Textination Newsline

Reset
68 results
TheDigitalArtist, Pixabay
09.09.2024

“Used textiles recycling at risk of collapse”

The recycling of used textiles is facing a potential collapse. Industry experts agree that the current crisis is more serious than the COVID-19 crisis at the time.

In the case of Covid-19, there was a foreseeable period of a few months, after which the industry recovered quite quickly and the effect of pent-up demand caused prices to return to a normal level within a short period of time.
 
“We now have a completely different situation that threatens the existence of many of the established used textile recyclers in the industry,” says Stefan Voigt, Chairman of the bvse's Textile Recycling Association (FTR).
 
The global market for used textiles has been in a deep crisis for some time, which has now reached a level that can only be described as a free fall. Since the spring, the prices for original collected goods no longer cover the enormous costs for container provision, collection and administration.

The recycling of used textiles is facing a potential collapse. Industry experts agree that the current crisis is more serious than the COVID-19 crisis at the time.

In the case of Covid-19, there was a foreseeable period of a few months, after which the industry recovered quite quickly and the effect of pent-up demand caused prices to return to a normal level within a short period of time.
 
“We now have a completely different situation that threatens the existence of many of the established used textile recyclers in the industry,” says Stefan Voigt, Chairman of the bvse's Textile Recycling Association (FTR).
 
The global market for used textiles has been in a deep crisis for some time, which has now reached a level that can only be described as a free fall. Since the spring, the prices for original collected goods no longer cover the enormous costs for container provision, collection and administration.

The price of original goods traded on the market has now reached an all-time low, causing existential hardship for many market participants.

The sale of original and sorted goods has become almost impossible. The loss of established market players has destroyed supply chains that have been tried and tested for years, and stocks of original and sorted goods have reached unprecedented record levels. Some market participants are forced to replace the usual sales business with bartering.

According to industry information, downstream players in the recycling chain, such as shredding and spinning mills, are also under pressure and have made massive staff cuts. The production of cleaning cloths has also reached an all-time low. Due to the relocation of production abroad and reduced domestic production, demand for cleaning cloths has fallen and prices have slipped to a very low level.

Consumer behavior and international markets exacerbate the crisis
Due to the generally high cost burden on the population, the consumption of textiles has collapsed. The negative trend of consuming low-quality fast fashion is now being reinforced by ultra-fast fashion of even poorer quality. This has disastrous effects on value creation within the recycling chain for used textiles.

“During the sorting process, increasingly large quantities of relatively new textiles are being found that are already so defective that they are no longer suitable for further use and therefore have to be fed into the recycling process,” explains Voigt. However, there is no money to be made here either, as the same cost structures apply to this part of the original goods as to wearable goods and the recycling process is also very cost-intensive.

Industry calls for the introduction of an EPR system
Until now, the recycling of the proportion of sorted goods has been subsidised by the proceeds from wearable goods, but this system has not worked for some time. The industry is desperately waiting for the introduction of a national EPR system for textiles in order to stabilise costs.

The EU Commission's recently published draft of the revised EU Waste Framework Directive provides for the introduction of a system of extended producer responsibility for textiles. The existing collection and recycling structures in Germany, which enable the separate collection of used textiles close to the public, are to play a central role in this.

The draft of the National Circular Economy Strategy (NKWS) of the Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) also emphasises the importance of the national recycling industry for used textiles. Without it, the establishment of a closed-loop system for textiles would not be feasible.

Crisis not limited to Germany
The crisis has also made ripples internationally. Countries such as the Netherlands, traditionally the largest buyer of used textiles from Germany, have already addressed the crisis in the national media. Almost 250 companies there are involved in the collection, sorting and international marketing of used textiles.

Around 60 per cent of the original goods are recycled as sustainable clothing after sorting, meaning that the industry is reliant on stable markets in which recycling proceeds can be generated. But this is precisely the problem. ‘Due to the effects of the Russian war of aggression in Ukraine, the Eastern European market can only be served in fragments,’ explains Voigt.

In addition, despite its potential, the African market is currently facing enormous challenges because there is practically no money left in the system, he adds, explaining the concerns he receives from many interviewees in the industry: ‘The enormous drop in the value of many currencies in various African countries    means that it is becoming increasingly difficult for African customers to buy urgently needed second-hand clothing for hard currency,’ Voigt continues.

For example, the currency in the extremely important African market of Ghana has lost roughly 20 per cent against the euro over the last six months of 2024. In addition, the transfer of foreign currency now takes up to two months, meaning that it now takes up to six months to return the proceeds of realisation.

In addition, the African market is increasingly dominated by Chinese influence. ‘The actually better quality of high-quality used European second-hand clothing can hardly compete with new Asian goods,’ reports Voigt. Ultra fast fashion from China is flooding the market with extremely low prices, making it increasingly difficult to market sorted, second-hand clothing.

In addition to economic problems, there are also logistical challenges. ‘Our customers are reporting increasing difficulties in obtaining the necessary visas for a business visit to Europe within an acceptable waiting period,’ explains Voigt. The waiting time for an appointment at the consulate can currently be up to two months.

Call for short-term measures
In order to prevent the system from collapsing in the short term, Voigt believes that the usual remuneration structures for local authorities and providers of parking spaces for collection containers need to be reconsidered. ‘Recycling revenues have not been realised for some time now, so they can no longer be paid out or must be adjusted to the current situation,’ says Voigt.

The industry expects the current crisis to last even longer. ‘Not everyone will survive,’ predicts Voigt. Many collection areas are already being offered on the open market and various collection capacities are being cancelled without replacement. The future of the used textile recycling industry remains uncertain and there is no end to the crisis in sight.

More information:
textile waste textile recycling
Source:

bvse-Bundesverband Sekundärrohstoffe und Entsorgung e.V.

Texcare Messe Frankfurt (c) Messe Frankfurt
06.09.2024

Circular economy long established in the textile care industry

The professional rental service for linen and workwear is a textbook example of a circular, sustainable business model, which uses hard-wearing textiles instead of lower-quality or disposable products (reduce), optimises their useful life through professional care / repairs (reuse) and develops solutions to re-purpose them after they have reached the end of their useful life (recycle).

The professional rental service for linen and workwear is a textbook example of a circular, sustainable business model, which uses hard-wearing textiles instead of lower-quality or disposable products (reduce), optimises their useful life through professional care / repairs (reuse) and develops solutions to re-purpose them after they have reached the end of their useful life (recycle).

With its ‘Green Deal’, the European Commission has, inter alia, initiated the transformation of the garment-manufacturing industry from a business model of short-lived consumption to a more sustainable, circular system. By 2030, fast fashion will be replaced increasingly by textile products that have a longer life cycle and thus contribute to reducing environmental pollution. To achieve this goal, textiles must be more durable, reusable, repairable, fibre-to-fibre recyclable and have a greater proportion of recycled fibres. For the textile-service sector, the circularity requirements defined in Brussels have long been standard practice because hiring out professional workwear and protective clothing, as well as hotel and hospital linen, mop covers and other items, requires precisely these characteristics, i.e., the fabrics must be durable, washable – and therefore reusable – and easy to repair. Thanks to these qualities, rental linen can remain in the service cycle for a long time and has thus become established as a sustainable alternative to outright purchasing.

Laundry in the circular system
The textile-rental service offers a variety of systems tailored to the needs of different groups of customers. Workwear and protective clothing is stocked by textile-service laundries in a wide range of sizes, so that each customer's employees can be supplied with a suitable outfit. This is then labelled and made available to the individual wearer. If the employee leaves the customer's employ, the garments are taken back and – provided they are in good condition – reused as replacement clothing. In the case of workwear in the healthcare sector, as well as bed linen, table linen and towelling, a pool solution is more common. A laundry pool comprises similar textiles that are supplied without being assigned to a specific customer or wearer, which significantly reduces the quantity of textiles used.

Local textile cleaning is another major area of commercial textile care that also helps extend the life of textiles with a wide range of goods being professionally processed on behalf of private and commercial customers by such businesses. High-quality outerwear and underwear, premium home textiles, delicate down jackets or heavily soiled workwear are all restored to a clean, fresh and usable condition. And if stains prove particularly stubborn even after cleaning, a specialist company can re-colour the goods, thus ensuring they can be reused.

The recycling benefits of textile rental services
Besides the two main requirements of ‘reuse’ and ‘repair’, the sector is also working hard on the recycling of old textiles, as called for by the EU textile strategy. Several workwear manufacturers have developed their own returns models, whereby customers can hand back their old workwear when buying new items. The old workwear is then reused or recycled by partner organisations. Large companies, including Deutsche Telekom and Ikea, have also introduced a centralised returns and recycling system for discarded workwear. Indeed, the furniture giant has even created its own home textiles line using old workwear. However, the easiest way to implement a system of this kind is to use a rental service, as the goods are always returned to the specialist company and sorted there. In other words, the used laundry is collected in one place after washing, where it forms a large volume of similar discarded textiles, which greatly simplifies both the collection logistics and the recycling process. These favourable conditions have already led to the establishment of an initial initiative in which several textile service companies pool their waste hotel linen and channel it into industrial cotton-to-pulp recycling. Whether individual or joint initiatives, this is a testament to the industry's commitment to the development of solutions for ‘waste materials’.

Textile upcycling for designer items
Solutions for rejected textiles are more varied than simply recycling them. For example, Sweden's Fristads company offers a repair service for its workwear. The British department store chain John Lewis goes one step further. In a field trial, customers can hand in their garments to selected stores for cleaning and repair. The garments are processed by Johnsons, a laundry and dry-cleaning chain belonging to the Timpson Group. Designers have also recognised second-life opportunities for discarded workwear and contract textiles. For example, they apply elaborate decorations to items from their collections or take them apart and reassemble them. The creatively enhanced goods are then returned to the market as designer items. There are also recycling solutions for large contract textiles, which are converted into bags or cosmetic accessories or, after a colour-changing process, into small batches of aprons. However, the effect of such concepts on reducing textile waste is as small as their diversity. Only the established second-hand model is able to return larger quantities to the economic cycle.

The pros and cons of recycled materials
While the textile-care industry is unanimous in its support for the requirements of the EU textile strategy and is contributing solutions, it disagrees on increasing the proportion of recycled fibres in its products. Although there are already numerous workwear collections and hotel-linen ranges that meet the requirements from Brussels, some of the products do not, however, meet the durability requirements because the fibre quality deteriorates with each recycling stage. Therefore, many contract-textile manufacturers still rely exclusively on virgin, brand-new fibre materials to ensure durability in industrial laundering. Texcare International offers the industry the perfect setting to discuss this conflict of objectives in depth.

Source:

Messe Frankfurt

Atacama desert Photo by Fernando Rodrigues on Unsplash
23.07.2024

Reducing environmental & health impacts of global trade of 2nd hand clothes

The rise of fast-fashion, marked by rapid turnover of collections, has led to a sevenfold increase in the global trade of used clothing in the last 4 decades. With more than 80% of all purchased clothing items globally (62% in the EU) being disposed of as general garbage, which is incinerated or landfilled, this represents a massive waste of resources, causing severe environmental and health impacts. A report recently published by UNECE and the United Nations Economic Commission for Latin America and the Caribbean (ECLAC) contains an in-depth analysis of second-hand clothing trade between Europe and Chile, offers policy recommendations to the industry, exporting and importing countries to remedy this situation.

The rise of fast-fashion, marked by rapid turnover of collections, has led to a sevenfold increase in the global trade of used clothing in the last 4 decades. With more than 80% of all purchased clothing items globally (62% in the EU) being disposed of as general garbage, which is incinerated or landfilled, this represents a massive waste of resources, causing severe environmental and health impacts. A report recently published by UNECE and the United Nations Economic Commission for Latin America and the Caribbean (ECLAC) contains an in-depth analysis of second-hand clothing trade between Europe and Chile, offers policy recommendations to the industry, exporting and importing countries to remedy this situation.

According to UN Comtrade data, in 2021 the European Union (30%), China (16%), and the United States (15%) were the leading exporters of discarded clothes, while Asia (28%, predominantly Pakistan), Africa (19%, especially Ghana and Kenya), and Latin America (16%, mainly Chile and Guatemala) were the leading importers.  

This has been facilitated by the advent of low-cost synthetic fibres and by trade liberalization that allowed the offshoring of production to countries with low-wage labour. Large proportions of clothing are made from difficult-to-separate blended fibres, making opportunities for economic reuse and recycling rare, particularly in developed countries.

“When did we normalize throwing clothes away?”, questions Lily Cole, Climate Activist and Advisor to UNECE. “As the world, mostly the Global North, has produced and consumed fashion at an unrelenting rate, a handful of countries, mainly in the Global South, have become cemeteries for the world’s unloved clothes. While visiting the Atacama Desert, my attention was brought to the textile mountains and the shifting cultural, economic, and political landscapes that birthed them. Consumer awareness is very helpful, yet, ultimately, we need policies to curb systemic trends, which is why this report and its recommendations are so necessary.”

Europe: sorting and recycling capacities lag behind  
In Europe only 15-20% of disposed textiles are collected, usually through containers, door-to-door collection and donations. About half of the collected textiles are downcycled to be used as, for example, insulation, filling, and single-use industrial wipes. Only 1% is recycled into higher value outputs such as new clothing, while the remainder is exported to developing countries.  

Of the 55% of collected clothes that are reusable, only 5 percentage points have a value on second-hand markets in the EU, while 50 percentage points have a value on export markets.  

The European Union has thus tripled its exports of used clothes over the past 2 decades, from 550,000 to 1.7 million tons. Europe, including the United Kingdom, accounts now for more than a third of global used clothing exports, and this share could continue to grow as collection rates are expected to rise.  

A design-led circular economy approach to clothing is still in its infancy. The EU Circular Economy Action Plan (CEAP) was adopted in 2020, the EU Strategy for Sustainable and Circular Textiles was adopted in 2022, and the EU Ecodesign for Sustainable Products Regulation was adopted in 2023. However, these policies are still to bear fruit in the form of large-scale upstream solutions to the problems of textile waste. 

“The used clothes global market is constantly growing, and with it, its negative impacts. The textile industry has a key responsibility to adopt more sustainable practices, exporters and importers to adopt relevant policy decisions to foster traceability, circularity and sustainability. UN/CEFACT policy recommendations and standards will support this transition. And of course, we all have a role to play, as consumers, to make sustainable choices,” stressed UNECE Executive Secretary Tatiana Molcean.

The case of Chile: mountains of used clothes visible from the moon  
Most countries in Latin America (including Argentina, Brazil, Colombia, Mexico, and Peru) have introduced clothing import bans to protect their national textile and fashion industries and avoid the threats posed by clothing dumps.

By contrast, Chile levies zero tariffs, and applies no quantity restrictions in imports, only requiring shipments to be sanitised (by fumigation). It has thus become one of the top 10 importers in the world, and the first in Latin America, receiving 126,000 tons of textiles in 2021. 40% of these entered the country through the northern port of Iquique, where they are manually sorted, primarily by women, and separated into first, second, and third quality.

75% of all imported used clothes were deemed non-reusable, 30,000 tons of which are covering today 30 hectares of the Atacama desert, generating pollution and creating hazard to local communities’ health. At the same time, trade in second-hand garments also provides employment and formal and informal income for national and migrant populations in established stores and open-air markets across the country, and this must be factored in when redefining public policies.

“To address the environmental and social issues of used textile trade, the EU and Chile must work together on creating robust regulatory frameworks. A partnership between the European Union and Chile could pioneer innovative approaches to regulate and reduce the impact of second-hand textile trade, including by setting global standards for the trade of used textiles, focusing on sustainability and social responsibility." Highlights UNECLAC Executive Secretary, Mr. José Manuel Salazar-Xirinachs.  

Multifold recommendations
The report contains a series of recommendations to the textile industry, exporters and importers.   

To exporting countries

  • Make circular economy considerations central to the design of clothing, with mandatory targets for fibre composition that improve quality, durability, repairability, and recyclability  
  • Introduce an Extended Producer Responsibility (EPR) system holding producers responsible for the products they manufacture  
  • Develop more sorting and recycling plants, through financial incentives  
  • Develop minimum EU criteria for second-hand clothing exports through the use of digital product passports (DPPs)  
  • Run awareness-raising campaigns to encourage consumers to make more informed choices about their clothes

To importing countries – the example of Chile

  • Improve customs procedures & administrative measures at the port of Iquique to ensure digital traceability of flows of used clothing and textile based on the UN/CEFACT traceability standard   
  • Establish a Circular Economy Strategy for Textiles  
  • Set-up public-private alliances for recycling projects through tax extension schemes and funds to support entrepreneurship, innovation, and job creation for vulnerable groups, particularly in the Tarapacá region  
  • Improve the legal framework for waste management   
  • Implement a Regional Solid Waste Control Plan, involving inspections of sanitary landfills, clean points, and dumps to increase the enforcement capacity of regional health authorities  
  • Accelerate the adoption of the Chilean draft law on environmental quality of soils.

The report also recommends making changes to international trade agreements, such as the2023 Interim Trade Agreement between the EU and Chile, which includes a chapter on Trade and Sustainable Development, to step up bilateral cooperation, and using it as a template for other bilateral trade agreements between the EU and other countries.   

Download the Executive Summary

Source:

United Nations Economic Commission for Europe

Biofibers made from gelatin in a rainbow of colors. © Utility Research Lab
25.06.2024

Designers make dissolvable textiles from gelatin

Introducing the fashion of the future: a T-shirt you can wear a few times, then, when you get bored with it, dissolve and recycle to make a new shirt.

Researchers at the ATLAS Institute at the CU Boulder are now one step closer to that goal. In a new study, the team of engineers and designers developed a DIY machine that spins textile fibers made of materials like sustainably sourced gelatin. The group’s “biofibers” feel a bit like flax fiber and dissolve in hot water in minutes to an hour.

The team, led by Eldy Lázaro Vásquez, a doctoral student in the ATLAS Institute, presented its findings in May at the CHI Conference on Human Factors in Computing Systems in Honolulu.

“When you don’t want these textiles anymore, you can dissolve them and recycle the gelatin to make more fibers,” said Michael Rivera, a co-author of the new research and assistant professor in the ATLAS Institute and Department of Computer Science.

Introducing the fashion of the future: a T-shirt you can wear a few times, then, when you get bored with it, dissolve and recycle to make a new shirt.

Researchers at the ATLAS Institute at the CU Boulder are now one step closer to that goal. In a new study, the team of engineers and designers developed a DIY machine that spins textile fibers made of materials like sustainably sourced gelatin. The group’s “biofibers” feel a bit like flax fiber and dissolve in hot water in minutes to an hour.

The team, led by Eldy Lázaro Vásquez, a doctoral student in the ATLAS Institute, presented its findings in May at the CHI Conference on Human Factors in Computing Systems in Honolulu.

“When you don’t want these textiles anymore, you can dissolve them and recycle the gelatin to make more fibers,” said Michael Rivera, a co-author of the new research and assistant professor in the ATLAS Institute and Department of Computer Science.

The study tackles a growing problem around the world: In 2018 alone, people in the United States added more than 11 million tons of textiles to landfills, according to the Environmental Protection Agency—nearly 8% of all municipal solid waste produced that year.

The researchers envision a different path for fashion.

Their machine is small enough to fit on a desk and cost just $560 to build. Lázaro Vásquez hopes the device will help designers around the world experiment with making their own biofibers.

“You could customize fibers with the strength and elasticity you want, the color you want,” she said. “With this kind of prototyping machine, anyone can make fibers. You don’t need the big machines that are only in university chemistry departments.”

Spinning threads
The study arrives as fashionistas, roboticists and more are embracing a trend known as “smart textiles.” Levi’s Trucker Jacket with Jacquard by Google, for example, looks like a denim coat but includes sensors that can connect to your smartphone.

But such clothing of the future comes with a downside, Rivera said:

“That jacket isn't really recyclable. It's difficult to separate the denim from the copper yarns and the electronics.”

To imagine a new way of making clothes, the team started with gelatin. This springy protein is common in the bones of many animals, including pigs and cows. Every year, meat producers throw away large volumes of gelatin that doesn’t meet requirements for cosmetics or food products like Jell-O. (Lázaro Vásquez bought her own gelatin, which comes as a powder, from a local butcher shop.)

She and her colleagues decided to turn that waste into wearable treasure.

The group’s machine uses a plastic syringe to heat up and squeeze out droplets of a liquid gelatin mixture. Two sets of rollers in the machine then tug on the gelatin, stretching it out into long, skinny fibers—not unlike a spider spinning a web from silk. In the process, the fibers also pass through liquid baths where the researchers can introduce bio-based dyes or other additives to the material. Adding a little bit of genipin, an extract from fruit, for example, makes the fibers stronger.

Other co-authors of the research included Mirela Alistar and Laura Devendorf, both assistant professors in ATLAS.

Dissolving duds
Lázaro Vásquez said designers may be able to do anything they can imagine with these sorts of textiles.

As a proof of concept, the researchers made small textile sensors out of gelatin fibers and cotton and conductive yarns, similar to the makeup of a Jacquard jacket. The team then submerged these patches in warm water. The gelatin dissolved, releasing the yarns for easy recycling and reuse.

Designers could tweak the chemistry of the fibers to make them a little more resilient, Lázaro Vásquez said—you wouldn’t want your jacket to disappear in the rain. They could also play around with spinning similar fibers from other natural ingredients. Those materials include chitin, a component of crab shells, or agar-agar, which comes from algae.

“We’re trying to think about the whole lifecycle of our textiles,” Lázaro Vásquez said. “That begins with where the material is coming from. Can we get it from something that normally goes to waste?”

More information:
Gelatin biofibres DIY
Source:

University of Colorado Boulder | Daniel Strain

Photo: 政徳 吉田, Pixabay
03.05.2024

Vehicle underbodies made from natural fibers and recycled plastics

In collaboration with industrial partners, researchers at the Fraunhofer WKI have developed a vehicle underbody made from natural fibers and recycled plastics for automotive construction. The focus at the Fraunhofer WKI was directed at the development of the materials for injection molding as well as the hydrophobization of flax and hemp fibers for natural-fiber-reinforced mixed-fiber non-wovens.

The component fulfills the stringent technical requirements in the underbody area and could replace conventional lightweight vehicle underbodies in the future. With this development, the climate and environmental balance is optimized throughout the entire product life cycle.

In collaboration with industrial partners, researchers at the Fraunhofer WKI have developed a vehicle underbody made from natural fibers and recycled plastics for automotive construction. The focus at the Fraunhofer WKI was directed at the development of the materials for injection molding as well as the hydrophobization of flax and hemp fibers for natural-fiber-reinforced mixed-fiber non-wovens.

The component fulfills the stringent technical requirements in the underbody area and could replace conventional lightweight vehicle underbodies in the future. With this development, the climate and environmental balance is optimized throughout the entire product life cycle.

The project partners Fraunhofer WKI, Thuringian Institute for Textile and Plastics Research (TITK), Röchling Automotive SE & Co. KG, BBP Kunststoffwerk Marbach Baier GmbH and Audi AG have succeeded in developing a sustainable overall concept for vehicle underbodies. The researchers have thereby taken a challenging component group with a high plastic content and made it accessible for the utilization of natural materials. Until now, natural-fiber-reinforced plastics have predominantly been used in cars for trim parts without significant mechanical functions. Structural components such as vehicle underbodies are, however, exposed to enormous loads and place high demands on the bending and crash behavior of the material. In modern lightweight vehicle concepts, high-performance materials made from glass-fiber-reinforced plastics are therefore utilized.

The project team was able to replace the glass fibers with natural materials such as flax, hemp and cellulose fibers and to produce underbody components with a natural-fiber content of up to 45%. In the area of polymers, virgin polypropylene was completely dispensed with and solely recyclates were utilized. All the challenges associated with this material changeover – both the lower initial mechanical properties of the materials and the temporally restricted processing windows – were solved by means of skillful compound combinations.

At the Fraunhofer WKI, materials for injection molding were developed. “Natural-fiber injection-molded compounds have so far been known primarily for their increased strength and stiffness compared to non-reinforced polymers. In the development of the vehicle underbody, we have furthermore succeeded in fulfilling the stringent requirements for low-temperature impact strength through an innovative combination of selected post-consumer recyclates (PCR) as a matrix and natural fibers of varying degrees of purity - without forfeiting the required stiffness and strength,” explained Moritz Micke-Camuz, Project Manager at the Fraunhofer WKI.

Within the framework of the development, fiber-composite components made from natural-fiber-reinforced mixed-fiber non-wovens (lightweight-reinforced thermoplastic, LWRT) were realized for the first time at the TITK and at Röchling. The developed product not only fulfills the mechanical requirements: It also withstands in particular the challenges posed by the humid environment in which it is used. For the hydrophobization of flax and hemp fibers for LWRT components, a continuous furfurylation process was developed at the Fraunhofer WKI. Through furfurylation, moisture absorption can be reduced by up to 35 percent without impairment of the bending strength of the subsequent components. The furfurylated fiber material can also be easily processed on a non-woven production line.

The prototype components produced were subsequently extensively tested both at component level and in road tests. Amongst others, the vehicles from the VW Group’s new “Premium Platform Electric” (PPE) were used for this purpose. Long-term experience has already been gathered within the framework of the series testing. The gratifying result of these tests: The newly developed biocomposites fulfill all standard requirements for underbody components and have proven to be suitable for series production. Neither the use of natural fibers nor of (post-consumer) recyclates leads to a significant impairment of the properties.

One major advantage of the innovation is the significantly improved carbon footprint: Compared to series production, 10.5 kilograms of virgin material (PP/glass fiber) can be replaced by 4.2 kilograms of natural fibers and 6.3 kilograms of post-consumer recyclate. As a result, CO2 emissions during production, use and product life have been reduced by up to 40 percent.

Within the scope of the development project, an innovative, holistic overall concept for vehicle underbodies, including recycling with cascading re-use of the components, was developed. From a technical point of view, vehicle underbodies can be manufactured entirely from the new, high-performance lightweight bio construction material in the future.

The project was funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) via the project management organization TÜV Rheinland.

Source:

Fraunhofer-Institut für Holzforschung, Wilhelm-Klauditz-Institut WKI

Nordic cooperation on circular innovation focusing on workwear Photo: Sven, pixabay
16.04.2024

Nordic cooperation on circular innovation focusing on workwear

The University of Borås, Aalborg University Business School and Circular Innovation Lab have just started the 'North-South Circular Value Chains Within Textiles' project - an explorative project that aims at bridging textile brands in the Nordics with a strong focus on sustainability with innovative producers in the South.

Focus areas are Circular Value Chains (CVCs), Circular and resource-efficient textiles economy, Workwear and technical clothing, Sectors such as construction, energy, electronics and IT, plastics, textiles, retail and metals.

Made possible by a grant from the Interreg ÖKS programme, the first step is to create a specific economic, legal and technological framework allowing Scandinavian workwear companies to enter into close collaboration on circular solutions in the overall textile value chain and to prepare, and adapt their global value chains to the upcoming EU regulations on circular economy.

The University of Borås, Aalborg University Business School and Circular Innovation Lab have just started the 'North-South Circular Value Chains Within Textiles' project - an explorative project that aims at bridging textile brands in the Nordics with a strong focus on sustainability with innovative producers in the South.

Focus areas are Circular Value Chains (CVCs), Circular and resource-efficient textiles economy, Workwear and technical clothing, Sectors such as construction, energy, electronics and IT, plastics, textiles, retail and metals.

Made possible by a grant from the Interreg ÖKS programme, the first step is to create a specific economic, legal and technological framework allowing Scandinavian workwear companies to enter into close collaboration on circular solutions in the overall textile value chain and to prepare, and adapt their global value chains to the upcoming EU regulations on circular economy.

Recently, the consortium partners convened for an initial meeting at The Swedish School of Textiles to discuss the project framework, which is a feasibility study intended to lead to a multi-year project involving workwear companies in the Öresund-Kattegat-Skagerrak (ÖKS) region, including their supply chains in Asia.

Kim Hjerrild, Strategic Partnerships Lead at the Danish think tank Circular Innovation Lab, Copenhagen, explained: "The goal is to assist workwear producers in Denmark, Sweden, and Norway in becoming more sustainable through circular product design, production, and service concepts. We are pleased to have The Swedish School of Textiles lead the project as they have a strong tradition of collaborating with textile companies."

Complex branch
The decision to focus specifically on workwear stems from it being a complex part of the textile industry, demanding strict standards, certifications, safety aspects, and specific functions depending on the application area, such as specific high-performance environments, healthcare, and hospitality. "To future-proof their operations, companies need to become more resource efficient and circular by producing durable and long lasting workwear that can be repaired and reused. Additionally, they must reduce their carbon footprint per product, as well as minimize problematic chemical usage, and increasingly use recycled materials" explained Kim Hjerrild.

Wants to provide companies with tools and knowledge
Apoorva Arya, founder and CEO of Circular Innovation Lab, elaborates: "Our first and primary goal is to equip Scandinavian workwear companies with tools and knowledge in order to comply with the upcoming EU directives and policies. This includes regulations on product-specific design requirements to labour conditions for employees, human rights, all the way from production to third-party suppliers. Ensuring these companies, especially their suppliers, can transition to a circular supply chain, and navigate the legislative landscape, while guaranteeing competitiveness in the global market."

Focus on new structures
Rudrajeet Pal, Professor of Textile Management at The Swedish School of Textiles, is pleased that the university can be the coordinator of the project. "From the perspective of my research group, this
is incredibly interesting given the focus on the examination and development of ‘new’ supply chain and business model structures that would enable sustainable value generation in textile enterprises, industry, and for the environment and society at large. We have conducted several projects where such global north-south value chain focus is eminent, and this time particularly in workwear companies’ value chain between Scandinavia and Asia. We are delighted to contribute expertise and our experience of working internationally."

About the pre-project North-South Circular Value Chains Within Textiles, NSCirTex
The project aims to support the circular transition in the Nordics by setting up a shared governance model to enable pre-competitive collaboration and the design of circular value chains between Scandinavian workwear companies in the ÖKS-region and producers in India, Bangladesh, Vietnam, and Türkiye.

The next step is to achieve a multi-year main project where workwear companies with their suppliers in Asian countries, can test tailored models for shared governance as a way to develop practical circular solutions, such as post-consumer recycling, circular material procurement, develop safe and resource efficient circular products, enhance social sustainability and due diligence, among others. The main project will thus develop solutions to reduce material footprint, and resource usage while generating both commercial viability and prepare for new regulation, reporting, and accountability.

Partners in this feasibility study: University of Borås, Aalborg University Business School, and Circular Innovation Lab. The feasibility study is funded by the EU through the Interreg Öresund-Kattegat-Skagerrak European Regional Development Fund.

Source:

University of Borås, Solveig Klug

textile waste AI generated image: Pete Linforth, Pixabay
02.04.2024

The Future of Circular Textiles: New Cotton Project completed

In a world first for the fashion industry, in October 2020 twelve pioneering players came together to break new ground by demonstrating a circular model for commercial garment production. Over more than three years, textile waste was collected and sorted, and regenerated into a new, man-made cellulosic fiber that looks and feels like cotton – a “new cotton” – using Infinited Fiber Company’s textile fiber regeneration technology.
 

In a world first for the fashion industry, in October 2020 twelve pioneering players came together to break new ground by demonstrating a circular model for commercial garment production. Over more than three years, textile waste was collected and sorted, and regenerated into a new, man-made cellulosic fiber that looks and feels like cotton – a “new cotton” – using Infinited Fiber Company’s textile fiber regeneration technology.
 
The pioneering New Cotton Project launched in October 2020 with the aim of demonstrating a circular value chain for commercial garment production. Through-out the project the consortium worked to collect and sort end-of-life textiles, which using pioneering Infinited Fiber technology could be regenerated into a new man-made cellulosic fibre called Infinna™ which looks and feels just like virgin cotton. The fibres were then spun into yarns and manufactured into different types of fabric which were designed, produced, and sold by adidas and H&M, making the adidas by Stella McCartney tracksuit and a H&M printed jacket and jeans the first to be produced through a collaborative circular consortium of this scale, demonstrating a more innovative and circular way of working for the fashion industry.
 
As the project completes in March 2024, the consortium highlights eight key factors they have identified as fundamental to the successful scaling of fibre-to-fibre recycling.

The wide scale adoption of circular value chains is critical to success
Textile circularity requires new forms of collaboration and open knowledge exchange among different actors in circular ecosystems. These ecosystems must involve actors beyond traditional supply chains and previously disconnected industries and sectors, such as the textile and fashion, waste collection and sorting and recycling industries, as well as digital technology, research organisations and policymakers. For the ecosystem to function effectively, different actors need to be involved in aligning priorities, goals and working methods, and to learn about the others’ needs, requirements and techno-economic possibilities. From a broader perspective, there is also a need for a more fundamental shift in mindsets and business models concerning a systemic transition toward circularity, such as moving away from the linear fast fashion business models. As well as sharing knowledge openly within such ecosystems, it also is important to openly disseminate lessons learnt and insights in order to help and inspire other actors in the industry to transition to the Circular Economy.

Circularity starts with the design process
When creating new styles, it is important to keep an end-of-life scenario in mind right from the beginning. As this will dictate what embellishments, prints, accessories can be used. If designers make it as easy as possible for the recycling process, it has the bigger chance to actually be feedstock again. In addition to this, it is important to develop business models that enable products to be used as long as possible, including repair, rental, resale, and sharing services.

Building and scaling sorting and recycling infrastructure is critical
In order to scale up circular garment production, there is a need for technological innovation and infrastructure development in end-of-use textiles collection, sorting, and the mechanical pre-processing of feedstock. Currently, much of the textiles sorting is done manually, and the available optical sorting and identification technologies are not able to identify garment layers, complex fibre blends, or which causes deviations in feedstock quality for fibre-to-fibre recycling. Feedstock preprocessing is a critical step in textile-to-textile recycling, but it is not well understood outside of the actors who actually implement it. This requires collaboration across the value chain, and it takes in-depth knowledge and skill to do it well. This is an area that needs more attention and stronger economic incentives as textile-to-textile recycling scales up.

Improving quality and availability of data is essential
There is still a significant lack of available data to support the shift towards a circular textiles industry. This is slowing down development of system level solutions and economic incentives for textile circulation. For example, quantities of textiles put on the market are often used as a proxy for quantities of post-consumer textiles, but available data is at least two years old and often incomplete. There can also be different textile waste figures at a national level that do not align, due to different methodologies or data years. This is seen in the Dutch 2018 Mass Balance study reports and 2020 Circular Textile Policy Monitoring Report, where there is a 20% difference between put on market figures and measured quantities of post-consumer textiles collected separately and present in mixed residual waste. With the exception of a few good studies such as Sorting for Circularity Europe and ReFashion’s latest characterization study, there is almost no reliable information about fibre composition in the post-consumer textile stream either. Textile-to-textile recyclers would benefit from better availability of more reliable data. Policy monitoring for Extended Producer Responsibility schemes should focus on standardising reporting requirements across Europe from post-consumer textile collection through their ultimate end point and incentivize digitization so that reporting can be automated, and high-quality textile data becomes available in near-real time.

The need for continuous research and development across the entire value chain
Overall, the New Cotton Project’s findings suggest that fabrics incorporating Infinna™ fibre offer a more sustainable alternative to traditional cotton and viscose fabrics, while maintaining similar performance and aesthetic qualities. This could have significant implications for the textile industry in terms of sustainability and lower impact production practices. However, the project also demonstrated that the scaling of fibre-to-fibre recycling will continue to require ongoing research and development across the entire value chain. For example, the need for research and development around sorting systems is crucial. Within the chemical recycling process, it is also important to ensure the high recovery rate and circulation of chemicals used to limit the environmental impact of the process. The manufacturing processes also highlighted the benefit for ongoing innovation in the processing method, requiring technologies and brands to work closely with manufacturers to support further development in the field.

Thinking beyond lower impact fibres
The New Cotton Project value chain third party verified LCA reveals that the cellulose carbamate fibre, and in particular when produced with a renewable electricity source, shows potential to lower environmental impacts compared to conventional cotton and viscose. Although, it's important to note that this comparison was made using average global datasets from Ecoinvent for cotton and viscose fibres, and there are variations in the environmental performance of primary fibres available on the market. However, the analysis also highlights the importance of the rest of the supply chain to reduce environmental impact. The findings show that even if we reduce the environmental impacts by using recycled fibres, there is still work to do in other life cycle stages. For example; garment quality and using the garment during their full life span are crucial for mitigating the environmental impacts per garment use.
          
Citizen engagement
The EU has identified culture as one of the key barriers to the adoption of the circular economy within Europe. An adidas quantitative consumer survey conducted across three key markets during the project revealed that there is still confusion around circularity in textiles, which has highlighted the importance of effective citizen communication and engagement activities.

Cohesive legislation
Legislation is a powerful tool for driving the adoption of more sustainable and circular practices in the textiles industry. With several pieces of incoming legislation within the EU alone, the need for a cohesive and harmonised approach is essential to the successful implementation of policy within the textiles industry. Considering the link between different pieces of legislation such as Extended Producer Responsibility and the Ecodesign for Sustainable Products Regulation, along with their corresponding timeline for implementation will support stakeholders from across the value chain to prepare effectively for adoption of these new regulations.

The high, and continuously growing demand for recycled materials implies that all possible end-of-use textiles must be collected and sorted. Both mechanical and chemical recycling solutions are needed to meet the demand. We should also implement effectively both paths; closed-loop (fibre-to-fibre) and open -loop recycling (fibre to other sectors). There is a critical need to reconsider the export of low-quality reusable textiles outside the EU. It would be more advantageous to reuse them in Europe, or if they are at the end of their lifetime recycle these textiles within the European internal market rather than exporting them to countries where demand is often unverified and waste management inadequate.

Overall, the learnings spotlight the need for a holistic approach and a fundamental mindset shift in ways of working for the textiles industry. Deeper collaboration and knowledge exchange is central to developing effective circular value chains, helping to support the scaling of innovative recycling technologies and increase availability of recycled fibres on the market. The further development and scaling of collecting and sorting, along with the need to address substantial gaps in the availability of quality textile flow data should be urgently prioritised. The New Cotton Project has also demonstrated the potential of recycled fibres such as Infinna™ to offer a more sustainable option to some other traditional fibres, but at the same time highlights the importance of addressing the whole value chain holistically to make greater gains in lowering environmental impact. Ongoing research and development across the entire value chain is also essential to ensure we can deliver recycled fabrics at scale in the future.

The New Cotton Project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101000559.

 

Source:

Fashion for Good

Converting CO2 to Solid Carbon Nanofibers (c) Zhenhua Xie/Brookhaven National Laboratory and Columbia University; Erwei Huang/Brookhaven National Laboratory
22.01.2024

Converting CO2 to Solid Carbon Nanofibers

Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material.

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia University have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure. As the scientists describe in the journal Nature Catalysis, this approach could successfully lock carbon away in a useful solid form to offset or even achieve negative carbon emissions.

Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material.

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia University have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure. As the scientists describe in the journal Nature Catalysis, this approach could successfully lock carbon away in a useful solid form to offset or even achieve negative carbon emissions.

“You can put the carbon nanofibers into cement to strengthen the cement,” said Jingguang Chen, a professor of chemical engineering at Columbia with a joint appointment at Brookhaven Lab who led the research. “That would lock the carbon away in concrete for at least 50 years, potentially longer. By then, the world should be shifted to primarily renewable energy sources that don’t emit carbon.”

As a bonus, the process also produces hydrogen gas (H2), a promising alternative fuel that, when used, creates zero emissions.

Capturing or converting carbon?
The idea of capturing CO2 or converting it to other materials to combat climate change is not new. But simply storing CO2 gas can lead to leaks. And many CO2 conversions produce carbon-based chemicals or fuels that are used right away, which releases CO2 right back into the atmosphere.

“The novelty of this work is that we are trying to convert CO2 into something that is value-added but in a solid, useful form,” Chen said.

Such solid carbon materials—including carbon nanotubes and nanofibers with dimensions measuring billionths of a meter—have many appealing properties, including strength and thermal and electrical conductivity. But it’s no simple matter to extract carbon from carbon dioxide and get it to assemble into these fine-scale structures. One direct, heat-driven process requires temperatures in excess of 1,000 degrees Celsius.

“It’s very unrealistic for large-scale CO2 mitigation,” Chen said. “In contrast, we found a process that can occur at about 400 degrees Celsius, which is a much more practical, industrially achievable temperature.”

The tandem two-step
The trick was to break the reaction into stages and to use two different types of catalysts—materials that make it easier for molecules to come together and react.

“If you decouple the reaction into several sub-reaction steps you can consider using different kinds of energy input and catalysts to make each part of the reaction work,” said Brookhaven Lab and Columbia research scientist Zhenhua Xie, lead author on the paper.

The scientists started by realizing that carbon monoxide (CO) is a much better starting material than CO2 for making carbon nanofibers (CNF). Then they backtracked to find the most efficient way to generate CO from CO2.

Earlier work from their group steered them to use a commercially available electrocatalyst made of palladium supported on carbon. Electrocatalysts drive chemical reactions using an electric current. In the presence of flowing electrons and protons, the catalyst splits both CO2 and water (H2O) into CO and H2.

For the second step, the scientists turned to a heat-activated thermocatalyst made of an iron-cobalt alloy. It operates at temperatures around 400 degrees Celsius, significantly milder than a direct CO2-to-CNF conversion would require. They also discovered that adding a bit of extra metallic cobalt greatly enhances the formation of the carbon nanofibers.

“By coupling electrocatalysis and thermocatalysis, we are using this tandem process to achieve things that cannot be achieved by either process alone,” Chen said.

Catalyst characterization
To discover the details of how these catalysts operate, the scientists conducted a wide range of experiments. These included computational modeling studies, physical and chemical characterization studies at Brookhaven Lab’s National Synchrotron Light Source II (NSLS-II)—using the Quick X-ray Absorption and Scattering (QAS) and Inner-Shell Spectroscopy (ISS) beamlines—and microscopic imaging at the Electron Microscopy facility at the Lab’s Center for Functional Nanomaterials (CFN).

On the modeling front, the scientists used “density functional theory” (DFT) calculations to analyze the atomic arrangements and other characteristics of the catalysts when interacting with the active chemical environment.

“We are looking at the structures to determine what are the stable phases of the catalyst under reaction conditions,” explained study co-author Ping Liu of Brookhaven’s Chemistry Division who led these calculations. “We are looking at active sites and how these sites are bonding with the reaction intermediates. By determining the barriers, or transition states, from one step to another, we learn exactly how the catalyst is functioning during the reaction.”

X-ray diffraction and x-ray absorption experiments at NSLS-II tracked how the catalysts change physically and chemically during the reactions. For example, synchrotron x-rays revealed how the presence of electric current transforms metallic palladium in the catalyst into palladium hydride, a metal that is key to producing both H2 and CO in the first reaction stage.

For the second stage, “We wanted to know what’s the structure of the iron-cobalt system under reaction conditions and how to optimize the iron-cobalt catalyst,” Xie said. The x-ray experiments confirmed that both an alloy of iron and cobalt plus some extra metallic cobalt are present and needed to convert CO to carbon nanofibers.

“The two work together sequentially,” said Liu, whose DFT calculations helped explain the process.

“According to our study, the cobalt-iron sites in the alloy help to break the C-O bonds of carbon monoxide. That makes atomic carbon available to serve as the source for building carbon nanofibers. Then the extra cobalt is there to facilitate the formation of the C-C bonds that link up the carbon atoms,” she explained.

Recycle-ready, carbon-negative
“Transmission electron microscopy (TEM) analysis conducted at CFN revealed the morphologies, crystal structures, and elemental distributions within the carbon nanofibers both with and without catalysts,” said CFN scientist and study co-author Sooyeon Hwang.

The images show that, as the carbon nanofibers grow, the catalyst gets pushed up and away from the surface. That makes it easy to recycle the catalytic metal, Chen said.

“We use acid to leach the metal out without destroying the carbon nanofiber so we can concentrate the metals and recycle them to be used as a catalyst again,” he said.

This ease of catalyst recycling, commercial availability of the catalysts, and relatively mild reaction conditions for the second reaction all contribute to a favorable assessment of the energy and other costs associated with the process, the researchers said.

“For practical applications, both are really important—the CO2 footprint analysis and the recyclability of the catalyst,” said Chen. “Our technical results and these other analyses show that this tandem strategy opens a door for decarbonizing CO2 into valuable solid carbon products while producing renewable H2.”

If these processes are driven by renewable energy, the results would be truly carbon-negative, opening new opportunities for CO2 mitigation.

Source:

Brookhaven National Laboratory

Berndt Köll on the Stubai Glacier: Initial field tests showed convincing results. (c) Lenzing AG
22.11.2023

Glacier protection rethought: Nonwovens made of cellulosic fibers

Protection for snow and ice: Cellulosic LENZING™ fibers offer solution for preservation of glacier mass

In field trials on Austrian glaciers, nonwovens made of cellulosic LENZING™ fibers are being used to cover glacier mass. They are showing promising results and offer a sustainable solution for glacier protection. Nonwovens containing fossil-based synthetic fibers might cause negative environmental consequences such as microplastics on glaciers.

Protection for snow and ice: Cellulosic LENZING™ fibers offer solution for preservation of glacier mass

In field trials on Austrian glaciers, nonwovens made of cellulosic LENZING™ fibers are being used to cover glacier mass. They are showing promising results and offer a sustainable solution for glacier protection. Nonwovens containing fossil-based synthetic fibers might cause negative environmental consequences such as microplastics on glaciers.

Geotextiles are already widely used to protect snow and ice on glaciers from melting. The use of nonwovens made from cellulosic LENZING™ fibers is now achieving a sustainable turnaround. Geotextiles show great success in Austria in protecting glaciers, which are highly endangered by global warming. By covering glacier mass, its melting is slowed down and mitigated. So far, the nonwovens used to protect glaciers are usually made of fossil-based synthetic fibers. The problem with that might occur as microplastics left behind after the summer flow down into the valley and can enter the food chain through small organisms and animals.

Sustainability from production to reuse
An innovative and sustainable solution for the protection of snow and ice is now possible with the help of nonwovens made of cellulosic LENZING™ fibers. "LENZING™ fibers are derived from renewable, responsibly managed wood sources and are produced in an environmentally responsible process. Thanks to their botanic origin, they have the ability to break down, returning into nature after use" explains Berndt Köll, Business & Innovation Manager at Lenzing.

In a field trial on the Stubai Glacier, the covering of a small area with the new material containing cellulosic LENZING™ fibers was tested for the first time. The result was convincing: 4 meters of ice mass could be saved from melting. Due to its success, the project is now being expanded. In 2023 field tests started in all Austrian glaciers, which are used for tourism.

"We are pleased with the positive results and see the project as a sustainable solution for glacier protection - not only in Austria, but beyond national borders," Berndt Köll continues. There should also be a possibility to explore for recycling after the nonwovens are used: These geotextiles can be recycled and ultimately used to make yarn for textile products.

Awarded with the Swiss BIO TOP
The sustainable glacier protection and its results also convinced the jury of industry experts of the BIO TOP, a major award for wood and material innovations in Switzerland. With this award innovative projects in the field of bio-based woods and materials are promoted and supported. At the award ceremony on September 20, 2023, Geotextiles containing LENZING™ fibers were honored with the award for its solution.

Source:

Lenzing AG

offshore windpark Nicholas Doherty, unsplash
17.10.2023

Pyrolysis processes promise sustainable recycling of fiber composites

Wind turbines typically operate for 20 to 30 years before they are undergoing dismantling and recycling. However, the recycling of fiber composites, especially from the thick-walled rotor blade parts, has been inadequate until now. The prevailing methods involve thermal or mechanical recycling. For a sustainable and holistic recycling process, a research consortium led by Fraunhofer IFAM is pooling their expertise to recover the fibers through pyrolysis. Subsequent surface treatment and quality testing of the recyclates allow for them to be used again in industry.

Wind turbines typically operate for 20 to 30 years before they are undergoing dismantling and recycling. However, the recycling of fiber composites, especially from the thick-walled rotor blade parts, has been inadequate until now. The prevailing methods involve thermal or mechanical recycling. For a sustainable and holistic recycling process, a research consortium led by Fraunhofer IFAM is pooling their expertise to recover the fibers through pyrolysis. Subsequent surface treatment and quality testing of the recyclates allow for them to be used again in industry.

Today, the vast majority of wind turbines can already be recycled cleanly. In the case of rotor blades, however, recycling is only just beginning. Due to the 20-year operation period and the installation rates, the blade volume for recycling will be increasing in the coming years and decades. In 2000, for example, around 6,000 wind turbines were erected in Germany, which now need to be fed into a sustainable recycling process. In 2022, about 30,000 onshore and offshore wind turbines with a capacity of 65 gigawatts were in operation in Germany alone.

As wind energy is the most important cornerstone for a climate-neutral power supply, the German government has set itself the goal of further increasing its wind energy capacity by 2030 by installing larger and more modern turbines. Rotor blades will become longer, the proportion of carbon fibers used will continue to increase - and so will the amount of waste. In addition, the existing material mix in rotor blades is expected to increase in the future and precise knowledge of the structure of the components will become even more important for recycling. This underscores the urgency of developing sustainable processing methods, especially for recycling the thick-walled fiber composites in the rotor blades.

Economic and ecological recycling solution for fiber composites on the horizon
Rotor blades of wind turbines currently up for recycling consist of more than 85 percent of glass- and carbon-fiber-reinforced thermosets (GFRP/CFRP). A large proportion of these materials is found in the flange and root area and within the fiber-reinforced straps as thick-walled laminates with a wall thicknesses of up to 150 mm. Research into high-quality material fiber recycling as continuous fibers is of particular importance, not only because of the energy required for carbon fiber production. This is where the project "Pyrolysis of thick-walled fiber composites as a key innovation in the recycling process for wind turbine rotor blades" – "RE SORT" for short – funded by the German Federal Ministry of Economics and Climate Protection comes in. The aim of the project team is the complete recycling by means of pyrolysis.

A prerequisite for high-quality recycling of fiber composites is the separation of the fibers from the mostly thermoset matrix. Although pyrolysis is a suitable process for this purpose, it has not yet gained widespread adoption. Within the project, the project partners are therefore investigating and developing pyrolysis technologies that make the recycling of thick-walled fiber composite structures economically feasible and are technically different from the recycling processes commonly used for fiber composites today. Both quasi-continuous batch and microwave pyrolysis are being considered.

Batch pyrolysis, which is being developed within the project, is a pyrolysis process in which the thermoset matrix of thick fiber composite components is slowly decomposed into oily and especially gaseous hydrocarbon compounds by external heating. In microwave pyrolysis, energy is supplied by the absorption of microwave radiation, resulting in internal rapid heat generation. Quasi-continuous batch pyrolysis as well as microwave pyrolysis allow the separation of pyrolysis gases or oils. The planned continuous microwave pyrolysis also allows for the fibers to be preserved and reused in their full length.

How the circular economy succeeds - holistic utilization of the recycled products obtained
In the next step, the surfaces of the recovered recycled fibers are prepared by means of atmospheric plasmas and wet-chemical coatings to ensure their suitability for reuse in industrial applications. Finally, strength tests can be used to decide whether the recycled fibers will be used again in the wind energy industry or, for example, in the automotive or sporting goods sectors.

The pyrolysis oils and pyrolysis gases obtained in batch and microwave pyrolysis are evaluated with respect to their usability as raw materials for polymer synthesis (pyrolysis oils) or as energy sources for energy use in combined heat and power (CHP) plants (pyrolysis gases).

Both quasi-continuous batch pyrolysis and continuous-flow microwave pyrolysis promise economical operation and a significant reduction in the environmental footprint of wind energy. Therefore, the chances for a technical implementation and utilization of the project results are very good, so that this project can make a decisive contribution to the achievement of the sustainability and climate goals of the German Federal Government.

Source:

Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM

A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from. Photo: © Fraunhofer IPMS. A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from.
10.10.2023

Checking clothing using a smartphone, AI and infrared spectroscopy

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Infrared spectrometers are powerful measuring instruments when it comes to non-destructive analysis of organic materials. The Fraunhofer Institute for Photonic Microsystems IPMS in Dresden has recently developed a spectral analyzer system that recognizes and analyzes textile fabrics. The system can also reliably recognize mixed fabrics. Possible applications range from checking fabrics when out shopping to cleaning garments correctly, and even sustainable, sorted recycling. The spectrometer is so tiny, it can be integrated into a smartphone.

Researchers at Fraunhofer rely on near-infrared (NIR) spectroscopy to achieve the required reliability and accuracy when identifying textiles. The system works for wavelengths between 950 and 1900 nanometers, which is close to the visible spectrum. Advantages of near-infrared technology include being easy to use and having a wide range of applications. “We combine NIR spectroscopy with imaging and AI to achieve higher accuracy when recognizing and analyzing objects,” explains Dr. Heinrich Grüger, research scientist in the Sensoric Micromodules department at Fraunhofer IPMS.

How textile analysis works
Firstly, a conventional camera module captures an image of the garment. The AI selects a specific point from the fabric’s image data to be examined by the spectral analyzer module. Light reflected from the fabric is captured by the spectrometer module. There, it passes through an entrance slit, is transformed into parallel light beams using a collimating mirror and projected onto a grating using a scanning mirror. Depending on the angle of incidence and exit, the grating splits the light beams into different wavelengths. Light reflected from the grating is directed by the scanner mirror to a detector which captures the light as an electrical signal. An A/D converter then digitizes these signals, which are subsequently analyzed in the signal processor. The resulting spectrometric profile for the textile fabric reveals which fibers it is made from by comparing to a reference database.“ The optical resolution is 10 nanometers. This high resolution means the NIR spectrometer can also use AI to identify mixed fabrics such as items of clothing made from polyester and cotton,” says Grüger. Measuring just 10 mm × 10 mm and being 6.5 mm thick, the system is so compact it could easily be integrated into a standard smartphone.

Recycling old clothing
Grüger sees an important application for the AI-controlled spectrometer when it comes to recycling. According to the Federal Statistical Office of Germany, approximately 176,200 tons of textile and clothing waste was collected from private homes in Germany in 2021. NIR spectroscopy could improve recycling efficiency and reduce the mountain of old clothing. This would enable companies that recycle old clothing to sort it more efficiently and faster. Textiles that are still in one piece, for instance, go to the second-hand trade. Damaged textiles are sorted for recycling, and the fibers they are made from, such as linen, silk, cotton or lyocell, can be reused. Severely soiled textiles would be incinerated or processed into insulation mats, for example. Spectroscopic identifies and sorts textiles more accurately and much faster than a human can.

If NIR spectroscopy was to be integrated into a smartphone, end-users might also benefit from the Fraunhofer institute’s technology. When buying clothes, a quick check with a smartphone reveals whether that expensive silk scarf is genuinely made from silk, or whether that exclusive dress from the fashion label is not instead a counterfeit, exposed through an alternative mix of fabrics. And should the label with the cleaning instructions no longer be legible, the smartphone has a textile scanner to identify the fabric and so determine the appropriate wash cycle.

Food check and dermatology
Researchers at Fraunhofer IPMS can even envisage applications beyond the textile industry. Smartphones fitted with spectrometers might be used to provide information about the quality of groceries such as fruit and vegetables when out shopping. The technology might conceivably also be used to examine skin. A quick scan with the cell phone spectrometer could identify particularly dry or greasy patches. Perhaps applications in medical diagnostics might even be conceivable — examining patches of skin where a melanoma is suspected, for example — but this would need professional involvement too.

Source:

Fraunhofer Institute for Photonic Microsystems

Heimtextil Trends 24/25 © SPOTT trends & business for Heimtextil
12.09.2023

Heimtextil Trends 24/25: New Sensitivity

Under the theme "New Sensitivity", textile transformation is the focus of Heimtextil Trends 24/25. Three approaches show ways to a more sensitive world of textiles: the plant-based production of textiles, the support of textile cycles by technology and the bioengineered use of natural ingredients. In addition, Future Materials curates regenerative materials and designs.
 
After last year's focus on circular solutions, Heimtextil Trends 24/25 will once again shed light on transformative textile innovations.
Under the title "New Sensitivity," the focus is on innovations and changes in the composition of textiles, in addition to aesthetic aspects. "In this context, sensitivity means considering the impact on the environment when making a decision or creating a product. Understanding how natural ecosystems work and prioritising balance as the default are key," says Anja Bisgaard Gaede, Founder of SPOTT trends & business.

Under the theme "New Sensitivity", textile transformation is the focus of Heimtextil Trends 24/25. Three approaches show ways to a more sensitive world of textiles: the plant-based production of textiles, the support of textile cycles by technology and the bioengineered use of natural ingredients. In addition, Future Materials curates regenerative materials and designs.
 
After last year's focus on circular solutions, Heimtextil Trends 24/25 will once again shed light on transformative textile innovations.
Under the title "New Sensitivity," the focus is on innovations and changes in the composition of textiles, in addition to aesthetic aspects. "In this context, sensitivity means considering the impact on the environment when making a decision or creating a product. Understanding how natural ecosystems work and prioritising balance as the default are key," says Anja Bisgaard Gaede, Founder of SPOTT trends & business.

How does New Sensitivity translate into something concrete in the lifestyle industry, and what does having a sensitive approach to design and products mean? Also the adoption of Artificial General Intelligence (AGI) is transforming current times. AGI has the potential to bring innovative solutions and help tackle significant challenges, also in the textile industry. However, AGI can have the opposite effect on society. AGI needs the mindset of New Sensitivity that helps simplify complexity, expand creativity, and find unseen solutions, also within the world of textiles.
     
"With Heimtextil Trends 24/25: New Sensitivity, we encourage the textile industry to approach the future with thoughtfulness and consideration. Specifically, we see this change in three different trends for a more sensitive world of textiles: biotechnical, plant-based and technological," Bisgaard Gaede continues.

Plant-based: textiles made from plant crops or plant by-products
Plant-based textiles mean that the fibres are derived from something that grows rather than being synthetically produced. The sustainable advantage of plant-based textiles is that their origin is natural and, therefore, more able to recirculate in existing ecosystems. They can be divided into two groups. The first group of textiles are made from plant crops. New resilient crops like cactus, hemp, abaca, seaweed, and rubber offer new sustainable textile solutions. Because of mechanical extraction, they can grow despite climate changes and require fewer chemicals in their development. The second group consists of textiles made of plant by-products which are leftover raw materials from production such as banana, olive, persimmon and hemp.

Technological: technology and technical solutions transforming textiles
Technology can support the transformation of textiles through the use of different methods: upcycling and recycling of textiles, textile construction, and textile design. Due to decades of production, textiles are now a material available in abundance. Developing technologies for recycling textile waste and methods for upcycling textiles increases the circular usage of existing textiles. Furthermore, old textile construction techniques also offer pathways to sustainable solutions: For instance, using knitting technology for furniture upholstery produces less fabric waste; alternatively, weaving technique allows the creation of several colours using only a few coloured yarns. Textile Design Thinking is another method that addresses critical issues such as energy usage and durability of natural fibres and enhances these through technological textile advancement.

Bio-engineered: engineered to enhance bio-degrading
To a certain degree, bio-engineered textiles represent a fusion of plant-based and technological textiles. Bio-engineering bridges nature and technology and transforms the way textiles are made. They can be divided into two directions: fully bio-engineered and bio-degradable textiles. In the production of fully bio-engineered textiles nature-inspired strategies are adopted. Instead of growing plants and extracting their fibres, textiles are made from the protein, carbohydrates, or bacteria in corn, grass, and cane sugar. Manufacturing involves a bio-molecular process that creates filaments which are made into yarn. The sustainable advantage of bio-engineered textiles is that they can have some of the same functionalities as synthetically produced textiles, while still being biodegradable because of their natural origin. Biodegradable fibres can be added to conventional textiles like polyester to enhance the conventional textiles’ ability to revert to materials found in nature and hence biodegrade in natural environments such as water or soil. Although not biodegrading completely, these bio-enhanced textiles will biodegrade up to 93 % compared to conventional textiles.

Heimtextil Trends 24/25: new colourways
A sensitive approach to colouring methods is expressed by a dynamic yet subtle colour palette created through natural pigments deriving from the earth, as traditional colouring processes are brought to the next level through innovative bioengineering technology. In pursuit of creating colours that evoke emotions in our senses while at the same time respecting our values in protecting the environment, we see colour bacteria growing pigments generating hues with great richness and depth.
               
This New Sensitivity includes acceptance of natural colour flows, as colours may fade with time or morph into new colourways. The colourways for Heimtextil Trends 24/25 were inspired by natural colours deriving from avocado seeds, algae, living bacteria, antique pigments such as raw sienna, and bio-engineered indigo and cochineal. The high black component in most colours allows for widespread application and a greater variety of combinations. The punchy saturated accents enhance our senses as they lift our spirits. In contrast, the grounding neutrals in different shades of grey, terra and even dark purple allow for calmness and tranquillity.

Future Materials: regenerative design
How are regenerative textiles and materials defined? Regenerative design is dedicated to developing holistic creative practices that restore or renew resources, have a positive impact on the environment, and encourage communities to thrive. For Heimtextil 2024, design futures consultancy FranklinTill is curating a global showcase of cutting-edge textiles and materials to illustrate the principles of regenerative design and recognize pioneering designers, producers and manufacturers who are at the forefront of regenerative design.
The Trend Space at Heimtextil in Frankfurt, Germany, January 9-12, 2023, will showcase these pioneering solutions in an inspiring way. In addition, Heimtextil Trends will offer visitors orientation and insights into the future of home and contract textiles in the form of workshops, lectures and other interactive formats.

Source:

Heimtextil, Messe Frankfurt

Point of View: Let’s end fast fashion, Prof Minna Halme. Photo: Veera Konsti / Aalto University
18.08.2023

Point of View: Let’s end fast fashion

Focusing on short-term profit isn’t sustainable. So what can we do to move in the right direction: favour resilience over efficiency in all industries.

We buy cheap products knowing we’ll need to replace them soon. We throw out used items rather than repairing or re-using them. Our employers plan in terms of financial quarters despite hoping to remain relevant and resilient longer-term. Even countries prioritise short-term economic output, focusing on gross domestic product (GDP) above any other indicator.

But does this way of living, working and weighing decisions make sense in the 21st century?

Our global obsession with economic short-term efficiency – and how to transform it – is a conundrum that Professor of Sustainability Management Minna Halme has been thinking about for most of her career. Even as a business school student, she felt flummoxed by how focused her classes were on short-term goals.

Focusing on short-term profit isn’t sustainable. So what can we do to move in the right direction: favour resilience over efficiency in all industries.

We buy cheap products knowing we’ll need to replace them soon. We throw out used items rather than repairing or re-using them. Our employers plan in terms of financial quarters despite hoping to remain relevant and resilient longer-term. Even countries prioritise short-term economic output, focusing on gross domestic product (GDP) above any other indicator.

But does this way of living, working and weighing decisions make sense in the 21st century?

Our global obsession with economic short-term efficiency – and how to transform it – is a conundrum that Professor of Sustainability Management Minna Halme has been thinking about for most of her career. Even as a business school student, she felt flummoxed by how focused her classes were on short-term goals.

'It was about selling more, about maximising shareholder profits, about economic growth – but not really asking, Why? What's the purpose of all this?'

Halme says. 'Even 20-year-old me somehow just felt that this was strange.

'What are we trying to do here? Are we trying to create a better economy for all, or most, people? Whose lives are we trying to improve when we are selling more differently-packaged types of yoghurt or clothes that quickly become obsolete?'

Halme has devoted her career to studying these questions. Today, she is a thought leader in innovative business practices, with recognitions including serving on Finland's National Expert Panel for Sustainable Development and on the United Nation's Panel on Global Sustainability.

Her ultimate goal? Pioneering, researching and advocating for alternative ways of thinking that prioritise values like long-term economic sustainability and resilience – alternatives that she and other experts believe would provide more lasting, widespread benefit to all.

How traditional indicators have failed
One way in which our preference for economic efficiency shapes how we measure a country's overall well-being or status is GDP. This isn't the fault of the originator of the modern concept of GDP, who specifically warned against using it in this way in the 1930s.

'GDP was never meant to tell us about the wellbeing of the citizens of a country,' Halme says. Seventy-five years ago, however, it was easy to conflate the two. Many countries were more committed to redistributing their wealth among their citizens, and population surveys show that until the 1970s, GDP often correlated with general wellbeing.

But with the rise of increasingly heedless free-market capitalism, this became less the case – and GDP's shortcomings became all the more apparent. 'We are in a situation where the wealth distribution is more and more trickling up to those who already have capital. Those who don't have it are in declining economic positions,' Halme says. In fact, the richest 1% of the global population now own nearly half of the world's wealth.

Some governments, such as Finland's, do take indicators of environmental and social progress into account. 'But none is considered as important for decision-making as GDP,' Halme says – and GDP is also considered the arbiter of a government's success. It is that attitude that, through her work advising the Finnish government on sustainability practises as well as in her own research, Halme is trying to shift.

Where industries have failed
Our often-exclusive focus on the economy – and, in particular, on making profits as quickly and efficiently as possible – doesn’t provide a clear picture of how everyone in a society is faring. Worse yet, it has encouraged industries to act with a short-term view that makes for longer-term problems.

Fast fashion is one example. At the moment, supply chains for clothing – as for most other goods – are linear. Raw materials come from one place and are transformed step by step, usually at different factories around the world, using materials, energy and transport that are “cheap” because their high environmental costs aren’t included. They are ultimately purchased by a consumer, who wears the product temporarily before discarding it. To expand profit margins, the industry pushes fast-changing trends. A shocking amount of this clothing ends up in landfill – some of it before it's even been worn.

As the COVID lockdowns showed, this kind of linear supply system isn't resilient. Nor is it sustainable.

Currently, fashion is estimated to be the world's second most polluting industry, accounting for up to 10% of all greenhouse gas emissions. Aalto University researchers have reported that the industry produces more than 92 million tonnes of landfill waste per year. By 2030, that is expected to rise to 134 million tonnes.

Cutting fashion's carbon footprint isn't just good for the environment; it will help the longer-term prospects of the industry itself. 'With this kind of wrong thinking about efficiency, you're eroding the basis of our long-term resilience both for ecology and for society,' Halme says.

Getting out of this trap, she and other researchers say, requires a complete paradigm shift. 'It's really difficult to just tweak around the edges,' she says.

Towards resilience
For several years, Halme researched and studied ecological efficiency, looking at ways that businesses could make more products with a smaller environmental impact. But gradually she realised this wasn't the answer. Although businesses could innovate to have more efficient products and technologies, their absolute use of natural resource use kept growing.

'I began to think, "If not efficiency, then what?"' Halme says. She realised the answer was resilience: fostering ways for systems, including the environment, to continue and even regenerate in the future, rather than continuing to degrade them in the present.

The solution isn’t more of anything, even ‘sustainable’ materials. It’s less.

'The only way to fix fast fashion is to end it,' Halme and her co-authors write. This means designing clothes to last, business models that make reuse and repair more accessible, and prioritising upcycling. Recycling systems also need to be overhauled for when an item really is at the end of its life – particularly regarding blended synthetic fibres, which are difficult to separate and break down.

This would upend the current focus on short-term revenue above all else. And, says Halme, it is one more example of how we need better ways to measure the success of these industries, taking into account factors like resilience and sustainability – rather than just short-term profits.

And while individuals can make an impact, these changes ultimately have to be industry-led.

'Textiles are a good example, because if they break quickly, and if you don't have repair services nearby, or if the fabrics are of such lousy quality that it doesn't make any sense to repair them, then it's too much trouble for most people,' Halme says. 'So most solutions should come from the business side. And the attempt should be to make it both fashionable and easy for consumers to make ecologically and socially sustainable choices.'

What will it take?
The ultimate challenge, says Lauri Saarinen, Assistant Professor at the Aalto University Department of Industrial Engineering and Management, is how to shift towards a more sustainable model while keeping companies competitive. But he believes there are ways.

One option is to keep production local. 'If we compete with low-cost, offshore manufacturing by doing things more locally, and in a closed loop, then we get the double benefit of actually providing some local work and moving towards a more sustainable supply chain,' Saarinen says. For example, if clothing were produced closer to consumers, it would be easier to send garments back for repair or for brands to take back used items and resell them.

Local production is yet another example of the need to rethink how we measure societal success. After all, outsourcing and offshoring in favour of cheaper production may appear to cut costs in short term, but this is done at the expense of what Halme and other experts argue really matters – longer-term economic viability, resilience and sustainability.

Shifting towards this kind of thinking isn't easy. Still, Saarinen and Halme have seen promising signs.

In Finland, for example, Halme points to the start-up Menddie, which makes it easy and convenient to send items away for repairs or alterations. She also highlights the clothing and lifestyle brand Marimekko, which re-sells its used items in an online secondhand shop, and the Anna Ruohonen label, a made-to-measurecollection and customer on-demand concept which creates no excess garments.

It's these kinds of projects that Halme finds interesting – and that, through her work, she hopes to both advocate for and pioneer.

At the moment, she says, these changes haven't yet added up to a true transformation. On a global scale, we remain far from a genuine shift towards longer-term resilience. But as she points out, that can change quickly. After all, it has in the past. Just look at what got us here.

'The pursuit of economic growth became such a dominant focus in a relatively short time – only about seven decades,' she says. 'The shift toward longer-term resilience is certainly possible. Scientists and decision-makers just need to change their main goal to long-term resilience. The key question is, are our most powerful economic players wise enough to do so?'

As part of her research, Halme has led projects pioneering the kinds of changes that the fashion industry could adapt. For example, along with her Aalto colleague Linda Turunen, she recently developed a measurement that the fashion industry could use to classify how sustainable a product really is – measuring things like its durability, how easily it can be recycled, and whether its production uses hazardous chemicals – which could help consumers to decide whether to buy. Her colleagues curated a recent exhibition that showcased what we might be wearing in a sustainable future, such as a leather alternative made from discarded flower cuttings, or modular designs to get multiple uses from the same garment – turning a skirt into a shirt, for example.
 
Because all of this requires longer-term thinking, innovation and investment, industry is reticent to make these shifts, Halme says. One way to encourage industries to change more quickly is with regulation. In the European Union, for example, an updated set of directives now requires companies with more than 500 employees to report on a number of corporate responsibility factors, ranging from environmental impact to the treatment of employees. These rules won't just help inform consumers, investors and other stakeholders about a company's role in global challenges. They’ll also help assess investment risks – weighing whether a company is taking the actions necessary to be financially resilient in the long-term.

Source:

Aalto University, Amanda Ruggeri

(c) Nadine Glad
18.07.2023

Promoting transparent supply chains and a more circular economy with digital product passports

Any prospective buyer interested in knowing more about the products they have set their eyes on will have to cope with limited information on print or online manuals or engage in time-consuming research. This may change soon, as the European Commission introduced a standardised digital product passport for the upcoming legislation. A project consortium has been formed with partners from industry and academia to set ground for the developments. The idea is for the proposed passports, supported by EU regulations, to make all product information available along the entire value chain and easily accessible e.g. by QR code.

Any prospective buyer interested in knowing more about the products they have set their eyes on will have to cope with limited information on print or online manuals or engage in time-consuming research. This may change soon, as the European Commission introduced a standardised digital product passport for the upcoming legislation. A project consortium has been formed with partners from industry and academia to set ground for the developments. The idea is for the proposed passports, supported by EU regulations, to make all product information available along the entire value chain and easily accessible e.g. by QR code.

ID cards and passports are usually the first things packed when one goes on a journey. They are internationally recognized and accepted documents with all the necessary information about the holder: Commonplace items for people that will soon become just as common for electronic devices, textiles, or batteries. But mobile phones, tablet computers, and their kin usually do not travel with a passport pouch, so their digital product passports with all their “personal details” will soon be accessible at every link in the value chain via a QR code or RFID chip.

Consumers looking to buy a new piece of clothing, a piece of electronics, or even furniture or toys should have more means to understand important information about their products, including their energy efficiency, the labor conditions during manufacturing, or their reparability, in order to make informed and sustainable purchasing choices.

Product passports also hold great potential for other actors, e.g. for repairs or recycling. Current electronic products, often highly miniaturized, make it hard to understand with materials, not least toxic substances are contained and how they could be separated from another. Use-specific certificates can regulate that this type of information is available to the people who need to know it.

No final decision has yet been made about the range of information that will be contained in the product passports. For the CIRPASS project, Eduard Wagner and his team at Fraunhofer ZM is currently surveying which types of information are already covered by current legal requirements and which additional information could be contained on a digital product passport. Their aim is to provide an information architecture that determines which types of information have added value for which actors in the value chain and at what cost this information could be provided. A reparability scale that shows how easily a product is to repair has been required in France since 2021 and might be a good inclusion in the digital, pan-European product passport. “Information about energy efficiency is already required, but this information still has to be prepared on a case-by-case basis, and there are no universal European disclosure requirements for other types of circularity related information. Meaningful standardization here is one of the top goals of the product passport. Imagine we could compare the durability of all t-shirts in the EU between each other,” says sustainability expert Eduard Wagner.

For the first product passports to be ready by 2026, many actors still need to be brought on board and a consensus be found for which information is most relevant. “Our project has identified 23 groups of stakeholders that we are including in our survey of requirements, in all three sectors”, Wagner explains. “We have suppliers of materials, manufacturers of electronics, and representatives of repair and recycling associations with us.” The results of these consultations will go to the European Commission to act as pointers for the political process en route to new legal requirements for the product passport. Small to medium-sized enterprises are given special attention and support in this, as providing the required information can mean a considerable effort on their part.

Source:

Fraunhofer Institute for Reliability and Microintegration IZM

Photo: Unsplash
13.06.2023

The impact of textile production and waste on the environment

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

The textile sector was the third largest source of water degradation and land use in 2020. In that year, it took on average nine cubic metres of water, 400 square metres of land and 391 kilogrammes (kg) of raw materials to provide clothes and shoes for each EU citizen.

Water pollution
Textile production is estimated to be responsible for about 20% of global clean water pollution from dyeing and finishing products.

Laundering synthetic clothes accounts for 35% of primary microplastics released into the environment. A single laundry load of polyester clothes can discharge 700,000 microplastic fibres that can end up in the food chain.

The majority of microplastics from textiles are released during the first few washes. Fast fashion is based on mass production, low prices and high sales volumes that promotes many first washes.

Washing synthetic products has caused more than 14 million tonnes of microplastics to accumulate on the bottom of the oceans. In addition to this global problem, the pollution generated by garment production has a devastating impact on the health of local people, animals and ecosystems where the factories are located.

Greenhouse gas emissions
The fashion industry is estimated to be responsible for 10% of global carbon emissions – more than international flights and maritime shipping combined.

According to the European Environment Agency, textile purchases in the EU in 2020 generated about 270 kg of CO2 emissions per person. That means textile products consumed in the EU generated greenhouse gas emissions of 121 million tonnes.

Textile waste in landfills and low recycling rates
The way people get rid of unwanted clothes has also changed, with items being thrown away rather than donated. Less than half of used clothes are collected for reuse or recycling, and only 1% of used clothes are recycled into new clothes, since technologies that would enable clothes to be recycled into virgin fibres are only now starting to emerge.

Between 2000 and 2015, clothing production doubled, while the average use of an item of clothing has decreased.

Europeans use nearly 26 kilos of textiles and discard about 11 kilos of them every year. Used clothes can be exported outside the EU, but are mostly (87%) incinerated or landfilled.

The rise of fast fashion has been crucial in the increase in consumption, driven partly by social media and the industry bringing fashion trends to more consumers at a faster pace than in the past.

The new strategies to tackle this issue include developing new business models for clothing rental, designing products in a way that would make re-use and recycling easier (circular fashion), convincing consumers to buy fewer clothes of better quality (slow fashion) and generally steering consumer behaviour towards more sustainable options.

Work in progress: the EU strategy for sustainable and circular textiles
As part of the circular economy action plan, the European Commission presented in March 2022 a new strategy to make textiles more durable, repairable, reusable and recyclable, tackle fast fashion and stimulate innovation within the sector.

The new strategy includes new ecodesign requirements for textiles, clearer information, a Digital Product Passport and calls companies to take responsibility and act to minimise their carbon and environmental footprints

On 1 June 2023, MEPs set out proposals for tougher EU measures to halt the excessive production and consumption of textiles. Parliament’s report calls for textiles to be produced respecting human, social and labour rights, as well as the environment and animal welfare.

Existing EU measures to tackle textile waste
Under the waste directive approved by the Parliament in 2018, EU countries are obliged to collect textiles separately by 2025. The new Commission strategy also includes measures to, tackle the presence of hazardous chemicals, calls producers have to take responsibility for their products along the value chain, including when they become wasteand help consumers to choose sustainable textiles.

The EU has an EU Ecolabel that producers respecting ecological criteria can apply to items, ensuring a limited use of harmful substances and reduced water and air pollution.

The EU has also introduced some measures to mitigate the impact of textile waste on the environment. Horizon 2020 funds Resyntex, a project using chemical recycling, which could provide a circular economy business model for the textile industry.

A more sustainable model of textile production also has the potential to boost the economy. "Europe finds itself in an unprecedented health and economic crisis, revealing the fragility of our global supply chains," said lead MEP Huitema. "Stimulating new innovative business models will in turn create new economic growth and the job opportunities Europe will need to recover."

Separating microplastics Photo: H & M Foundation
22.05.2023

Soundwaves to separate microplastics from wastewater

The technology developed by The Hong Kong Research Institute of Textiles and Apparel (HKRITA) with the support of H&M Foundation, can separate microplastics from wastewater using soundwaves. Acousweep is a plug-and-play application. The technology can be easily transported and connected to any wastewater facility. If the technology is implemented at an industrial scale, it will have a significant impact on the fashion industry’s sustainable footprint.
 

The technology developed by The Hong Kong Research Institute of Textiles and Apparel (HKRITA) with the support of H&M Foundation, can separate microplastics from wastewater using soundwaves. Acousweep is a plug-and-play application. The technology can be easily transported and connected to any wastewater facility. If the technology is implemented at an industrial scale, it will have a significant impact on the fashion industry’s sustainable footprint.
 
Microplastic pollution is a globally established problem and a threat to ecosystems, animals, and people. Microplastics come from a variety of sources, including from larger plastic debris that degrades into smaller and smaller pieces, or microbeads in exfoliating health and beauty products, or cleansers such as toothpaste. According to the European Environment Agency the major source of oceanic microplastic pollution, about 16%-35% globally, comes from synthetic textiles. Professor Christine Loh, Chief Development Strategist at the Institute for the Environment, The Hong Kong University of Science and Technology, agrees that this technology has great potential.

Microplastics typically refers to tiny plastic pieces or particles smaller than 5mm in diameter according to the definition of United Nations Environment Programme (UNEP) and the European Union (EU). The new technology can separate microplastic fibre longer than 20 μm, which is 250 times smaller than the typical size. Unlike existing filtration processes, the system enables continuous water treatment and easy collection of microplastic fibres by virtue of its acoustic manipulation technique.

Acousweep utilises sweeping acoustic waves in a specially shaped chamber to physically trap and separate microplastic fibres from wastewater effectively. The whole process is merely a physical collection and separation. No chemical, solvent or biological additives are needed. The separated microplastics drip into a collection tank for further treatment, such as recycling. Acousweep, with a developing lab-scale treatment system of the capacity of 100L of water per hour, can be upscaled in industrial plants. The system can be installed in a container with a processing capacity up to 5-10T per hour. The containerised system can be easily transported and connected to the existing sewage outlets of the wastewater treatment system.
 
Process of Microplastic Fibre Separation:

  1. At one end of the chamber is a transducer that generates a sweeping acoustic wave at ultrasound frequencies. At the other end, there is a reflector, inside which sweeping acoustic waves are reflected and forms standing waves.
  2. When standing waves are applied to the particles in a fluid, an acoustic radiation force traps the particles.
  3. The standing waves then transfer the trapped particles to the reflector side; after that, particles concentrate at the apex of the reflector.
  4. At the apex is a needle valve which is controlled by a sensory system that monitors the concentration of microplastic fibres there. When the concentration is sufficiently high, the sensory system opens the needle valve to let the microplastic fibres drip into a collection tank.
  5. A high temperature can be applied to the collection tank to remove the water, leaving the fibres to agglomerate and form a large mass that can be easily dealt with in future treatment.

Green tech has just taken a leap forward in Hong Kong. Acousweep will help the garment and other industries to stop a highly damaging form of pollution. HKRITA used a new technique to remove the microplastics by using soundwave-based system, preventing them from getting into the sea and being ingested by sea life that can even be ingested by humans along the food chain. Acousweep has the capacity to revolutionize industry, says Professor Christine Loh, Chief Development Strategist at the Institute for the Environment, The Hong Kong University of Science and Technology.

 

Source:

The Hong Kong Research Institute of Textiles and Apparel (HKRITA); H & M Foundation

(c) Fraunhofer WKI
19.04.2023

Sustainable natural-fiber reinforcement for textile-reinforced concrete components

Textile-reinforced concrete components with a sustainable natural-fiber reinforcement possess sufficient bond and tensile load-bearing behavior for the utilization in construction. This has been verified by researchers at the Fraunhofer WKI in collaboration with Biberach University of Applied Sciences and the industrial partner FABRINO. In the future, textile-reinforced components with natural-fiber reinforcement could therefore replace conventionally reinforced concrete components and improve the environmental balance in the construction industry.

Textile-reinforced concrete components with a sustainable natural-fiber reinforcement possess sufficient bond and tensile load-bearing behavior for the utilization in construction. This has been verified by researchers at the Fraunhofer WKI in collaboration with Biberach University of Applied Sciences and the industrial partner FABRINO. In the future, textile-reinforced components with natural-fiber reinforcement could therefore replace conventionally reinforced concrete components and improve the environmental balance in the construction industry.

Non-metallic reinforcements for concrete elements are currently often made from various synthetically produced fibers - for example from glass or carbon fibers. An ecological alternative to synthetic fibers is provided by flax or other natural fibers. These are widely available and are more sustainable, due, amongst other things, to their renewable raw-material basis, the advantages regarding recycling, and the lower energy requirements during production. This is where the researchers from the Fraunhofer WKI and Biberach University of Applied Sciences, in collaboration with an industrial partner, became active. Their goal was to demonstrate that reinforcements made from textile fibers are just as suitable for utilization in construction as synthetic fibers.

"At the Fraunhofer WKI, we have produced leno fabrics from flax-fiber yarn using a weaving machine. In order to enhance sustainability, we tested a treatment of the flax yarns for improving the tensile strength, durability and adhesion which is ecologically advantageous compared to petro-based treatments," explained Jana Winkelmann, Project Manager at the Fraunhofer WKI. In the coating process, a commonly used petro-based epoxy resin was successfully replaced by a partially bio-based impregnation. A large proportion (56%) of the molecular structure of the utilized epoxy resin consists of hydrocarbons of plant origin and can therefore improve the CO2 balance.

Textile reinforcements have a number of fundamental advantages. They exhibit, for example, significantly reduced corrodibility at the same or higher tensile strength than steel, with the result that the necessary nominal dimension of the concrete covering can be reduced. This often allows smaller cross-sections to be required for the same load-bearing capacity. Up to now, however, the load-bearing behavior of textile reinforcements made from natural fibers in concrete components has not been systematically investigated.

At Biberach University of Applied Sciences, researchers tested the bond and tensile load-bearing behavior as well as the uniaxial flexural load-bearing behavior of concrete components with textile reinforcement made from flax fibers. The scientists came to the conclusion that the natural-fiber-based textile-reinforced components with a bio-based impregnation are fundamentally suitable. The suitability was demonstrated by both a significant increase in the breaking load compared to non-reinforced and under-reinforced concrete components and in finely distributed crack patterns. The curves of the stress-strain diagrams could be divided into three ranges typical for reinforced expansion elements (State I - non-cracked, State IIa - initial cracking, and State IIb - final crack pattern). The delineation of the ranges becomes more pronounced as the degree of reinforcement increases.

As a whole, regionally or Europe-wide available, renewable natural fibers and a partially bio-based coating contribute towards an improvement of the CO2 footprint of the construction industry. As a result, a further opportunity is being opened up for the energy- and raw-material-intensive construction industry in terms of meeting increasingly stringent environmental and sustainability requirements. "Textile-reinforced concretes enable lighter and more slender structures and therefore offer architectural leeway. We would like to continue our research into the numerous application possibilities of natural-fiber-reinforced concretes," said Christina Haxter, a staff member at the Fraunhofer WKI.

The project, which ran from 9th December 2020 to 31st December 2022, was funded by the German Federal Environmental Foundation (DBU).   

(c) nova-Institut GmbH
14.03.2023

Bacteria instead of trees, textile and agricultural waste

For the third time, the nova-Institut awarded the "Cellulose Fibre Innovation of the Year" prize at the "Cellulose Fibres Conference 2023" in Cologne, 8-9 March 2023.

The yearly conference is a unique meeting point of the global cellulose fibres industry. 42 speakers from twelve countries highlighted the innovation potential of cellulosic fibres and presented the latest market insights and trends to more than 220 participants from 30 countries.

Leading international experts introduced new technologies for recycling of cellulose rich raw materials and practices for circular economy in textiles, packing and hygiene, which were discussed in seven panel discussion with active audience participation.    

Prior to the conference, the conference advisory board had nominated six remarkable innovations. The winners were elected in an exciting head-to-head live-voting by the conference audience on the first day of the event.

For the third time, the nova-Institut awarded the "Cellulose Fibre Innovation of the Year" prize at the "Cellulose Fibres Conference 2023" in Cologne, 8-9 March 2023.

The yearly conference is a unique meeting point of the global cellulose fibres industry. 42 speakers from twelve countries highlighted the innovation potential of cellulosic fibres and presented the latest market insights and trends to more than 220 participants from 30 countries.

Leading international experts introduced new technologies for recycling of cellulose rich raw materials and practices for circular economy in textiles, packing and hygiene, which were discussed in seven panel discussion with active audience participation.    

Prior to the conference, the conference advisory board had nominated six remarkable innovations. The winners were elected in an exciting head-to-head live-voting by the conference audience on the first day of the event.

The collaboration between Nanollose (AU) and Birla Cellulose (IN) with tree-free lyocell from bacterial cellulose called Nullarbor™ is the winning cellulose fibre innovation 2023, followed by Renewcell (SE) cellulose fibres made from 100 % textile waste, while Vybrana – the new generation banana fibre from Gencrest Bio Products (IN) won third place.
    
Winner: Nullarbor™ – Nanollose and Birla Cellulose (AU/IN)
In 2020, Nanollose and Birla Cellulose started a journey to develop and commercialize treefree lyocell from bacterial cellulose, called Nullarbor™. The name derives from the Latin “nulla arbor” which means “no trees”. Initial lab research at both ends led to the joint patent application “production of high-tenacity lyocell fibres made from bacterial cellulose”.
Nullarbor is significantly stronger than lyocell made from wood-based pulp; even adding small amounts of bacterial cellulose to wood pulp increases the fibre toughness. In 2022, the first pilot batch of 260 kg was produced with 20 % bacterial pulp share. Several high-quality fabrics and garments were produced with this fibre. The collaboration between Nanollose and Birla Cellulose now focuses on increasing the production scale and amount of bacterial pulp in the fibre.  

Second place: Circulose® – makes fashion circular – Renewcell (SE)
Circulose® made by Renewcell is a branded dissolving pulp made from 100 % textile waste, like worn-out clothes and production scraps. It provides a unique material for fashion that is 100 % recycled, recyclable, biodegradable, and of virgin-equivalent quality. It is used by fibre producers to make staple fibre or filaments like viscose, lyocell, modal, acetate or other types of man-made cellulosic fibres. In 2022, Renewcell, opened the world’s first textile-to-textile     
chemical recycling plant in Sundsvall, Sweden – Renewcell 1. The plant is expected to reach an annual capacity of 120,000 tonnes.

Third place: Vybrana – The new generation banana fibre – Gencrest Bio Products (IN)
Vybrana is a Gencrest’s Sustainable Cellulosic Fibre upcycled from agrowaste. Raw fibres are extracted from the banana stem at the end of the plant lifecycle. The biomass waste is then treated by the Gencrest patented Fiberzyme technology. Here, cocktail enzyme formulations remove the high lignin content and other impurities and help fibre fibrillation. The company's proprietary cottonisation process provides fine, spinnable cellulose staple fibres suitable for blending with other staple fibres and can be spun on any conventional spinning systems giving yarns sustainable apparel. Vybrana is produced without the use of heavy chemicals and minimized water consumption and in a waste-free process where balance biomass is converted to bio stimulants Agrosatva and bio-based fertilizers and organic manure.

Photo unsplash
21.02.2023

Consortium for enzymatic textile recycling gains new supporters

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

The two-year cooperation project will not only enable the biological recycling of polyester articles on an industrial scale, but also develop thorough sorting and disassembly technologies for complex textile waste. Existing members voted unanimously for PVH Corp. to join the consortium, saying the common goal is to support the development of viable solutions that address the fashion industry's contribution to climate change..

Carbios has developed a technology using highly selective enzymes that can recycle mixed feedstocks, reducing the laborious sorting required by current thermomechanical recycling processes. For textiles made from blended fibres, the patented enzyme acts only on the PET polyester contained within. This innovative process produces recycled PET (r-PET) that is equivalent in quality to virgin PET and can be used to produce new textile fibres.

Textile waste treatment and recycling
Globally, only 13% of textile waste is currently recycled, mainly for low-value applications such as upholstery, insulation or rags. The remaining 87% is destined for landfill or incineration. To work on improving textile recycling technologies, consortium members will supply feedstock in the form of clothing, underwear, footwear and sportswear. In 2023, a new PET textile waste facility will be commissioned at the Carbios demonstration plant, notably as part of the LIFE Cycle of PET project co-funded by the European Union.  This is in anticipation of future regulations, such as the separate collection of textile waste, which will be mandatory in Europe from 1 January 2025.

From fibre to fibre: circularity of textiles
Today, the textile industry relies largely on non-renewable resources to produce fibres and fabrics, partly turning to recycled PET bottles for recycled polyester fibres. However, this resource will become scarce as PET bottles are used exclusively for the production of new bottles in the food and beverage industry. In a circular economy, the materials used to produce textiles are obtained from recycled or renewable raw materials produced by regenerative processes. In addition to supplying raw materials for the demonstration plant, the consortium members also aim to produce new products from r-PET fibres using the company's biorecycling process.

"Partnering with Carbios and its consortium members demonstrates our continued commitment to incorporating more circular materials into our collections," said Esther Verburg, EVP, Sustainable Business and Innovation, Tommy Hilfiger Global and PVH Europe. "We are excited to support the development of Carbios' enzymatic recycling technology and to leverage new solutions that can help us drive fashion sustainably."

More information:
Carbios textile recycling enzymatic
Source:

Carbios / Textination

In the future, one will be able to use their phone to read the clothing woven-in labels made with inexpensive photonic fibers. (c) Marcin Szczepanski/Lead Multimedia Storyteller, University of Michigan College of Engineering. In the future, one will be able to use their phone to read the clothing woven-in labels made with inexpensive photonic fibers.
15.02.2023

The new butterfly effect: A ‘game changer’ for clothing recycling?

Photonic fibers borrow from butterfly wings to enable invisible, indelible sorting labels

Less than 15% of the 92 million tons of clothing and other textiles discarded annually are recycled—in part because they are so difficult to sort. Woven-in labels made with inexpensive photonic fibers, developed by a University of Michigan-led team, could change that.
 
“It’s like a barcode that’s woven directly into the fabric of a garment,” said Max Shtein, U-M professor of materials science and engineering and corresponding author of the study in Advanced Materials Technologies. “We can customize the photonic properties of the fibers to make them visible to the naked eye, readable only under near-infrared light or any combination.”

Photonic fibers borrow from butterfly wings to enable invisible, indelible sorting labels

Less than 15% of the 92 million tons of clothing and other textiles discarded annually are recycled—in part because they are so difficult to sort. Woven-in labels made with inexpensive photonic fibers, developed by a University of Michigan-led team, could change that.
 
“It’s like a barcode that’s woven directly into the fabric of a garment,” said Max Shtein, U-M professor of materials science and engineering and corresponding author of the study in Advanced Materials Technologies. “We can customize the photonic properties of the fibers to make them visible to the naked eye, readable only under near-infrared light or any combination.”

Ordinary tags often don’t make it to the end of a garment’s life—they may be cut away or washed until illegible, and tagless information can wear off. Recycling could be more effective if a tag was woven into the fabric, invisible until it needs to be read. This is what the new fiber could do.
 
Recyclers already use near-infrared sorting systems that identify different materials according to their naturally occurring optical signatures—the PET plastic in a water bottle, for example, looks different under near-infrared light than the HDPE plastic in a milk jug. Different fabrics also have different optical signatures, but Brian Iezzi, a postdoctoral researcher in Shtein’s lab and lead author of the study, explains that those signatures are of limited use to recyclers because of the prevalence of blended fabrics.

“For a truly circular recycling system to work, it’s important to know the precise composition of a fabric—a cotton recycler doesn’t want to pay for a garment that’s made of 70% polyester,” Iezzi said. “Natural optical signatures can’t provide that level of precision, but our photonic fibers can.”

The team developed the technology by combining Iezzi and Shtein’s photonic expertise—usually applied to products like displays, solar cells and optical filters—with the advanced textile capabilities at MIT’s Lincoln Lab. The lab worked to incorporate the photonic properties into a process that would be compatible with large-scale production.
 
They accomplished the task by starting with a preform—a plastic feedstock that comprises dozens of alternating layers. In this case, they used acrylic and polycarbonate. While each individual layer is clear, the combination of two materials bends and refracts light to create optical effects that can look like color. It’s the same basic phenomenon that gives butterfly wings their shimmer.

The preform is heated and then mechanically pulled—a bit like taffy—into a hair-thin strand of fiber. While the manufacturing process method differs from the extrusion technique used to make conventional synthetic fibers like polyester, it can produce the same miles-long strands of fiber. Those strands can then be processed with the same equipment already used by textile makers.

By adjusting the mix of materials and the speed at which the preform is pulled, the researchers tuned the fiber to create the desired optical properties and ensure recyclability. While the photonic fiber is more expensive than traditional textiles, the researchers estimate that it will only result in a small increase in the cost of finished goods.

“The photonic fibers only need to make up a small percentage—as little as 1% of a finished garment,” Iezzi said. “That might increase the cost of the finished product by around 25 cents—similar to the cost of those use-and-care tags we’re all familiar with.”

Shtein says that in addition to making recycling easier, the photonic labeling could be used to tell consumers where and how goods are made, and even to verify the authenticity of brand-name products. It could be a way to add important value for customers.

“As electronic devices like cell phones become more sophisticated, they could potentially have the ability to read this kind of photonic labeling,” Shtein said. “So I could imagine a future where woven-in labels are a useful feature for consumers as well as recyclers.”

The team has applied for patent protection and is evaluating ways to move forward with the commercialization of the technology.
The research was supported by the National Science Foundation and the Under Secretary of Defense for Research and Engineering.

Source:

Gabe Cherry, College of Engineering, University of Michigan / Textination