality additive manufacturing processes for the efficient production of individualized products.

 
17 network partners are researching fiber-based materials for medical and sports technologyCurrently, ten companies and seven research institutions are involved in FIMATEC. Interested companies and research institutions as well as potential users can continue to participate in the cooperation network or R&D projects. In the course of membership, the partners are actively supported in identifying and initiating innovation projects as well as securing financing through funding acquisition. One application for ZIM project funding has already been approved by FIMATEC in its first year.

The aim of the already approved project "CFKadapt" is to develop a thermoformable fiber-plastic composite material for optimally adaptable orthopedic aids such as prostheses and orthoses. In the "Modul3Rad" project, which is currently being worked out in detail, the project partners intend to develop a modular lightweight frame system for the construction of user-friendly therapy tricycles, suitable for everyday use by severely and very severely disabled children. Three further collaborative projects are already in the planning stage.

The technology and knowledge transfer enables in particular small and medium-sized enterprises (SMEs) to access cutting-edge technological research, especially these are often denied access to innovations due to the lack of their own research departments. The IWS GmbH has taken over the network management for FIMATEC and supports the partners from the first idea to the search for suitable project partners and the preparation and coordination of funding applications. The aim is to obtain funding from the Central Innovation Programme for SMEs (ZIM), which offers companies funding opportunities for a wide range of technical innovation projects in cooperation with research institutions.

FIMATEC-netzwork partners
all ahead composites GmbH | Veitshöchheim | www.bike-ahead-composites.de
Altropol Kunststoff GmbH | Stockelsdorf | www.altropol.de
Diondo GmbH | Hattingen | www.diondo.com
Mailinger innovative fiber solutions GmbH | Sontra | www.mailinger.de
Sanitätshaus Manfred Klein GmbH & Co. KG | Stade | www.klein-sanitaetshaus.de
STREHL GmbH & Co KG | Bremervörde | www.rehastrehl.de
WESOM Textil GmbH | Olbersdorf | www.wesom-textil.de
Faserinstitut Bremen e.V. (FIBRE) | www.faserinstitut.de
E.F.M. GmbH | Olbersdorf | www.efm-gmbh.de
REHA-OT Lüneburg Melchior und Fittkau GmbH | Olbersdorf | www.rehaot.de
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM | Bremen | www.ifam.fraunhofer.de
Leibniz-Institut für Polymerforschung Dresden e.V. (IPF) | www.ipfdd.de
Institut für Polymertechnologien Wismar e.V. (IPT) | www.ipt-wismar.de
Institut für Verbundwerkstoffe GmbH | Kaiserslautern | www.ivw.uni-kl.de

Associated network partners
9T Labs AG | Zürich, Schweiz | www.9tlabs.com
Fachhochschule Nordwestschweiz, Institut für Kunststofftechnik (FHNW) | www.fhnw.ch
KATZ - Kunststoff Ausbildungs- und Technologie-Zentrum | Aarau, Schweiz | www.katz.ch

Source:

Textination / IWS Innovations- und Wissensstrategien GmbH

(c) Toray
23.11.2021

Toray Industries: A Concept to change Lives

Founded in January 1926, Tokyo-based Japanese chemical company Toray Industries, Inc. is known as the world's largest producer of PAN (polyacrylonitrile)-based carbon fibers. But its overall portfolio includes much more. Textination spoke with Koji Sasaki, General Manager of the Textile Division of Toray Industries, Inc. about innovative product solutions, new responsibilities and the special role of chemical companies in today's world.

Toray Industries is a Japanese company that - originating in 1926 as a producer of viscose yarns - is on the home stretch to its 100th birthday. Today, the Toray Group includes 102 Japanese companies and 180 overseas. They operate in 29 countries. What is the current significance of the fibers and textiles business unit for the success of your company?

Founded in January 1926, Tokyo-based Japanese chemical company Toray Industries, Inc. is known as the world's largest producer of PAN (polyacrylonitrile)-based carbon fibers. But its overall portfolio includes much more. Textination spoke with Koji Sasaki, General Manager of the Textile Division of Toray Industries, Inc. about innovative product solutions, new responsibilities and the special role of chemical companies in today's world.

Toray Industries is a Japanese company that - originating in 1926 as a producer of viscose yarns - is on the home stretch to its 100th birthday. Today, the Toray Group includes 102 Japanese companies and 180 overseas. They operate in 29 countries. What is the current significance of the fibers and textiles business unit for the success of your company?

The fibers’ and textiles’ business is both the starting point and the foundation of Toray's business development today. We started producing viscose yarns in 1926 and conducted our own research and development in nylon fibers as early as 1940. And since new materials usually require new processing methods, Toray also began investing in its own process technology at an early stage. On the one hand, we want to increase our sales, and on the other hand, we want to expand the application possibilities for our materials. For this reason, Toray also began to expand its business from pure fibers to textiles and even clothing. This allows us to better respond to our customers' needs while staying at the forefront of innovation.

Over the decades, Toray has accumulated a great deal of knowledge in polymer chemistry and organic synthesis chemistry - and this know-how is the foundation for almost all of our other business ventures. Today, we produce a wide range of advanced materials and high-value-added products in plastics, chemicals, foils, carbon fiber composites, electronics and information materials, pharmaceuticals, medicine and water treatment. However, fibers and textiles remain our most important business area, accounting for around 40% of the company's sales.

What understanding, what heritage is still important to you today? And how do you live out a corporate philosophy in the textile sector that you formulate as "Contributing to society through the creation of new value with innovative ideas, technologies and products"?

Toray has consistently developed new materials that the world has never seen before. We do this by focusing on our four core technologies: Polymer chemistry, organic synthetic chemistry, biotechnology and nanotechnology. We do this by focusing on our four core technologies: Polymer chemistry, organic synthetic chemistry, biotechnology and nanotechnology. For textiles, this means we use new polymer structures, spinning technologies and processing methods to develop yarns with unprecedented properties. We always focus on the needs and problems of the market and our customers.

This approach enables us to integrate textiles with new functions into our everyday lives that natural fibers and materials cannot accomplish. For example, we offer sportswear and underwear that absorb water excellently and dry very quickly, or rainwear and outdoor clothing with excellent water-repellent properties that feature a less bulky inner lining. Other examples include antibacterial underwear, uniforms, or inner linings that provide a hygienic environment and reduce the growth of odor-causing bacteria. People enjoy the convenience of these innovative textiles every day, and we hope to contribute to their daily comfort and improve their lives in some way.

In 2015, the United Nations adopted 17 sustainable development goals – simply known as the 2030 Agenda, which came into force on January 01, 2016. Countries were given 15 years to achieve them by 2030. In your company, there is a TORAY VISION 2030 and a TORAY SUSTAINABILITY VISION. How do you apply these principles and goals to the textile business? What role does sustainability play for this business area?

Sustainability is one of the most important issues facing the world today - not only in the textile sector, but in all industries. We in the Toray Group are convinced that we can contribute to solving various problems in this regard with our advanced materials. At the same time, the trend towards sustainability offers interesting new business approaches. In our sustainability vision, we have set four goals that the world should achieve by 2050. And we have defined which problems need to be addressed to achieve this.

We must:

  1. accelerate measures to combat climate change,
  2. implement sustainable, recycling-oriented solutions in the use of resources and in production,
  3. provide clean water and air, and
  4. contribute to better healthcare and hygiene for people around the world.

We will drive this agenda forward by promoting and expanding the use of materials that respond to environmental issues. In the textile sector, for example, we offer warming and cooling textiles – by eliminating the need for air conditioning or heating in certain situations, they can help reduce energy costs. We also produce environmentally friendly textiles that do not contain certain harmful substances such as fluorine, as well as textiles made from biomass, which use plant-based fibers instead of conventional petrochemical materials. Our product range also includes recycled materials that reduce waste and promote effective use of resources.

The TORAY VISION 2030, on the other hand, is our medium-term strategic plan and looks at the issue of sustainability from a different angle: Toray has defined the path to sustainable and healthy corporate growth in it. In this plan, we are focusing on two major growth areas: Our Green Innovation Business, which aims to solve environmental, resource and energy problems, and the Life Innovation Business, which focuses on improving medical care, public health, personal safety and ultimately a longer expectancy of life.

Innovation by Chemistry is the claim of the Toray Group. In a world where REACH and Fridays for Future severely restrict the scope of the chemical industry, the question arises as to what position chemistry can have in the textile industry. How do chemistry, innovation and sustainability fit together here?

The chemical industry is at a turning point today. The benefits that this industry can bring to civilization are still enormous, but at the same time, disadvantages such as the waste of resources and the negative impact on the environment and ecosystems are becoming increasingly apparent. In the future, the chemical industry will have to work much more towards sustainability - there is no way around it.

As far as textiles are concerned, we believe there are several ways to make synthetic materials more sustainable in the future. One of these, as I said, is materials made from plants instead of petrochemical raw materials. Another is to reduce the amount of raw materials used in production in the first place – this can be achieved, for example, by collecting and recycling waste materials from production or sales. Biodegradable materials that reduce the impact of waste products on the environment are another option worth pursuing, as is the reduction of environmentally harmful substances used in the production process. We are already looking at all of these possibilities in Toray's synthetic textiles business. At the same time, by the way, we make sure to save energy in our own production and minimize the impact on the environment.

Toray's fibers & textiles segment focuses on synthetic fibers such as nylon, polyester and acrylic, as well as other functional fibers. In recent years, there has been a clear trend on the market towards cellulosic fibers, which are also being traded as alternatives to synthetic products. How do you see this development – on the one hand for the Toray company, and on the other hand under the aspect of sustainability, which the cellulosic competitors claim for themselves with the renewable raw material base?

Natural fibers, including cellulose fibers and wool, are environmentally friendly in that they can be easily recycled and are rapidly biodegradable after disposal. However, to truly assess their environmental impact, a number of other factors must also be considered: Primarily, there is the issue of durability: precisely because natural fibers are natural, it is difficult to respond to a rapid increase in demand, and quality is not always stable due to weather and other factors.

Climatic changes such as extreme heat, drought, wind, floods and damages from freezing can affect the quantity and quality of the production of natural fibers, so that the supply is not always secured. In order to increase production, not only does land have to be cleared, but also large amounts of water and pesticides have to be used to cultivate it – all of which is harmful to the environment.

Synthetic fibers, on the other hand, are industrial products manufactured in controlled factory environments. This makes it easier to manage fluctuations in production volume and ensure consistent quality. In addition, certain functional properties such as resilience, water absorption, quick drying and antibacterial properties can be embedded into the material, which can result in textiles lasting longer in use.

So synthetic fibers and natural fibers, including cellulose fibers, have their own advantages and disadvantages – there is no panacea here, at least not at the moment. We believe: It is important to ensure that there are options that match the consumer's awareness and lifestyle. This includes comfort in everyday life and sustainability at the same time.

To what extent has the demand for recycled products increased? Under the brand name &+™, Toray offers a fiber made from recycled PET bottles. Especially with the "raw material base: PET bottles", problems can occur with the whiteness of the fiber. What distinguishes your process from that of other companies and to what extent can you compete with new fibers in terms of quality?

During the production of the "&+" fiber, the collected PET bottles are freed from all foreign substances using special washing and filtering processes. These processes have not only allowed us to solve the problem of fiber whiteness – by using filtered, high-purity recycled polyester chips, we can also produce very fine fibers and fibers with unique cross sections. Our proven process technologies can also be used to incorporate specific textures and functions of Toray into the fiber. In addition, "&+" contains a special substance in the polyester that allows the material to be traced back to the recycled PET bottle fibers used in it.

We believe that this combination of aesthetics, sustainability and functionality makes the recycled polyester fiber "&+" more competitive than those of other companies. And indeed, we have noticed that the number of requests is steadily increasing as companies develop a greater awareness of sustainability as early as the product planning stage.

How is innovation management practiced in Toray's textile division, and which developments that Toray has worked on recently are you particularly proud of?

The textile division consists of three sub-divisions focusing on the development and sale of fashion textiles (WOMEN'S & MEN'S WEAR FABRICS DEPT.), sports and outdoor textiles (SPORTS WEAR & CLOTHING MATERIALS FABRICS DEPT.) and, specifically for Japan, textiles for uniforms used in schools, businesses and the public sector (UNIFORM & ADVANCED TEXTILES DEPT.).

In the past, each division developed its own materials for their respective markets and customers. However, in 2021, we established a collaborative space to increase synergy and share information about textiles developed in different areas with the entire department. In this way, salespeople can also offer their customers materials developed in other departments and get ideas for developing new textiles themselves.

I believe that the new structure will also help us to respond better to changes in the market. We see, for example, that the boundaries between workwear and outdoor are blurring – brands like Engelbert Strauss are a good example of this trend. Another development that we believe will accelerate after the Corona pandemic is the focus on green technologies and materials. This applies to all textile sectors, and we need to work more closely together to be at the forefront of this.

How important are bio-based polyesters in your research projects? How do you assess the future importance of such alternatives?

I believe that these materials will play a major role in the coming years. Polyester is made from purified terephthalic acid (PTA), which again consists of paraxylene (PX) and ethylene glycol (EG). In a first step, we already offer a material called ECODEAR™, which uses sugar cane molasses waste as a raw material for EG production.

About 30% of this at least partially bio polyester fiber is therefore biologically produced, and the material is used on a large scale for sportswear and uniforms. In the next step, we are working on the development of a fully bio-based polyester fiber in which the PTA component is also obtained from biomass raw materials, such as the inedible parts of sugar cane and wood waste.

Already in 2011, we succeeded in producing a prototype of such a polyester fiber made entirely from biomass. However, the expansion of production at the PX manufacturer we are working with has proven to be challenging. Currently, we are only producing small sample quantities, but we hope to start mass production in the 2020s.

Originally starting with yarn, now a leading global producer of synthetic fibers for decades, you also work to the ready-made product. The range extends from protective clothing against dust and infections to smart textiles and functional textiles that record biometric data. What are you planning in these segments?

In the field of protective clothing, our LIVMOA™ brand is our flagship material. It combines high breathability to reduce moisture inside the garment with blocking properties that keep dust and other particles out. The textile is suitable for a wide range of work environments, including those with high dust or grease levels and even cleanrooms. LIVMOA™ 5000, a high quality, also demonstrates antiviral properties and helps to ease the burden on medical personnel. The material forms an effective barrier against bacteria and viruses and is resistant to hygroscopic pressure. Due to its high breathability, it also offers high wearing comfort.

Our smart textile is called hitoe™. This highly conductive fabric embeds a conductive polymer – a polymer compound that allows electricity to pass through - into the nanofiber fabric. hitoe™ is a high-performance material for detecting biosignals, weak electrical signals that we unconsciously emit from our bodies.

In Japan, Toray has developed products for electrocardiographic measurements (ECGs) that meet the safety and effectiveness standards of medical devices. And in 2016, we submitted an application to the Japanese medical administrative authorities to register a hitoe™ device as a general medical device – this registration process is now complete. Overall, we expect the healthcare sector, particularly medical and nursing applications, to grow – not least due to increasing infectious diseases and growing health awareness among the elderly population. We will therefore continue to develop and sell new products for this market.

In 1885, Joseph Wilson Swan introduced the term "artifical silk" for the nitrate cellulose filaments he artificially produced. Later, copper, viscose and acetate filament yarns spun on the basis of cellulose were also referred to as artifical silk. Toray has developed a new innovative spinning technology called NANODESIGN™, which enables nano-level control of the fineness and shape of synthetic fibers. This is expected to create functions, aesthetics and textures that have not existed before. For which applications do you intend to use these products?

In NANODESIGN™ technology, the polymer is split into a number of microscopic streams, which are then recombined in a specific pattern to form a new fiber. By controlling the polymer flow with extreme precision, the fineness and cross-sectional shape of the fiber can be determined much more accurately than was previously possible with conventional microfiber and nanofiber spinning technologies. In addition, this technology enables the combination of three or more polymer types with different properties in one fiber – conventional technologies only manage two polymer types. This technology therefore enables Toray to specify a wide range of textures and functions in the production of synthetic fibers that were not possible with conventional synthetic fibers – and even to outperform the texture and feel of natural fibers. Kinari, our artificial silk developed with NANODESIGN technology, is a prime example here, but the technology holds many more possibilities – especially with regard to our sustainability goals.

What has the past period of the pandemic meant for Toray's textile business so far? To what extent has it been a burden, but in which areas has it also been a driver of innovation? What do you expect of the next 12 months?

The Corona catastrophe had a dramatic impact on the company's results: The Corona catastrophe had a dramatic impact on the company's results: In the financial year 2020, Toray's total sales fell by about 10% to 188.36 billion yen (about 1.44 billion euros) and operating profit by about 28% to 90.3 billion yen (about 690 million euros). The impact on the fiber and textile business was also significant, with sales decreasing by around 13% to 719.2 billion yen (approx. 5.49 billion euros) and operating profit by around 39% to 36.6 billion yen (approx. 280 million euros).

In the financial year 2021, however, the outlook for the fibers and textiles sector is significantly better: So far, the segment has exceeded its goals overall, even if there are fluctuations in the individual areas and applications. In the period from April to June, we even returned to the level of 2019. This is partly due to the recovering sports and outdoor sector. The fashion apparel market, on the other hand, remains challenging due to changing lifestyles that have brought lock-downs and home-office. We believe that a full recovery in business will not occur until the travel and leisure sector returns to pre-Corona levels.

Another side effect of the pandemic that we feel very strongly, is the growing concern about environmental issues and climate change. As a result, the demand for sustainable materials has also increased in the apparel segment. In the future, sustainability will be mandatory for the development and marketing of new textiles in all market segments. Then again, there will always be the question of how sustainable a product really is, and data and traceability will become increasingly important. In the coming years, the textile division will keep a close eye on these developments and develop materials that meet customers' needs.

About the person:
Koji Sasaki joined Toray in 1987. In his more than 30 years with the company, he has held various positions, including a four-year position as Managing Director of Toray International Europe GmbH in Frankfurt from 2016 to 2020. Since 2020, Koji Sasaki has been responsible for Toray's textile division and serves as acting chairman of Toray Textiles Europe Ltd. In these roles, he supervises the company's development, sales and marketing activities in the apparel segment, including fashion, sports and work or school uniforms.

The interview was conducted by Ines Chucholowius, Managing partner Textination GmbH

Photo: pixabay
17.08.2021

Innovative wound care: Customized wound dressings made from tropoelastin

Customized, biomedically applicable materials based on tropoelastin are being developed in a joint project by Skinomics GmbH from Halle, Martin Luther University Halle-Wittenberg and the Fraunhofer Institute for Microstructure of Materials and Systems IMWS. The material combines biocompatibility, durability, biodegradability and favorable mechanical properties similar to those of skin. Preclinical tests have confirmed that it is suitable for use as a wound dressing material used in the treatment of chronic and complex wounds.

Customized, biomedically applicable materials based on tropoelastin are being developed in a joint project by Skinomics GmbH from Halle, Martin Luther University Halle-Wittenberg and the Fraunhofer Institute for Microstructure of Materials and Systems IMWS. The material combines biocompatibility, durability, biodegradability and favorable mechanical properties similar to those of skin. Preclinical tests have confirmed that it is suitable for use as a wound dressing material used in the treatment of chronic and complex wounds.

Particularly in the context of an aging society, special wound dressings are gaining in importance. The treatment of complex wound diseases such as venous ulcers, leg ulcers, or foot ulcers is challenging for medical staff, long-term and painful for those affected and cost-intensive for the healthcare system. Innovative protein-based materials are now being used for the treatment of such wounds. However, since they are made from animal tissues, they carry increased risks of infection or can result in undesirable immune reactions. In addition, there are increasing reservations in the population about medical products of animal origin.

In the joint research project, the project partners are currently developing customized, biomedically applicable materials based on human tropoelastin. This precursor protein is converted in the body to elastin, a vital and long-lived structural biopolymer that has exceptional mechanical properties and thus gives the skin and other organs the elasticity and resilience they need to function.

“Elastin is chemically and enzymatically extremely stable, biocompatible and does not produce immunological rejections when used as a biomaterial in humans. Therefore, we want to create new and innovative solutions for the treatment of complex wounds based on human tropoelastin,” says Dr. Christian Schmelzer, Head of the Department of Biological and Macromolecular Materials at Fraunhofer IMWS.

Individual wound treatment
As part of the research project led by Prof. Dr. Markus Pietzsch of Martin Luther University Halle-Wittenberg, the researchers succeeded in developing a biotechnological process for modifying tropoelastin. The modified tropoelastin is processed at Fraunhofer IMWS. Here, an electrospinning procedure is used to produce ultra-thin nanofibers with diameters of only a few hundred nanometers. The resulting nonwovens are further crosslinked to stabilize them for the respective application. The procedures developed have been optimized so that biomedical parameters such as pore size, stability and mechanical properties are variable and can thus be customized to meet the requirements of the respective wound treatment. The materials produced using the new procedures are being investigated by Skinomics GmbH in initial preclinical tests with regard to their skin compatibility and have already achieved promising results.

At the end of the project by the end of this year, applications for intellectual property rights are to be filed, building the basis for a subsequent product development phase for certified medical products.

Photo: pixabay
20.07.2021

Closed-Loop Recycling Pilot Project for Single Use Face Masks

  • Circular economy for plastics: Fraunhofer, SABIC, and Procter & Gamble join forces

The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics. The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

The transformation from a linear to a circular plastics economy can only succeed with a multi-stakeholder approach. The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE combines the competencies of six institutes of the Fraunhofer-Gesellschaft and cooperates closely with partners from industry. Together, we work on systemic, technical and social innovations and keep an eye on the entire life cycle of plastic products.  

  • Circular economy for plastics: Fraunhofer, SABIC, and Procter & Gamble join forces

The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics. The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

The transformation from a linear to a circular plastics economy can only succeed with a multi-stakeholder approach. The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE combines the competencies of six institutes of the Fraunhofer-Gesellschaft and cooperates closely with partners from industry. Together, we work on systemic, technical and social innovations and keep an eye on the entire life cycle of plastic products.  

Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT is a pioneer in sustainable energy and raw materials management by supplying and transferring scientific results into companies, society and politics. Together with partners, the dedicated UMSICHT team researches and develops sustainable products, processes and services which inspire.

Fraunhofer Institute UMSICHT, SABIC and Procter & Gamble (P&G) are collaborating in an innovative circular economy pilot project which aimed to demonstrate the feasibility of closed-loop recycling of single-use facemasks.

Due to COVID-19, use of billions of disposable facemasks is raising environmental concerns especially when they are thoughtlessly discarded in public spaces, including - parks, open-air venues and beaches. Apart from the challenge of dealing with such huge volumes of essential personal healthcare items in a sustainable way, simply throwing the used masks away for disposal on landfill sites or in incineration plants represents a loss of valuable feedstock for new material.

“Recognizing the challenge, we set out to explore how used facemasks could potentially be returned into the value chain of new facemask production,” says Dr. Peter Dziezok, Director R&D Open Innovation at P&G. “But creating a true circular solution from both a sustainable and an economically feasible perspective takes partners. Therefore, we teamed up with Fraunhofer CCPE and Fraunhofer UMSICHT’s expert scientists and SABIC’s T&I specialists to investigate potential solutions.”

As part of the pilot, P&G collected used facemasks worn by employees or given to visitors at its manufacturing and research sites in Germany. Although those masks are always disposed of responsibly, there was no ideal route in place to recycle them efficiently. To help demonstrate a potential step change in this scenario, special collection bins were set up, and the collected used masks were sent to Fraunhofer for further processing in a dedicated research pyrolysis plant.

“A single-use medical product such as a face mask has high hygiene requirements, both in terms of disposal and production. Mechanical recycling, would have not done the job” explains Dr. Alexander Hofmann, Head of Department Recycling Management at Fraunhofer UMSICHT. “In our solution, therefore, the masks were first automatically shredded and then thermochemically converted to pyrolysis oil.

Pyrolysis breaks the plastic down into molecular fragments under pressure and heat, which will also destroy any residual pollutants or pathogens, such as the Coronavirus. In this way it is possible to produce feedstock for new plastics in virgin quality that can also meet the requirements for medical products” adds Hofmann, who is also Head of Research Department “Advanced Recycling” at Fraunhofer CCPE.

The pyrolysis oil was then sent to SABIC to be used as feedstock for the production of new PP resin. The resins were produced using the widely recognized principle of mass balance to combine the alternative feedstock with fossil-based feedstock in the production process. Mass balance is considered a crucial bridge between today’s linear economy and the more sustainable circular economy of the future.

“The high-quality circular PP polymer obtained in this pilot clearly demonstrates that closed-loop recycling is achievable through active collaboration of players from across the value chain,” emphasizes Mark Vester, Global Circular Economy Leader at SABIC. “The circular material is part of our TRUCIRCLE™ portfolio, aimed at preventing valuable used plastic from becoming waste and at mitigating the depletion of fossil resources.”

Finally, to close the loop, the PP polymer was supplied to P&G, where it was processed into non-woven fibers material. “This pilot project has helped us to assess if the close loop approach could work for hygienic and medical grade plastics.” says Hansjörg Reick, P&G Senior Director Open Innovation. “Of course, further work is needed but the results so far have been very encouraging”.

The entire closed loop pilot project from facemask collection to production was developed and implemented within only seven months. The transferability of advanced recycling to other feedstocks and chemical products is being further researched at Fraunhofer CCPE.

Graphic: Pixabay
12.01.2021

East German Textile and Clothing Industry recorded a significant Drop in Sales in 2020

  • vti calls on health textiles purchasers to place more orders with domestic manufacturers
  • East German textile and clothing industry faces the Covid-19 crises with new ideas and products
  • Clothing sector more affected than the textile sector

The Association of the North-East German Textile and Clothing Industry (vti) calls on decision-makers in politics and authorities as well as in clinics and long-term care to order far more health protection textiles from local manufacturers than before. "That would be a logical step towards future-oriented, sustainable business - and furthermore in an exceptionally tough crisis situation. We are happy to arrange appropriate contacts with our companies," emphasized Dr.-Ing. Jenz Otto, Managing Director of the Chemnitz-based industry association, during an online press conference on January 8, 2021.

  • vti calls on health textiles purchasers to place more orders with domestic manufacturers
  • East German textile and clothing industry faces the Covid-19 crises with new ideas and products
  • Clothing sector more affected than the textile sector

The Association of the North-East German Textile and Clothing Industry (vti) calls on decision-makers in politics and authorities as well as in clinics and long-term care to order far more health protection textiles from local manufacturers than before. "That would be a logical step towards future-oriented, sustainable business - and furthermore in an exceptionally tough crisis situation. We are happy to arrange appropriate contacts with our companies," emphasized Dr.-Ing. Jenz Otto, Managing Director of the Chemnitz-based industry association, during an online press conference on January 8, 2021. “We don't understand the buying resistance concerning health textiles, even though the demand is huge. It is just as incomprehensible why there are still no noteworthy orders from authorities. In spring, the German federal government had already announced to provide 1 billion Euro with its economic stimulus package for national epidemic reserves for personal protective equipment. The federal states also had to take action in this regard and stock up. We urgently await the long-announced tenders for equipping the pandemic reserve stock. It is important that the purchase price is not the only measure of all things. Rather, criteria such as standard-compliant quality, traceable supply chains, the possibility of needs-based reorders and the multiple use of textiles are decisive for the safety of the population.”

When supply chains worldwide collapsed at the beginning of 2020, both authorities and many care and health facilities turned to textile companies for help. Many manufacturers launched both everyday masks and protective textiles that could be used in healthcare at short notice.
"These include highly effective bacteria and virus-repellent reusable products that enable effective textile management in the healthcare sector and at the same time prevent the piles of single-use waste from growing there," explained vti chairman Thomas Lindner, managing director of Strumpfwerk Lindner GmbH, Hohenstein-Ernstthal: “When the cheap imports from Asia reinstated, however, the interest decreased significantly. Nevertheless, numerous companies have continued to invest in new technology and aligned their production accordingly. For example, completely new production lines of face masks have been set up at several locations. Do not forget: The very expensive test procedures for medical and health textiles are a major challenge for us, the medium-sized businesses. In addition, there are still too few accredited test and certification bodies in Germany.” The fact that the companies were able to adapt to the new requirements at this rapid pace was primarily possible, because around 30 local companies and research institutes have been part of the health textiles network "health.textil", which is controlled by the vti and supported by the Free State of Saxony, for several years now. This alliance cooperates closely with practice partners such as the University Clinic of Dresden and the Elbland Clinics in Meißen. Nowadays it has expanded their activities to their neighbouring industry, research and application partner in Czech Republic. www.healthtextil.de

CO2 taxation puts medium-sized companies at a competitive disadvantage
Concerning the permanently relevant topic energy transition in Germany, vti General Manager Dr.-Ing. Jenz Otto points out that the economic framework conditions for medium-sized producers will continue to worsen with the introduction of the CO2 taxation in the midst of the current crisis. “The financial resources to be used for this will then be lacking for investments in innovative products and environmentally friendly manufacturing processes. Furthermore, our companies suffer significant competitive disadvantages compared to foreign competitors.” Björn-Olaf Dröge, managing director of the textile finishing company pro4tex GmbH, Niederfrohna, with around 100 employees, reported that the tax to be paid by his company for renewable energies adds up to around a quarter of a million euros annually. “Now the CO2 taxation for our natural gas consumption comes on top of that. For 2021 we anticipate an additional burden of almost 70,000 Euros.”

vti about the current situation in the East German industry
The East German textile and clothing industry recorded a significant loss in sales already in 2019. This trend has continued in 2020 being reinforced by the Covid-19 crises. Based on preliminary estimates, the vti assumes that the total turnover of the industry will be more than 11 percent below the previous year at the end of 2020, where the clothing sector is affected far more than the textile sector, with a decline of 35 percent. Exports, which are extremely important for the industry, also decreased in a similar magnitude. The job cuts have so far been relatively moderate, as many companies use the short-time working regulations and try to retain their permanent workforce. For 2021 the vti sees a gleam of hope in technical textiles, which have been in greater demand again in recent weeks - especially from the automotive industry. The employment cuts have so far been relatively moderate, as many companies use short-time working regulations and try to retain their permanent workforce. The vti sees a bright future for technical textiles in 2021, which have been in greater demand – especially in the automobile industry – in the last few weeks.

Of the around 16,000 employees, 12,000 work in Saxony and 2,500 in Thuringia. This makes this region one of the four largest German textile locations, along North Rhine-Westphalia, Baden-Württemberg and Bavaria. It has modern spinning mills, weaving mills, knitting mills, warp knitting mills, nonwovens manufacturers, embroidery mills, finishing companies and clothing manufacturers as well as efficient research and educational institutions. 

Over half of the turnover in the East German textile and clothing industry has so far been attributa-ble to technical textiles, followed by home textiles with around 30 percent and the clothing sector with around 10 percent. The vti acts as a stakeholder at state, federal and EU level, tariff- and so-cial partner, as well as a service provider for its around 160 member companies.

08.12.2020

Fraunhofer FEP: Boosting Innovations for COVID-19 Diagnostic, Prevention and Surveillance

The recently launched 6.1 million Euro project INNO4COV-19, funded by the European Commission (grant agreement no. 101016203), will support the marketing of new products to combat COVID-19 over the next two years, throughout Europe. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP is contributing its know-how in sterilization using accelerated electrons and on near-to-eye visualization.

The €6.1 million project INNO4COV-19 is committed to supporting the commercialization of new products across Europe for combatting COVID-19 over the next two years. Looking for the fast development of products – from medical technologies to surveillance solutions - the project will boost innovation to tackle the new coronavirus, reinforcing Europe's technological leadership, and invigorating an industrial sector capable of protecting citizens' safety and well-being.

The recently launched 6.1 million Euro project INNO4COV-19, funded by the European Commission (grant agreement no. 101016203), will support the marketing of new products to combat COVID-19 over the next two years, throughout Europe. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP is contributing its know-how in sterilization using accelerated electrons and on near-to-eye visualization.

The €6.1 million project INNO4COV-19 is committed to supporting the commercialization of new products across Europe for combatting COVID-19 over the next two years. Looking for the fast development of products – from medical technologies to surveillance solutions - the project will boost innovation to tackle the new coronavirus, reinforcing Europe's technological leadership, and invigorating an industrial sector capable of protecting citizens' safety and well-being.

Officially starting on October 1, the virtual kick-off took place on October 6 – 7, counting with the support of two European Commission officers.

The 11-partner consortium led by INL – International Iberian Nanotechnology Laboratory, is looking for efficient and fast solutions that can help in the fight against COVID-19 jointly with the other actively involved industrial and RTO partners.

The mission of INNO4COV-19 is to create a “lab-to-fab” platform and a collaboration resource where companies and reference laboratories will find the tools for developing and implementing innovative technologies – from idea assessment to market exploitation. This work will be carried out as part the European Union Coronavirus initiative and in strong collaboration with all the funded projects where to accelerate the time to market for any promising product.

INNO4COV-19 is set to assist up to 30 test cases and applications from several areas spanning from Medical technologies, Environmental Surveillance systems, Sensors, Protection of Healthcare workers and Artificial Intelligence and Data mining. To achieve this, INNO4COV-19 is awarding half of the budget to support 30 enterprises selected through a set number of open calls during the first year of the project.

The first call will be launched in November 2020 across several platforms. Awardees will receive up to €100,000 each and benefit from the INNO4COV-19 consortium's technical, regulatory, and business expertise.

Roll-to-Roll Equipment and Electron Beam Technology for Large Area Sterilization of textile materials
During pandemic events like COVID-19, MERS, SARS or Ebola a substantial shortage of sterile materials for medical uses was observed due to peak demands. Fraunhofer FEP will contribute their roll-to-roll equipment and electron beam technology for the purpose of large area sterilization of textile materials to the INNO4COV-19 project.

Usually the textile material is produced in non-sterile conditions and therefore must be sterilized before being delivered to the consumers (e. g. hospitals); Sterilization at product level (sterilizing the final manufactured masks) is limited in throughput, due to a high number of individual small pieces, that must be sterilized.

Project manager Dr. Steffen Günther of Fraunhofer FEP explains the role and aims of the institute in more detail: “INNO4COV-19 will establish and verify a process chain for high throughput (4500 m²/h) electron beam sterilization of fabric material in roll-form in a single TRL 7 pilot machine to allow efficient manufacturing of sterile face masks and other fabric based sterile products without the need to sterilize the final product.”

OLED Microdisplays for Detecting Infected People
Another topic of Fraunhofer FEP within INNO4COV-19 deals with the earliest possible detection of infected people. A widely used strategy to early identify individuals with disease symptoms is body temperature screening using thermal cameras.

One possibility to allow continuous body temperature monitoring, is the integration of a thermal camera into a smart wearable device. Therefore, Fraunhofer FEP is using their OLED microdisplay technology. This allows small (< 3 × 2 cm²), ultrathin (< 5 mm including control circuitry) and ultra-low power (< 5 mW) devices to show visual information. In combination with an infrared sensor a thermal imager will be realized to both measure body temperature and directly displays the result via near-to-eye visualization. The system can be embedded within smart glasses, hats, caps or personal face shields.

About INNO4COV-19 project:
Website: www.inno4cov19.eu
Please contact: info@inno4cov19.eu

 

Source:

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP

INDEX17:  Manage change in healthcare © INDEX™17 Press Office
04.04.2017

INDEX17: MANAGING CHANGE IN HEALTHCARE

An aging population is a critical issue facing the medical and healthcare industry. The European Wound Management Association (EWMA) maintains that persons aged 65 and over will account for 30% of the EU27’s population by 2060, compared to 17% in 2008, and that the highest share of inhabitants aged over 80 years in 2060, will be in Italy (14.9%), Spain (14.5%) and Germany (13.2%), closely followed by Greece (13.5 %).

There has been an exponential growth in healthcare costs mainly driven by the increased cost of medication and devices, and in tandem, a rise in the prevalence of chronic conditions. These trends have resulted in significant changes in European hospital services, with the number of hospital facilities, as well as the number of hospital beds decreasing. Furthermore, increasing pressures for early discharge from hospitals have caused a shift in the delivery of services from the hospital to the home, especially in the field of wound management.

An aging population is a critical issue facing the medical and healthcare industry. The European Wound Management Association (EWMA) maintains that persons aged 65 and over will account for 30% of the EU27’s population by 2060, compared to 17% in 2008, and that the highest share of inhabitants aged over 80 years in 2060, will be in Italy (14.9%), Spain (14.5%) and Germany (13.2%), closely followed by Greece (13.5 %).

There has been an exponential growth in healthcare costs mainly driven by the increased cost of medication and devices, and in tandem, a rise in the prevalence of chronic conditions. These trends have resulted in significant changes in European hospital services, with the number of hospital facilities, as well as the number of hospital beds decreasing. Furthermore, increasing pressures for early discharge from hospitals have caused a shift in the delivery of services from the hospital to the home, especially in the field of wound management.


Visitors and exhibitors at INDEX™17, the world’s leading nonwovens exhibition held in Geneva from 4th-7th April 2017, will have the opportunity to hear from “Big Picture” speaker Prof. Dr. Sebastien Probst, Professor of Tissue Viability and Wound Care at the School of Health Sciences, University of Applied Sciences and Arts Western Switzerland. “Chronic and highly-exuding wounds can often lead to the use of unreliable and costly treatments,” explains Prof. Dr. Probst. “Patients are frequently found to be at an increased risk of infection and delayed healing, which results in an enormous negative impact on their quality of life, both physically and psychologically. Superabsorbent nonwoven dressings are increasingly being used for a more effective wound care, removing bacteria and exudates and keeping the wound bed moist. Reducing healthcare costs while maintaining high quality of care remains paramount.” Another less visible but important benefit is that these products can contribute to reducing health associated infections (HAI) which still affect 1 out of 18 patients every day in Europe.

The rich three-day INDEX™17 programme, features a Medical & Healthcare seminar on 5th April organised in conjunction with market intelligence partners WTiN, where leading speaker Prof. Dr. Sebastien Probst will put forward the key challenges faced by the medical industry, and renowned experts in the field will then discuss how nonwovens are contributing to solving these challenges.

Medical & Healthcare seminar speakers include:

  • Dr. Parikshit Goswami, Associate Professor, Director of Research and Innovation, MSc Textiles Programme Leader, Technology Research Area Leader, will deliver a welcome note.
  • Prof. Dr. Sebastian Probst, DClinPrac, RN, Professor of Tissue Viability and Wound Care, School of Health Sciences, University of Applied Sciences and Arts Western Switzerland, Geneva, will address global trends in nonwoven medical textiles.
  • Dionysia Patrinou, Intelligence Manager/Market Strategist, Advanced Medical Materials, World Textile Information Network (WTiN), will discuss opportunities in the medical market. .
  • Paul Greenhalgh, Director of Industrial Design, Team Consulting, will speak about a patient centric approach to medical technology development.
  • Dr. Bernd Schlesselmann, Head of R&D, Freudenberg Performance Materials, will discuss the future of nonwovens in advanced wound care..

Visitors from around the world will have the opportunity to gain first-hand knowledge of the latest developments in nonwovens for medical applications.
To attend INDEX™17, you can register online at www.index17.org/.
 

TEXCARE INTERNATIONAL 2016 © Foto: Jens Liebchen / Messe Frankfurt GmbH
21.06.2016

TEXCARE INTERNATIONAL CLOSES WITH A NEW INTERNATIONALITY RECORD

  • Trade visitors very pleased with the bigger and more extensive range of products at the world’s leading trade fair for the sector
  • Exhibitors and visitors rate the economic situation in the sector as very good
Texcare International has closed its doors after welcoming ten percent more international visitors. Overall, the number of trade visitors remained stable – of the 15,700 visitors (2012: 15,650 from 101 countries*), almost 9,000 (2012: 8,045) came from outside Germany to the world’s leading trade fair for the sector in Frankfurt am Main from 11 to 15 June 2016, which means that international visitors account for 57 percent of the total. The visitors travelled to Texcare International from 112 countries, to discover the latest products and innovations at the exhibition stands.
  • Trade visitors very pleased with the bigger and more extensive range of products at the world’s leading trade fair for the sector
  • Exhibitors and visitors rate the economic situation in the sector as very good
Texcare International has closed its doors after welcoming ten percent more international visitors. Overall, the number of trade visitors remained stable – of the 15,700 visitors (2012: 15,650 from 101 countries*), almost 9,000 (2012: 8,045) came from outside Germany to the world’s leading trade fair for the sector in Frankfurt am Main from 11 to 15 June 2016, which means that international visitors account for 57 percent of the total. The visitors travelled to Texcare International from 112 countries, to discover the latest products and innovations at the exhibition stands. After Germany, the top visitor nations included Italy, France, the Netherlands, Belgium, Spain, the United Kingdom, Switzerland, Denmark, Austria and Poland. Outside Europe, the USA, Japan, Australia, the United Arab Emirates, China and India ranked among the biggest visitor nations at the textile-care fair. Overall, the proportion of international visitors from outside Europe rose from 15 to 22 percent with the largest non-European growth coming from Argentina and Kazakhstan. In Germany, the market continues to be characterised by an on-going process of consolidation and concentration.
 
For five days, 319 exhibitors from 28 countries (2012: 262 exhibitors from 26 countries) – over 20 percent more than four years ago – presented their high-tech solutions and innovations for laundries, dry cleaners and textile service providers. The proportion of international exhibitors also reached a new record at 68 percent. On 30 percent more exhibition space and in two halls for the first time, the manufacturers presented a more extensive range of products and services, especially in the textiles and IT product groups. The focal point of the exhibitors’ presentations was on networking all processes in accordance with Industry 4.0. Impulses for the sustainable conversion to ‘smart laundries’ were generated by innovations for contactless laundry registration, for visualising all processes in real-time, for intelligent storage systems and for the use of robot technology.
 
Wolfgang Marzin, President and Chief Executive Officer (CEO) of Messe Frankfurt, says, “The atmosphere at Texcare International 2016 was outstanding and international growth reinforced the position of the event as the world’s leading trade fair for the sector. Top decision-makers from all over the world travelled to Frankfurt am Main to do business at the fair and gain new customers.” The level of visitor decision-making authority also rose again: over 60 percent of visitors said they were authorised to make purchases on behalf of their companies.
 
84 percent of exhibitors confirmed that they had achieved their goals for the fair, especially in terms of sales agreements signed, order books filled and numerous new international contacts made. Elgar Straub, Director General of VDMA Garment and Leather Technology, says, “Texcare International exceeded the expectations of its exhibitors by a wide margin. The high level of visitor internationality shows the great worldwide interest and demand for new, future-oriented technologies, as reflected by subjects such as Industry 4.0 and the on-going process of digitalisation on which the fair focused.”
 
89 percent of exhibitors said that the economic situation in the sector is very good, an increase of three percent over the last Texcare International four years ago. 89 percent of visitors also agreed with this assessment.

98 percent of visitors said they were very pleased with the range of products and services at Texcare International. Andreas Schumacher, Managing Director of the German Dry Cleaning Association (– DTV Deutscher Textilreinigungsverband), says, “We are delighted with the course of business at 
the fair. The echo from exhibitors and visitors has been excellent. Very popular was the opportunity to exchange information and opinions about subjects of topical importance to the sector at Texcare Forum in addition to visiting the exhibition stands. The DTV stand itself was also a welcome meeting place for holding discussions with our members and sponsors. We were particularly pleased with the highly positive response of visitors to our programme of events, which included a fashion show and ironing competition.”
 
At the fair, trade visitors from all over the world were able to discern the latest trends in the sector and gain an excellent impression of the high-grade products offered by the manufacturers. The events held within the framework of Texcare International also proved to be very popular, especially the lectures at the Texcare Forum, which were attended by over 1,000 participants. The division into themed days – education and careers, innovative textiles, sustainability and Industry 4.0 – was also very well received.

A highlight at Texcare International was the fashion show where manufacturers presented their collections and showed the latest trends in terms of colour, design and function for industrial, healthcare and catering workwear. The first ironing competition to be held at Texcare gave participants the chance to match themselves against others and to demonstrate their skills.
 
The next Texcare International will be held in Frankfurt am Main from 20 to 24 June 2020; the next Texcare Asia in the autumn of 2017.
 
You will find further information about Texcare International at www.texcare.com.
Follow Texcare on our social-media channels at:
www.texcare.com/twitter
www.texcare.com/facebook