Textination Newsline

Reset
407 results
Ultra-thin smart textiles are being refined for their use in obstetric monitoring and will enable analysis of vital data via app for pregnancies. Photo: Pixabay, Marjon Besteman
24.07.2023

Intelligent Patch for Remote Monitoring of Pregnancy

During pregnancy, regular medical check-ups provide information about the health and development of the pregnant person and the child. However, these examinations only provide snapshots of their state, which can be dangerous, especially in high-risk cases. To enable convenient and continuous monitoring during this sensitive phase, an international research consortium is planning to further develop the technology of smart textiles. A patch equipped with highly sensitive electronics is meant to collect and evaluate vital data. In addition, the sensors will be integrated into baby clothing in order to improve the future of medical monitoring for newborns with the highest level of data security.

During pregnancy, regular medical check-ups provide information about the health and development of the pregnant person and the child. However, these examinations only provide snapshots of their state, which can be dangerous, especially in high-risk cases. To enable convenient and continuous monitoring during this sensitive phase, an international research consortium is planning to further develop the technology of smart textiles. A patch equipped with highly sensitive electronics is meant to collect and evaluate vital data. In addition, the sensors will be integrated into baby clothing in order to improve the future of medical monitoring for newborns with the highest level of data security.

The beginning of a pregnancy is accompanied by a period of intensive health monitoring of the baby and the pregnant person. Conventional prenatal examinations with ultrasound devices, however, only capture snapshots of the respective condition and require frequent visits to doctors, especially in high-risk pregnancies. With the help of novel wearables and smart textiles, researchers in the EU-funded project Newlife aim to enable continuous obstetric monitoring in everyday life.

One goal of the consortium, consisting of 25 partners, is the development of a biocompatible, stretchable, and flexible patch to monitor the progress of the pregnancy and the embryo. Similar to a band-aid, the patch will be applied to the pregnant person’s skin, continuously recording vital data using miniaturized sensors (e.g., ultrasound) and transmitting it via Bluetooth.

For some time now, modern medical technology has been relying on smart textiles and intelligent wearables to offer patients convenient, continuous monitoring at home instead of stationary surveillance. At the Fraunhofer Institute for Reliability and Microelectronics IZM, a team led by Christine Kallmayer is bringing this technology to application-oriented implementation, benefitting from the Fraunhofer IZM’s years of experience with integrating technologies into flexible materials. For the integrated patch, the researchers are using thermoplastic polyurethane as base materials, in which electronics and sensors are embedded. This ensures that the wearing experience is similar to that of a regular band-aid instead of a rigid film.

To ensure that the obstetric monitoring is imperceptible and comfortable for both pregnant individuals and the unborn child, the project consortium plans to integrate innovative MEMS-based ultrasound sensors directly into the PU material. The miniaturized sensors are meant to record data through direct skin contact. Stretchable conductors made of TPU material tracks will then transmit the information to the electronic evaluation unit and finally to a wireless interface, allowing doctors and midwives to view all relevant data in an app. In addition to ultrasound, the researchers are planning to integrate additional sensors such as microphones, temperature sensors, and electrodes.

Even after birth, the new integration technology can be of great benefit to medical technology: With further demonstrators, the Newlife team plans to enable the monitoring of newborns. Sensors for continuous ECG, respiration monitoring, and infrared spectroscopy to observe brain activity will be integrated into the soft textile of a baby bodysuit and a cap. "Especially for premature infants and newborns with health risks, remote monitoring is a useful alternative to hospitalization and wired monitoring. For this purpose, we must guarantee an unprecedented level of comfort provided by the ultra-thin smart textiles: no electronics should be noticeable. Additionally, the entire module has to be extremely reliable, as the smart textiles should easily withstand washing cycles," explains Christine Kallmayer, project manager at Fraunhofer IZM.

For external monitoring of the baby's well-being, the project is also researching ways to use camera data and sensor technology in the baby's bed. Once the hardware basis of the patch, the textile electronics, and the sensor bed is built and tested, the project partners will take another step forward. Through cloud-based solutions, AI and machine learning will be used to simplify the implementation for medical staff and ensure the highest level of data security.

The Newlife project is coordinated by Philips Electronics Nederland B.V. and will run until the end of 2025. It is funded by the European Union under the Horizon Europe program as part of Key Digital Technologies Joint Undertaking under grant number 101095792 with a total of 18.7 million euros.

Source:

Fraunhofer Institute for Reliability and Microintegration IZM

(c) Nadine Glad
18.07.2023

Promoting transparent supply chains and a more circular economy with digital product passports

Any prospective buyer interested in knowing more about the products they have set their eyes on will have to cope with limited information on print or online manuals or engage in time-consuming research. This may change soon, as the European Commission introduced a standardised digital product passport for the upcoming legislation. A project consortium has been formed with partners from industry and academia to set ground for the developments. The idea is for the proposed passports, supported by EU regulations, to make all product information available along the entire value chain and easily accessible e.g. by QR code.

Any prospective buyer interested in knowing more about the products they have set their eyes on will have to cope with limited information on print or online manuals or engage in time-consuming research. This may change soon, as the European Commission introduced a standardised digital product passport for the upcoming legislation. A project consortium has been formed with partners from industry and academia to set ground for the developments. The idea is for the proposed passports, supported by EU regulations, to make all product information available along the entire value chain and easily accessible e.g. by QR code.

ID cards and passports are usually the first things packed when one goes on a journey. They are internationally recognized and accepted documents with all the necessary information about the holder: Commonplace items for people that will soon become just as common for electronic devices, textiles, or batteries. But mobile phones, tablet computers, and their kin usually do not travel with a passport pouch, so their digital product passports with all their “personal details” will soon be accessible at every link in the value chain via a QR code or RFID chip.

Consumers looking to buy a new piece of clothing, a piece of electronics, or even furniture or toys should have more means to understand important information about their products, including their energy efficiency, the labor conditions during manufacturing, or their reparability, in order to make informed and sustainable purchasing choices.

Product passports also hold great potential for other actors, e.g. for repairs or recycling. Current electronic products, often highly miniaturized, make it hard to understand with materials, not least toxic substances are contained and how they could be separated from another. Use-specific certificates can regulate that this type of information is available to the people who need to know it.

No final decision has yet been made about the range of information that will be contained in the product passports. For the CIRPASS project, Eduard Wagner and his team at Fraunhofer ZM is currently surveying which types of information are already covered by current legal requirements and which additional information could be contained on a digital product passport. Their aim is to provide an information architecture that determines which types of information have added value for which actors in the value chain and at what cost this information could be provided. A reparability scale that shows how easily a product is to repair has been required in France since 2021 and might be a good inclusion in the digital, pan-European product passport. “Information about energy efficiency is already required, but this information still has to be prepared on a case-by-case basis, and there are no universal European disclosure requirements for other types of circularity related information. Meaningful standardization here is one of the top goals of the product passport. Imagine we could compare the durability of all t-shirts in the EU between each other,” says sustainability expert Eduard Wagner.

For the first product passports to be ready by 2026, many actors still need to be brought on board and a consensus be found for which information is most relevant. “Our project has identified 23 groups of stakeholders that we are including in our survey of requirements, in all three sectors”, Wagner explains. “We have suppliers of materials, manufacturers of electronics, and representatives of repair and recycling associations with us.” The results of these consultations will go to the European Commission to act as pointers for the political process en route to new legal requirements for the product passport. Small to medium-sized enterprises are given special attention and support in this, as providing the required information can mean a considerable effort on their part.

Source:

Fraunhofer Institute for Reliability and Microintegration IZM

Photo: Claude Huniade
11.07.2023

Ionofibres a new track for smart and functional textiles

Electronically conductive fibres are already in use in smart textiles, but in a recently published research article, ionically conductive fibres have proven to be of increasing interest. The so-called ionofibres achieve higher flexibility and durability and match the type of conduction our body uses. In the future, they may be used for such items as textile batteries, textile displays, and textile muscles.

The research project is being carried out by doctoral student Claude Huniade at the University of Borås and is a track within a larger project, Weafing, the goal of which is to develop novel, unprecedented garments for haptic stimulation comprising flexible and wearable textile actuators and sensors, including control electronics, as a new type of textile-based large area electronics.

WEAFING stands for Wearable Electroactive Fabrics Integrated in Garments. It started 1 January 2019 and ended 30 June 2023.

Electronically conductive fibres are already in use in smart textiles, but in a recently published research article, ionically conductive fibres have proven to be of increasing interest. The so-called ionofibres achieve higher flexibility and durability and match the type of conduction our body uses. In the future, they may be used for such items as textile batteries, textile displays, and textile muscles.

The research project is being carried out by doctoral student Claude Huniade at the University of Borås and is a track within a larger project, Weafing, the goal of which is to develop novel, unprecedented garments for haptic stimulation comprising flexible and wearable textile actuators and sensors, including control electronics, as a new type of textile-based large area electronics.

WEAFING stands for Wearable Electroactive Fabrics Integrated in Garments. It started 1 January 2019 and ended 30 June 2023.

These wearables are based on a new kind of textile muscles which yarns are coated with electromechanically active polymers and contract when a low voltage is applied. Textile muscles offer a completely novel and very different quality of haptic sensation, accessing also receptors of our tactile sensory system that do not react on vibration, but on soft pressure or stroke.

Furthermore, being textile materials, they offer a new way of designing and fabricating wearable haptics and can be seamlessly integrated into fabrics and garments. For these novel form of textile muscles, a huge range of possible applications in haptics is foreseen: for ergonomics, movement coaching in sports, or wellness, for enhancement of virtual or augmented reality applications in gaming or for training purposes, for inclusion of visually handicapped people by providing them information about their environment, for stress reduction or social communication, adaptive furniture, automotive industry and many more.

In Claude Huniade’s project, the goal is to produce conductive yarns without conductive metals.

"My research is about producing electrically conductive textile fibres, and ultimately yarns, by coating non-metals sustainably on commercial yarns. The biggest challenge is in the balance between keeping the textile properties and adding the conductive feature," said Claude Huniade.

Currenty, the uniqueness of his research leans towards the strategies employed when coating. These strategies expand to the processes and the materials used.

Uses ionic liquid
One of the tracks he investigates is about a new kind of material as textile coating, ionic liquids in combination with commercial textile fibres. Just like salt water, they conduct electricity but without water. Ionic liquid is a more stable electrolyte than salt water as nothing evaporates.

"The processable aspect is an important requirement since textile manufacturing can be harsh on textile fibres, especially when upscaling their use. The fibres can also be manufactured into woven or knitted without damaging them mechanically while retaining their conductivity. Surprisingly, they were even smoother to process into fabrics than the commercial yarns they are made from," explained Claude Huniade.

Ionofibres could be used as sensors since ionic liquids are sensitive to their environment. For example, humidity change can be sensed by the ionofibers, but also any stretch or pressure they are subjected to.

"Ionofibres could truly shine when they are combined with other materials or devices that require electrolytes. Ionofibres enable certain phenomena currently limited to happen in liquids to be feasible in air in a lightweight fashion. The applications are multiple and unique, for example for textile batteries, textile displays or textile muscles," said Claude Huniade.

Needs further research
Yet more research is needed to combine the ionofibres with other functional fibres and to produce the unique textile devices.

How do they stand out compared to common electronically conductive fibres?

"In comparison to electronically conductive fibres, ionofibers are different in how they conduct electricity. They are less conductive, but they bring other properties that electronically conductive fibers often lack. Ionofibres achieve higher flexibility and durability and match the type of conduction that our body uses. They actually match better than electronically conductive fibres with how electricity is present in nature," he concluded.

Source:

University of Borås

Functional textiles – an alternative to antibiotics University of Borås
04.07.2023

Functional textiles – an alternative to antibiotics

Tuser Biswas conducts research that aims to develop modern medical textiles that are good for both the environment and human health. Textiles with antimicrobial properties could reduce the use of antibiotics.

Tuser Biswas conducts research that aims to develop modern medical textiles that are good for both the environment and human health. Textiles with antimicrobial properties could reduce the use of antibiotics.

His work involves research and teaching activities within the area of textile material technology. The current research involves resource-efficient inkjet printing of functional materials on various textile surfaces for advanced applications.
 
The conventional textile industry devours natural resources in the form of water, energy, and chemicals. A more resource-efficient way to produce textiles is with ink jet printing. Tuser Biswas, who recently defended his doctoral thesis in Textile Material Technology, seeks to develop methods for functional textiles. He has shown that it is possible to print enzymes on textiles. These are proteins that function as catalysts in the body, as they set chemical processes in motion without themselves changing. They could, for example, be used in medical textiles with antimicrobial properties or to measure biological or chemical reactions.

“Ever since the industrial revolution, our society has used an abundance of synthetic and harsh chemicals. Our research works to replace these chemicals with environmentally friendly and bio-based materials,” said Tuser Biswas.
 
Promising results with enzymes on textiles
Developing a good enzyme ink was not entirely easy and it took a number of attempts before he finally, to his great joy, had successful results. Tuser Biswas explained that the most important result is to show how a printed enzyme could bind another enzyme to the surface of a fabric. Although the activity of the enzymes decreased by 20-30 percent after printing, the results are still promising for future applications. At the same time, the work has provided new knowledge about many fundamental questions about printing biomaterials on fabric.

“Before starting the project, we found several related studies that focused on producing a finished product. But we wanted to study the fundamental challenges of this subject, and now we know how to make it work,” said Tuser Biswas.

He is now seeking funding to continue researching the subject and has so far received a grant from the Sjuhärad Savings Bank Foundation. During the Days of Knowledge event in April 2023, he presented his research to representatives from the City of Borås and business, the Sjuhärad Savings Bank Foundation, and the University of Borås.
     
Medical textiles instead of antibiotics
Tuser Biswas hopes that continued research in textile technology can provide alternatives to using antibiotics. With increasing antibiotic resistance, it is an important issue not only locally but worldwide.

“Instead of treating the patient with a course of antibiotics, one can act preventively and more effectively by damaging the bacteria on the surface where they start to grow. In a wound dressing, for example. Nanoparticle-based antimicrobials can reduce growth effectively. It is possible as nanoparticles can interact better with the bacterial membrane and reach the target more easily than conventional antimicrobials.”

Source:

Lina Färm. Translation by Eva Medin. University of Borås

Thread-like pumps can be woven into clothes (c) LMTS EPFL
27.06.2023

Thread-like pumps can be woven into clothes

Ecole Polytechnique Fédérale de Lausanne (EPFL) researchers have developed fiber-like pumps that allow high-pressure fluidic circuits to be woven into textiles without an external pump. Soft supportive exoskeletons, thermoregulatory clothing, and immersive haptics can therefore be powered from pumps sewn into the fabric of the devices themselves.

Many fluid-based wearable assistive technologies today require a large and noisy pump that is impractical – if not impossible – to integrate into clothing. This leads to a contradiction: wearable devices are routinely tethered to unearable pumps. Now, researchers at the Soft Transducers Laboratory (LMTS) in the School of Engineering have developed an elegantly simple solution to this dilemma.

Ecole Polytechnique Fédérale de Lausanne (EPFL) researchers have developed fiber-like pumps that allow high-pressure fluidic circuits to be woven into textiles without an external pump. Soft supportive exoskeletons, thermoregulatory clothing, and immersive haptics can therefore be powered from pumps sewn into the fabric of the devices themselves.

Many fluid-based wearable assistive technologies today require a large and noisy pump that is impractical – if not impossible – to integrate into clothing. This leads to a contradiction: wearable devices are routinely tethered to unearable pumps. Now, researchers at the Soft Transducers Laboratory (LMTS) in the School of Engineering have developed an elegantly simple solution to this dilemma.

“We present the world’s first pump in the form of a fiber; in essence, tubing that generates its own pressure and flow rate,” says LMTS head Herbert Shea. “Now, we can sew our fiber pumps directly into textiles and clothing, leaving conventional pumps behind.” The research has been published in the journal Science.

Lightweight, powerful…and washable
Shea’s lab has a history of forward-thinking fluidics. In 2019, they produced the world’s first stretchable pump.

“This work builds on our previous generation of soft pump,” says Michael Smith, an LMTS post-doctoral researcher and lead author of the study. “The fiber format allows us to make lighter, more powerful pumps that are inherently more compat-ible with wearable technology.”

The LMTS fiber pumps use a principle called charge injection electrohydrodynamics (EHD) to generate a fluid flow without any moving parts. Two helical electrodes embedded in the pump wall ionize and accelerate molecules of a special non-conductive liquid. The ion movement and electrode shape generate a net forward fluid flow, resulting in silent, vibration-free operation, and requiring just a palm-sized power supply and battery.

To achieve the pump’s unique structure, the researchers developed a novel fabrication technique that involves twisting copper wires and polyurethane threads together around a steel rod, and then fusing them with heat. After the rod is removed, the 2 mm fibers can be integrated into textiles using standard weaving and sewing techniques.

The pump’s simple design has a number of advantages. The materials required are cheap and readily available, and the manufacturing process can be easily scaled up. Because the amount of pressure generated by the pump is directly linked to its length, the tubes can be cut to match the application, optimizing performance while minimizing weight. The robust design can also be washed with conventional detergents.

From exoskeletons to virtual reality
The authors have already demonstrated how these fiber pumps can be used in new and exciting wearable technologies. For example, they can circulate hot and cold fluid through garments for those working in extreme temperature environments or in a therapeutic setting to help manage inflammation; and even for those looking to optimize athletic performance.

“These applications require long lengths of tubing anyway, and in our case, the tubing is the pump. This means we can make very simple and lightweight fluidic circuits that are convenient and comfortable to wear,” Smith says.

The study also describes artificial muscles made from fabric and embedded fiber pumps, which could be used to power soft exoskeletons to help patients move and walk.

The pump could even bring a new dimension to the world of virtual reality by simulating the sensation of temperature. In this case, users wear a glove with pumps filled with hot or cold liquid, allowing them to feel temperature changes in response to contact with a virtual object.

Pumped up for the future
The researchers are already looking to improve the performance of their device. “The pumps already perform well, and we’re confident that with more work, we can continue to make improvements in areas like efficiency and lifetime,” says Smith. Work has already started on scaling up the production of the fiber pumps, and the LMTS also has plans to embed them into more complex wearable devices.

“We believe that this innovation is a game-changer for wearable technology,” Shea says.

More information:
EPFL Fibers exoskeleton wearables
Source:

Celia Luterbacher, School of Engineering | STI

Swijin Inage Swijin
20.06.2023

Innovative sportswear: Swim and run without changing

Just in time for summer: The Swiss start-up Swijin is launching a new sportswear category with its SwimRunner – a sports bra together with matching bottoms that works as both swimwear and running gear and dries in no time. The innovative product was developed together with Empa researchers in an Innosuisse project. The SwimRunner can be tested this weekend at the Zurich City Triathlon.
 
A quick dip after jogging without having to change clothes? Swijin (pronounced Swie-Djin), a new Swiss TechTex start-up, is launching its first product, the SwimRunner: a sports bra and bottoms that function as both swimwear and running gear and dry in a flash.

Just in time for summer: The Swiss start-up Swijin is launching a new sportswear category with its SwimRunner – a sports bra together with matching bottoms that works as both swimwear and running gear and dries in no time. The innovative product was developed together with Empa researchers in an Innosuisse project. The SwimRunner can be tested this weekend at the Zurich City Triathlon.
 
A quick dip after jogging without having to change clothes? Swijin (pronounced Swie-Djin), a new Swiss TechTex start-up, is launching its first product, the SwimRunner: a sports bra and bottoms that function as both swimwear and running gear and dry in a flash.

For the first time, this innovation enables women to make a smooth transition between land and water sports without having to change clothes. For example, hikers and runners can easily go into the water to cool off. Stand-up paddlers wearing the SwimRunner enjoy unrestricted freedom of movement and at the same time sufficient support, both on the board and in the water.
Science to boost sports performance
 
What appears to be a relatively simple requirement at first glance has turned out to be an extremely complex product to develop. As part of an Innosuisse project, Swijin collaborated with the Empa Biomimetic Membranes and Textiles laboratory in St. Gallen. Led by Empa engineer Martin Camenzind, the researchers first defined the requirements for the material and cut of the sports bra. "During development, we faced three main challenges: On the one hand, the product had to meet the requirements of a heavy-duty sports bra on land. At the same time, it had to maintain the compression of a swimsuit in the water – and do so with a very short drying time," says Camenzind.

Since no comparable garment exists on the market yet, the team also developed new tests for evaluating the high-performance textile. "Moreover, we designed a mannequin: a model of the female torso that can be used to measure the mechanical properties of bras," explains the researcher. In addition to scientific findings, the product development process also incorporated a great deal of expertise from sports physiologists, textile engineers, industry specialists, designers and, of course, female athletes.

Highest demands
Many of these athletes come from the swimrun scene. Swimrun is a fast-growing adventure sport that originated in the skerry gardens of Sweden. Unlike triathletes, who start out by swimming, then bike, and finally run, swimrunners switch back and forth between trail running and open water swimming throughout the race. The intensity of this sport provided Swijin with the optimal conditions for product development – and gave its name to the first collection, SwimRunner. "The feedback from female athletes was one of the deciding factors for the success of the product. They often swim and run for six to seven hours at a stretch. When they were satisfied with our prototypes, we knew: The SwimRunner is ready for market," says Swijin founder Claudia Glass.

The product idea first came to Claudia Glass while she was on vacation on Mallorca. During her morning runs, she longed to be able to take a quick dip in the sea. "Sports bras, however, are not designed for swimming," the founder explains. "They soak up the water and never seem to dry because of their thick compression material. Last summer, I wore the SwimRunner prototype all day. In the morning, I ran to Lake Zurich with my dog and jumped in. When I got back home, I could have just sat down at my desk and started working – I was completely dry and felt very comfortable."

Design and sustainability
The young company makes a point of combining engineering and design. Swijin's creative director, Valeria Cereda, is based in the center of the world's fashion capital, Milan, and infuses her experience with luxury brands into Swijin's aesthetic. But as a former competitive swimmer, she is also focused on functionality.

Swijin's high-performance products can only be realized with synthetic materials. The young company is determined to reduce the environmental impact of its products to a minimum. The tight supply chain keeps the CO2 footprint low. The materials of the SwimRunner are 100% made in the EU and designed for quality.

Traditional garment labels only provide information about where the garment was made. Swijin is working with supplier Avery Dennison to provide all products with a Digital Identity Label. This gives consumers detailed information about the entire value chain, right down to the textile manufacturer's investment in reducing its carbon footprint and the use of the water-based, solvent-free logo. Swijin packages all materials in Cradle-to-Cradle Gold certified packaging, which is produced by Voegeli AG in Emmental.

Furthermore, Swijin proactively addresses the challenges at the end of the product life cycle. In order to come one step closer to a truly circular economy for functional textiles, Swijin participates in the Yarn-to-Yarn® pilot project of Rheiazymes AG as a lighthouse partner. This biotech solution uses microorganisms and enzymes to generate new starting materials directly from used textiles in a climate-neutral way. When customers return end-of-life Swijin products – for which the company offers incentives – the high-quality monomers can be returned to the supply chain in their original quality: true circularity.

"As an emerging brand, we have both the obligation and the luxury of choosing partners whose vision and values align with our own," says Claudia Glass. "I had a clear understanding of what kind of brand I would buy, but I couldn't find it anywhere. With Swijin, we feel obligated to actually make our values a reality."

Source:

Claudia Glass, Anna Ettlin, EMPA

Photo: Unsplash
13.06.2023

The impact of textile production and waste on the environment

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

The textile sector was the third largest source of water degradation and land use in 2020. In that year, it took on average nine cubic metres of water, 400 square metres of land and 391 kilogrammes (kg) of raw materials to provide clothes and shoes for each EU citizen.

Water pollution
Textile production is estimated to be responsible for about 20% of global clean water pollution from dyeing and finishing products.

Laundering synthetic clothes accounts for 35% of primary microplastics released into the environment. A single laundry load of polyester clothes can discharge 700,000 microplastic fibres that can end up in the food chain.

The majority of microplastics from textiles are released during the first few washes. Fast fashion is based on mass production, low prices and high sales volumes that promotes many first washes.

Washing synthetic products has caused more than 14 million tonnes of microplastics to accumulate on the bottom of the oceans. In addition to this global problem, the pollution generated by garment production has a devastating impact on the health of local people, animals and ecosystems where the factories are located.

Greenhouse gas emissions
The fashion industry is estimated to be responsible for 10% of global carbon emissions – more than international flights and maritime shipping combined.

According to the European Environment Agency, textile purchases in the EU in 2020 generated about 270 kg of CO2 emissions per person. That means textile products consumed in the EU generated greenhouse gas emissions of 121 million tonnes.

Textile waste in landfills and low recycling rates
The way people get rid of unwanted clothes has also changed, with items being thrown away rather than donated. Less than half of used clothes are collected for reuse or recycling, and only 1% of used clothes are recycled into new clothes, since technologies that would enable clothes to be recycled into virgin fibres are only now starting to emerge.

Between 2000 and 2015, clothing production doubled, while the average use of an item of clothing has decreased.

Europeans use nearly 26 kilos of textiles and discard about 11 kilos of them every year. Used clothes can be exported outside the EU, but are mostly (87%) incinerated or landfilled.

The rise of fast fashion has been crucial in the increase in consumption, driven partly by social media and the industry bringing fashion trends to more consumers at a faster pace than in the past.

The new strategies to tackle this issue include developing new business models for clothing rental, designing products in a way that would make re-use and recycling easier (circular fashion), convincing consumers to buy fewer clothes of better quality (slow fashion) and generally steering consumer behaviour towards more sustainable options.

Work in progress: the EU strategy for sustainable and circular textiles
As part of the circular economy action plan, the European Commission presented in March 2022 a new strategy to make textiles more durable, repairable, reusable and recyclable, tackle fast fashion and stimulate innovation within the sector.

The new strategy includes new ecodesign requirements for textiles, clearer information, a Digital Product Passport and calls companies to take responsibility and act to minimise their carbon and environmental footprints

On 1 June 2023, MEPs set out proposals for tougher EU measures to halt the excessive production and consumption of textiles. Parliament’s report calls for textiles to be produced respecting human, social and labour rights, as well as the environment and animal welfare.

Existing EU measures to tackle textile waste
Under the waste directive approved by the Parliament in 2018, EU countries are obliged to collect textiles separately by 2025. The new Commission strategy also includes measures to, tackle the presence of hazardous chemicals, calls producers have to take responsibility for their products along the value chain, including when they become wasteand help consumers to choose sustainable textiles.

The EU has an EU Ecolabel that producers respecting ecological criteria can apply to items, ensuring a limited use of harmful substances and reduced water and air pollution.

The EU has also introduced some measures to mitigate the impact of textile waste on the environment. Horizon 2020 funds Resyntex, a project using chemical recycling, which could provide a circular economy business model for the textile industry.

A more sustainable model of textile production also has the potential to boost the economy. "Europe finds itself in an unprecedented health and economic crisis, revealing the fragility of our global supply chains," said lead MEP Huitema. "Stimulating new innovative business models will in turn create new economic growth and the job opportunities Europe will need to recover."

DOMOTEX (c) Deutsche Messe AG
30.05.2023

"DOMOTEX is and will remain the home of the entire industry"

Interview on the trade fair landscape for floor coverings in Germany

The effects of the Corona pandemic were felt in almost all areas of social and economic life. The trade fair industry in particular was severely affected, with many events cancelled or postponed. With the return to normality, the question arises as to what significance leading trade fairs will have in the post-Corona era and how the competition between different organisers will develop. For its KLARTEXT interview series, Textination talked to Ms Sonia Wedell-Castellano, Global Director of DOMOTEX Events.

 

Interview on the trade fair landscape for floor coverings in Germany

The effects of the Corona pandemic were felt in almost all areas of social and economic life. The trade fair industry in particular was severely affected, with many events cancelled or postponed. With the return to normality, the question arises as to what significance leading trade fairs will have in the post-Corona era and how the competition between different organisers will develop. For its KLARTEXT interview series, Textination talked to Ms Sonia Wedell-Castellano, Global Director of DOMOTEX Events.

 

After DOMOTEX was unable to take place in 2021 and 2022 due to the pandemic, the trade fair returned in 2023 with a successful event. Nevertheless, the number of exhibitors has almost halved compared to 2020. How do you assess the future importance of leading trade fairs after the industry had to come to terms with online meetings and travel restrictions for a long period of time?

I think it is important to remember that this was the first DOMOTEX since the outbreak of the pandemic, and at a time when the global economic situation is rather difficult. Of course, this situation has made some companies reluctant to participate in DOMOTEX 2023, so we have not yet been able to welcome all companies back as exhibitors at the show. In addition, there were still significant travel restrictions in place at the beginning of the year, for example in China, which simply made it more difficult for our exhibitors to participate in a trade fair abroad. As far as our expectations for the next event are concerned, I can say that many companies - even those that did not exhibit this year - have communicated their interest in wanting to be back at DOMOTEX 2024.
 
We are certain that leading trade fairs and exhibitions in general will continue to be of great importance in the future! You may be able to cultivate existing customers at digital events, but you can't generate new ones. The focus of DOMOTEX is on products you can touch, on the haptic experience on site. You can't transfer that to the digital world. Even the chance encounters at the stand or in the halls do not happen digitally. But a trade fair thrives on personal encounters, personal exchanges. Business is done between people, not between screens. Both exhibitors and visitors have told us quite clearly that they want and need DOMOTEX to be a trade fair where people are present.

 

The degree of internationalisation among DOMOTEX visitors was between 62 and 67 percent in the last three years of the event before the pandemic; in 2023 it even reached 69 percent. Would you agree that leading international trade fairs in Germany are now primarily only important for export-oriented companies? And what does that imply for the economic efficiency of trade fairs?

Certainly, leading international trade fairs in Germany are particularly interesting for export-oriented companies, but not exclusively. That doesn't change anything at all about the profitability of trade fairs. We generate our turnover with all our exhibitors, regardless of whether they are export-oriented or only interested in the Germany-Austria-Switzerland region. That's why satisfied exhibitors are very important to us. And an exhibitor is satisfied when he can do good business or make good contacts at our fairs. It's more and more about the right quality of visitors, less about the quantity. In any case, all our exhibitors very much welcome international visitors!

 

For the 2024 edition, Deutsche Messe has announced that its DOMOTEX concept has been changed to focus on different areas each year: Carpet & Rugs in the odd-numbered years and Flooring in the even-numbered years. Flooring covers wood and laminate flooring, parquet, design flooring, resilient floor coverings, carpets, outdoor flooring and application and installation technology. Carpet & Rugs stands for hand-made carpets and runners as well as for machine-woven carpets.

Yet you say that the Carpet & Rugs segment in particular needs an annual presentation platform, while the flooring segment would like to see DOMOTEX every two years as the central platform for the industry due to longer innovation cycles. Doesn't that actually mean that floor coverings are only in Hannover every other year, but carpets continue to exhibit annually in Hannover? Could you clarify that?

DOMOTEX - Home of Flooring will take place in 2024 and in all even years: This is a DOMOTEX with all exhibitors as we know them from the past. So, from herringbone parquet to outdoor coverings, oriental carpets and contemporary designs - everything, under one roof. In the odd years, i.e. from 2025, there will then be DOMOTEX - Home of Carpets and Rugs, with a focus on suppliers of fitted carpets. The background to this is that the hard flooring industry had wanted DOMOTEX to be held every two years. After this year's DOMOTEX, the suppliers of wall-to-wall carpets have again clearly spoken out in favour of an annual platform. With our new focus model, we are meeting the needs that the market has expressed to us.

 

Messe Frankfurt has declared a new product segment for next year's Heimtextil - interestingly, under the name Carpets & Rugs. While the watchword at DOMOTEX in the even year 2024 is Flooring, Heimtextil offers an alternative trade fair venue for carpets. How do you assess this situation - do exhibitors now have to choose between Hannover and Frankfurt and what does this mean for the split concept?

No, exhibitors from the carpet sector will not have to choose between Hannover and Frankfurt in future - because DOMOTEX is and will remain the home of the entire industry, even in the even years! At DOMOTEX, Home of Flooring means, as I explained earlier, that we present the entire spectrum of floor coverings and carpets. But what is even more important is that we have been told by exhibitors and many visitors that the market does not want to be split up any further. Through the many (small) events, the flooring industry is only competing with itself. To put it bluntly: if only some of the exhibitors take part in ten events, it can't really work. The critical mass is missing. A trade fair is only as good as its participants and they often don't have the time to visit several events.    

 

Another innovation for DOMOTEX is the country focus. What do you expect from this and why did you choose "Insight Italy" for 2024?

With our new special presentation, we want to arouse the curiosity of our visitors - especially retailers, architects and contractors - and highlight the international character of DOMOTEX. After all, what could be more exciting than getting to know a country in depth?  

That is why the INSIGHT concept will in future feature a different country at each DOMOTEX - Home of Flooring. Special exhibition areas will showcase innovations and products, present partnerships with designers and universities, and stage trends. In addition, the conference will provide insights into the respective market and references.  
In 2024, we will start with Italy, a very design-savvy and creative country from which many trends come.

 

Deutsche Messe wants to strengthen the Hannover venue for the leading trade fair DOMOTEX and to hold additional fairs only in Shanghai and in Gaziantep. There will be no Carpet Expo in Istanbul. What influence does the changing entrepreneurial landscape in terms of production countries and markets have on your international concept?

First of all, it must be noted that the business landscape for carpets has not changed in Turkey. Here, only the associations have decided to organise a carpet fair in Istanbul in the future. The background is the continuing visa problem for Turkish exhibitors in Germany as well as the immensely high inflation in Turkey, which makes foreign participation extremely costly for Turkish companies. We would have liked to organise a carpet fair in Istanbul together with the Turkish associations, but not at any price and not on their terms alone. Hannover is and will remain the international platform for DOMOTEX, and we will continue to strengthen this location.

But of course, we also keep an eye on the global market and keep our eyes and ears open at all times, for all our brands, by the way. It was only in this way that DOMOTEX asia/Chinafloor in Shanghai was able to develop into what is now a very successful event. The potential was there, we were in the right place at the right time. If we hadn't seized the opportunity at the time, there would still be a strong floor coverings trade fair in Shanghai - but it would be run by one of our competitors and it wouldn't be called DOMOTEX today.

Many thanks to Ms Sonia Wedell-Castellano for the KLARTEXT.

Separating microplastics Photo: H & M Foundation
22.05.2023

Soundwaves to separate microplastics from wastewater

The technology developed by The Hong Kong Research Institute of Textiles and Apparel (HKRITA) with the support of H&M Foundation, can separate microplastics from wastewater using soundwaves. Acousweep is a plug-and-play application. The technology can be easily transported and connected to any wastewater facility. If the technology is implemented at an industrial scale, it will have a significant impact on the fashion industry’s sustainable footprint.
 

The technology developed by The Hong Kong Research Institute of Textiles and Apparel (HKRITA) with the support of H&M Foundation, can separate microplastics from wastewater using soundwaves. Acousweep is a plug-and-play application. The technology can be easily transported and connected to any wastewater facility. If the technology is implemented at an industrial scale, it will have a significant impact on the fashion industry’s sustainable footprint.
 
Microplastic pollution is a globally established problem and a threat to ecosystems, animals, and people. Microplastics come from a variety of sources, including from larger plastic debris that degrades into smaller and smaller pieces, or microbeads in exfoliating health and beauty products, or cleansers such as toothpaste. According to the European Environment Agency the major source of oceanic microplastic pollution, about 16%-35% globally, comes from synthetic textiles. Professor Christine Loh, Chief Development Strategist at the Institute for the Environment, The Hong Kong University of Science and Technology, agrees that this technology has great potential.

Microplastics typically refers to tiny plastic pieces or particles smaller than 5mm in diameter according to the definition of United Nations Environment Programme (UNEP) and the European Union (EU). The new technology can separate microplastic fibre longer than 20 μm, which is 250 times smaller than the typical size. Unlike existing filtration processes, the system enables continuous water treatment and easy collection of microplastic fibres by virtue of its acoustic manipulation technique.

Acousweep utilises sweeping acoustic waves in a specially shaped chamber to physically trap and separate microplastic fibres from wastewater effectively. The whole process is merely a physical collection and separation. No chemical, solvent or biological additives are needed. The separated microplastics drip into a collection tank for further treatment, such as recycling. Acousweep, with a developing lab-scale treatment system of the capacity of 100L of water per hour, can be upscaled in industrial plants. The system can be installed in a container with a processing capacity up to 5-10T per hour. The containerised system can be easily transported and connected to the existing sewage outlets of the wastewater treatment system.
 
Process of Microplastic Fibre Separation:

  1. At one end of the chamber is a transducer that generates a sweeping acoustic wave at ultrasound frequencies. At the other end, there is a reflector, inside which sweeping acoustic waves are reflected and forms standing waves.
  2. When standing waves are applied to the particles in a fluid, an acoustic radiation force traps the particles.
  3. The standing waves then transfer the trapped particles to the reflector side; after that, particles concentrate at the apex of the reflector.
  4. At the apex is a needle valve which is controlled by a sensory system that monitors the concentration of microplastic fibres there. When the concentration is sufficiently high, the sensory system opens the needle valve to let the microplastic fibres drip into a collection tank.
  5. A high temperature can be applied to the collection tank to remove the water, leaving the fibres to agglomerate and form a large mass that can be easily dealt with in future treatment.

Green tech has just taken a leap forward in Hong Kong. Acousweep will help the garment and other industries to stop a highly damaging form of pollution. HKRITA used a new technique to remove the microplastics by using soundwave-based system, preventing them from getting into the sea and being ingested by sea life that can even be ingested by humans along the food chain. Acousweep has the capacity to revolutionize industry, says Professor Christine Loh, Chief Development Strategist at the Institute for the Environment, The Hong Kong University of Science and Technology.

 

Source:

The Hong Kong Research Institute of Textiles and Apparel (HKRITA); H & M Foundation

The plasma atmosphere is clearly visible in the reactor through the characteristic glow and flashes of light. © Fraunhofer IGB The plasma atmosphere is clearly visible in the reactor through the characteristic glow and flashes of light.
16.05.2023

Wastewater treatment: Plasma against toxic PFAS chemicals

Harmful PFAS chemicals can now be detected in many soils and bodies of water. Removing them using conventional filter techniques is costly and almost infeasible. Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB are now successfully implementing a plasma-based technology in the AtWaPlas joint research project. Contaminated water is fed into a combined glass and stainless steel cylinder where it is then treated with ionized gas, i.e. plasma. This reduces the PFAS molecular chains, allowing the toxic substance to be removed at a low cost.

Harmful PFAS chemicals can now be detected in many soils and bodies of water. Removing them using conventional filter techniques is costly and almost infeasible. Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB are now successfully implementing a plasma-based technology in the AtWaPlas joint research project. Contaminated water is fed into a combined glass and stainless steel cylinder where it is then treated with ionized gas, i.e. plasma. This reduces the PFAS molecular chains, allowing the toxic substance to be removed at a low cost.

Per- and polyfluoroalkyl substances (PFAS) have many special properties. As they are thermally and chemically stable as well as resistant to water, grease and dirt, they can be found in a large number of everyday products: Pizza boxes and baking paper are coated with them, for example, and shampoos and creams also contain PFAS. In industry they serve as extinguishing and wetting agents, and in agriculture they are used in plant protection products. However, traces of PFAS are now also being detected where they should not be found: in soil, rivers and groundwater, in food and in drinking water. This is how the harmful substances end up in the human body. Due to their chemical stability, eliminating these so-called “forever chemicals” has been almost impossible up to now without considerable effort and expense.

The AtWaPlas joint research project aims to change that. The acronym stands for Atmospheric Water Plasma Treatment. The innovative project is currently being run at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart in cooperation with the industrial partner HYDR.O. Geologen und Ingenieure GbR from Aachen. The aim is to treat and recover PFAS-contaminated water using plasma treatment.

The research team led by Dr. Georg Umlauf, an expert in functional surfaces and materials, utilizes plasma’s ability to attack the molecular chains of substances. The electrically conductive gas consisting of electrons and ions is generated when high voltage is applied. “Our experiments with plasma have been successful in shortening the PFAS molecule chains in water. This is a significant step towards efficiently removing these stubborn pollutants,” Umlauf is happy to report.

Water cycle in a stainless steel cylinder
Fraunhofer researchers are using a cylindrical construction for this plasma process. Inside is a stainless steel tube, which serves as the ground electrode of the electrical circuit. The outer copper mesh then acts as a high-voltage electrode and is protected on the inside by a glass dielectric. A very small gap is left between the two, which is filled with an air mixture. This air mixture is converted into plasma when a voltage of several kilovolts is applied. It is visible to the human eye by its characteristic glow and discharge as flashes of light.

During the purification process, the PFAS-contaminated water is introduced at the bottom of the stainless steel tank and pumped upwards. It then travels down through the gap between the electrodes, passing through the electrically active plasma atmosphere. The plasma breaks up and shortens the PFAS molecule chains as it discharges. The water is repeatedly pumped through both the steel reactor and the plasma discharge zone in a closed circuit, reducing the PFAS molecule chains further each time until they are completely mineralized. “Ideally, the harmful PFAS substances are eliminated to the point that they can no longer be detected in mass spectrometric measurements. This also complies with the strict German Drinking Water Ordinance (TrinkwV) regulations regarding PFAS concentrations,” says Umlauf.

The technology developed at the Fraunhofer Institute has a key advantage over conventional methods such as active carbon filtering: “Active carbon filters can bind the harmful substances, but they are unable to eliminate them. This means that the filters must be replaced and disposed of regularly. The AtWaPlas technology, on the other hand, is capable of completely eliminating the harmful substances without any residue and is very efficient and low-maintenance,” explains Fraunhofer expert Umlauf.

Real water samples instead of synthetic laboratory samples
In order to ensure true feasibility, the Fraunhofer researchers are testing the plasma purification under more challenging conditions. Conventional test methods involve using perfectly clean water and PFAS solutions that have been synthetically mixed in the laboratory. However, the research team in Stuttgart is using “real” water samples that come from PFAS-contaminated areas. The samples are collected by the project partner HYDR.O. Geologen und Ingenieure GbR from Aachen. The company specializes in cleaning up contaminated sites and also carries out hydrodynamic simulations.

The real water samples that Umlauf and his team work with therefore contain PFAS as well as other particles, suspended solids and organic turbidity. “This is how we verify the purification efficiency of AtWaPlas, not only using synthetic laboratory samples, but also under real conditions with changing water qualities. The process parameters can be adapted and further developed at the same time,” explains Umlauf.

This plasma method can also be used to break down other harmful substances, including pharmaceutical residues in wastewater, pesticides and herbicides, but also industrial chemicals such as cyanides. AtWaPlas can also be used to treat drinking water in mobile applications in an environmentally friendly and cost-effective way.

The AtWaPlas joint research project launched in JuIy 2021. After a successful series of pilot-scale tests with a 5 liter reactor, the Fraunhofer team is now working with the joint research partner to further optimize the process. Georg Umlauf states: “Our current objective is to completely eliminate toxic PFAS by extending process times and increasing the number of circulations in the tank. We also want to make the AtWaPlas technology available for practical application on a larger scale.” The future could see corresponding plants set up as standalone purification stages in sewage treatment plants or used in portable containers on contaminated open-air sites.

Source:

Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

(c) Fraunhofer IBMT
10.05.2023

Using textile electrodes to stop muscle tremor

Scientists at the Fraunhofer Institute for Biomedical Engineering IBMT have been working with international partners to develop a technology platform to help relieve the symptoms of muscle tremors. Tiny biocompatible electrodes in the muscles, combined with external electrodes and controllers, form an intelligent network of sensors and actuators to detect muscle signals and provide electrical stimuli as needed. Together with exoskeletons, the technology could also help people with spinal cord injuries.

Scientists at the Fraunhofer Institute for Biomedical Engineering IBMT have been working with international partners to develop a technology platform to help relieve the symptoms of muscle tremors. Tiny biocompatible electrodes in the muscles, combined with external electrodes and controllers, form an intelligent network of sensors and actuators to detect muscle signals and provide electrical stimuli as needed. Together with exoskeletons, the technology could also help people with spinal cord injuries.

A compact controller on a belt or under a jacket, a couple of discreet textile electrodes on the arms and legs, and electrodes three centimeters long and barely a millimeter thin in the muscle are all it will take to help people with tremor disorders in the future. Whenever muscle tremors start, the system sends electrical stimuli to the muscles; these stimuli are registered by the nervous system. The nervous system then stops sending interfering signals to the muscles, which settle down again. That is the basic idea behind the technology that scientists from Fraunhofer IBMT have been working on together with project partners by developing, manufacturing, integrating and experimentally testing a set of intramuscular and external electrodes and associated controllers.

The scientists have already made some concrete achievements. “We have managed to reduce muscle tremors significantly in trials with patients,” explains Andreas Schneider-Ickert, project manager for active implants and innovation manager.

The system is part of the EU-funded joint project “EXTEND.” A total of nine project partners from five different countries are working together to develop a versatile platform of distributed neural interfaces. The technology will be able to help people with neuromuscular disorders, such as tremors, or symptoms of paralysis. Even people with spinal cord injuries could benefit from this. The technology uses external controllers to link the implanted electrodes into an intelligent network. The components communicate with each other wirelessly, exchange data, detect muscle signals and send targeted stimuli into the muscles. Implanted systems are already being used medically to provide stimulation, but the current methods require complex surgical operations that are considerably stressful for patients.

Implants for the human-machine interface
A key element of EXTEND is the implants, which are made from biocompatible platinum-iridium and silicone and are injected into the muscle through a catheter. Just three centimeters long and barely a millimeter in diameter, the tiny implant has an electrode at each end that functions as either a sensor or an actuator. External electrodes sewn into a textile ribbon supply the module with energy. This sends pulsed alternating current through the muscle tissue to the implant. “What’s innovative about this is not only the intelligent interplay between control electronics, sensors and actuators, but also the principle of modulating the alternating current to transmit data,” explains Schneider-Ickert.

Once it has been implanted and started, the sensors register the first signs of muscle tremors and pass the information on to the external components. The controller evaluates the data and sends signals through the textile electrodes to stimulate the muscle. This closes a control circuit of intelligently networked sensor and actuator components that counteracts the tremor.

The stimulus signal is not strong enough to trigger a muscle contraction directly. It is the nervous system that plays the decisive role here. This registers the stimulation in the muscle tissue and responds by stopping the commands that trigger the muscle tremor. At least that is the theory — the finer details of the relationship between tremors and signals from the nervous system are yet to be researched. “In clinical trials, however, our method is working astonishingly well. Initial trials have shown that providing the patient with stimuli for one or two hours is enough to reduce tremor symptoms for a longer period of time,” says Schneider-Ickert.

Since tremors often occur in both arms and both legs, implants can be injected and external textile electrodes placed in all the affected muscle groups. This creates a distributed sensor network. The controllers can keep track of all the implanted and external electrodes at the same time and control them in coordination with each other. All this happens in real time, with the person experiencing no delay at all.

The technology being developed in the EXTEND joint project is just as functional as conventional implant systems, but minimally invasive and therefore easier to accept and better for everyday use. The basic concept originates from a Spanish project partner. Based in this concept, the researchers at Fraunhofer IBMT designed the electrodes and implantable components and produced and integrated them in the in-house cleanroom. The scientists have 25 years of expertise in neuroprosthetics and active implants.

Exoskeletons to prevent paraplegia
For tremor patients, EXTEND brings them the hope that their symptoms can be alleviated considerably. However, the technology platform could also help people with spinal cord injuries thanks to motorized exoskeletons. This is a possible because, in cases of paralysis, the nerve fibers are often not completely cut off. They can still transmit stimuli from the brain, albeit very weakly. The sensors register the activity and transmit it to the controller, which analyzes all the signals, works out what movement the person wants to perform and activates exactly the right prostheses to support the muscles in executing the movement.

Following initial successful tests, the concepts and technologies used in EXTEND have been steadily developed, miniaturized, optimized and subjected to further implementation studies. As a result, the project has now been completed with a successful proof of concept of the miniaturized full system in humans. Fraunhofer IBMT will use the knowledge gained from EXTEND to further develop its expertise in the field of neuromuscular and neural interfaces.

Source:

Fraunhofer Institute for Biomedical Engineering IBMT

Fibroblasts (connective tissue cells) on the electrospun Renacer® membrane under the confocal microscope (red: cytoskeleton of the cells, blue: cell nuclei). (c) Fraunhofer-Institut für Silicatforschung ISC
02.05.2023

Bioresorbable membrane: depot for active substances

Fraunhofer researchers have succeeded in using the bioresorbable silica gel Renacer® to produce an electrospun membrane that is neither cytotoxic to cells nor genotoxic. This model mimics fibrous structures found in connective tissue and is therefore particularly suitable for regenerative applications, such as for improved wound healing.
 
The treatment of large as well as internal wounds is challenging and can be a very lengthy process. Researchers at the Fraunhofer Institute for Silicate Research ISC and the Fraunhofer Institute for Toxicology and Experimental Medicine ITEM have developed a bioresorbable membrane for this use. This membrane supports wound healing and biodegrades completely in the body to a natural substance.

Fraunhofer researchers have succeeded in using the bioresorbable silica gel Renacer® to produce an electrospun membrane that is neither cytotoxic to cells nor genotoxic. This model mimics fibrous structures found in connective tissue and is therefore particularly suitable for regenerative applications, such as for improved wound healing.
 
The treatment of large as well as internal wounds is challenging and can be a very lengthy process. Researchers at the Fraunhofer Institute for Silicate Research ISC and the Fraunhofer Institute for Toxicology and Experimental Medicine ITEM have developed a bioresorbable membrane for this use. This membrane supports wound healing and biodegrades completely in the body to a natural substance.

The basis for the novel membrane is a fiber fleece developed at Fraunhofer ISC. This fleece has already been approved as a medical device to support the regeneration of chronic wounds, such as the diabetic foot. During the healing process, the material dissolves completely within six to eight weeks. Using the electrospinning method, the researchers have now managed to reduce the 50-micrometer fiber diameter by a factor of more than 50, resulting in fibers with diameters of less than one micrometer (µm). This made it possible to spin a silica gel sol into an open-meshed silica gel membrane consisting of fibers with a diameter of about one µm. In some cases, the diameters achieved were as small as 100 nanometers. “These fiber systems imitate the extracellular matrix, the fiber structures found in connective tissue, in the body and are very well tolerated by human cells for tissue regeneration. They cause no foreign body reactions and no internal scarring. The innovative silica gel membrane releases only one degradation product, ortho-silicic acid. This has a regenerative effect on the tissue and promotes the closing of wounds,” explains Dr. Bastian Christ, a scientist at the Fraunhofer ISC in Würzburg. Together with his colleagues, he was in charge of the synthesis and processing of the material.
 
“While the original fiber fleece of 50 µm thick fibers is inserted into a chronic wound from the outside, the thinner fiber fleece is also suitable for internal use. Theoretically, it could be placed onto the filler material used for bone defects in the jaw to accelerate wound healing,” is how Dr. Christina Ziemann, research scientist at Fraunhofer ITEM responsible for the biological evaluation of the material, describes one of numerous possible applications. “In principle, the membrane can be glued in the body with biodegradable adhesives.

Material is neither cyto- nor genotoxic
Using a confocal microscope, a special light microscope, it was possible to show that the small-meshed membrane, which serves as a demonstrator, exhibits a barrier function. This prevents the passage of connective tissue cells for a period of at least seven days without interfering with cell proliferation. In addition, the membrane is resorbable, is not cyto- or genotoxic and thus causes no direct damage to tissue or DNA.

Fiber diameter and mesh size influence the behavior of the cells
A thin fiber diameter of 100 nanometers with thin meshes was chosen for use as an adhesion barrier to prevent postoperative adhesions and scarring. With this configuration, only nutrients could pass through the fiber fleece, but connective tissue cells could not. With a fiber diameter of one micrometer and correspondingly wider meshes, on the other hand, the cells grow into the fiber mesh, proliferate there and have a regenerating effect on the surrounding tissue. “By adjusting the material properties, such as fiber diameter and mesh size, it is possible to influence the behavior of the cells as desired,” says Christ. The equipment required for spinning the fibers is designed at Fraunhofer ISC to meet application and specific customer requirements. The shape and size of the fiber fleeces can also be adjusted to customer specifications.

Wounds only heal quickly and effectively if the wounded tissue is sufficiently supplied with nutrients. At the same time, metabolic products have to be removed. In contrast to many products on the market that allow nutrient transport only after biodegradation has started, the open-meshed Renacer® membrane promotes this transport directly after implantation, while not allowing cell passage.

Membrane with an inorganic character
There is another advantage: The Renacer® membrane dissolves completely into almost pH neutral non-toxic ortho-silicic acid, the only water-soluble form of silica. It is physiologically present in the body and has been shown to stimulate connective skin tissue formation and bone formation. Products currently available do not exhibit such bioactive properties. Many biodegradable materials dissolve into organic acids, such as lactic acid or glycolic acid. This can cause local acidification in the tissue, which then triggers inflammatory reactions of the immune system. “Our tests have shown that the dissolution product, ortho-silicic acid, is also non-toxic and completely biocompatible with cells,” says Ziemann. “The membrane decomposes into a single molecule – ortho-silicic acid.”

Fibers as a depot for active substances
Furthermore, drugs can be encapsulated into the matrix of the silica gel fibers, to be released during material resorption. “For example, antibiotics could be delivered into a wound after applying a drug-loaded Renacer® membrane to prevent the formation of bacterial colonies,” elaborates Christ. At Fraunhofer ISC, the BMBF-funded GlioGel project is testing whether the Renacer® material platform can be used as a depot for active substances in the treatment of brain tumors.

Source:

Fraunhofer-Institut für Silicatforschung ISC

intelligent fabrics (c) Sanghyo Lee
24.04.2023

Cheaper method for making woven displays and smart fabrics

Researchers have developed next-generation smart textiles – incorporating LEDs, sensors, energy harvesting, and storage – that can be produced inexpensively, in any shape or size, using conventional industrial looms used to make the clothing worn every day.
 
An international team, led by the University of Cambridge, have previously demonstrated that woven displays can be made at large sizes, but these earlier examples were made using specialised manual laboratory equipment. Other smart textiles can be manufactured in specialised microelectronic fabrication facilities, but these are highly expensive and produce large volumes of waste.

Researchers have developed next-generation smart textiles – incorporating LEDs, sensors, energy harvesting, and storage – that can be produced inexpensively, in any shape or size, using conventional industrial looms used to make the clothing worn every day.
 
An international team, led by the University of Cambridge, have previously demonstrated that woven displays can be made at large sizes, but these earlier examples were made using specialised manual laboratory equipment. Other smart textiles can be manufactured in specialised microelectronic fabrication facilities, but these are highly expensive and produce large volumes of waste.

However, the team found that flexible displays and smart fabrics can be made much more cheaply, and more sustainably, by weaving electronic, optoelectronic, sensing and energy fibre components on the same industrial looms used to make conventional textiles. Their results, reported in the journal Science Advances, demonstrate how smart textiles could be an alternative to larger electronics in sectors including automotive, electronics, fashion and construction.

Despite recent progress in the development of smart textiles, their functionality, dimensions and shapes have been limited by current manufacturing processes.
“We could make these textiles in specialised microelectronics facilities, but these require billions of pounds of investment,” said Dr Sanghyo Lee from Cambridge’s Department of Engineering, the paper’s first author. “In addition, manufacturing smart textiles in this way is highly limited, since everything has to be made on the same rigid wafers used to make integrated circuits, so the maximum size we can get is about 30 centimetres in diameter.”

“Smart textiles have also been limited by their lack of practicality,” said Dr Luigi Occhipinti, also from the Department of Engineering, who co-led the research. “You think of the sort of bending, stretching and folding that normal fabrics have to withstand, and it’s been a challenge to incorporate that same durability into smart textiles.”
Last year, some of the same researchers showed that if the fibres used in smart textiles were coated with materials that can withstand stretching, they could be compatible with conventional weaving processes. Using this technique, they produced a 46-inch woven demonstrator display.

Now, the researchers have shown that smart textiles can be made using automated processes, with no limits on their size or shape. Multiple types of fibre devices, including energy storage devices, light-emitting diodes, and transistors were fabricated, encapsulated, and mixed with conventional fibres, either synthetic or natural, to build smart textiles by automated weaving. The fibre devices were interconnected by an automated laser welding method with electrically conductive adhesive.
 
The processes were all optimised to minimise damage to the electronic components, which in turn made the smart textiles durable enough to withstand the stretching of an industrial weaving machine. The encapsulation method was developed to consider the functionality of the fibre devices, and the mechanical force and thermal energy were investigated systematically to achieve automated weaving and laser-based interconnection, respectively.

The research team, working in partnership with textile manufacturers, were able to produce test patches of smart textiles of roughly 50x50 centimetres, although this can be scaled up to larger dimensions and produced in large volumes.
 
“These companies have well-established manufacturing lines with high throughput fibre extruders and large weaving machines that can weave a metre square of textiles automatically,” said Lee. “So when we introduce the smart fibres to the process, the result is basically an electronic system that is manufactured exactly the same way other textiles are manufactured.”
The researchers say it could be possible for large, flexible displays and monitors to be made on industrial looms, rather than in specialised electronics manufacturing facilities, which would make them far cheaper to produce. Further optimisation of the process is needed, however.

“The flexibility of these textiles is absolutely amazing,” said Occhipinti. “Not just in terms of their mechanical flexibility, but the flexibility of the approach, and to deploy sustainable and eco-friendly electronics manufacturing platforms that contribute to the reduction of carbon emissions and enable real applications of smart textiles in buildings, car interiors and clothing. Our approach is quite unique in that way.”

The research was supported in part by the European Union and UK Research and Innovation.

Source:

University of Cambridge

(c) Fraunhofer WKI
19.04.2023

Sustainable natural-fiber reinforcement for textile-reinforced concrete components

Textile-reinforced concrete components with a sustainable natural-fiber reinforcement possess sufficient bond and tensile load-bearing behavior for the utilization in construction. This has been verified by researchers at the Fraunhofer WKI in collaboration with Biberach University of Applied Sciences and the industrial partner FABRINO. In the future, textile-reinforced components with natural-fiber reinforcement could therefore replace conventionally reinforced concrete components and improve the environmental balance in the construction industry.

Textile-reinforced concrete components with a sustainable natural-fiber reinforcement possess sufficient bond and tensile load-bearing behavior for the utilization in construction. This has been verified by researchers at the Fraunhofer WKI in collaboration with Biberach University of Applied Sciences and the industrial partner FABRINO. In the future, textile-reinforced components with natural-fiber reinforcement could therefore replace conventionally reinforced concrete components and improve the environmental balance in the construction industry.

Non-metallic reinforcements for concrete elements are currently often made from various synthetically produced fibers - for example from glass or carbon fibers. An ecological alternative to synthetic fibers is provided by flax or other natural fibers. These are widely available and are more sustainable, due, amongst other things, to their renewable raw-material basis, the advantages regarding recycling, and the lower energy requirements during production. This is where the researchers from the Fraunhofer WKI and Biberach University of Applied Sciences, in collaboration with an industrial partner, became active. Their goal was to demonstrate that reinforcements made from textile fibers are just as suitable for utilization in construction as synthetic fibers.

"At the Fraunhofer WKI, we have produced leno fabrics from flax-fiber yarn using a weaving machine. In order to enhance sustainability, we tested a treatment of the flax yarns for improving the tensile strength, durability and adhesion which is ecologically advantageous compared to petro-based treatments," explained Jana Winkelmann, Project Manager at the Fraunhofer WKI. In the coating process, a commonly used petro-based epoxy resin was successfully replaced by a partially bio-based impregnation. A large proportion (56%) of the molecular structure of the utilized epoxy resin consists of hydrocarbons of plant origin and can therefore improve the CO2 balance.

Textile reinforcements have a number of fundamental advantages. They exhibit, for example, significantly reduced corrodibility at the same or higher tensile strength than steel, with the result that the necessary nominal dimension of the concrete covering can be reduced. This often allows smaller cross-sections to be required for the same load-bearing capacity. Up to now, however, the load-bearing behavior of textile reinforcements made from natural fibers in concrete components has not been systematically investigated.

At Biberach University of Applied Sciences, researchers tested the bond and tensile load-bearing behavior as well as the uniaxial flexural load-bearing behavior of concrete components with textile reinforcement made from flax fibers. The scientists came to the conclusion that the natural-fiber-based textile-reinforced components with a bio-based impregnation are fundamentally suitable. The suitability was demonstrated by both a significant increase in the breaking load compared to non-reinforced and under-reinforced concrete components and in finely distributed crack patterns. The curves of the stress-strain diagrams could be divided into three ranges typical for reinforced expansion elements (State I - non-cracked, State IIa - initial cracking, and State IIb - final crack pattern). The delineation of the ranges becomes more pronounced as the degree of reinforcement increases.

As a whole, regionally or Europe-wide available, renewable natural fibers and a partially bio-based coating contribute towards an improvement of the CO2 footprint of the construction industry. As a result, a further opportunity is being opened up for the energy- and raw-material-intensive construction industry in terms of meeting increasingly stringent environmental and sustainability requirements. "Textile-reinforced concretes enable lighter and more slender structures and therefore offer architectural leeway. We would like to continue our research into the numerous application possibilities of natural-fiber-reinforced concretes," said Christina Haxter, a staff member at the Fraunhofer WKI.

The project, which ran from 9th December 2020 to 31st December 2022, was funded by the German Federal Environmental Foundation (DBU).   

A cotton knit fabric dyed blue and washed 10 times to simulate worn garments is enzymatically degraded to a slurry of fine fibers and "blue glucose" syrup that are separated by filtration - both of these separated fractions have potential recycle value. A cotton knit fabric dyed blue and washed 10 times to simulate worn garments is enzymatically degraded to a slurry of fine fibers and "blue glucose" syrup that are separated by filtration - both of these separated fractions have potential recycle value. Credit: Sonja Salmon.
11.04.2023

Researchers Separate Cotton from Polyester in Blended Fabric

In a new study, North Carolina State University researchers found they could separate blended cotton and polyester fabric using enzymes – nature’s tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric’s component materials, thereby reducing textile waste. However, they also found the process need more steps if the blended fabric was dyed or treated with chemicals that increase wrinkle resistance.

In a new study, North Carolina State University researchers found they could separate blended cotton and polyester fabric using enzymes – nature’s tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric’s component materials, thereby reducing textile waste. However, they also found the process need more steps if the blended fabric was dyed or treated with chemicals that increase wrinkle resistance.

“We can separate all of the cotton out of a cotton-polyester blend, meaning now we have clean polyester that can be recycled,” said the study’s corresponding author Sonja Salmon, associate professor of textile engineering, chemistry and science at NC State. “In a landfill, the polyester is not going to degrade, and the cotton might take several months or more to break down. Using our method, we can separate the cotton from polyester in less than 48 hours.”
 
According to the U.S. Environmental Protection Agency, consumers throw approximately 11 million tons of textile waste into U.S. landfills each year. Researchers wanted to develop a method of separating the cotton from the polyester so each component material could be recycled.

In the study, researchers used a “cocktail” of enzymes in a mildly acidic solution to chop up cellulose in cotton. Cellulose is the material that gives structure to plants’ cell walls. The idea is to chop up the cellulose so it will “fall out” out of the blended woven structure, leaving some tiny cotton fiber fragments remaining, along with glucose. Glucose is the biodegradable byproduct of degraded cellulose. Then, their process involves washing away the glucose and filtering out the cotton fiber fragments, leaving clean polyester.
 
“This is a mild process – the treatment is slightly acidic, like using vinegar,” Salmon said. “We also ran it at 50 degrees Celsius, which is like the temperature of a hot washing machine.
“It’s quite promising that we can separate the polyester to a clean level,” Salmon added. “We still have some more work to do to characterize the polyester’s properties, but we think they will be very good because the conditions are so mild. We’re just adding enzymes that ignore the polyester.”

They compared degradation of 100% cotton fabric to degradation of cotton and polyester blends, and also tested fabric that was dyed with red and blue reactive dyes and treated with durable press chemicals. In order to break down the dyed materials, the researchers had to increase the amount of time and enzymes used. For fabrics treated with durable press chemicals, they had to use a chemical pre-treatment before adding the enzymes.

“The dye that you choose has a big impact on the potential degradation of the fabric,” said the study’s lead author Jeannie Egan, a graduate student at NC State. “Also, we found the biggest obstacle so far is the wrinkle-resistant finish. The chemistry behind that creates a significant block for the enzyme to access the cellulose. Without pre-treating it, we achieved less than 10% degradation, but after, with two enzyme doses, we were able to fully degrade it, which was a really exciting result.”

Researchers said the polyester could be recycled, while the slurry of cotton fragments could be valuable as an additive for paper or useful addition to composite materials. They’re also investigating whether the glucose could be used to make biofuels.

“The slurry is made of residual cotton fragments that resist a very powerful enzymatic degradation,” Salmon said. “It has potential value as a strengthening agent. For the glucose syrup, we’re collaborating on a project to see if we can feed it into an anaerobic digester to make biofuel. We’d be taking waste and turning it into bioenergy, which would be much better than throwing it into a landfill.”

The study, “Enzymatic textile fiber separation for sustainable waste processing,” was published in Resources, Environment and Sustainability. Co-authors included Siyan Wang, Jialong Shen, Oliver Baars and Geoffrey Moxley. Funding was provided by the Environmental Research and Education Foundation, Kaneka Corporation and the Department of Textile Engineering, Chemistry and Science at NC State.

Source:

North Carolina State University, Laura Oleniacz

sports Photo Pixabay
21.03.2023

3D-printed insoles measure sole pressure directly in the shoe

  • For sports and physiotherapy alike

Researchers at ETH Zurich, Empa and EPFL are developing a 3D-printed insole with integrated sensors that allows the pressure of the sole to be measured in the shoe and thus during any activity. This helps athletes or patients to determine performance and therapy progress.

In elite sports, fractions of a second sometimes make the difference between victory and defeat. To optimize their performance, athletes use custom-made insoles. But people with musculoskeletal pain also turn to insoles to combat their discomfort.

  • For sports and physiotherapy alike

Researchers at ETH Zurich, Empa and EPFL are developing a 3D-printed insole with integrated sensors that allows the pressure of the sole to be measured in the shoe and thus during any activity. This helps athletes or patients to determine performance and therapy progress.

In elite sports, fractions of a second sometimes make the difference between victory and defeat. To optimize their performance, athletes use custom-made insoles. But people with musculoskeletal pain also turn to insoles to combat their discomfort.

Before specialists can accurately fit such insoles, they must first create a pressure profile of the feet. To this end, athletes or patients have to walk barefoot over pressure-sensitive mats, where they leave their individual footprints. Based on this pressure profile, orthopaedists then create customised insoles by hand. The problem with this approach is that optimisations and adjustments take time. Another disadvantage is that the pressure-sensitive mats allow measurements only in a confined space, but not during workouts or outdoor activities.

Now an invention by a research team from ETH Zurich, Empa and EPFL could greatly improve things. The researchers used 3D printing to produce a customised insole with integrated pressure sensors that can measure the pressure on the sole of the foot directly in the shoe during various activities.

“You can tell from the pressure patterns detected whether someone is walking, running, climbing stairs, or even carrying a heavy load on their back – in which case the pressure shifts more to the heel,” explains co-project leader Gilberto Siqueira, Senior Assistant at Empa and at ETH Complex Materials Laboratory. This makes tedious mat tests a thing of the past. The invention was recently featured in the journal Scientific Reports.

One device, multiple inks
These insoles aren’t just easy to use, they’re also easy to make. They are produced in just one step – including the integrated sensors and conductors – using a single 3D printer, called an extruder.

For printing, the researchers use various inks developed specifically for this application. As the basis for the insole, the materials scientists use a mixture of silicone and cellulose nanoparticles.
Next, they print the conductors on this first layer using a conductive ink containing silver. They then print the sensors on the conductors in individual places using ink that contains carbon black. The sensors aren’t distributed at random: they are placed exactly where the foot sole pressure is greatest. To protect the sensors and conductors, the researchers coat them with another layer of silicone.

An initial difficulty was to achieve good adhesion between the different material layers. The researchers resolved this by treating the surface of the silicone layers with hot plasma.
As sensors for measuring normal and shear forces, they use piezo components, which convert mechanical pressure into electrical signals. In addition, the researchers have built an interface into the sole for reading out the generated data.

Running data soon to be read out wirelessly
Tests showed the researchers that the additively manufactured insole works well. “So with data analysis, we can actually identify different activities based on which sensors responded and how strong that response was,” Siqueira says.

At the moment, Siqueira and his colleagues still need a cable connection to read out the data; to this end, they have installed a contact on the side of the insole. One of the next development steps, he says, will be to create a wireless connection. “However, reading out the data hasn’t been the main focus of our work so far.”

In the future, 3D-printed insoles with integrated sensors could be used by athletes or in physiotherapy, for example to measure training or therapy progress. Based on such measurement data, training plans can then be adjusted and permanent shoe insoles with different hard and soft zones can be produced using 3D printing.

Although Siqueira believes there is strong market potential for their product, especially in elite sports, his team hasn’t yet taken any steps towards commercialisation.

Researchers from Empa, ETH Zurich and EPFL were involved in the development of the insole. EPFL researcher Danick Briand coordinated the project, and his group supplied the sensors, while the ETH and Empa researchers developed the inks and the printing platform. Also involved in the project were the Lausanne University Hospital (CHUV) and orthopaedics company Numo. The project was funded by the ETH Domain’s Advanced Manufacturing Strategic Focus Areas programme.

Source:

Peter Rüegg, ETH Zürich

(c) nova-Institut GmbH
14.03.2023

Bacteria instead of trees, textile and agricultural waste

For the third time, the nova-Institut awarded the "Cellulose Fibre Innovation of the Year" prize at the "Cellulose Fibres Conference 2023" in Cologne, 8-9 March 2023.

The yearly conference is a unique meeting point of the global cellulose fibres industry. 42 speakers from twelve countries highlighted the innovation potential of cellulosic fibres and presented the latest market insights and trends to more than 220 participants from 30 countries.

Leading international experts introduced new technologies for recycling of cellulose rich raw materials and practices for circular economy in textiles, packing and hygiene, which were discussed in seven panel discussion with active audience participation.    

Prior to the conference, the conference advisory board had nominated six remarkable innovations. The winners were elected in an exciting head-to-head live-voting by the conference audience on the first day of the event.

For the third time, the nova-Institut awarded the "Cellulose Fibre Innovation of the Year" prize at the "Cellulose Fibres Conference 2023" in Cologne, 8-9 March 2023.

The yearly conference is a unique meeting point of the global cellulose fibres industry. 42 speakers from twelve countries highlighted the innovation potential of cellulosic fibres and presented the latest market insights and trends to more than 220 participants from 30 countries.

Leading international experts introduced new technologies for recycling of cellulose rich raw materials and practices for circular economy in textiles, packing and hygiene, which were discussed in seven panel discussion with active audience participation.    

Prior to the conference, the conference advisory board had nominated six remarkable innovations. The winners were elected in an exciting head-to-head live-voting by the conference audience on the first day of the event.

The collaboration between Nanollose (AU) and Birla Cellulose (IN) with tree-free lyocell from bacterial cellulose called Nullarbor™ is the winning cellulose fibre innovation 2023, followed by Renewcell (SE) cellulose fibres made from 100 % textile waste, while Vybrana – the new generation banana fibre from Gencrest Bio Products (IN) won third place.
    
Winner: Nullarbor™ – Nanollose and Birla Cellulose (AU/IN)
In 2020, Nanollose and Birla Cellulose started a journey to develop and commercialize treefree lyocell from bacterial cellulose, called Nullarbor™. The name derives from the Latin “nulla arbor” which means “no trees”. Initial lab research at both ends led to the joint patent application “production of high-tenacity lyocell fibres made from bacterial cellulose”.
Nullarbor is significantly stronger than lyocell made from wood-based pulp; even adding small amounts of bacterial cellulose to wood pulp increases the fibre toughness. In 2022, the first pilot batch of 260 kg was produced with 20 % bacterial pulp share. Several high-quality fabrics and garments were produced with this fibre. The collaboration between Nanollose and Birla Cellulose now focuses on increasing the production scale and amount of bacterial pulp in the fibre.  

Second place: Circulose® – makes fashion circular – Renewcell (SE)
Circulose® made by Renewcell is a branded dissolving pulp made from 100 % textile waste, like worn-out clothes and production scraps. It provides a unique material for fashion that is 100 % recycled, recyclable, biodegradable, and of virgin-equivalent quality. It is used by fibre producers to make staple fibre or filaments like viscose, lyocell, modal, acetate or other types of man-made cellulosic fibres. In 2022, Renewcell, opened the world’s first textile-to-textile     
chemical recycling plant in Sundsvall, Sweden – Renewcell 1. The plant is expected to reach an annual capacity of 120,000 tonnes.

Third place: Vybrana – The new generation banana fibre – Gencrest Bio Products (IN)
Vybrana is a Gencrest’s Sustainable Cellulosic Fibre upcycled from agrowaste. Raw fibres are extracted from the banana stem at the end of the plant lifecycle. The biomass waste is then treated by the Gencrest patented Fiberzyme technology. Here, cocktail enzyme formulations remove the high lignin content and other impurities and help fibre fibrillation. The company's proprietary cottonisation process provides fine, spinnable cellulose staple fibres suitable for blending with other staple fibres and can be spun on any conventional spinning systems giving yarns sustainable apparel. Vybrana is produced without the use of heavy chemicals and minimized water consumption and in a waste-free process where balance biomass is converted to bio stimulants Agrosatva and bio-based fertilizers and organic manure.

08.03.2023

Composites Germany presents results of 20th market survey

  • General economic developments are dampening mood in composites industry
  • Future expectations are optimistic
  • Investment climate has remained stable
  • Varying expectations for application industries
  • Growth drivers have remained unchanged
  • Composites Index is pointing in different directions

This is the 20th time that Composites Germany has identified the latest performance indicators for the fibre-reinforced plastics market. The survey covered all the member companies of the umbrella organisations of Composites Germany: AVK and Composites United, as well as the associated partner VDMA.  

  • General economic developments are dampening mood in composites industry
  • Future expectations are optimistic
  • Investment climate has remained stable
  • Varying expectations for application industries
  • Growth drivers have remained unchanged
  • Composites Index is pointing in different directions

This is the 20th time that Composites Germany has identified the latest performance indicators for the fibre-reinforced plastics market. The survey covered all the member companies of the umbrella organisations of Composites Germany: AVK and Composites United, as well as the associated partner VDMA.  

General economic developments are dampening mood in composite industry
Like all industries, the composite industry has been affected by strong negative forces in recent years. The main challenges over the last few years have been the Covid pandemic, a shortage of semiconductors, supply chain problems and a sharp rise in the price of raw materials. Furthermore, there have been numerous isolated effects that added to the pressure on the industry.

The main challenges during the past year were primarily a steep increase in energy and fuel prices and the cost of logistics. In addition, the war in Ukraine put a further strain on supply chains that had already been weakened.

Overall, the stock market prices for both electricity and petroleum products are currently showing a clear downward trend. However, the significantly lower prices have not yet percolated from manufacturers and buyers to the end customer.

The aforementioned effects have further dampened the mood in the composites industry. The index assessing the current general business situation in Germany and Europe has dropped even further than before. However, the assessment of the global situation is somewhat more positive.

Despite this generally negative assessment of the current situation, companies are moving in a somewhat more positive direction in the assessment of their own business situations. The companies that were surveyed rated their own positions more positively than in the last survey.

Future expectations are optimistic
The expectations on future market developments are showing a very positive picture. After a significant drop in the last survey, the indicators for the general business situation are now displaying a clear upward trend again. Moreover, respondents were far more optimistic about their own companies’ future prospects.

Investment climate remaining stable
The investment climate has remained at a stable level. Nearly half of the companies surveyed are planning to employ new staff over the next six months. As before, about 70% of respondents are either considering or planning machine investments. Unlike in the previous survey, this value has remained almost unchanged.

Varying expectations for application industries
The composites market is highly heterogeneous in terms of both materials and applications. In the survey, respondents were asked to assess the market developments of different core areas. Expectations turned out to be extremely diverse.

The most important application segment for composites is the transport sector. The number of new registrations of passenger cars has been declining in recent years. This is where we can see OEMs moving away from volume models and opting for more profitable mid-range and premium segments. In this year’s survey, this shows itself in relatively cautious expectations for this segment.

The currently rather pessimistic outlook for the construction industry is leading companies to expect major slumps in this sector, in particular. The building sector, in particular, often reacts rather slowly to short-term economic fluctuations and has long been relatively robust towards the aforementioned crises. Now, however, it seems that this area, too, is being affected by negative influences.

The pessimistic outlook on the sports and leisure sector can be explained by a rather pessimistic view of consumer behaviour.

Expectations about future market developments, on the other hand, are significantly more positive than the figures presented here might suggest.

Growth drivers still stable
As before, the current survey shows Germany, Europe and Asia as the global regions expected to deliver the most important growth stimuli for the composites segment, with Europe playing a key role for many of the respondents.

Where materials are concerned, we are seeing a continuation of the ongoing paradigm shift. Whereas, in the first 13 surveys, respondents always believed that the composites segment would receive its prevailing growth stimuli from CRP, there is now an almost universal expectation that the most important stimuli will be coming from GRP or from all the materials.

Composites Index points in different directions
Despite the many negative influences that have occurred recently, composites appear to be in good shape for the future. Thanks to excellent market developments in 2021, they have almost reached their pre-pandemic level. The outlook for market developments in 2022 have not been finalised but are showing a less positive trend for last year.

Nevertheless, there are many indications to suggest that the generally positive development of the composite industry over the last few years is set to continue. In the medium term, structural changes in the transport sector will open up opportunities for composites to gain a new foothold in new applications. Major opportunities can be seen in areas of construction and infrastructure. Despite the rather weak market situation, these areas offer enormous opportunities for composites, due to their unique properties which predestine them for long-term use. The main assets of these materials are their durability, their almost maintenance-free use, their potential for use in lightweight construction and their positive impact on sustainability. Furthermore, one major growth driver is likely to be the wind industry, provided that it meets the politically self-imposed targets for the share of renewable energies in power consumption.

Overall, the Composites Index shows a restrained assessment of the current situation, whereas the assessment of the future situation is clearly positive. Respondents are apparently optimistic about the future, reflecting the assessment mentioned above: Composites have been used in industry and in serial production for several decades and, despite numerous challenges, they are set to provide immense potential for exploring new areas of application.

The next Composites Market Survey will be published in July 2023.

Source:

Composites Germany

Vadim Zharkov: https://youtu.be/x9gCrhIPaPM
28.02.2023

‘Smart’ Coating Could Make Fabrics into Protective Gear

Precisely applied metal-organic technology detects and captures toxic gases in air.

A durable copper-based coating developed by Dartmouth researchers can be precisely integrated into fabric to create responsive and reusable materials such as protective equipment, environmental sensors, and smart filters, according to a recent study.
 
The coating responds to the presence of toxic gases in the air by converting them into less toxic substances that become trapped in the fabric, the team reports in Journal of the American Chemical Society.

Precisely applied metal-organic technology detects and captures toxic gases in air.

A durable copper-based coating developed by Dartmouth researchers can be precisely integrated into fabric to create responsive and reusable materials such as protective equipment, environmental sensors, and smart filters, according to a recent study.
 
The coating responds to the presence of toxic gases in the air by converting them into less toxic substances that become trapped in the fabric, the team reports in Journal of the American Chemical Society.

The findings hinge on a conductive metal-organic technology, or framework, developed in the laboratory of corresponding author Katherine Mirica, an associate professor of chemistry. First reported in JACS in 2017, the framework was a simple coating that could be layered onto cotton and polyester to create smart fabrics the researchers named SOFT—Self-Organized Framework on Textiles. Their paper demonstrated that SOFT smart fabrics could detect and capture toxic substances in the surrounding environment.

For the newest study, the researchers found that—instead of the simple coating reported in 2017—they can precisely embed the framework into fabrics using a copper precursor that allows them to create specific patterns and more effectively fill in the tiny gaps and holes between threads.

The researchers found that the framework technology effectively converted the toxin nitric oxide into nitrite and nitrate, and transformed the poisonous, flammable gas hydrogen sulfide into copper sulfide. They also report that the framework’s ability to capture and convert toxic materials withstood wear and tear, as well as standard washing.
 
The versatility and durability the new method provides would allow the framework to be applied for specific uses and in more precise locations, such as a sensor on protective clothing, or as a filter in a particular environment, Mirica said.

“This new method of deposition means that the electronic textiles could potentially interface with a broader range of systems because they’re so robust,” she said. “This technological advance paves the way for other applications of the framework’s combined filtration and sensing abilities that could be valuable in biomedical settings and environmental remediation.”
The technique also could eventually be a low-cost alternative to technologies that are cost prohibitive and limited in where they can be deployed by needing an energy source, or—such as catalytic converters in automobiles—rare metals, Mirica said.
 
“Here we’re relying on an Earth-abundant matter to detoxify toxic chemicals, and we’re doing it without any input of outside energy, so we don’t need high temperature or electric current to achieve that function,” Mirica said.

Co-first author Michael Ko, initially observed the new process in 2018 as he attempted to deposit the metal-organic framework onto thin-film copper-based electrodes, Mirica said. But the copper electrodes would be replaced by the framework.

“He wanted it on top of the electrodes, not to replace them,” Mirica said. “It took us four years to figure out what was happening and how it was beneficial. It’s a very straightforward process, but the chemistry behind it is not and it took us some time and additional involvement of students and collaborators to understand that.”

The team discovered that the metal-organic framework “grows” over copper, replacing it with a material with the ability to filter and convert toxic gases, Mirica said. Ko and co-author Lukasz Mendecki, a postdoctoral scholar in the Mirica Group from 2017-18, investigated methods for applying the framework material to fabric in specific designs and patterns.

Co-first author Aileen Eagleton, who is also in the Mirica Group, finalized the technique by optimizing the process for imprinting the metal-organic framework onto fabric, as well as identifying how its structure and properties are influenced by chemical exposure and reaction conditions.

Future work will focus on developing new multifunctional framework materials and scaling up the process of embedding the metal-organic coatings into fabric, Mirica said.

Source:

Dartmouth / Textination

Photo unsplash
21.02.2023

Consortium for enzymatic textile recycling gains new supporters

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

The two-year cooperation project will not only enable the biological recycling of polyester articles on an industrial scale, but also develop thorough sorting and disassembly technologies for complex textile waste. Existing members voted unanimously for PVH Corp. to join the consortium, saying the common goal is to support the development of viable solutions that address the fashion industry's contribution to climate change..

Carbios has developed a technology using highly selective enzymes that can recycle mixed feedstocks, reducing the laborious sorting required by current thermomechanical recycling processes. For textiles made from blended fibres, the patented enzyme acts only on the PET polyester contained within. This innovative process produces recycled PET (r-PET) that is equivalent in quality to virgin PET and can be used to produce new textile fibres.

Textile waste treatment and recycling
Globally, only 13% of textile waste is currently recycled, mainly for low-value applications such as upholstery, insulation or rags. The remaining 87% is destined for landfill or incineration. To work on improving textile recycling technologies, consortium members will supply feedstock in the form of clothing, underwear, footwear and sportswear. In 2023, a new PET textile waste facility will be commissioned at the Carbios demonstration plant, notably as part of the LIFE Cycle of PET project co-funded by the European Union.  This is in anticipation of future regulations, such as the separate collection of textile waste, which will be mandatory in Europe from 1 January 2025.

From fibre to fibre: circularity of textiles
Today, the textile industry relies largely on non-renewable resources to produce fibres and fabrics, partly turning to recycled PET bottles for recycled polyester fibres. However, this resource will become scarce as PET bottles are used exclusively for the production of new bottles in the food and beverage industry. In a circular economy, the materials used to produce textiles are obtained from recycled or renewable raw materials produced by regenerative processes. In addition to supplying raw materials for the demonstration plant, the consortium members also aim to produce new products from r-PET fibres using the company's biorecycling process.

"Partnering with Carbios and its consortium members demonstrates our continued commitment to incorporating more circular materials into our collections," said Esther Verburg, EVP, Sustainable Business and Innovation, Tommy Hilfiger Global and PVH Europe. "We are excited to support the development of Carbios' enzymatic recycling technology and to leverage new solutions that can help us drive fashion sustainably."

More information:
Carbios textile recycling enzymatic
Source:

Carbios / Textination