Textination Newsline

Reset
102 results
A cotton knit fabric dyed blue and washed 10 times to simulate worn garments is enzymatically degraded to a slurry of fine fibers and "blue glucose" syrup that are separated by filtration - both of these separated fractions have potential recycle value. A cotton knit fabric dyed blue and washed 10 times to simulate worn garments is enzymatically degraded to a slurry of fine fibers and "blue glucose" syrup that are separated by filtration - both of these separated fractions have potential recycle value. Credit: Sonja Salmon.
11.04.2023

Researchers Separate Cotton from Polyester in Blended Fabric

In a new study, North Carolina State University researchers found they could separate blended cotton and polyester fabric using enzymes – nature’s tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric’s component materials, thereby reducing textile waste. However, they also found the process need more steps if the blended fabric was dyed or treated with chemicals that increase wrinkle resistance.

In a new study, North Carolina State University researchers found they could separate blended cotton and polyester fabric using enzymes – nature’s tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric’s component materials, thereby reducing textile waste. However, they also found the process need more steps if the blended fabric was dyed or treated with chemicals that increase wrinkle resistance.

“We can separate all of the cotton out of a cotton-polyester blend, meaning now we have clean polyester that can be recycled,” said the study’s corresponding author Sonja Salmon, associate professor of textile engineering, chemistry and science at NC State. “In a landfill, the polyester is not going to degrade, and the cotton might take several months or more to break down. Using our method, we can separate the cotton from polyester in less than 48 hours.”
 
According to the U.S. Environmental Protection Agency, consumers throw approximately 11 million tons of textile waste into U.S. landfills each year. Researchers wanted to develop a method of separating the cotton from the polyester so each component material could be recycled.

In the study, researchers used a “cocktail” of enzymes in a mildly acidic solution to chop up cellulose in cotton. Cellulose is the material that gives structure to plants’ cell walls. The idea is to chop up the cellulose so it will “fall out” out of the blended woven structure, leaving some tiny cotton fiber fragments remaining, along with glucose. Glucose is the biodegradable byproduct of degraded cellulose. Then, their process involves washing away the glucose and filtering out the cotton fiber fragments, leaving clean polyester.
 
“This is a mild process – the treatment is slightly acidic, like using vinegar,” Salmon said. “We also ran it at 50 degrees Celsius, which is like the temperature of a hot washing machine.
“It’s quite promising that we can separate the polyester to a clean level,” Salmon added. “We still have some more work to do to characterize the polyester’s properties, but we think they will be very good because the conditions are so mild. We’re just adding enzymes that ignore the polyester.”

They compared degradation of 100% cotton fabric to degradation of cotton and polyester blends, and also tested fabric that was dyed with red and blue reactive dyes and treated with durable press chemicals. In order to break down the dyed materials, the researchers had to increase the amount of time and enzymes used. For fabrics treated with durable press chemicals, they had to use a chemical pre-treatment before adding the enzymes.

“The dye that you choose has a big impact on the potential degradation of the fabric,” said the study’s lead author Jeannie Egan, a graduate student at NC State. “Also, we found the biggest obstacle so far is the wrinkle-resistant finish. The chemistry behind that creates a significant block for the enzyme to access the cellulose. Without pre-treating it, we achieved less than 10% degradation, but after, with two enzyme doses, we were able to fully degrade it, which was a really exciting result.”

Researchers said the polyester could be recycled, while the slurry of cotton fragments could be valuable as an additive for paper or useful addition to composite materials. They’re also investigating whether the glucose could be used to make biofuels.

“The slurry is made of residual cotton fragments that resist a very powerful enzymatic degradation,” Salmon said. “It has potential value as a strengthening agent. For the glucose syrup, we’re collaborating on a project to see if we can feed it into an anaerobic digester to make biofuel. We’d be taking waste and turning it into bioenergy, which would be much better than throwing it into a landfill.”

The study, “Enzymatic textile fiber separation for sustainable waste processing,” was published in Resources, Environment and Sustainability. Co-authors included Siyan Wang, Jialong Shen, Oliver Baars and Geoffrey Moxley. Funding was provided by the Environmental Research and Education Foundation, Kaneka Corporation and the Department of Textile Engineering, Chemistry and Science at NC State.

Source:

North Carolina State University, Laura Oleniacz

In the future, one will be able to use their phone to read the clothing woven-in labels made with inexpensive photonic fibers. (c) Marcin Szczepanski/Lead Multimedia Storyteller, University of Michigan College of Engineering. In the future, one will be able to use their phone to read the clothing woven-in labels made with inexpensive photonic fibers.
15.02.2023

The new butterfly effect: A ‘game changer’ for clothing recycling?

Photonic fibers borrow from butterfly wings to enable invisible, indelible sorting labels

Less than 15% of the 92 million tons of clothing and other textiles discarded annually are recycled—in part because they are so difficult to sort. Woven-in labels made with inexpensive photonic fibers, developed by a University of Michigan-led team, could change that.
 
“It’s like a barcode that’s woven directly into the fabric of a garment,” said Max Shtein, U-M professor of materials science and engineering and corresponding author of the study in Advanced Materials Technologies. “We can customize the photonic properties of the fibers to make them visible to the naked eye, readable only under near-infrared light or any combination.”

Photonic fibers borrow from butterfly wings to enable invisible, indelible sorting labels

Less than 15% of the 92 million tons of clothing and other textiles discarded annually are recycled—in part because they are so difficult to sort. Woven-in labels made with inexpensive photonic fibers, developed by a University of Michigan-led team, could change that.
 
“It’s like a barcode that’s woven directly into the fabric of a garment,” said Max Shtein, U-M professor of materials science and engineering and corresponding author of the study in Advanced Materials Technologies. “We can customize the photonic properties of the fibers to make them visible to the naked eye, readable only under near-infrared light or any combination.”

Ordinary tags often don’t make it to the end of a garment’s life—they may be cut away or washed until illegible, and tagless information can wear off. Recycling could be more effective if a tag was woven into the fabric, invisible until it needs to be read. This is what the new fiber could do.
 
Recyclers already use near-infrared sorting systems that identify different materials according to their naturally occurring optical signatures—the PET plastic in a water bottle, for example, looks different under near-infrared light than the HDPE plastic in a milk jug. Different fabrics also have different optical signatures, but Brian Iezzi, a postdoctoral researcher in Shtein’s lab and lead author of the study, explains that those signatures are of limited use to recyclers because of the prevalence of blended fabrics.

“For a truly circular recycling system to work, it’s important to know the precise composition of a fabric—a cotton recycler doesn’t want to pay for a garment that’s made of 70% polyester,” Iezzi said. “Natural optical signatures can’t provide that level of precision, but our photonic fibers can.”

The team developed the technology by combining Iezzi and Shtein’s photonic expertise—usually applied to products like displays, solar cells and optical filters—with the advanced textile capabilities at MIT’s Lincoln Lab. The lab worked to incorporate the photonic properties into a process that would be compatible with large-scale production.
 
They accomplished the task by starting with a preform—a plastic feedstock that comprises dozens of alternating layers. In this case, they used acrylic and polycarbonate. While each individual layer is clear, the combination of two materials bends and refracts light to create optical effects that can look like color. It’s the same basic phenomenon that gives butterfly wings their shimmer.

The preform is heated and then mechanically pulled—a bit like taffy—into a hair-thin strand of fiber. While the manufacturing process method differs from the extrusion technique used to make conventional synthetic fibers like polyester, it can produce the same miles-long strands of fiber. Those strands can then be processed with the same equipment already used by textile makers.

By adjusting the mix of materials and the speed at which the preform is pulled, the researchers tuned the fiber to create the desired optical properties and ensure recyclability. While the photonic fiber is more expensive than traditional textiles, the researchers estimate that it will only result in a small increase in the cost of finished goods.

“The photonic fibers only need to make up a small percentage—as little as 1% of a finished garment,” Iezzi said. “That might increase the cost of the finished product by around 25 cents—similar to the cost of those use-and-care tags we’re all familiar with.”

Shtein says that in addition to making recycling easier, the photonic labeling could be used to tell consumers where and how goods are made, and even to verify the authenticity of brand-name products. It could be a way to add important value for customers.

“As electronic devices like cell phones become more sophisticated, they could potentially have the ability to read this kind of photonic labeling,” Shtein said. “So I could imagine a future where woven-in labels are a useful feature for consumers as well as recyclers.”

The team has applied for patent protection and is evaluating ways to move forward with the commercialization of the technology.
The research was supported by the National Science Foundation and the Under Secretary of Defense for Research and Engineering.

Source:

Gabe Cherry, College of Engineering, University of Michigan / Textination

Photo Pixabay
10.01.2023

Fraunhofer: Optimized production of nonwoven masks

Producing infection control clothing requires a lot of energy and uses lots of material resources. Fraunhofer researchers have now developed a technology which helps to save materials and energy when producing nonwovens. A digital twin controls key manufacturing process parameters on the basis of mathematical modeling. As well as improving mask manufacturing, the ProQuIV solution can also be used to optimize the production parameters for other applications involving these versatile technical textiles, enabling manufacturers to respond flexibly to customer requests and changes in the market.

Producing infection control clothing requires a lot of energy and uses lots of material resources. Fraunhofer researchers have now developed a technology which helps to save materials and energy when producing nonwovens. A digital twin controls key manufacturing process parameters on the basis of mathematical modeling. As well as improving mask manufacturing, the ProQuIV solution can also be used to optimize the production parameters for other applications involving these versatile technical textiles, enabling manufacturers to respond flexibly to customer requests and changes in the market.

Nonwoven infection control masks were being used in their millions even before the COVID-19 pandemic and are regarded as simple mass-produced items. Nevertheless, the manufacturing process used to make them needs to meet strict requirements regarding precision and reliability. According to DIN (the German Institute for Standardization), the nonwoven in the mask must filter out at least 94 percent of the aerosols in the case of the FFP-2 mask and 99 percent in the case of the FFP-3 version. At the same time, the mask must let enough air through to ensure that the wearer can still breathe properly. Many manufacturers are looking for ways to optimize the manufacturing process. Furthermore, production needs to be made more flexible so that companies are able to process and deliver versatile nonwovens for a wide range of different applications and sectors.

ProQuIV, the solution developed by the Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern, fulfills both of these aims. The abbreviation “ProQuIV” stands for “Production and Quality Optimization of Nonwoven Infection Control Clothing” (Produktions- und Qualitätsoptimierung von Infektionsschutzkleidung aus Vliesstoffen). The basic idea is that manufacturing process parameters are characterized with regard to their impact on the uniformity of the nonwoven, and this impact is then linked to properties of the end product; for example, a protective mask. This model chain links all relevant parameters to an image analysis and creates a digital twin of the production process. The digital twin enables real-time monitoring and automatic control of nonwoven manufacturing and thus makes it possible to harness potential for optimization.

Dr. Ralf Kirsch, who works in the Flow and Material Simulation department and heads up the Filtration and Separation team, explains: “With ProQuIV, the manufacturers need less material overall, and they save energy. And the quality of the end product is guaranteed at all times.”

Nonwoven manufacturing with heat and air flow
Nonwovens for filtration applications are manufactured in what is known as the
meltblown process. This involves melting down plastics such as polypropylene and forcing them through nozzles so they come out in the form of threads referred to as filaments. The filaments are picked up on two sides by air flows which carry them forward almost at the speed of sound and swirl them around before depositing them on a collection belt. This makes the filaments even thinner: By the end of the process, their thickness is in the micrometer or even submicrometer range. They are then cooled, and binding agents are added in order to create the nonwoven. The more effectively the temperature, air speed and belt speed are coordinated with each other, the more uniform the distribution of the fibers at the end and therefore the more homogeneous the material will appear when examined under a transmitted light microscope. Lighter and darker areas can thereby be identified — this is referred to by experts as cloudiness. The Fraunhofer team has developed a method to measure a cloudiness index on the basis of image data. The light areas have a low fiber volume ratio, which means that they are less dense and have a lower filtration rate. Darker areas have a higher fiber volume and therefore a higher filtration rate. On the other hand, the higher air flow resistance in these areas means that they filter a smaller proportion of the air that is breathed in. A larger proportion of the air flows through the more open areas which have a less effective filtration effect.

Production process with real-time control
In the case of ProQuIV, the transmitted light images from the microscope are used to calibrate the models prior to use. The experts analyze the current condition of the textile sample and use this information to draw conclusions about how to optimize the system — for example, by increasing the temperature, reducing the belt speed or adjusting the strength of the air flows. “One of the key aims of our research project was to link central parameters such as filtration rate, flow resistance and cloudiness of a material with each other and to use this basis to generate a method which models all of the variables in the production process mathematically,” says Kirsch. The digital twin monitors and controls the ongoing production process in real time. If the system deviates slightly from where it should be — for example, if the temperature is too high — the settings are corrected automatically within seconds.

Fast and efficient manufacturing
“This means that it is not necessary to interrupt production, take material samples and readjust the machines. Once the models have been calibrated, the manufacturer can be confident that the nonwoven coming off the belt complies with the specifications and quality standards,” explains Kirsch. ProQuIV makes production much more efficient — there is less material waste, and the energy consumption is also reduced. Another advantage is that it allows manufacturers to develop new nonwoven-based products quickly — all they have to do is change the target specifications in the modeling and adjust the parameters. This enables production companies to respond flexibly to customer requests or market trends.

This might sound logical but can be quite complex when it comes to development. The way that the values for filtration performance and flow resistance increase, for example, is not linear at all, and they are not proportional to the fiber volume ratio either. This means that doubling the filament density does not result in double the filtration performance and flow resistance — the relationship between the parameters is much more complex than that. “This is precisely why the mathematical modeling is so important. It helps us to understand the complex relationship between the individual process parameters,” says ITWM researcher Kirsch. The researchers are able to draw on their extensive expertise in simulation and modeling for this work.

More applications are possible
The next step for the Fraunhofer team is to reduce the breathing resistance of the nonwovens for the wearer without impairing the protective effect. This is made possible by electrically charging the fibers and employing a principle similar to that of a feather duster. The electric charge causes the textile fabric to attract the tiniest of particles which could otherwise slip through the pores. For this purpose, the strength of the electrostatic charge is integrated into the modeling as a parameter.

The Fraunhofer researchers’ plans for the application of this method extend far beyond masks and air filters. Their technology is generally applicable to the production of nonwovens — for example, it can also be used in materials for the filtration of liquids. Furthermore, ProQuIV methods can be used to optimize the manufacture of nonwovens used in sound-insulating applications.

Source:

Fraunhofer Institute for Industrial Mathematics ITWM

04.01.2023

Circular Economy: It could all be so simple... or not

Interview with Henning Wehland & Robert Kapferer, Circularity Germany

Interview with Henning Wehland & Robert Kapferer, Circularity Germany

I'm a very curious guy by nature. That's why I offered to help out at a well-known hot dog station in Münster (Germany) this year, to draw attention to the shortage of staff in the gastronomy. I wrote an article about it on LinkedIn, which was in turn reacted to by Ines Chucholowius.
From her profile, I could see that she is a consultant for strategic marketing and communication in the textile industry. Not entirely serious, she offered me a job in her office. Like pushing a button, the pictures in my mind set in: Textile industry, exciting! Merchandising, contacts in the industry, collaborations, and I agreed to a short chat, at the end of which we spoke on the phone and arranged to meet.
 
She told me about her website TEXTINATION.de. And we were already involved in an exciting, heated exchange about perception and truth in the textile industry. Without further ado, we left it at that and I went home with a chunk of new information about an exciting field. Our dialogue on social media continued and eventually Ines offered me the chance to feed my die-hard curiosity with the support of TEXTINATION.de. I could write a blog on the site, about people, products, service providers, producers, startups or trends that interest me, to add to my half-knowledge about the textile industry.

Textile waste into the front ... new T-shirt out the back
During this exchange and a long brainstorming session, certain terms kept tickling my attention:
Circular economy, recycling, recyclable material loops. Circular Economy, Recycling, Recyclables. Even though there are many different definitions and some even distinguishing between different aspects: the former thought from waste that flows back into production as a secondary raw material, a more modern approach avoiding waste already in production - the general consensus is really only that circular economy is a cycle in which waste is used as a source for something new.

Sounds like useful additions for all areas of the manufacturing real economy to me. Ines introduced me to Robert Kapferer: He runs a startup called Circularity Germany in Hamburg. His company, founded in 2021 and consisting of Robert and another partner, is an offshoot of the Dutch-based company Circularity B.V. Its founder Han Hamers, with a degree in child psychology and a professional background in the textile dyeing industry, had the idea five years ago for a production facility that spins new yarn exclusively from textile production waste and old textiles turning it into T-shirts, polo shirts and sweatshirts.
Whether this works, and if so, how, is what I wanted to find out, and Ines and I arranged to meet Robert for a 90-minute online conference.

Robert, originally an industrial engineer, comes from a less sustainable industry. He worked for 11 years as managing director for AVECO Material und Service GmbH, where he was responsible for the workwear of more than 50,000 employees.

At the beginning of our conversation, he emphasizes that a moment in January 2021 changed his life and from then on, he wanted to dedicate himself to the topic of circular economy with all his might. That was when he met Han Hamers, who inspired him to found Circularity Germany. His enthusiasm and passion for the subject sound credible, and he begins to describe the differences between chemical and mechanical recycling methods. In summary, the mechanical process of shredding and the subsequent spinning shortens the fibers and thus restricts their properties for further processing. The advantage lies primarily in the comparatively uncomplicated, fast and more cost-efficient process. In the chemical variant, chemical waste remains, but the processed materials are broken down again into their basic building blocks in such a way that they have almost all the same properties as a so-called virgin raw material. Circularity Germany stands for the mechanical process.

And then comes the sentence that gets all our attention: "We've advanced a spinning technology so much that it relies exclusively on waste-based raw materials."
This sentence almost doesn't stand out because Robert still talks - quite excitingly - about the fact that they are planning a production and manufacturing facility where everything from knitting yarn to relatively fine thread can be spun and then further processed into fabric. And here Ines and I ask intensively: Essential requirements for industrial production still seem to be unresolved, and necessary processes are still in the planning stage. For example, the question of whether to work with pre-consumer or post-consumer waste. Pre-consumer waste is cutting waste from the production of clothes, which corresponds to about 10% of the processed material. Post-consumer waste we know as used textiles.

As long as production still takes place in India, Circularity currently uses mainly pre-consumer waste. These come exclusively from sewing factories in the Tirupur region in the south of India. When using used textiles, which exist in large quantities in Germany (according to a study, 28-40% of all garments produced are thrown away unworn), Circularity produces blended yarns of cotton and polyester. The company does not offer pure cotton yarns.

Textiles are treated with chemicals to varying degrees - workwear in particular cannot do without them. The fact that Han Hemers is also collecting used textile stocks from the Dutch army in order to reintroduce them renewed into the consumer cycle is therefore not reassuring. Military clothing has to be finished with all kinds of additives.

Therefor I ask how he can dispel doubts in a consumer’s mind like mine, with a healthy half-knowledge of mask deals and greenwashing, that a well-intentioned vision will be followed by a dark awakening. This concern cannot yet be resolved after the conversation.

We limit ourselves to what is planned: Robert has the dream of reversing the globalized process of textile production. He wants to end the decoupling of cotton growing regions and far-flung production such as Asia with subsequent shipping of ready-made goods to Europe. In the future, existing used textiles and/or cutting wastes are to be collected on site, recycled and processed locally into new textiles.

I believe him in having this dream. However, some of my questions about sustainability remain unanswered - which is why I have my doubts about whether the idea is currently capable of performing and competing.
What are the reasons for this? For one thing, I think it's always difficult to do necessary pioneering work. Especially when listening to smart comments at the regulars' table that large companies are already working intensively on the principle of circular economy. But sometimes, apart from the term "circular economy" and a vague commitment to it, not much remains.

Circularity Germany is committed to developing a technology based exclusively on waste. The interview points out that this also includes making production more environmentally friendly and eliminating transport routes, which further reduces the burden on the environment. When all the requirements for realizing this dream have been met and a product that is competitive in terms of both quality and price can be launched on the market, it is up to the consumer to decide. Here one would have the credible argument of sustainability and a socially and environmentally fair process. Circularity would then not have to worry about PR.

It needs to be given time and, above all, attention. But perhaps the industry should get involved right here and now, and invest in startups like this and make sure that problems are cleared out of the way. Because one thing has become clear to us in this conversation:

It could all be so simple. Circular economy is achievable, but the road there is still costly and rocky. That's why we wish Robert and his team every success and, above all, perseverance. Thank you for the interview.

Short and sweet: the profile of the company in the attached factsheet for download.

 

 

A shirt that monitors breathing. Bild EMPA
28.12.2022

Wearables for healthcare: sensors to wear

Stylish sensors to wear 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.
 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.

Stylish sensors to wear 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.
 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.

The desire for a healthy lifestyle has triggered a trend towards self-tracking. Vital signs should be available at all times, for example to consistently measure training effects. At the same time, among the continuously growing group of people over 65, the desire to maintain performance into old age is stronger than ever. Preventive, health-maintaining measures must be monitored if they are to achieve the desired results. The search for measurement systems that reliably determine the corresponding health parameters is in full swing. In addition to the leisure sector, medicine needs suitable and reliable measurement systems that enable efficient and effective care for an increasing number of people in hospital and at home. After all, the increase in lifestyle diseases such as diabetes, cardiovascular problems or respiratory diseases is putting a strain on the healthcare system.

Researchers led by Simon Annaheim from Empa's Biomimetic Membranes and Textiles laboratory in St. Gallen are therefore developing sensors for monitoring health status, for example for a diagnostic belt based on flexible sensors with electrically conductive or light-conducting fibers. However, other, less technical properties can be decisive for the acceptance of continuous medical monitoring by patients. For example, the sensors must be comfortable to wear and easy to handle – and ideally also look good.

This aspect is addressed by a cooperation between the Textile and Design Alliance, or TaDA for short, in eastern Switzerland and Empa. The project showed how textile sensors can be integrated into garments. In addition to technical reliability and a high level of comfort, another focus was on the design of the garments. The interdisciplinary TaDA designer Laura Deschl worked electrically conductive fibers into a shirt that change their resistance depending on how much they are stretched. This allows the shirt to monitor how much the subjects' chest and abdomen rise and fall while they breathe, allowing conclusions to be drawn about breathing activity. Continuous monitoring of respiratory activity is of particular interest for patients during the recovery phase after surgery and for patients who are being treated with painkillers. Such a shirt could also be helpful for patients with breathing problems such as sleep apnea or asthma. Moreover, Deschl embroidered electrically conductive fibers from Empa into the shirt, which are needed to connect to the measuring device and were visually integrated into the shirt's design pattern.

The Textile and Design Alliance is a pilot program of the cultural promotion of the cantons of Appenzell Ausserrhoden, St.Gallen and Thurgau to promote cooperation between creative artists from all over the world and the textile industry. Through international calls for proposals, cultural workers from all disciplines are invited to spend three months working in the textile industry in eastern Switzerland. The TaDA network comprises 13 cooperation partners – textile companies, cultural, research and educational institutions – and thus offers the creative artists direct access to highly specialized know-how and technical means of production in order to work, research and experiment on their textile projects on site. This artistic creativity is in turn made available to the partners as innovative potential.

(c) DITF
20.12.2022

New 3D printing process for sustainable fiber composite components

Nature works often with fiber composites. The construction principles of nature require little material and energy and thus ensure the survival of animals and plant species. Examples include wood, plant stalks, chitinous shells, bones or tissues such as tendons and skin. Mussel shells or spider silk are also composite tissues. We can take advantage of these principles to design and manufacture bio-based, sustainable fiber reinforced composites, which are currently in high demand. Bio-based fiber reinforced composites consist of natural fibers or cellulose fibers embedded in a bio-based matrix. The bio-based components offer properties comparable to those of commonly used glass fiber composites. The German Institutes of Textile and Fiber Research (DITF), together with Arburg GmbH + Co KG, are developing an energy- and material-efficient 3D printing process for manufacturing of such lightweight bio-based fiber composites.

Nature works often with fiber composites. The construction principles of nature require little material and energy and thus ensure the survival of animals and plant species. Examples include wood, plant stalks, chitinous shells, bones or tissues such as tendons and skin. Mussel shells or spider silk are also composite tissues. We can take advantage of these principles to design and manufacture bio-based, sustainable fiber reinforced composites, which are currently in high demand. Bio-based fiber reinforced composites consist of natural fibers or cellulose fibers embedded in a bio-based matrix. The bio-based components offer properties comparable to those of commonly used glass fiber composites. The German Institutes of Textile and Fiber Research (DITF), together with Arburg GmbH + Co KG, are developing an energy- and material-efficient 3D printing process for manufacturing of such lightweight bio-based fiber composites.

In fiber composites, which occur naturally, reinforcing fibers such as collagen or cellulose fibrils are embedded in a matrix of lignin, hemicellulose or collagen. The fiber strands align with the stress patterns. Tissues are formed mostly via solution-based physio-chemical processes that take place at ambient temperature. Similar to nature, new 3D printing processes with continuous fiber reinforcement also allow the deposition of fiber strands in the right place (topology optimization) and in the appropriate direction in accordance to the load. However, natural fibers such as cellulose fibers are sensitive to higher temperatures. Therefore, they cannot be processed in the commonly employed thermoplastic 3D printing process.

The result of the research work is 3D-printed fiber composite components consisting of cellulose continuous fibers embedded in a cellulose-based matrix. Newly developed 3D-printing process enables to manufacture the composites at ambient temperature. This means that - as in nature - the material and component can be produced simultaneously in a single operation at ambient temperature.

The cellulose fiber strand is first stabilized with a binder for processing in the printer. The specially designed print head transforms the binder into a matrix with which the cellulose continuous fibers are encased. Since the cellulose fibers and the matrix have similar chemical structures, the composite component is particularly stable. The mechanical properties, such as breaking strength, are exceptionally good. The solution-based and energy-efficient manufacturing method developed by the research team can also be used in other composite materials manufacturing processes. It is particularly suitable for processing temperature-sensitive materials that are in high demand, such as natural or cellulose fibers.

The " CellLoes-3D-Druck" research project is funded by the German Federal Ministry of Education and Research as part of the "Biologisierung der Technik" ideas competition.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf

Photo: Bcomp
22.11.2022

Made in Switzerland: Is Flax the New Carbon?

  • Bcomp wins BMW Group Supplier Innovation Award in the category “Newcomer of the Year”

The sixth BMW Group Supplier Innovation Awards were presented at the BMW Welt in Munich on 17 November 2022. The coveted award was presented in a total of six categories: powertrain & e-mobility, sustainability, digitalisation, customer experience, newcomer of the year and exceptional team performance.

Bcomp won the BMW Group Supplier Innovation Award in the Newcomer of the Year category. Following a successful collaboration with BMW M Motorsport for the new BMW M4 GT4 that extensively uses Bcomp’s powerRibs™ and ampliTex™ natural fibre solutions and BMW iVentures recently taking a stake in Bcomp as lead investor in the Series B round, this award is another major step and recognition on the path to decarbonizing mobility.

  • Bcomp wins BMW Group Supplier Innovation Award in the category “Newcomer of the Year”

The sixth BMW Group Supplier Innovation Awards were presented at the BMW Welt in Munich on 17 November 2022. The coveted award was presented in a total of six categories: powertrain & e-mobility, sustainability, digitalisation, customer experience, newcomer of the year and exceptional team performance.

Bcomp won the BMW Group Supplier Innovation Award in the Newcomer of the Year category. Following a successful collaboration with BMW M Motorsport for the new BMW M4 GT4 that extensively uses Bcomp’s powerRibs™ and ampliTex™ natural fibre solutions and BMW iVentures recently taking a stake in Bcomp as lead investor in the Series B round, this award is another major step and recognition on the path to decarbonizing mobility.

“Innovations are key to the success of our transformation towards electromobility, digitalisation and sustainability. Our award ceremony recognises innovation and cooperative partnership with our suppliers – especially in challenging times,” said Joachim Post, member of the Board of Management of BMW AG responsible for Purchasing and Supplier Network at the ceremony held at BMW Welt in Munich.

BMW first started to work with Bcomp’s materials in 2019 when they used high-performance natural fibre composites in the BMW iFE.20 Formula E car. From this flax fibre reinforced cooling shaft, the collaboration evolved and soon after, the proprietary ampliTex™ and powerRibs™ natural fibre solutions were found successfully substituting selected carbon fibre components in DTM touring cars from BMW M Motorsport. By trickling down and expanding into other vehicle programs, such developments highlight the vital role that BMW M Motorsports plays as a technology lab for the entire BMW Group. This continues in the form of the latest collaboration with Bcomp to include a higher proportion of renewable raw materials in the successor of the BMW M4 GT4.

With the launch of the new BMW M4 GT4, it will be the serial GT car with the highest proportion of natural fibre components. Bcomp’s ampliTex™ and powerRibs™ flax fibre solutions can be found throughout the interior on the dashboard and centre console, as well as on bodywork components such as the hood, front splitter, doors, trunk, and rear wing. Aside from the roof, there are almost no carbon fibre reinforced plastic (CFRP) components that were not replaced by the renewable high-performance flax materials. “Product sustainability is increasing in importance in the world of motorsport too,” says Franciscus van Meel, Chairman of the Board of Management at BMW M GmbH.

Bcomp is a leading solutions provider for natural fibre reinforcements in high performance applications from race to space.

The company started as a garage project in 2011 with a mission to create lightweight yet high performance skis. The bCores™ were launched and successfully adopted by some of the biggest names in freeride skiing. The founders, material science PhDs from École Polytechnique Fédérale de Lausanne (EPFL), used flax fibres to reinforce the balsa cores and improve shear stiffness. Impressed by the excellent mechanical properties of flax fibres, the development to create sustainable lightweighting solutions for the wider mobility markets started.

Flax is an indigenous plant that grows naturally in Europe and has been part of the agricultural history for centuries. It requires very little water and nutrients to grow successfully. In addition, it acts as a rotational crop, thus enhancing harvests on existing farmland. Neither cultivation nor processing of the flax plants requires any chemicals that could contaminate ground water and harvesting is a completely mechanical process. After harvesting the entire flax plant can be used for feed, to make oil and its fibres are especially used for home textiles and clothing. The long fibre that comes from the flax plant possesses very good mechanical properties and outstanding damping properties in relation to its density, making it especially suited as a natural fibre reinforcement for all kinds of polymers.

The harvesting and processing of flax takes place locally in the rural areas it was grown in. Using European flax sourced through a well-established and transparent supply chain it allows to support the economic and social structure in rural areas thanks to the large and skilled workforce required to sustain the flax production. When it comes to the production of technical products like the powerRibs™ reinforcement grid, Bcomp is investing in local production capacities close to its headquarters in the city of Fribourg, Switzerland, thus creating new jobs and maintaining technical know-how in the area. The production is built to be as efficient as possible and with minimal environmental impact and waste.

Further strengthening the local economy, Bcomp aims to hire local companies for missions and with the headquarters being located in Fribourg’s “Blue Factory” district, Bcomp can both benefit from and contribute to the development of this sustainable and diverse quarter.

Source:

Bcomp; BMW Group

© ITM/TUD - Biomimetic fish fin with dielectric elastomer actors und fiber reinforcement.
08.11.2022

Funding for Fibre-Elastomer Composites: Intelligent materials for robotics and prostheses

  • Successful approval of the 2nd funding period of the DFG Research Training Group 2430 "Interactive fibre-elastomer composites"

Researchers based in Dresden are going to develop a completely new class of materials in which actuators and sensors are integrated directly into flexible fibre composites – contrary to the state of the art. To this end, the German Research Foundation (DFG) approved the 2nd phase of Research Training Group 2430 "Interactive Fibre-Elastomer Composites" at TU Dresden in cooperation with the Leibniz Institute of Polymer Research Dresden. The spokesperson is Professor Chokri Cherif from the Institute for Textile Machinery and High-Performance Textile Materials Technology (ITM) at TU Dresden. A total of 22 doctoral students will be supported in eleven interdisciplinary sub-projects over the next 4.5 years, in addition to material and project funding.
 

  • Successful approval of the 2nd funding period of the DFG Research Training Group 2430 "Interactive fibre-elastomer composites"

Researchers based in Dresden are going to develop a completely new class of materials in which actuators and sensors are integrated directly into flexible fibre composites – contrary to the state of the art. To this end, the German Research Foundation (DFG) approved the 2nd phase of Research Training Group 2430 "Interactive Fibre-Elastomer Composites" at TU Dresden in cooperation with the Leibniz Institute of Polymer Research Dresden. The spokesperson is Professor Chokri Cherif from the Institute for Textile Machinery and High-Performance Textile Materials Technology (ITM) at TU Dresden. A total of 22 doctoral students will be supported in eleven interdisciplinary sub-projects over the next 4.5 years, in addition to material and project funding.
 
As a result the simulation-based development of intelligent material combinations for so-called self-sufficient fibre composites shall be available. Actuators and sensors are already integrated into the structures and no longer placed subsequently, as it is actual the case. In the first funding phase, the important basis for the large two-dimensional deformations in soft, biomimetic structures were developed. The further funding by the DFG is a confirmation of the outstanding results achieved so far. Building on this, the second funding phase will focus on ionic and helical actuator-sensor concepts. Combined with intelligent design and control algorithms, self-sufficient, three-dimensionally deforming material systems will emerge. This will make these systems more robust, complex preforming patterns can be customised at the desired location - reversibly and contact-free.
 
Fibre composites are used increasingly in moving components due to their high specific stiffness and strengths as well as the possibility of tailoring these properties. By integrating adaptive functions into such materials, the need for subsequent actuator placement is eliminated and the robustness of the system is significantly improved. Actuators and sensors based on textiles, such as those being researched and developed at the ITM, are particularly promising in this respect, as they can be integrated directly into the fibre composites during the manufacturing process.

With their innovative properties, interactive fibre-elastomer composites are predestined for numerous fields of application in mechanical and vehicle engineering, robotics, architecture, orthotics and prosthetics: Examples include systems for precise gripping and transport processes (e.g. in hand prostheses, closures and deformable membranes) and components (e.g. trim tabs for land and water vehicles).

More information:
robot Fibers Composites Funding
Source:

TU Dresden: Institute for Textile Machinery and High Performance Textile Materials (ITM)

Photo: Performance Days
18.10.2022

Eco Award & Performance Award for innovative winter fabrics 24/25

  • Jury presents two awards for outstanding fabric Innovation

The next PERFORMANCE DAYS will take place from November 3-4, 2022 at the MOC Ordercenter in Munich. Visitors also have the opportunity to follow the events online. Thanks to the new platform The Loop, all important information is available all year round, including current trends, new material innovations and extended tools for ease of use. The focus of the curated PERFORMANCE FORUM continues in winter honoring the winners of both awards. This year, in addition to a PERFORMANCE AWARD, the jury also presented an ECO PERFORMANCE AWARD.

  • Jury presents two awards for outstanding fabric Innovation

The next PERFORMANCE DAYS will take place from November 3-4, 2022 at the MOC Ordercenter in Munich. Visitors also have the opportunity to follow the events online. Thanks to the new platform The Loop, all important information is available all year round, including current trends, new material innovations and extended tools for ease of use. The focus of the curated PERFORMANCE FORUM continues in winter honoring the winners of both awards. This year, in addition to a PERFORMANCE AWARD, the jury also presented an ECO PERFORMANCE AWARD.

Sustainable & innovative: the award winners of the Winter 2024/25 season
As part of the winter edition of the sourcing fairs, the fabric highlights plus accessory trends in the individ-ual categories for the winter season 2024/25 will be on display at the PERFORMANCE FORUM.
 
Particularly striking this year was the high levels of innovation and quality of many submitted fabrics on the one hand, but on the other hand – also as a result of this year’s Focus Topic – the sustainable component. “We wish to enable our visitors to make the best decision in terms of material selection, also in terms of CO2 neutrality and ultimately also in terms of textile recyclability,” states Marco Weichert, CEO of PERFORMANCE DAYS.  

Nevertheless, the road to CO2 neutrality remains a long one, yet the approaches adopted with the Focus Topic ongoing until the coming spring can be seen in a positive light. In general, manufacturers are increasingly relying on the use of natural fibers when possible, such as Tencel™ or other plant fibers – most of them also prove a low CO2 balance during production. The issue of recycling comes with many new facets and wide spanning trends. The portfolio ranges from the recycling of marine waste, such as old buoys, plastic waste or fishing nets, to the recycling of waste from the automotive and computer industries, such as old car tires or computer chips. Natural dyeing methods are also gaining in importance, as is the return of fabrics to the textile cycle.

In the Marketplace, visitors have the opportunity to view over 19,000 products from exhibitors, including the fabric highlights of the individual categories at the PERFORMANCE FORUM. In order for visitors to experience the fabrics in terms of haptics, design and structure in as realistic a form as possible, the PERFORMANCE FORUM has been equipped with innovative 3D technology, including innovative tools such as 3D images, video animations and U3MA data for download.

The jury has also presented two awards for outstanding fabrics for the Winter Season 2024/25 – with the PERFORMANCE AWARD going to Long Advance Int. Co Ltd., and the ECO PERFORMANCE AWARD to PontetortoSpa.

The ECO PERFORMANCE AWARD goes to “9203/M/RC” from PontetortoSpa: High Performance despite maximum sustainability
The fabric is a blend of 23 % hemp, 69 % recycled polyester and 9 % recycled elastane. Moreover, the material boasts a low CO2 footprint during production and focuses on low release levels of microplastics into the environment. “9203/M/RC” belongs to Pontetorto's Techno Stretch organic series, which boast an excellent 4-way stretch with great elasticity. In addition, it guarantees fast drying and optimal breathability. The polyester yarn is manufactured by the mechanical recycling of plastic bottles. Hemp, the most water–repellent among natural fibers, allows for quick drying and provides optimal comfort. Hemp is considered an extremely sustainable natural fiber due to its origin from an anti–bacterial plant that requires neither pesticides nor chemical fertilizers during its growth and consumes extremely little water.

PERFORMANCE AWARD for “LPD-22015-Y4E” from Long Advanced Int. Co. Ltd.: Perfect recycling for top performance
The monocomponent 2layer fabric is a mixture of 45 % polyester mechanical stretch and 55 % recycled polyester from recycled textiles, laminated with a PET Membrane, with a weight of 147 grams.
The special feature of the “LPD 22015-Y4E” is the recycling of fabric and cutting waste. Waste is thus returned to the textile cycle and used to spin new yarn. In the future, manufacturers will have to ensure that all fabric can be recycled. Accordingly, the production of waste is then reduced by 30 % compared to conventional processes. Furthermore, the jury praised the feel and the extraordinary look of the material.

The entire PERFORMANCE FORUM including both awards can be experienced live at the fair on October 26-27, 2022 in Portland, Oregon, and in Munich at the PERFORMANCE DAYS fair on November 03-04, 2022. As of now, all innovative materials can also be found online in the Marketplace of the PERFORMANCE DAYS Loop, with the option to order free samples directly from the exhibitor.

First tests with free-form tiles made of wood short fiber filament. (Photo: LZH) Photo: LZH. First tests with free-form tiles made of wood short fiber filament.
19.09.2022

Sustainability in 3D Printing: Components made of Natural Fibers

3D printing has been in use in architecture for a while, and now it is to become ecologically sustainable as well: Together with partners, the LZH is researching how to produce individual building elements from natural fibers using additive manufacturing.

3D printing has been in use in architecture for a while, and now it is to become ecologically sustainable as well: Together with partners, the LZH is researching how to produce individual building elements from natural fibers using additive manufacturing.

In the project 3DNaturDruck, architectural components such as facade elements shall be created from natural fiber-reinforced biopolymers in 3D printing. To this end, the scientists will develop the corresponding composite materials from biopolymers with both natural short fibers and natural continuous fibers and optimize them for processing with the additive manufacturing process FDM (Fused Deposition Modeling). The project partners' goal is to enable smart and innovative designs that are both ecological and sustainable.
 
The goal: highly developed components made from sustainable materials
Within the project, different natural fiber-reinforced biopolymer composites will be investigated. The partners are researching both processing methods with very short natural fibers, such as from wood and straw, and a method for printing continuous fibers from hemp and flax in combination with biopolymers. The LZH then develops processes for these new materials and adapts the tools and nozzle geometries of the FDM printer. A pavilion with the 3D-printed facade elements is planned as a demonstrator on the campus of the University of Stuttgart.
 
The project partners want to explore how additive manufacturing can be used to simplify manufacturing processes for architectural components. Natural fiber-reinforced biopolymers are particularly suitable for producing components with complex geometries in just a few steps and with low material and cost requirements. With their research, the partners are also working on completely new starting conditions for the fabrication of newly developed architectural components: For example, the topology optimization of components according to their structural stress can be easily implemented with additive manufacturing.

Enabling the natural fiber trend in architecture also using additive manufacturing
There is great interest in the use of natural fibers in structural components in architecture and construction because natural fibers have several advantages. They have good mechanical properties combined with low weight and are widely available. As a renewable resource with in some cases very short renewal cycles, they are also clearly a better ecological alternative than synthetic fibers.

In additive manufacturing, large-format elements for the architectural sector have so far mostly been manufactured with polymers based on fossil raw materials. Research in the project 3DNaturDruck should now make the use of natural fibers in architecture possible for additive manufacturing as well.

About 3DNaturDruck
The project 3DNaturDruck is about the design and fabrication of 3D-printed components made of biocomposites using filaments with continuous and short natural fibers.

The project is coordinated by the Department of Biobased Materials and Materials Cycles in Architecture (BioMat) at the Institute of Building Structures and Structural Design (ITKE) at the University of Stuttgart. In addition to the LZH, project partners include the Fraunhofer Institute for Wood Research Wilhelm-Klauditz-Institut (WKI) and the industrial companies Rapid Prototyping Technologie GmbH (Gifhorn), ETS Extrusionstechnik (Mücheln), 3dk.berlin (Berlin) and ATMAT Sp. Z o.o. (Krakow, Poland).

The project is funded by the German Federal Ministry of Food and Agriculture through the Fachagentur Nachwachsende Rohstoffe e.V. under the funding code 2220NR295C.

Source:

Laser Zentrum Hannover e.V.

(c) MAI Carbon
24.05.2022

From waste to secondary raw material - wetlaid nonwovens made from recycled carbon fibers

MAI Scrap SeRO | From Scrap to Secondary Ressources – Highly Orientated Wet-Laid-Nonwovens from CFRP-Waste

The »Scrap SeRO« project is an international joint project in the field of »recycling of carbon fibers«.

The technical project goal is the demonstration of a continuous process route for processing pyrolytically recycled carbon fibers (rCF) in high-performance second-life component structures. In addition to the technological level, the focus of the project is particularly on the international transfer character, in the sense of a cross-cluster initiative between the top cluster MAI Carbon (Germany) and CVC (South Korea).

MAI Scrap SeRO | From Scrap to Secondary Ressources – Highly Orientated Wet-Laid-Nonwovens from CFRP-Waste

The »Scrap SeRO« project is an international joint project in the field of »recycling of carbon fibers«.

The technical project goal is the demonstration of a continuous process route for processing pyrolytically recycled carbon fibers (rCF) in high-performance second-life component structures. In addition to the technological level, the focus of the project is particularly on the international transfer character, in the sense of a cross-cluster initiative between the top cluster MAI Carbon (Germany) and CVC (South Korea).

Through direct cooperation between market-leading companies and research institutions of the participating cluster members, the technical project processing takes place in the context of the global challenge of recycling, as well as the need for increased resource efficiency, with reference to the economically strategic material carbon fibers.

Efficient processing of recycled carbon fibers
The technological process route within the project runs along the industrial wet-laying technology, which is comparable to classic paper production. This enables a robust production of high-quality rCF nonwovens, which are characterized, among other things, by particularly high homogeneity and stability of characteristic values.

A special development focus is on a specific process control, which allows the generation of an orientation of the individual fiber filaments in the nonwoven material.

The given preferred fiber direction of the discontinuous fiber structure opens up strong synergy effects in relation to increased packing densities, i.e. fiber volume content, as well as a significantly optimized processing behavior in relation to impregnation, forming and consolidation, in addition to a load path-oriented mechanics.

The innovative wetlaid nonwovens are then further processed into thermoset and thermoplastic semi-finished products, i.e. prepregs or organosheets, using impregnation processes that are suitable for large-scale production.

rCF tapes are produced from this in an intermediate slitting step. By means of automated fiber placement, load path-optimized preforms can be deposited, which are then consolidated into complex demonstrator components.

The process chain is monitored at key interfaces by innovative non-destructive measurement technology and supplemented by extensive characterization methods. Especially for the processing of pyrolysed recycled carbon fibers, which were recovered from end-of-life waste or PrePreg waste, for example, there are completely new potentials with significant added value compared to the current state of the art for the overall process route presented here.

International Transfer
The fundamentally global challenge of recycling and the striving for increased sustainability is strongly influenced by national recycling strategies as a result of country-specific framework conditions. The globalized way in which companies deal with high-volume material flows places additional demands on a functioning circular economy. A networked solution can only be created on the basis of and in compliance with the respective guidelines and structural factors.

In the case of the high-performance material carbon fiber, there is a particularly high technical requirement for an ecologically and economically viable recycling industry. At the same time, the specific market size already opens up interesting scaling effects and potential for market penetration.

The Scrap SeRO project connects two of the world's leading top clusters in the field of carbon composites from South Korea and Germany on the basis of a cross-cluster initiative. As part of this first promising technology project, the foundation stone for future cooperation is to be laid that supports the effective recycling of carbon fibers. The project makes an important contribution to closing the material cycle for carbon fibers and thus paves the way for renewed use in further life cycles of this high-quality and energy-intensive material.

Info »Scrap SeRO«

  • Duration: 05/2019 – 04/2022
  • Funding: BMBF
  • Funding Amount: 2.557.000 €

National Consortium

  • Fraunhofer Institute for Casting, Composite and Processing Technology IGCV
  • ELG Carbon Fibre
  • J.M. Voith SE & Co. KG
  • Neenah Gessner
  • SURAGUS GmbH
  • LAMILUX Composites GmbH
  • Covestro Deutschland AG
  • BA Composites GmbH
  • SGL Carbon

International Consortium

  • KCarbon
  • Hyundai
  • Sangmyung University
  • TERA Engineering
Source:

Fraunhofer Institute for Casting, Composite and Processing Technology IGCV

(c) A3/Christian Strohmayr
10.05.2022

Fraunhofer reduces CO2 footprint and recycles trendy lightweight carbon material

Neo-ecology through innovative paper technology

To reduce the CO2 footprint, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV Augsburg research with a state-of-the-art wetlaid nonwoven machine for recycling carbon fibers. The production processes are similar to those of a paper manufacturing machine. The crucial difference: we turn not paper fibers into the paper but recycled carbon fibers into nonwoven roll fabrics. The carbon fiber thus gets a second life and finds an environmentally friendly way in nonwovens, such as door panels, engine bonnets, roof structures, underbody protection (automotive), and heat shields (helicopter tail boom), as well as in aircraft interiors.

“Wetlaid technology for processing technical fibers is currently experiencing a revolution following centuries of papermaking tradition.”
Michael Sauer, Researcher at Fraunhofer IGCV

Neo-ecology through innovative paper technology

To reduce the CO2 footprint, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV Augsburg research with a state-of-the-art wetlaid nonwoven machine for recycling carbon fibers. The production processes are similar to those of a paper manufacturing machine. The crucial difference: we turn not paper fibers into the paper but recycled carbon fibers into nonwoven roll fabrics. The carbon fiber thus gets a second life and finds an environmentally friendly way in nonwovens, such as door panels, engine bonnets, roof structures, underbody protection (automotive), and heat shields (helicopter tail boom), as well as in aircraft interiors.

“Wetlaid technology for processing technical fibers is currently experiencing a revolution following centuries of papermaking tradition.”
Michael Sauer, Researcher at Fraunhofer IGCV

The wetlaid technology used is one of the oldest nonwoven forming processes (around 140 BC - 100 AD). As an essential industry sector with diverse fields of application, wetlaid nonwovens are no longer only found in the classic paper. Instead, the application areas extend, for example, from adhesive carrier films, and packaging material, to banknotes and their process-integrated watermarks and security features. In the future, particularly sustainable technology fields will be added around battery components, fuel cell elements, filtration layers, and even function-integrated material solutions, e.g., EMI shielding function.

Fraunhofer IGCV wetlaid nonwovens line is specifically designed as a pilot line. In principle, very different fiber materials such as natural, regenerated, and synthetic fibers can be processed, mainly recycled and technical fibers. The system offers the highest possible flexibility regarding material variants and process parameters. In addition, sufficiently high productivity is ensured to allow subsequent scaled processing trials (e.g., demonstrator production).

The main operating range of the wetlaid line relates to the following parameters:

  • Processing speed: up to 30 m/min
  • Role width: 610 mm
  • Grammage: approx. 20–300 gsm
  • Overall machinery is ≥ IP65 standard for processing, e.g., conductive fiber materials
  • Machine design based on an angled wire configuration with high dewatering capacity, e.g., for processing highly diluted fiber suspensions or for material variants with high water retention capacity.
  • Machine modular system design with maximum flexibility for a quick change of material variants or a quick change of process parameters. The setup allows short-term hardware adaptations as well as project-specific modifications.

Research focus: carbon recycling at the end of the life cycle
The research focus of Fraunhofer IGCV is primarily in the field of technical staple fibers. The processing of recycled carbon fibers is a particular focus. Current research topics in this context include, for example, the research, optimization, and further development of binder systems, different fiber lengths and fiber length distributions, nonwoven homogeneity, and fiber orientation. In addition, the focus is on the integration of digital as well as AI-supported methods within the framework of online process monitoring. Further research topics, such as the production of gas diffusion layers for fuel cell components, the further development of battery elements, and filtration applications, are currently being developed.

Source:

Fraunhofer Institute for Casting, Composite and Processing Technology IGCV

Photo: pixabay
03.05.2022

The Journey to Carbon Neutrality: Reduction technologies and measuring tools

More and more sports and fashion brands are setting themselves the goal of becoming climate neutral within the next few years, on a corporate as well as product level. The CO2 balance serves as the gateway to sustainable apparel and for more transparency for the consumer.

This process begins with the materials supplied by textile producers, requiring knowledge of the amount of CO2 emitted during production. By evaluating and quantifying CO2 emissions, the industry gains in transparency and can turn to more sustainable options.

More and more sports and fashion brands are setting themselves the goal of becoming climate neutral within the next few years, on a corporate as well as product level. The CO2 balance serves as the gateway to sustainable apparel and for more transparency for the consumer.

This process begins with the materials supplied by textile producers, requiring knowledge of the amount of CO2 emitted during production. By evaluating and quantifying CO2 emissions, the industry gains in transparency and can turn to more sustainable options.

In close collaboration with sustainability insights platform Higg and partners such as Climate Partner, PERFORMANCE DAYS Munich and Functional Fabric Fair by PERFORMANCE DAYS Portland seek targeted answers to the question, “How can we cut down on CO2 emissions?” as part of its roadmap over the next three fairs. The Focus Topic “The Journey to Carbon Neutrality” will therefore highlight materials and fibers that provide solutions on how to produce and reprocess materials in the future in a climate-friendly manner, kicking off at the spring trade fair, to be held at the Oregon Convention Center in Portland on April 4-5, 2022, at the Munich’s Exhibition Center on April 27-28, 2022, continuing through the winter fair in October/November and culminating at the Spring 2023 fair.

When the conversation turns to environmental protection and climate change these days, the term CO2 neutrality is also often mentioned in connection with CO2 emissions and CO2 reduction. Yet what exactly does CO2 neutrality mean? Climate neutrality implies achieving a balance between carbon emissions themselves and the absorption of carbon in the atmosphere into carbon sinks. To achieve net zero emissions, all greenhouse gas emissions worldwide must be offset by carbon sequestration. The fashion and sportswear industries are among the world’s highest emitters of CO2.

If one wishes to examine their emissions across all stages of the value chain, it is worth looking beyond raw materials, production, logistics and trade. Consumer behavior can also influence emissions: According to the “Fashion on Climate” report published by the Global Fashion Agenda and McKinsey at the end of August 2020, even greater leverage lies in the products themselves: 61 percent of reductions in emissions could be achieved through CO2 reductions in material production and processing, by minimizing production and manufacturing waste, and in the manufacturing of garments. By 2030, that would account for around 1 billion tons annually. And last but not least, consumer behavior is also a factor that impacts the fashion industry’s climate footprint. If even more attention is paid to sustainable clothing, and if it is reused and worn longer, this can lead to a reduction in emissions of up to 347 million tons, according to the report.

A pioneering example on the road to sustainability was PERFORMANCE DAYS’ decision to only present sustainable materials at the PERFORMANCE FORUM from the trade fair event in November 2019 onwards. And from the upcoming Spring Fair onwards, the sustainable approach will be heightened further. Within the framework of this roadmap, the new Focus Topic is intended to accompany exhibitors on their way to climate neutrality over the course of three fairs. In doing so, PERFORMANCE DAYS and Functional Fabric Fair are pursuing a 3-step plan.  

  • Step 1, April 2022: The focus of the upcoming fair will be on CO2-reducing technologies and the measuring of a product’s carbon footprint.
  • Step 2, November 2022: Within the entire Focus Topic product category, only products that indicate CO2 emissions caused during production will be shown. This contributes to more transparency and comparability in the industry.
  • Step 3, April 2023: The PERFORMANCE FORUM will present the amount of CO2 emitted by each individual product. Furthermore, approaches to solutions will be shown as to how CO2 released during the manufacturing of materials can be offset and further reduced.

For the best possible implementation and presentation of the new Focus Topic, PERFORMANCE DAYS and Functional Fabric Fair trust in collaborators: Higg and Climate Partner – amongst others – will accompany the next three fairs. The Higg Materials Sustainability Index (Higg MSI) is considered the leading tool for assessing the environmental impact of materials in the apparel, footwear and textile industries. The Higg MSI is able to calculate the environmental impact of millions of possible material manufacturing variants. A packaging library has also been added to assist in making sustainable decisions for packaging. The Higg Index is neither a certificate nor a label, but rather an important self-assessment tool that textile companies can utilize internally to be able to identify and improve environmental and social issues throughout their value chain.

Climate Partner, on the other hand, seeks solutions for climate protection: This involves the balancing of CO2 emissions – which in turn are to offset the emissions of companies with recognized climate protection projects in order to make products, services and companies climate neutral. Climate Partner also sees itself as an advisor to companies on their climate protection strategies. Together, the aim is to work on reducing CO2 emissions and to support climate protection projects that benefit the everyday lives of people in developing countries. 

Source:

PERFORMANCE DAYS

(c) Empa
05.04.2022

In the heat of the wound: Smart bandage

A bandage that releases medication as soon as an infection starts in a wound could treat injuries more efficiently. Empa researchers are currently working on polymer fibers that soften as soon as the environment heats up due to an infection, thereby releasing antimicrobial drugs.

It is not possible to tell from the outside whether a wound will heal without problems under the dressing or whether bacteria will penetrate the injured tissue and ignite an inflammation. To be on the safe side, disinfectant ointments or antibiotics are applied to the wound before the dressing is applied. However, these preventive measures are not necessary in every case. Thus, medications are wasted and wounds are over-treated.

A bandage that releases medication as soon as an infection starts in a wound could treat injuries more efficiently. Empa researchers are currently working on polymer fibers that soften as soon as the environment heats up due to an infection, thereby releasing antimicrobial drugs.

It is not possible to tell from the outside whether a wound will heal without problems under the dressing or whether bacteria will penetrate the injured tissue and ignite an inflammation. To be on the safe side, disinfectant ointments or antibiotics are applied to the wound before the dressing is applied. However, these preventive measures are not necessary in every case. Thus, medications are wasted and wounds are over-treated.

Even worse, the wasteful use of antibiotics promotes the emergence of multi-resistant germs, which are an immense problem in global healthcare. Empa researchers at the two Empa laboratories Biointerfaces and Biomimetic Membranes and Textiles in St. Gallen want to change this. They are developing a dressing that autonomously administers antibacterial drugs only when they are really needed.

The idea of the interdisciplinary team led by Qun Ren and Fei Pan: The dressing should be "loaded" with drugs and react to environmental stimuli. "In this way, wounds could be treated as needed at exactly the right moment," explains Fei Pan. As an environmental stimulus, the team chose a well-known effect: the rise in temperature in an infected, inflamed wound.

Now the team had to design a material that would react appropriately to this increase in temperature. For this purpose, a skin-compatible polymer composite was developed made of several components: acrylic glass (polymethyl methacrylate, or PMMA), which is used, for example, for eyeglass lenses and in the textile industry, and Eudragit, a biocompatible polymer mixture that is used, for example, to coat pills. Electrospinning was used to process the polymer mixture into a fine membrane of nanofibers. Finally, octenidine was encapsulated in the nanofibers as a medically active component. Octenidine is a disinfectant that acts quickly against bacteria, fungi and some viruses. In healthcare, it can be used on the skin, on mucous membranes and for wound disinfection.

Signs of inflammation as triggers
As early as in the ancient world, the Greek physician Galen described the signs of inflammation. The five Latin terms are still valid today: dolor (pain), calor (heat), rubor (redness), tumor (swelling) and functio laesa (impaired function) stand for the classic indications of inflammation. In an infected skin wound, local warmth can be as high as five degrees. This temperature difference can be used as a trigger: Suitable materials change their consistency in this range and can release therapeutic substances.

Shattering glove
"In order for the membrane to act as a "smart bandage" and actually release the disinfectant when the wound heats up due to an infection, we put together the polymer mixture of PMMA and Eudragit in such a way that we could adjust the glass transition temperature accordingly," says Fei Pan. This is the temperature, at which a polymer changes from a solid consistency to a rubbery, toughened state. Figuratively, the effect is often described in reverse: If you put a rubber glove in liquid nitrogen at –196 degrees, it changes its consistency and becomes so hard that you can shatter it like glass with one blow.

The desired glass transition temperature of the polymer membrane, on the other hand, was in the range of 37 degrees. When inflammation kicks in and the skin heats up above its normal temperature of 32 to 34 degrees, the polymer changes from its solid to a softer state. In laboratory experiments, the team observed the disinfectant being released from the polymer at 37 degrees – but not at 32 degrees. Another advantage: The process is reversible and can be repeated up to five times, as the process always "switches itself off" when it cools down. Following these promising initial tests, the Empa researchers now want to fine-tune the effect. Instead of a temperature range of four to five degrees, the smart bandage should already switch on and off at smaller temperature differences.

Smart and unsparing
To investigate the efficacy of the nanofiber membranes against wound germs, further laboratory experiments are now in the pipeline. Team leader Qun Ren has long been concerned with germs that nestle in the interface between surfaces and the environment, such as on a skin wound. "In this biological setting, a kind of no man's land between the body and the dressing material, bacteria find a perfect biological niche," says the Empa researcher. Infectious agents such as staphylococci or Pseudomonas bacteria can cause severe wound healing disorders. It was precisely these wound germs that the team allowed to become acquainted with the smart dressing in the Petri dish. And indeed: The number of bacteria was reduced roughly 1000-fold when octenidine was released from the smart dressing. "With octenidine, we have achieved a proof of principle for controlled drug release by an external stimulus," said Qun Ren. In future, she said, the technology could be applied to other types of drugs, increasing the efficiency and precision in their dosage.

The smart dressing
Empa researchers are working in interdisciplinary teams on various approaches to improve medical wound treatment. For example, liquid sensors on the outside of the dressing are to make it visible when a wound is healing poorly by changing their color. Critical glucose and pH values serve as biomarkers.

To enable bacterial infections to be contained directly in the wound, the researchers are also working on a polymer foam loaded with anti-inflammatory substances and on a skin-friendly membrane made of plant material. The cellulose membrane is equipped with antimicrobial protein elements and kills bacteria extremely efficiently in laboratory tests.

Moreover, digitalization can achieve more economical and efficient dosages in wound care: Empa researchers are developing digital twins of the skin that allow control and prediction of the course of a therapy using real-time modeling.

Further information:
Prof. Dr. Katharina
Maniura Biointerfaces
Phone +41 58 765 74 47
Katharina.Maniura@empa.ch

Prof. Dr. René Rossi
Biomimetic Membranes and Textiles
Phone +41 58 765 77 65
Rene.rossi@empa.ch

Source:

EMPA, Andrea Six

Foto: Lalit Kumar, Unsplash
29.03.2022

The man-made fibers industry at the turning point of time

"You don't tear down a house before the new one is ready for occupancy."

Textination talked to the Managing Director of the Industrievereinigung Chemiefaser e.V., Dr. Wilhelm Rauch, about his assessment of the turning point that the man-made fibers industry is currently facing. What are the risks and threats, and what needs to change in order to remain a competitive player on the global market.

"You don't tear down a house before the new one is ready for occupancy."

Textination talked to the Managing Director of the Industrievereinigung Chemiefaser e.V., Dr. Wilhelm Rauch, about his assessment of the turning point that the man-made fibers industry is currently facing. What are the risks and threats, and what needs to change in order to remain a competitive player on the global market.

US President Joe Biden has called his Russian counterpart Vladimir Putin a war criminal in connection with the invasion of Ukraine. The United Nations' highest court, the International Court of Justice in The Hague, has ordered Russia to immediately end its war against Ukraine. How do you personally assess Russia's behavior?
Dr. Rauch:
With family roots in the Rhineland, Central and East Germany, I grew up at a time when, as a result of the division of Europe, families were separated and people were ruthlessly shot in the middle of Germany who wanted to cross the inner-German demarcation line towards the West. Since 1989, the fall of the Iron Curtain has led us into a period that lasted more than 30 years and allowed us, at least in Europe, to experience an era of peaceful coexistence between the great power blocs, intensive trade relations and prosperous states.

It is more than shocking to see today how Russia is trying to turn back the wheel of history in Europe with a brutality that the youngest generation growing up in Europe has fortunately not had to experience so far, and it brings back the worst memories of the Cold War, which everyone hoped would never return. If today in Ukraine even facilities for the peaceful use of nuclear energy are fired upon, a dimension has been reached that one does not want to extrapolate any further. In addition to the unspeakable human suffering caused, which we can only begin to alleviate by accepting Ukrainian refugees, in the long term all trust in political promises is being gambled away, which, however, is essential both for peaceful coexistence and for economic cooperation. We are facing a reordering of the world in which supply relationships and dependencies with or on autocratic states must be evaluated much more sensitively for each individual case.

The economic consequences of the Russia-Ukraine conflict are becoming increasingly clear. The Association of German Chambers of Commerce and Industry (DIHK) is correcting its forecast for 2022, but does not yet see a recession. What are your expectations for the industry in the current fiscal year?
Dr. Rauch:
The man-made fibers industry has been severely affected by the SARS-CoV-2 pandemic in the last two years. Planned investments were first postponed and then finally abandoned. By the end of 2022, three man-made fibers producers will close their doors in Germany compared to 2019. The industry started the current year on a very hopeful note, although previous issues such as REACH and, above all, energy costs were already increasing in severity before the Russia-Ukraine war. The economic consequences of the war will have a negative impact both directly in the form of increased energy prices and indirectly through changes in international competitive conditions.

What do the war in Ukraine and the economic sanctions against Russia entail for the upstream supply chains of the manmade fiber industry?
Dr. Rauch:
The immediate upstream supply chains will not be affected much by this war at first. However, we must expect supply chains in other industries to be disrupted. If, for example, certain raw materials or products are no longer available, this can have a noticeable impact, starting with logistics (mobility) and extending to components in production technology facilities. An example of this is the availability of cable harnesses, which were previously produced in Ukraine and are indispensable in many electronic components for man-made fibers production.

What is the relevance of Ukraine and Russia as sales markets for IVC member companies?
Dr. Rauch:
If we take the last year before the outbreak of the SARS-CoV-2 pandemic as the reference year, exports to Ukraine and the Russian Federation account for around 1.6% of total exports of man-made fibers from Germany. On average, a loss of sales to these countries can be tolerated, although it should not be forgotten that in individual cases - depending on a company's product portfolio - the impact can be quite significant. Looking beyond the horizon, it is not only the direct exports of man-made fibers to the war region that are of significance, but also deliveries of products in which man-made fibers are processed. Here, there are now interrupted supply relationships that result in order losses for the man-made fibers industry.

Certain industries are particularly affected by the consequences - what does this mean for the man-made fibers sector as a supplier industry?
Dr. Rauch:
Wherever production is cut back along the downstream value chain in which man-made fibers were used, the effects will be noticeable with a temporal delay. This applies, for example, to deliveries to the automotive sector, where the production of new vehicles comes to a standstill due to a lack of components originating from Ukraine.

How are exploding energy prices and the gas embargo affecting man-made fibers producers in the DACH region?
Dr. Rauch:
Even before the Russia-Ukraine war, European energy costs were already at a level that hit our members hard. For example, European gas costs currently rose by ten times from approx. 12 EUR/MWh to approx. 120 EUR/MWh as a result of the war, while in the USA they "only" rose by two and a half times from approx. 8 EUR/MWh to approx. 18 EUR/MWh. The situation is similar for electricity prices in Germany in particular, which have also risen by a factor of 10 from an already high level. Further price increases in Europe cannot be ruled out, but are more likely. Against this background, moderate adjustments in man-made fibers prices are only a drop in the bucket. A market development with virtually exploding energy costs cannot be reliably depicted by any company, nor can it be priced in such a way as to cover costs.

As the industry association of the man-made fibers industry, what do you think of "Freeze for Peace" or a stop to all Russian gas and raw material imports?
Dr. Rauch:
In Germany in particular, we have deliberately made ourselves dependent on Russian gas, contrary to all international warnings, by defining it as necessary for the bridge technology of electricity generation that we will need after the shutdown of coal- and nuclear-based power plants, before the availability of a sufficient amount of so-called "green" energy is assured. Gas is also needed for heating purposes and as a raw material, so it takes on the function of an all-rounder.

A boycott-related import stop would not only have serious negative consequences for the man-made fibers sector, but for the entire German industry and the majority of private households. As I mentioned at the beginning, it is the order of the day to help alleviate human suffering by taking in Ukrainian refugees. But this is not the end of the crisis. It must be assumed that the war situation will not be resolved in the near future. However, in order to cope with a protracted crisis situation, our economic strength must be maintained in order to be able to cope with the challenges ahead. An import freeze would be counterproductive in this respect. Since, due to the latest developments, gas deliveries are now to be paid for in rubles, there is rather a risk that Russia, for its part, will stop gas deliveries. In their effect, the two scenarios do not differ. The only thing that is certain is the fact that the availability of Russian gas to Europe is no longer guaranteed. Ultimately, the Russian demand to switch payments to rubles, which is not only aimed at revaluing the ruble, makes it clear that Russia is not dependent on Europe as a buyer of its gas. This would mean that a "freeze for peace" would lead to nothing. In the Far East, there is already a potential buyer of Russian gas to obtain it cheaply and safely, and which is also a major competitor of the European chemical fiber industry: China.

Are agreements with the United Arab Emirates and Qatar a good substitute solution for gas and oil supplies from Russia?
Dr. Rauch:
It is not a question of evaluating a measure in the sense of good or bad, but of whether it appears suitable in this particular situation to reduce unilateral dependencies on an aggressor before sustainable solutions are available in sufficient quantity. In this respect, there should initially be no ideological barriers in the measures to be examined for feasibility. The agreements concluded with the United Arab Emirates and Qatar after certainly careful political scrutiny are individual decisions and represent only one piece in the mosaic among many.

Does the saying "First we had bad luck, then we were not lucky at all" apply to the current economic performance of the industry - or: how do you assess the influence of the Corona pandemic and the war situation in this respect?
Dr. Rauch:
Both the SARS-CoV-2 pandemic and the Russia-Ukraine war are events with a global character. While the first event affected all countries equally sooner or later, the impact of the Russia-Ukraine war must be assessed in a more differentiated manner. The consequences of the war primarily affect companies in Europe, and there in particular those countries which - as mentioned above - have placed themselves in unilateral dependencies like Germany. This does not apply to the man-made fibers industry in particular. Although there are many fellow sufferers in other industries, this does not improve the situation, of course.

What does the industry expect from the political leaders in Berlin and Brussels in the future?
Dr. Rauch:
The wish list can be fixed to a few core elements:
In the long term, we need a supply of energy and raw materials that is not based on the dependence of a few autocratic states. On the way there, against the backdrop of the Russia-Ukraine war, previous exit scenarios from coal and nuclear energy must be reconsidered without prejudice with regard to their timeline. Or to put it more concisely: You don't tear down a house before the new one is ready for occupancy.

But energies from renewable raw materials must also be offered at prices that allow global competitiveness. According to a study by DECHEMA and FutureCamp, the chemical industry has calculated a price of 4 ct/kWh (including all taxes and fees). We are miles away from this today.

The revision of REACH must not lead to further bureaucracy and requirements that tie up capacity in companies. What we need in Europe is not dotting the i on Maslow's hierarchy of needs, but to ensure that we do not slide down the levels step by step and that the i dot floats in the air without an "i".

European economic policy must focus on the international competitiveness of European industry. It is not sufficient to consider and regulate the European Union only from the point of view of the internal market. The planned carbon border mechanism is such an example. It is intended to impose customs duties on imports that carry a high CO2 burden. This may protect the domestic market, but it does nothing at all to help export-oriented European industry such as the man-made fibers sector on the international world market, because European production costs remain too high by global standards despite the carbon border taxes.

The European Commission must increasingly recognize the European industry and with it the man-made fibers industry as problem solvers. Man-made fibers are indispensable as products for the energy turnaround (rotor blades for wind turbines), lightweight construction in mobility (lightweight car bodies in composite systems), sustainable road construction (geotextiles to reinforce the road surface and increase its service life), reduction of steel-reinforced concrete and thus cement, sand and gravel (reinforcement with high-tensile man-made fibers) and medical products (medical masks, bandaging materials, stents).

In Europe, we again need more market economy and no small-scale regulations that are adapted again and again and proliferate into an impenetrable thicket.

With all the wishes to politicians mentioned above, let me finally mention the following with regard to the current situation: In 1961, after the Berlin Wall was built, Russian and American tanks faced each other at Checkpoint Charlie at a distance of less than 50 meters, ready to fire.

A year later, in October 1962, nuclear-equipped American and Russian naval units met head-on in the Cuban Missile Crisis. Both John F. Kennedy and Nikita S. Khrushchev - bitter rivals in the contest of political systems - were sensible enough at the time not to let the situation escalate.

At present, I wish our national, European and transatlantic politicians’ unconditional determination in the defense of our free democratic values, but I also appeal to all politicians worldwide to take to heart one of Albert Einstein's fundamental perceptions: "I don't know what weapons will be used in the Third World War. But I can tell you what they'll use in the Fourth - rocks!"

Source:

Textination

The Interview was conducted by Ines Chucholowius, CEO Textination GmbH

Photo: pixabay
15.02.2022

Advanced Fibers: When damaged ropes change color

High-performance fibres that have been exposed to high temperatures usually lose their mechanical properties undetected and, in the worst case, can tear precisely when lives depend on them. For example, safety ropes used by fire brigades or suspension ropes for heavy loads on construction sites. Empa researchers have now developed a coating that changes color when exposed to high temperatures through friction or fire.

The firefighter runs into the burning building and systematically searches room by room for people in need of rescue. Attached to him is a safety rope at the other end of which his colleagues are waiting outside in front of the building. In an emergency - should he lose consciousness for any reason - they can pull him out of the building or follow him into the building for rescue. However, if this rope has been exposed to excessive heat during previous operations, it may tear apart. This means danger to life!

High-performance fibres that have been exposed to high temperatures usually lose their mechanical properties undetected and, in the worst case, can tear precisely when lives depend on them. For example, safety ropes used by fire brigades or suspension ropes for heavy loads on construction sites. Empa researchers have now developed a coating that changes color when exposed to high temperatures through friction or fire.

The firefighter runs into the burning building and systematically searches room by room for people in need of rescue. Attached to him is a safety rope at the other end of which his colleagues are waiting outside in front of the building. In an emergency - should he lose consciousness for any reason - they can pull him out of the building or follow him into the building for rescue. However, if this rope has been exposed to excessive heat during previous operations, it may tear apart. This means danger to life!

And up to now there has been no way of noticing this damage to the rope. 2021 a team of researchers from Empa and ETH Zurich has developed a coating which changes color due to the physical reaction with heat, thus clearly indicating whether a rope will continue to provide the safety it promises in the future.

Researchers from ETH Zurich and Empa developed a coating system in 2018 as part of a Master's thesis, which the Empa team was now able to apply to fibers. "It was a process involving several steps," says Dirk Hegemann from Empa's Advances Fibers lab. The first coatings only worked on smooth surfaces, so the method first had to be adapted so that it would also work on curved surfaces. Empa has extensive know-how in the coating of fibers - Hegemann and his team have already developed electrically conductive fibers in the past. The so-called sputtering process has now also been successfully applied to the latest coating.

Three layers are required to ensure that the fiber actually changes color when heated. The researchers apply silver to the fibre itself, in this case PET (i.e. polyester) and VectranTM, a high-tech fibre. This serves as a reflector - in other words, as a metallic base layer. This is followed by an intermediate layer of titanium nitrogen oxide, which ensures that the silver remains stable. And only then follows the amorphous layer that causes the color change: Germanium-antimony tellurium (GST), which is just 20 nanometers thick. When this layer is exposed to elevated temperatures, it crystallizes, changing the color from blue to white. The colour change is based on a physical phenomenon known as interference. Two different waves (e.g. light) meet and amplify or weaken each other. Depending on the chemical composition of the temperature-sensitive layer, this color change can be adjusted to a temperature range between 100 and 400 degrees and thus adapted to the mechanical properties of the fiber type.

Tailor-made solutions
The possible areas of application for the colour-changing fibres are still open, and Hegemann is currently looking for possible project partners. In addition to safety equipment for firefighters or mountaineers, the fibres can also be used for load ropes in production facilities, on construction sites, etc. In any case, research on the subject is far from complete. At present, it is not yet possible to store the fibers for long periods of time without losing their functionality. "Unfortunately, the phase-change materials oxidize over the course of a few months," says Hegemann. This means that the corresponding phase change - crystallization - no longer takes place, even with heat, and the rope thus loses its "warning signal". In any case, it has been proven that the principle works, and durability is a topic for future research, says Hegemann. "As soon as the first partners from industry register their interest in our own products, the fibers can be further optimized according to their needs".

Information:
Dr. Dirk Hegemann
Advanced Fibers
Tel. +41 58 765 7268
Dirk.Hegemann@empa.ch

More information:
Empa Fibers Ropes temperature
Source:

EMPA, Andrea Six

(c) Empa
08.02.2022

Early detection of dementia with a textile belt

Alzheimer's and other dementias are among the most widespread diseases today. Diagnosis is complex and can often only be established with certainty late in the course of the disease. A team of Empa researchers, together with clinical partners, is now developing a new diagnostic tool that can detect the first signs of neurodegenerative changes using a sensor belt.

Forgetfulness and confusion can be signs of a currently incurable ailment: Alzheimer's disease. It is the most common form of dementia that currently affect around 50 million people worldwide. It mainly afflicts older people. The fact that this number will increase sharply in the future is therefore also related to the general increase in life expectancy.

Alzheimer's and other dementias are among the most widespread diseases today. Diagnosis is complex and can often only be established with certainty late in the course of the disease. A team of Empa researchers, together with clinical partners, is now developing a new diagnostic tool that can detect the first signs of neurodegenerative changes using a sensor belt.

Forgetfulness and confusion can be signs of a currently incurable ailment: Alzheimer's disease. It is the most common form of dementia that currently affect around 50 million people worldwide. It mainly afflicts older people. The fact that this number will increase sharply in the future is therefore also related to the general increase in life expectancy.

If dementia is suspected, neuropsychological examinations, laboratory tests and demanding procedures in the hospital are required. However, the first neurodegenerative changes in the brain occur decades before a reduced cognitive ability becomes apparent. Currently, these can only be detected by expensive or invasive procedures. These methods are thus not suitable for extensive early screenings on a larger scale. Empa researchers are working with partners from the Cantonal Hospital and the Geriatric Clinic in St. Gallen on a non-invasive diagnostic method that detects the early processes of dementia.

Signs in the unconscious
For the new method, the researchers Patrick Eggenberger and Simon Annaheim from Empa's Biomimetic Membranes and Textiles lab in St. Gallen relied on a sensor belt that has already been used successfully for ECG measurements and has now been equipped with sensors for other relevant parameters such as body temperature and gait pattern. This is because long before memory starts to deteriorate in dementia, subtle changes appear in the brain, which are expressed through unconscious bodily reactions.

These changes can only be recorded precisely when measurements are taken over a longer period of time, though. "It should be possible to integrate the long-term measurements into everyday life," explains Simon Annaheim. Skin-friendly and comfortable monitoring systems are essential for measurements that are suitable for everyday use. The diagnostic belt is therefore based on flexible sensors with electrically conductive or light-conducting fibers as well as sensors for motion and temperature measurement.

To enable such long-term measurements to be used for monitoring neurocognitive health, the researchers are integrating the collected data into in-house developed mathematical models. The goal: an early warning system that can estimate the progression of cognitive impairment. Another advantage is that the data measurements can be integrated into telemonitoring solutions and can thus improve patient care in their familiar environment.

Suspicious monotony
The human body is able to keep its temperature constant in a range of 1 degree Celsius. The values naturally oscillate in the course of the day. This daily rhythm changes with age and is conspicuous in neurodegenerative diseases such as dementia or Parkinson's disease. In Alzheimer's patients, for example, the core body temperature is elevated by up to 0.2 degrees Celsius. At the same time, the spikes in daily temperature fluctuations are dampened.

In a study, the researchers have now been able to show that altered skin temperature readings measured with the sensor belt actually provide an indication of the cognitive performance of test subjects – and can do so well before dementia develops. The test subjects in the study included healthy people with or without mild brain impairment. This mild cognitive impairment (MCI) does not represent a disability in everyday life, but it is considered a possible precursor to Alzheimer's disease. The subjects took part in long-term measurements and neuropsychological tests. It was found that a lower body temperature, which fluctuated more throughout the day, was linked to a better cognitive performance. In individuals with MCI, body temperature varied less and was slightly elevated overall.

The heartbeat is also subject to natural variations that show how our nervous system adapts to sudden challenges. The small silence between two heartbeats, about one second in duration, has great significance for our health: If this pause always remains the same, our nervous system is not at its best.

A study by researchers from ETH Zurich determined that poorer measurements in older, healthy people can be improved within six months through cognitive-motor dance training. In these "exergames," the test subjects imitated sequences of steps from a video. In contrast, participants who instead only trained in straight lines on a treadmill, but also trained their memory, benefited less.

"The point is to intervene early with appropriate training as soon as the first negative signs can be measured," says Patrick Eggenberger. "With our sensor system, any improvements in cognitive performance can be tracked through movement-based forms of therapy." Studies with long-term monitoring will now be used to clarify how the sensor measurements can be used to predict the progression of mild brain disorders.

Further information
Dr. Simon Annaheim
Biomimetic Membranes and Textiles   
Phone +41 58 765 77 68
Simon.Annaheim@empa.ch

More information:
Empa Membrane Medical & Healthcare
Source:

EMPA, Andrea Six

Photo: pixabay, Hilary Clark
01.02.2022

Cotton Fibers 2.0: Fireproof and comfortable

A new chemical process developed by Empa turns cotton into a fire-resistant fabric, that nevertheless retains the skin-friendly properties of cotton.

Conventional flame retardant cotton textiles suffer from release of formaldehyde and are uncomfortable to wear. Empa scientists managed to circumvent this problem by creating a physically and chemically independent network of flame retardants inside the fibers. This approach retains the inherently positive properties of cotton fibers, which account for three-quarters of the world's demand for natural fibers in clothing and home textiles. Cotton is skin-friendly because it can absorb considerable amounts of water and maintain a favorable microclimate on the skin.

A new chemical process developed by Empa turns cotton into a fire-resistant fabric, that nevertheless retains the skin-friendly properties of cotton.

Conventional flame retardant cotton textiles suffer from release of formaldehyde and are uncomfortable to wear. Empa scientists managed to circumvent this problem by creating a physically and chemically independent network of flame retardants inside the fibers. This approach retains the inherently positive properties of cotton fibers, which account for three-quarters of the world's demand for natural fibers in clothing and home textiles. Cotton is skin-friendly because it can absorb considerable amounts of water and maintain a favorable microclimate on the skin.

For firefighters and other emergency service personnel, protective clothing provides the most important barrier. For such purposes, cotton is mainly used as an inner textile layer that needs additional properties: For example, it must be fireproof or protect against biological contaminants. Nevertheless, it should not be hydrophobic, which would create an uncomfortable microclimate. These additional properties can be built into the cotton fibers by suitable chemical modifications.

Durability vs. toxicity
"Until now, it has always taken a compromise to make cotton fireproof," says Sabyasachi Gaan, a chemist and polymer expert who works at Empa's Advanced Fibers lab. Wash-durable flame retardant cotton in industry is produced by treating the fabric with flame retardants, which chemically links to the cellulose in the cotton. Currently, the textile industry has no other choice than to utilize formaldehyde-based chemicals – and formaldehyde is classified as a carcinogen. This has been an unsolved problem for decades. While formaldehyde-based flame retardant treatments are durable, they have additional drawbacks: The -OH groups of cellulose are chemically blocked, which considerably reduces the capability of cotton to absorb water, which results in an uncomfortable textile.

Gaan knows the chemistry of cotton fibers well and has spent many years at Empa developing flame retardants based on phosphorus chemistry that are already used in many industrial applications. Now he has succeeded in finding an elegant and easy way to anchor phosphorous in form of an independent network inside the cotton.

Independent network between cotton fibers
Gaan and his colleagues Rashid Nazir, Dambarudhar Parida and Joel Borgstädt utilized a tri-functional phosphorous compound (trivinylphosphine oxide), which has the capability of reacting only with specifically added molecules (nitrogen compounds like piperazin) to form its own network inside cotton. This makes the cotton permanently fire-resistant without blocking the favorable -OH groups. In addition, the physical phosphine oxide network also likes water. This flame retardant treatment does not include carcinogenic formaldehyde, which would endanger textile workers during textile manufacturing. The phosphine oxide networks, thus formed, does not wash out: After 50 launderings, 95 percent of the flame retardant network is still present in the fabric.

To render additional protective functionalities to the flame retardant cotton developed at Empa, the researchers also incorporated in situ generated silver nanoparticles inside the fabric. This works nicely in a one-step process together with generating the phosphine oxide networks. Silver nanoparticles provide the fiber with antimicrobial properties and survive 50 laundry cycles, too.

A high-tech solution from the pressure cooker
"We have used a simple approach to fix the phosphine oxide networks inside the cellulose," Gaan says. "For our lab experiments, we first treated the cotton with an aqueous solution of phosphorus and nitrogen compounds and then steamed it in a readily available pressure cooker to facilitate the crosslinking reaction of the phosphorus and the nitrogen molecules." The application process is compatible with equipment used in the textile industry. "Steaming textiles after dyeing, printing and finishing is a normal step in textile industry. So it doesn't require an additional investment to apply our process," states the Empa chemist.

Meanwhile, this newly developed phosphorus chemistry and its application is protected by a patent application. "Two important hurdles remain," Gaan says. "For future commercialization we need to find a suitable chemical manufacturer who can produce and supply trivinylphosphine oxide. In addition, trivinylphosphine oxide has to be REACH-registered in Europe."

Contact:
Dr. Sabyasachi Gaan
Advanced Fibers
Phone: +41 58 765 7611
sabyasachi.gaan@empa.ch
 
Contact:
Prof. Dr. Manfred Heuberger
Advanced Fibers
Phone: +41 58 765 7878
manfred.heuberger@empa.ch

A gel that releases drugs
The novel phosphorus chemistry can also be used to develop other materials, e.g. to make hydrogels that can release drugs upon changes in pH. Such gels could find application in treating wounds that heal slowly. In such wounds, the pH of the skin surface increases and the new phosphorus-based gels can be triggered to release medication or a dye that alerts doctors and nurses to the problem. Empa has also patented the production of such hydrogels.

Source:

EMPA, Rainer Klose

(c) Schoeller Textil AG
18.01.2022

A jacket from a jacket from a jacket ...

Manufacture, wear, wash, incinerate: This typical life cycle of garments, which pollutes the environment, is to be changed in the future – towards principles of circular economy with recycling at its core. Using an outdoor jacket made from PET bottles and recycled materials, Empa researchers have investigated whether the product actually delivers what the idea promises.

At first glance, it's a normal rain jacket: three layers of polyester, a lining on the inside, a water vapor-permeable membrane on top and water-repellent fabric on the outside, with a hood. But the zipper makes you wonder. Instead of ending at collar height, it pulls up over the forehead ... – who would pull it that far?

Manufacture, wear, wash, incinerate: This typical life cycle of garments, which pollutes the environment, is to be changed in the future – towards principles of circular economy with recycling at its core. Using an outdoor jacket made from PET bottles and recycled materials, Empa researchers have investigated whether the product actually delivers what the idea promises.

At first glance, it's a normal rain jacket: three layers of polyester, a lining on the inside, a water vapor-permeable membrane on top and water-repellent fabric on the outside, with a hood. But the zipper makes you wonder. Instead of ending at collar height, it pulls up over the forehead ... – who would pull it that far?

The explanation is given by Annette Mark from textile manufacturer BTK Europe, who contributed to this product. The zipper is intended to be an eye-catcher – and is primarily for recycling: Sewn tight with a thread that dissolves in boiling water, it is easier to remove than two fasteners. "Pull once and you're done," says the expert on textiles and recycling. The light green color is also due to recycling: The raw material, a granule made from a mixture of different but single-variety textiles, is dark green – and melting and spinning out the material for new yarns lightens it.

Circular economy within textile industry
Magnetic buttons, seams, hems: Every detail of the jacket follows the Design2Recycle approach, as it says on the Wear2wear website. Six companies from Europe's textile industry have joined forces in this consortium to promote circular economy. After all, more than 70 percent of all textiles produced worldwide end up in landfills or incinerators without being recycled.

How can circular economy be acheived in this industry? A team from Empa's Technology and Society lab took a closer look at the jacket and its environmental impact using life cycle analyses over a four-year period of use; including washing it three times. The candidates: a jacket produced without circular economy methods, the "starter version" of the jacket available since 2019 in blue – with an outer layer made of polyester derived from used PET bottles – and the green version from the subsequent recycling process, in which unavoidable material losses are replaced by new polyester.

The researchers' analyses show that the recycled products perform better – in eleven environmental risk categories, including global warming, toxicity to ecosystems and water scarcity. There are strikingly large advantages in air pollution, for example, because fewer pollutants are released without incineration, as well as in water scarcity, especially for the green jacket after the first recycling "loop," for which PET bottles are no longer used.

Other insights from the analyses: In terms of greenhouse effect, the maximum benefit is a good 30 percent. And the use of PET bottles does not bring any major ecological benefits. What is decisive, on the other hand, is the number of recycling cycles to produce new jackets: The balance improves from jacket to jacket – provided the quality of the polyester remains high enough.

In practice, this is challenging, as Mark explains: "Depending on the origin, the raw material sometimes differs significantly." If the fibers have been coated with certain additives, the nozzles of the spinning machines can become clogged. And in general, the quality decreases with the number of recycling cycles: more irregular structures of the yarn and lower strength.

Annette Mark's conclusion on the Empa analyses: "very realistic" and useful for improvements. "The cooperation was very good," she says, "full transparency and no compromises." The researchers also found the collaboration fruitful. "Open collaboration between science and industry is enormously important," says former team member Gregor Braun, who has since left Empa and now works as a consultant for sustainability. "Sustainability and circular economy can work well together."

Will the jacket become a market success? "The textile industry is in a state of upheaval. A rethinking is taking place right now that we shouldn't miss," says Annette Mark. But large corporations that are already developing similar products "have completely different options." After all, talks are underway with a sportswear manufacturer – for a fleece jacket, for which the Empa findings could also be useful.

Microplastic fibers from textiles
Textiles made of polyester are making the headlines because of the release microplastic fibers – for instance, during washing – which is sometimes considered a threat to humans and the environment. Empa experts have studied the formation and release of microplastic fibers. Their results: Fibers are released primarily at the fabric's edges. Their formation and release depends, among other things, on the type of fiber, surface treatment and the type of cutting. Compared to other textiles, significantly fewer fibers are released from laser-cut textiles during washing. Empa is conducting studies with industrial partners to further reduce the formation of these fibers during textile production. In Swiss wastewater treatment plants, however, microfibers are largely removed from wastewater and incinerated with the sludge.

More information:
Empa PET Recycling polyester
Source:

EMPA, Norbert Raabe

Graphik: Pixabay
11.01.2022

FIMATEC innovation network enters second funding phase

The network for the development of fiber materials technology for healthcare and sports will receive funding from the Central Innovation Programme for SMEs (ZIM) for another two years.

The Federal Ministry for Economic Affairs and Climate Action (BMWi) approved a corresponding application in December 2021. This will continue to provide funding for the development of innovative functional fibers, smart textiles and application-optimized fiber composite materials until June 2023 and strengthen the technological competitiveness and innovative strength of small and medium-sized enterprises (SMEs).

The network for the development of fiber materials technology for healthcare and sports will receive funding from the Central Innovation Programme for SMEs (ZIM) for another two years.

The Federal Ministry for Economic Affairs and Climate Action (BMWi) approved a corresponding application in December 2021. This will continue to provide funding for the development of innovative functional fibers, smart textiles and application-optimized fiber composite materials until June 2023 and strengthen the technological competitiveness and innovative strength of small and medium-sized enterprises (SMEs).

For this purpose, the FIMATEC innovation network combines competences from different engineering and scientific disciplines with small and medium-sized manufacturers and service providers from the target sectors in medicine and sports (e.g. orthopaedics, prosthetics, surgery, smart textiles) as well as players from the textile and plastics industry.      

This interdisciplinary combination of industrial partners and application-oriented research institutions increases competitiveness and enables the players to realise their technical research and development projects quickly and in a targeted manner. The focus for the joint R&D projects of the companies and research institutions is on the development of innovative materials and efficient manufacturing technologies. 
          
Fiber-based materials have become indispensable in many applications in medicine and sports. As a pure fiber, processed into a textile or as a fiber composite plastic, they offer an almost unlimited variety for adjusting property and functional profiles. At the same time, the demands on the range of functions, performance and cost-effectiveness are constantly increasing, so that there is great potential for innovation. Developments are driven on the one hand by new materials and manufacturing processes, and on the other by innovative applications. Products with new and superior functions create a technological advantage over international competitors and enable higher sales revenues. In addition, efficient processes, application-optimized materials or even the integration of functions into the basic structure of textile materials lead to lower production costs and improved marketing opportunities in the future.
For developments in this context, the partners have joined forces in the FIMATEC innovation network, thus combining their expertise. Within the network, innovative materials and processes are being developed jointly in the following areas and tested in future-oriented products and services:

  • Functional fibers
    Innovative fiber materials with integrated functionalities
  • Preforming
    Highly load path optimized fiber orientations for complex fiber composite components.    
  • Smart Textiles
    Textile-based sensors and actuators
  • Hybrid material and manufacturing technologies
    Application-optimized components through cross-technology solution approaches.    
  • Fiber composites  
    Intelligent matrix systems and function-optimized fiber materials.    
  • Fiber-reinforced 3D printing  
    High-quality additive manufacturing processes for the efficient production of individualized products.

 
17 network partners are researching fiber-based materials for medical and sports technologyCurrently, ten companies and seven research institutions are involved in FIMATEC. Interested companies and research institutions as well as potential users can continue to participate in the cooperation network or R&D projects. In the course of membership, the partners are actively supported in identifying and initiating innovation projects as well as securing financing through funding acquisition. One application for ZIM project funding has already been approved by FIMATEC in its first year.

The aim of the already approved project "CFKadapt" is to develop a thermoformable fiber-plastic composite material for optimally adaptable orthopedic aids such as prostheses and orthoses. In the "Modul3Rad" project, which is currently being worked out in detail, the project partners intend to develop a modular lightweight frame system for the construction of user-friendly therapy tricycles, suitable for everyday use by severely and very severely disabled children. Three further collaborative projects are already in the planning stage.

The technology and knowledge transfer enables in particular small and medium-sized enterprises (SMEs) to access cutting-edge technological research, especially these are often denied access to innovations due to the lack of their own research departments. The IWS GmbH has taken over the network management for FIMATEC and supports the partners from the first idea to the search for suitable project partners and the preparation and coordination of funding applications. The aim is to obtain funding from the Central Innovation Programme for SMEs (ZIM), which offers companies funding opportunities for a wide range of technical innovation projects in cooperation with research institutions.

FIMATEC-netzwork partners
all ahead composites GmbH | Veitshöchheim | www.bike-ahead-composites.de
Altropol Kunststoff GmbH | Stockelsdorf | www.altropol.de
Diondo GmbH | Hattingen | www.diondo.com
Mailinger innovative fiber solutions GmbH | Sontra | www.mailinger.de
Sanitätshaus Manfred Klein GmbH & Co. KG | Stade | www.klein-sanitaetshaus.de
STREHL GmbH & Co KG | Bremervörde | www.rehastrehl.de
WESOM Textil GmbH | Olbersdorf | www.wesom-textil.de
Faserinstitut Bremen e.V. (FIBRE) | www.faserinstitut.de
E.F.M. GmbH | Olbersdorf | www.efm-gmbh.de
REHA-OT Lüneburg Melchior und Fittkau GmbH | Olbersdorf | www.rehaot.de
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM | Bremen | www.ifam.fraunhofer.de
Leibniz-Institut für Polymerforschung Dresden e.V. (IPF) | www.ipfdd.de
Institut für Polymertechnologien Wismar e.V. (IPT) | www.ipt-wismar.de
Institut für Verbundwerkstoffe GmbH | Kaiserslautern | www.ivw.uni-kl.de

Associated network partners
9T Labs AG | Zürich, Schweiz | www.9tlabs.com
Fachhochschule Nordwestschweiz, Institut für Kunststofftechnik (FHNW) | www.fhnw.ch
KATZ - Kunststoff Ausbildungs- und Technologie-Zentrum | Aarau, Schweiz | www.katz.ch

Source:

Textination / IWS Innovations- und Wissensstrategien GmbH