Textination Newsline

from to
Reset
8 results
Bild von Tumisu auf Pixabay
06.12.2023

Antimicrobial coating: Bacteria, stay out!

Hospital germs and pathogens are not always transmitted directly from person to person. They can also spread via germ-contaminated surfaces and objects. Empa researchers, together with the chemical company BASF, Spiez Laboratory and the Technical University of Berlin, have now developed coated textiles that inhibit or even kill pathogens. They could be used as antimicrobial curtains in hospitals in the future.

Hospital germs and pathogens are not always transmitted directly from person to person. They can also spread via germ-contaminated surfaces and objects. Empa researchers, together with the chemical company BASF, Spiez Laboratory and the Technical University of Berlin, have now developed coated textiles that inhibit or even kill pathogens. They could be used as antimicrobial curtains in hospitals in the future.

Countless times a day, patients, visitors and medical staff in hospitals touch surfaces of all kinds. Door handles, railings or elevator buttons can serve as transport vehicles for pathogens such as hospital germs or viruses. Smooth surfaces are comparatively easy to clean after contamination. With porous structures such as textiles, however, this is not that simple. Empa researchers have solved this problem together with experts from BASF, Spiez Laboratory and the Technical University of Berlin: A coating process can now be used to treat fabrics in such a way that bacterial and viral pathogens are killed or inhibited in their growth. In hospitals, the coated textiles could be used in future as antimicrobial curtains between patient beds, for example.

Active for months
"We were looking for a process that reliably prevents germs from contaminating textiles that come into contact with a large number of people during use," explains Peter Wick from Empa's Particles-Biology Interactions laboratory in St. Gallen. In this way, chains of infection could be interrupted in which multi-resistant bacteria or viral pathogens, for example, settle on hospital curtains and can then be spread by people.

The researchers ultimately developed a coating process in which a benzalkonium chloride-containing disinfectant was evenly applied to hospital curtains. After optimizing parameters such as concentration, exposure time, processing pressure and drying, the coating adhered stably to the textile surface. But did the coated textiles also exhibit a germicidal effect? This was to be shown by analyzing the antimicrobial activity of the first fabric samples.

"The results of the laboratory tests were very encouraging," says Wick. When the bacterial cultures of some typical problem germs were incubated with the fabric samples, the coated textiles inhibited the growth of staphylococci and pseudomonas bacteria, for example. "The hospital germs were significantly reduced or even killed after just ten minutes of exposure," says the Empa researcher. Moreover, the coating was also active against viral pathogens: Over 99 percent of the viruses were killed by the coated fabric samples.

Another advantage: The coatings remained effective even after several months of storage. This allows production in stock. With the new process, other textiles, filters or cleaning utensils could also be quickly and safely treated with antimicrobials in the future, for example in the event of an epidemic, emphasizes Empa researcher Wick.

Source:

EMPA

Functional textiles – an alternative to antibiotics University of Borås
04.07.2023

Functional textiles – an alternative to antibiotics

Tuser Biswas conducts research that aims to develop modern medical textiles that are good for both the environment and human health. Textiles with antimicrobial properties could reduce the use of antibiotics.

Tuser Biswas conducts research that aims to develop modern medical textiles that are good for both the environment and human health. Textiles with antimicrobial properties could reduce the use of antibiotics.

His work involves research and teaching activities within the area of textile material technology. The current research involves resource-efficient inkjet printing of functional materials on various textile surfaces for advanced applications.
 
The conventional textile industry devours natural resources in the form of water, energy, and chemicals. A more resource-efficient way to produce textiles is with ink jet printing. Tuser Biswas, who recently defended his doctoral thesis in Textile Material Technology, seeks to develop methods for functional textiles. He has shown that it is possible to print enzymes on textiles. These are proteins that function as catalysts in the body, as they set chemical processes in motion without themselves changing. They could, for example, be used in medical textiles with antimicrobial properties or to measure biological or chemical reactions.

“Ever since the industrial revolution, our society has used an abundance of synthetic and harsh chemicals. Our research works to replace these chemicals with environmentally friendly and bio-based materials,” said Tuser Biswas.
 
Promising results with enzymes on textiles
Developing a good enzyme ink was not entirely easy and it took a number of attempts before he finally, to his great joy, had successful results. Tuser Biswas explained that the most important result is to show how a printed enzyme could bind another enzyme to the surface of a fabric. Although the activity of the enzymes decreased by 20-30 percent after printing, the results are still promising for future applications. At the same time, the work has provided new knowledge about many fundamental questions about printing biomaterials on fabric.

“Before starting the project, we found several related studies that focused on producing a finished product. But we wanted to study the fundamental challenges of this subject, and now we know how to make it work,” said Tuser Biswas.

He is now seeking funding to continue researching the subject and has so far received a grant from the Sjuhärad Savings Bank Foundation. During the Days of Knowledge event in April 2023, he presented his research to representatives from the City of Borås and business, the Sjuhärad Savings Bank Foundation, and the University of Borås.
     
Medical textiles instead of antibiotics
Tuser Biswas hopes that continued research in textile technology can provide alternatives to using antibiotics. With increasing antibiotic resistance, it is an important issue not only locally but worldwide.

“Instead of treating the patient with a course of antibiotics, one can act preventively and more effectively by damaging the bacteria on the surface where they start to grow. In a wound dressing, for example. Nanoparticle-based antimicrobials can reduce growth effectively. It is possible as nanoparticles can interact better with the bacterial membrane and reach the target more easily than conventional antimicrobials.”

Source:

Lina Färm. Translation by Eva Medin. University of Borås

(c) Empa
05.04.2022

In the heat of the wound: Smart bandage

A bandage that releases medication as soon as an infection starts in a wound could treat injuries more efficiently. Empa researchers are currently working on polymer fibers that soften as soon as the environment heats up due to an infection, thereby releasing antimicrobial drugs.

It is not possible to tell from the outside whether a wound will heal without problems under the dressing or whether bacteria will penetrate the injured tissue and ignite an inflammation. To be on the safe side, disinfectant ointments or antibiotics are applied to the wound before the dressing is applied. However, these preventive measures are not necessary in every case. Thus, medications are wasted and wounds are over-treated.

A bandage that releases medication as soon as an infection starts in a wound could treat injuries more efficiently. Empa researchers are currently working on polymer fibers that soften as soon as the environment heats up due to an infection, thereby releasing antimicrobial drugs.

It is not possible to tell from the outside whether a wound will heal without problems under the dressing or whether bacteria will penetrate the injured tissue and ignite an inflammation. To be on the safe side, disinfectant ointments or antibiotics are applied to the wound before the dressing is applied. However, these preventive measures are not necessary in every case. Thus, medications are wasted and wounds are over-treated.

Even worse, the wasteful use of antibiotics promotes the emergence of multi-resistant germs, which are an immense problem in global healthcare. Empa researchers at the two Empa laboratories Biointerfaces and Biomimetic Membranes and Textiles in St. Gallen want to change this. They are developing a dressing that autonomously administers antibacterial drugs only when they are really needed.

The idea of the interdisciplinary team led by Qun Ren and Fei Pan: The dressing should be "loaded" with drugs and react to environmental stimuli. "In this way, wounds could be treated as needed at exactly the right moment," explains Fei Pan. As an environmental stimulus, the team chose a well-known effect: the rise in temperature in an infected, inflamed wound.

Now the team had to design a material that would react appropriately to this increase in temperature. For this purpose, a skin-compatible polymer composite was developed made of several components: acrylic glass (polymethyl methacrylate, or PMMA), which is used, for example, for eyeglass lenses and in the textile industry, and Eudragit, a biocompatible polymer mixture that is used, for example, to coat pills. Electrospinning was used to process the polymer mixture into a fine membrane of nanofibers. Finally, octenidine was encapsulated in the nanofibers as a medically active component. Octenidine is a disinfectant that acts quickly against bacteria, fungi and some viruses. In healthcare, it can be used on the skin, on mucous membranes and for wound disinfection.

Signs of inflammation as triggers
As early as in the ancient world, the Greek physician Galen described the signs of inflammation. The five Latin terms are still valid today: dolor (pain), calor (heat), rubor (redness), tumor (swelling) and functio laesa (impaired function) stand for the classic indications of inflammation. In an infected skin wound, local warmth can be as high as five degrees. This temperature difference can be used as a trigger: Suitable materials change their consistency in this range and can release therapeutic substances.

Shattering glove
"In order for the membrane to act as a "smart bandage" and actually release the disinfectant when the wound heats up due to an infection, we put together the polymer mixture of PMMA and Eudragit in such a way that we could adjust the glass transition temperature accordingly," says Fei Pan. This is the temperature, at which a polymer changes from a solid consistency to a rubbery, toughened state. Figuratively, the effect is often described in reverse: If you put a rubber glove in liquid nitrogen at –196 degrees, it changes its consistency and becomes so hard that you can shatter it like glass with one blow.

The desired glass transition temperature of the polymer membrane, on the other hand, was in the range of 37 degrees. When inflammation kicks in and the skin heats up above its normal temperature of 32 to 34 degrees, the polymer changes from its solid to a softer state. In laboratory experiments, the team observed the disinfectant being released from the polymer at 37 degrees – but not at 32 degrees. Another advantage: The process is reversible and can be repeated up to five times, as the process always "switches itself off" when it cools down. Following these promising initial tests, the Empa researchers now want to fine-tune the effect. Instead of a temperature range of four to five degrees, the smart bandage should already switch on and off at smaller temperature differences.

Smart and unsparing
To investigate the efficacy of the nanofiber membranes against wound germs, further laboratory experiments are now in the pipeline. Team leader Qun Ren has long been concerned with germs that nestle in the interface between surfaces and the environment, such as on a skin wound. "In this biological setting, a kind of no man's land between the body and the dressing material, bacteria find a perfect biological niche," says the Empa researcher. Infectious agents such as staphylococci or Pseudomonas bacteria can cause severe wound healing disorders. It was precisely these wound germs that the team allowed to become acquainted with the smart dressing in the Petri dish. And indeed: The number of bacteria was reduced roughly 1000-fold when octenidine was released from the smart dressing. "With octenidine, we have achieved a proof of principle for controlled drug release by an external stimulus," said Qun Ren. In future, she said, the technology could be applied to other types of drugs, increasing the efficiency and precision in their dosage.

The smart dressing
Empa researchers are working in interdisciplinary teams on various approaches to improve medical wound treatment. For example, liquid sensors on the outside of the dressing are to make it visible when a wound is healing poorly by changing their color. Critical glucose and pH values serve as biomarkers.

To enable bacterial infections to be contained directly in the wound, the researchers are also working on a polymer foam loaded with anti-inflammatory substances and on a skin-friendly membrane made of plant material. The cellulose membrane is equipped with antimicrobial protein elements and kills bacteria extremely efficiently in laboratory tests.

Moreover, digitalization can achieve more economical and efficient dosages in wound care: Empa researchers are developing digital twins of the skin that allow control and prediction of the course of a therapy using real-time modeling.

Further information:
Prof. Dr. Katharina
Maniura Biointerfaces
Phone +41 58 765 74 47
Katharina.Maniura@empa.ch

Prof. Dr. René Rossi
Biomimetic Membranes and Textiles
Phone +41 58 765 77 65
Rene.rossi@empa.ch

Source:

EMPA, Andrea Six

Photo: pixabay, Hilary Clark
01.02.2022

Cotton Fibers 2.0: Fireproof and comfortable

A new chemical process developed by Empa turns cotton into a fire-resistant fabric, that nevertheless retains the skin-friendly properties of cotton.

Conventional flame retardant cotton textiles suffer from release of formaldehyde and are uncomfortable to wear. Empa scientists managed to circumvent this problem by creating a physically and chemically independent network of flame retardants inside the fibers. This approach retains the inherently positive properties of cotton fibers, which account for three-quarters of the world's demand for natural fibers in clothing and home textiles. Cotton is skin-friendly because it can absorb considerable amounts of water and maintain a favorable microclimate on the skin.

A new chemical process developed by Empa turns cotton into a fire-resistant fabric, that nevertheless retains the skin-friendly properties of cotton.

Conventional flame retardant cotton textiles suffer from release of formaldehyde and are uncomfortable to wear. Empa scientists managed to circumvent this problem by creating a physically and chemically independent network of flame retardants inside the fibers. This approach retains the inherently positive properties of cotton fibers, which account for three-quarters of the world's demand for natural fibers in clothing and home textiles. Cotton is skin-friendly because it can absorb considerable amounts of water and maintain a favorable microclimate on the skin.

For firefighters and other emergency service personnel, protective clothing provides the most important barrier. For such purposes, cotton is mainly used as an inner textile layer that needs additional properties: For example, it must be fireproof or protect against biological contaminants. Nevertheless, it should not be hydrophobic, which would create an uncomfortable microclimate. These additional properties can be built into the cotton fibers by suitable chemical modifications.

Durability vs. toxicity
"Until now, it has always taken a compromise to make cotton fireproof," says Sabyasachi Gaan, a chemist and polymer expert who works at Empa's Advanced Fibers lab. Wash-durable flame retardant cotton in industry is produced by treating the fabric with flame retardants, which chemically links to the cellulose in the cotton. Currently, the textile industry has no other choice than to utilize formaldehyde-based chemicals – and formaldehyde is classified as a carcinogen. This has been an unsolved problem for decades. While formaldehyde-based flame retardant treatments are durable, they have additional drawbacks: The -OH groups of cellulose are chemically blocked, which considerably reduces the capability of cotton to absorb water, which results in an uncomfortable textile.

Gaan knows the chemistry of cotton fibers well and has spent many years at Empa developing flame retardants based on phosphorus chemistry that are already used in many industrial applications. Now he has succeeded in finding an elegant and easy way to anchor phosphorous in form of an independent network inside the cotton.

Independent network between cotton fibers
Gaan and his colleagues Rashid Nazir, Dambarudhar Parida and Joel Borgstädt utilized a tri-functional phosphorous compound (trivinylphosphine oxide), which has the capability of reacting only with specifically added molecules (nitrogen compounds like piperazin) to form its own network inside cotton. This makes the cotton permanently fire-resistant without blocking the favorable -OH groups. In addition, the physical phosphine oxide network also likes water. This flame retardant treatment does not include carcinogenic formaldehyde, which would endanger textile workers during textile manufacturing. The phosphine oxide networks, thus formed, does not wash out: After 50 launderings, 95 percent of the flame retardant network is still present in the fabric.

To render additional protective functionalities to the flame retardant cotton developed at Empa, the researchers also incorporated in situ generated silver nanoparticles inside the fabric. This works nicely in a one-step process together with generating the phosphine oxide networks. Silver nanoparticles provide the fiber with antimicrobial properties and survive 50 laundry cycles, too.

A high-tech solution from the pressure cooker
"We have used a simple approach to fix the phosphine oxide networks inside the cellulose," Gaan says. "For our lab experiments, we first treated the cotton with an aqueous solution of phosphorus and nitrogen compounds and then steamed it in a readily available pressure cooker to facilitate the crosslinking reaction of the phosphorus and the nitrogen molecules." The application process is compatible with equipment used in the textile industry. "Steaming textiles after dyeing, printing and finishing is a normal step in textile industry. So it doesn't require an additional investment to apply our process," states the Empa chemist.

Meanwhile, this newly developed phosphorus chemistry and its application is protected by a patent application. "Two important hurdles remain," Gaan says. "For future commercialization we need to find a suitable chemical manufacturer who can produce and supply trivinylphosphine oxide. In addition, trivinylphosphine oxide has to be REACH-registered in Europe."

Contact:
Dr. Sabyasachi Gaan
Advanced Fibers
Phone: +41 58 765 7611
sabyasachi.gaan@empa.ch
 
Contact:
Prof. Dr. Manfred Heuberger
Advanced Fibers
Phone: +41 58 765 7878
manfred.heuberger@empa.ch

A gel that releases drugs
The novel phosphorus chemistry can also be used to develop other materials, e.g. to make hydrogels that can release drugs upon changes in pH. Such gels could find application in treating wounds that heal slowly. In such wounds, the pH of the skin surface increases and the new phosphorus-based gels can be triggered to release medication or a dye that alerts doctors and nurses to the problem. Empa has also patented the production of such hydrogels.

Source:

EMPA, Rainer Klose

(c) Pixabay
15.12.2020

Protection against Corona: Materials research provides findings at institutes of the Zuse Community

As the year draws to a close, expectations are growing that protection against COVID-19 will soon be available. Until this is the case for large sections of the population, the successes achieved in research and industry to protect against the virus in 2020 offer a good starting point in the fight against corona and beyond. At institutes in the Zuse community, progress have been made not only in medical but also in materials research.

As the year draws to a close, expectations are growing that protection against COVID-19 will soon be available. Until this is the case for large sections of the population, the successes achieved in research and industry to protect against the virus in 2020 offer a good starting point in the fight against corona and beyond. At institutes in the Zuse community, progress have been made not only in medical but also in materials research.

These successes in materials research include innovations in the coating of surfaces. "In the wake of the pandemic, the demand for antiviral and antimicrobial surfaces has risen sharply, and we have successfully intensified our research in this area," explains Dr. Sebastian Spange, Head of Surface Technology at the Jena research institute INNOVENT. He expects to see an increasing number of products with antiviral surfaces in the future. "Our tests with model organisms show that an appropriate coating of surfaces works", emphasizes Spange. The spectrum of techniques used by INNOVENT includes flame treatment, plasma coating and the so-called Sol-Gel process, in which organic and inorganic substances can be combined in one layer at relatively low temperatures. According to Spange, materials for the coatings can be antibacterial metal compounds as well as natural substances with antiviral potential.

Nonwovens produced for mask manufacturers
In 2020, the textile expertise of numerous institutes in the Zuse community ensured that application-oriented research could prove its worth in the practical fight against pandemics. After the shortage of mask supplies in Germany at the beginning of the pandemic, textile research institutes reacted to the shortage by jumping into the breach. The Saxon Textile Research Institute (STFI), for example, converted its research facilities to the production of nonwovens to supply German and European manufacturers of particle filtering protective masks. "From March to November 2020, we supplied nonwovens to various manufacturers in order to provide the best possible support for mask production and thus help contain the pandemic. At a critical time for industry and the population, we were able to help relieve critical production capacity - an unaccustomed role for a research institute, but one we would assume again in similar situations," explains Andreas Berthel, Managing Commercial Director of STFI.

Development of reusable medical face masks
For the improvement of everyday as well as medical face masks the German Institutes for Textile and Fiber Research (DITF) are working on this project. In cooperation with an industrial partner, they are currently developing in Denkendorf, among other things, reusable medical face masks made of high-performance precision fabric using Jacquard weaving technology. The multiple use avoids waste and possible supply bottlenecks.

There are regulations for all types of masks, now also for everyday masks. At Hohenstein, compliance with standards for masks is checked. A new European guideline defines minimum requirements for the design, performance evaluation, labelling and packaging of everyday masks. "As a testing laboratory for medical products, we test the functionality of medical masks from microbiological-hygienic and physical aspects", explains Hohenstein's Managing Director Prof. Dr. Stefan Mecheels. In this way, Hohenstein supports manufacturers, among other things, with technical documentation to prove the effectiveness and safety. Respiratory protection masks (FFP 1, FFP 2 and FFP 3) have been tested at the Plastics Centre (SKZ) in Würzburg since the middle of this year. Among other things, inhalation and exhalation resistance and the passage of particles are tested. In addition, SKZ itself has entered into mask research. In cooperation with a medical technology specialist, SKZ is developing an innovative mask consisting of a cleanable and sterilizable mask carrier and replaceable filter elements.

ILK tests for mouth-nose protection
The fight against Corona is won by the contributions of humans: Of researchers in laboratories, of developers and manufacturers in the Industry as well as from the citizens on the street.
Against this background, the Institute for Air and Refrigeration Technology (ILK) in Dresden has carried out investigations into the permeability of the mouth and nose protection (MNS), namely on possible impairments when breathing through the mask as well as the protective function of everyday masks. Result: Although the materials used for the mouth-nose protection are able to retain about 95 percent of the exhaled droplets, "under practical aspects and consideration of leakages" it can be assumed that about 50 percent to 70 percent of the droplets enter the room, according to the ILK. If the mask is worn below the nose only, it can even be assumed that about 90 percent of the exhaled particles will enter the room due to the large proportion of nasal breathing. This illustrates the importance of tight-fitting and correctly worn mouth and nose protection. "On the other hand, from a physical point of view there are no reasons against wearing a mask", ILK managing director Prof. Dr. Uwe Franzke emphasizes. The researchers examined the CO2 content in the air we breathe as well as the higher effort required for breathing and based this on the criterion of overcoming the pressure loss. "The investigations on pressure loss showed a small, but practically irrelevant increase," explains Franzke.

The complete ILK report "Investigations on the effect of mouth and nose protection (MNS)" is available here.

Carl Meiser GmbH & Co. KG (c) Carl Meiser GmbH & Co. KG
06.10.2020

Nopma - Experts for antimicrobial finishing: Technical textile coatings from the Swabian Alb

The Carl Meiser GmbH & Co. KG - started in the early 1950s as a day- and nightwear manufacturer. Over the last 20 years the company has become a specialist in the field of technical textiles. With its brand nopma Technical Textiles the company is present as developer and producer of textile solutions via coatings. The main products are nopma anti-slip - textiles with anti-slip effect, nopma adhesion - adhesive pre-coated films, spacer fabrics and substrates for lamination in automotive interiors, nopma ceramics - abrasive more resistant textile surfaces and nopma silicones - silicone coatings on textile surfaces.

Textination talked to the managing director, Jens Meiser, who joined the company in 2005, realigned the division and developed it into a service provider, about his plans and objectives.

The Carl Meiser GmbH & Co. KG - started in the early 1950s as a day- and nightwear manufacturer. Over the last 20 years the company has become a specialist in the field of technical textiles. With its brand nopma Technical Textiles the company is present as developer and producer of textile solutions via coatings. The main products are nopma anti-slip - textiles with anti-slip effect, nopma adhesion - adhesive pre-coated films, spacer fabrics and substrates for lamination in automotive interiors, nopma ceramics - abrasive more resistant textile surfaces and nopma silicones - silicone coatings on textile surfaces.

Textination talked to the managing director, Jens Meiser, who joined the company in 2005, realigned the division and developed it into a service provider, about his plans and objectives.

Founded in 1952, Carl Meiser GmbH & Co.KG has changed from a day- and nightwear manufacturer to an innovator in the field of technical textiles, presenting themselves as a specialist for plastic-based coating processes. If you had to introduce yourself in 100 words to someone who does not know the company: What has influenced you most in this development process and what makes you unique?
Innovation is the new normal - This has been true for the textile industry not just since Sars CoV-2. Our industry was one of the first to be disrupted in the early 1990s and has always been subject to constant change. This urge for further development, which is essential for survival, has left its mark on us intensively and has enabled us to manage huge leaps in innovation in recent years

Today we regard ourselves as an innovative development and production service provider with a focus on textile coating. We develop and produce almost exclusively customized special solutions.

Through the combination of coatings on textiles these hybrid materials receive completely new properties.

You manufacture exclusively at your location in Germany. Why? Have you never been tempted to set up subsidiaries in other countries, for example to benefit from lower wage levels?
Today we supply global supply chains from our headquarter in southern Germany. Although we produce in a high-wage country, much more important for us are know-how and the drive of our team to create something new. Globalization will continue to be the key to success in the future. Therefore, subsidiaries in North America and Asia could be very interesting for us in the medium- and long-term perspective. However, this is still too early for us.

You use CIP and Kaizen techniques intensively in your company. How did a Japanese concept come about in the Swabian Alb?
KAIZEN, the change for the better, are actually German virtues. The urge to improve and optimize things is in all of us. Due to the continuous improvement process we do not stand still but evolve constantly. Besides, there is the personal affinity to Japan. A look at another culture simply opens the horizon. And if you additionally recognize parallels in the working methods, it’s even better. 

10 years ago, you turned your attention to new markets: aviation, automotive, protection, caravan and furniture manufacturing, to name just a few. Some of these segments have collapsed significantly during the Covid 19 pandemic. What market development do you expect in the medium term and what consequences will this have for your company?
Of course, the aviation or automotive industry, for example, have substantial problems during or due to the Covid-19 pandemic. Quite honestly, many of these problems existed before. They were further tightened, as if a fire accelerator has been used. Of course, these cut-backs are also hitting us hard economically. But we are pursuing long-term goals. As a medium-sized company, you have to have the resilience to continue on your path. Thanks to our specialisation and the split of our industrial sectors, which we drive forward every day, we manage to decouple ourselves more and more from economic developments in individual industries. For our customers this is a great advantage of relying on a very stable partner with long-term orientation.

We are positive about the future. Megatrends like sustainability, digitization and ongoing globalization will lead to new business models in the above-mentioned sectors, as in many others, and to renewed growth. Our coatings on textiles and flexible woven materials can contribute a wide range of solutions to this. If, for example, materials become lighter with identical usage properties or suddenly become biodegradable, because of biodegradable plastics, many new opportunities will arise.

Tailor-made instead of solutions for major customers: The topic of individualization down to batch size 1 is making up a large part of the discussion today. In 2015, you opened a large development laboratory where you have a wide range of testing technologies for textiles and plastics available. What do you think about individual product solutions, and in which application areas have you successfully implemented them?
In principle, we do not use any standards. We live individualization with the smallest possible batch sizes. In our field, we do not manage batch size 1, but we start with MOQs of 300 running meters at process-safe series production. We have very few finished products, and above all we have no collections. Our development laboratory is the key for this. Together with our customers we have the possibilities to realize very lean development processes.

Even on a laboratory scale, we can develop and test new products within just a few hours. We then strive to scale up to production at a very early stage in order to obtain production series results. This way, we offer our clients speed and power that represent a special potential for our partners.

You register important input factors in the production process and evaluate them in monthly environmental analyses. What are these factors in concrete terms and to what extent have their analyses already changed production operations? How do you define environmental management for your company?
For us, environmental management means a holistic approach. In principle, we operate production units and manufacture products that consume many resources. Due to the high production volumes, this continues to accumulate. Because of this, it is self-understanding that we record and evaluate our input and output flows and derive measures from them. This makes economic sense, but is also necessary because of our responsibility for our environment. Specifically, these are energy consumption values, consumption data of primary chemicals, electricity load peaks, our Co2 footprint, just to name a few. This consideration has changed us in many areas. Today we operate a power plant with gas condensing technology, our free roof areas are greened or carry photovoltaic modules, we offer our employees and visitors electric filling stations and finally we have converted the entire power supply of our factory to environmentally friendly hydroelectric power.

With nopma, you have been building up a brand for the technical textiles industry since several years and communicate this via an Individual website parallel to Carl Meiser GmbH & Co. KG. How did this brand name come about and what is the product portfolio behind it?
This is the name of a first technical textile product from the 1990s. It was a textile - coated with dots. Dots on a knitted fabric. NOPMA. My father created this brand.

In 2016 you invested in an additional production line for nopma products and were able to start a directly serial delivery in the NAFTA area. How do you currently assess the market opportunities for North America and Mexico?
We continue to see opportunities in globalization and thus on the North American market also. However, these markets are still severely affected by the pandemic and there are major distortions. When these return to normal, we surely will see more success on these markets again.

As an innovation leader, Meiser offers solvent-free PU adhesive systems as pre-coatings for lamination. How do you assess the importance of such innovations in the context of REACH?
These innovations offer our customers the opportunity to decouple themselves from the pressure REACH triggers in some industries. However, we also have some products that have been developed newly in recent months. This keeps us busy, but also creates opportunities to open up new market segments.

How have you felt about the corona era to date - as a company and personally? What would you on no account want to go through again and what might you even consider maintaining on a daily basis?
I think this time has also strengthened us as a society, as people and even as entrepreneurs. Each crisis you go through makes you a little more relaxed for the unforeseen, but also more motivated to achieve your goals. In my opinion, there have been a lot of positive things in the last few months. Suddenly, for example, digitalization tools have become accepted in our everyday lives, and I feel that people are paying more attention to others again. Hopefully this will stay this way.

The futuristic "tube" escalator at the Elbphilharmonie Concert Hall is just as impressive as the building itself and the longest escalator in western Europe. In August, a start-up based in Cologne installed an UV technology that keeps the handrails clean at all times. At the same time, you presented an antiviral functional coating that can be applied to all textiles in the form of yard goods. How does this work and for what purposes will this technology be suitable?
We have already been working with antimicrobial finishing techniques for many years. This already started with the swine flu in 2009/2010, when we made initial contacts with a young start-up and launched a development. Due to a lack of market interest, however, this had to be discontinued after a few months. Today we are experts in the field of "antimicrobial equipment by means of coatings". We were also able to build up an enormous amount of knowledge on the subject of approval and biocide regulation. Today, we can support our customers holistically in these areas. The function by skin-compatible active substances from the cosmetics sector with a vesicle booster can kill viruses and bacteria within a few minutes.
Since the pandemic has shown us the enormous importance of a new level of hygiene, the applications are very diverse and differentiated. We have already realized the use in personal protective equipment, work furniture, vehicles and for example gloves. In principle, every application is predestined where textile carriers are exposed to many touches by different persons in high frequency. Here our nopma products offer a new level of protection and hygiene.

To break new ground means decisiveness, overcoming fears - and thus the courage to fail. Not every project can succeed. In retrospect - about which entrepreneurial decision are you particularly glad to have made it?
We fail again and again. This is part of the game. But it has never happened that we did not learn anything. The pandemic situation is another good example. In spring we accepted our corporate responsibility for our society and were one of two companies in Baden-Württemberg to achieve certification for FFP protective masks. Since we did not want to participate in the revolver market at that time, we offered these products only to the public sector at favourable pre-crisis prices. However, the decision makers could not make up their minds for weeks and did not order. This disappointed our whole team very much at that time. Today we have overcome this and have taken a lot of knowledge with us from this development.


The interview was conducted by Ines Chucholowius, CEO Textination GmbH

(c) SANITIZED AG
16.06.2020

‘WHAT SMELLS LESS HAS TO BE WASHED LESS OFTEN’

Swiss Quality Principles plus Innovation Strength: Hygiene and Material Protection from SANITIZED 

SANITIZED AG is known as a worldwide leading Swiss company in hygiene functions and material protection for textiles and plastics. Globally oriented, pioneering work is done with federal thoroughness in the development of innovative, effective and safe technologies for antimicrobial equipment. Textination had the opportunity to speak to CEO Urs Stalder about the growing importance of hygiene in times of the pandemic.

Swiss Quality Principles plus Innovation Strength: Hygiene and Material Protection from SANITIZED 

SANITIZED AG is known as a worldwide leading Swiss company in hygiene functions and material protection for textiles and plastics. Globally oriented, pioneering work is done with federal thoroughness in the development of innovative, effective and safe technologies for antimicrobial equipment. Textination had the opportunity to speak to CEO Urs Stalder about the growing importance of hygiene in times of the pandemic.

Founded in 1935, the majority ownership of the public company SANITIZED still lies with the founding families. You are the market leader in Europe in hygiene functions and material protection for textiles and plastics. If you had to introduce yourself in 100 words to someone who doesn't know the company: What influenced you in particular in the development of the company and what made it unique?
Preventing odor in shoes, that's how it started in 1935. This is where our business model came from: the antimicrobial protection of plastics and textiles.
SANITIZED develops ready-to-use additives that are individually tailored to the protection goals of the end products and that work, for example, against the development of odors in work clothing, against permastink (resilient odors) in synthetic textiles or against mold growth.
The 360-degree service is unique: This includes backing in product development, support for all regulatory questions and assistance with marketing topics.
SANITIZED AG is globally active and yet committed to Swiss quality principles. More than 400 brands worldwide use the ingredient brand Sanitized® on their end products.

Think global – act local? You have sister companies in France, the United States and Asia. Your roots and headquarters are based in Switzerland. The pandemic is currently increasing the question of intact supply chains. What does this mean for your company in the future?
Indeed, the broad global positioning enables us to do business locally. The local anchoring results in synergies, also in sourcing. That will be even more important for us in the future. And, of course, the issues of speed and customer proximity are also positive aspects of this approach.

From textiles to plastic surfaces to cans: SANITIZED Preservation AG was founded in 2018 to take care of colors and coatings. SANITIZED is thus opening up another market. Which markets are you particularly interested in and which product areas do you feel particularly challenged by?
Customers want paints and varnishes without solvents, which is better for people and the environment. But with the alternative water-based products, there is a high risk of contamination by microbes. This starts with the production, continues with the storage in the can and also in the application. The result is mold formation.
Antimicrobial protection for paints or coatings is particularly relevant in hygiene-sensitive areas of industrial production and, of course, in the medical environment. The risk of contamination and mold multiplies in regions with high air humidity. This is another reason why India is a growth market for this business area.   

To break new ground means decisiveness, overcoming fears - and thus the courage to fail. Not every project can succeed. In retrospect - about which entrepreneurial decision are you particularly glad to have made it?
Let me mention just three decisions that are important for corporate development: This is definitely the foundation of the SANITIZED Preservation division. This is about the antimicrobial protection of paints and varnishes. This also includes setting up our in-house TecCenter, in which we can perform laboratory services even faster. It was recently accredited by the International Antimicrobial Council. And right now it is the sales cooperation with Consolidates Pathway on the US market for our textile hygiene function solutions.

You state that innovation is embedded in the company's DNA. How do you live your inno-vation management and which role do the requirements of end consumers and your indus-trial customers play in this setting?
We ourselves as well as our global sales partners are in close contact with the manufacturers of textile products. This is also why we know the requirements and needs of the market. Sustainability is emerging from the niche in the mass market.
This is exactly what our product Sanitized® Odoractiv 10 has been developed for and awarded by the Swiss Innovation Award.
It is a dual-acting, biocide-free, patented technology against odor development and odor adsorption in textiles. Many customers appreciate our expertise and use it in the development of new products to create innovative textiles with additional benefits for the requirements of the market.

Tailor-made or solutions only for major customers? The topic of individualization up to lot size 1 takes up a lot of space today. What do you think about individual product solutions - or can you cover everything with the SANITIZED portfolio comprising 40 products?
We have a very versatile technology “kit” at our disposal. It is part of our daily business to respond individually to the special customer needs and the respective product requirements. We offer tailor-made recipes for this and our extensive application know-how flows into the advice for the individual application situation at the customer.

There are various definitions for sustainability. Customers expect everything under this term - from climate protection to ecology, from on-site production in the region to the ex-clusion of child labor, etc. Textile finishing does not always sound unproblematic. Public procurement is increasingly switching to sustainable textiles. What does this mean for SANITIZED and what do you do to bring the concept of sustainability to life for your company, and which activities and certifications do you focus on?
Resource conservation is a key issue for us. Since we “think” about the topic of sustainability along the entire production chain, including in research and development, resource-saving application techniques for the textile industry are important to us. Sanitized® additives can be integrated into standard production processes, so that additional energy is not required for complementary finishing processes.
Our portfolio also includes biocide-free products. Sanitized® Odoractiv10 prevents odors from sticking to textiles. Sanitized® Mintactiv uses the natural antibacterial effect of mint and was specially developed for cotton textiles.
And what smells less has to be washed less often. This saves water and electricity and extends the useful life of textiles.
          
SANITIZED supports its customers with a so-called 360° service. What do you mean by that and why don't you concentrate exclusively on the technical aspects of the products?
The SANITIZED brand wants to create real added value for its customers. That is why we have expanded our core competence as a developer and provider of innovative antimicrobial additives with an all-round service. The obvious thing to do is to support the production process, of course that is part of it. Furthermore; we also provide the latest knowledge on regulatory issues - world-wide. And we offer comprehensive marketing assistance for our license partners who use Sanitized® as an ingredient brand. Making correct advertising statements is important not only in times of Corona. Because it's always about transparency and security for people. Warning letters or delivery stops due to incorrect claims can be prevented.
Cooperation with the institutes is absolutely sensible; after all, it is their job to do research for com-panies that they cannot shoulder on their own. This includes testing facilities, as well as applying for funding, which is only possible in cooperation with research institutes. However, they are public institutions and therefore have different objectives per se than a company: We have to bring a promising idea to the market as quickly as possible to show a profit. A research institute does not have this pressure.

Which goal do you pursue with the website https://www.sanitized.house for example?
Yes, it may seem unusual when SANITIZED as a B2B company designs a platform for end customers. But more than 400 brands use Sanitized® as an ingredient brand. So, we are connected to the end customer in this way.
In the virtual house - Sanitized® the house -, visitors can playfully experience in which areas of life hygiene and material protection contribute to the quality of life. A click in the wardrobe links to products - including brand names - that have been equipped with Sanitized®: clothing in the wardrobe, the carpet in the living room or the towel in the bathroom. The best thing to do is try it yourself.

The company is working consistently on implementing Sanitized® as a brand. The hygiene function for textiles and plastics shall be documented and thus offer added value to customers and consumers. Co-branding is not always welcome, especially in the clothing, sports and outdoor sector. How rocky was the road until Sanitized® was advertised as an ingredient brand by 400 license partners on the product?
Of course, there are brands that do not want a second brand on their end product. But a trend is causing more and more manufacturers to rethink: Customers are increasingly asking questions about ingredients and their origins. Elucidation and transparency are growing needs. And that's exactly what we contribute to. In addition, this is an opportunity for a textile brand to stand out positively in the flood of suppliers. Differentiation through added value - donated by Swiss technology from SANITIZED. Those arguments work worldwide.

You have a diversified network. Just to mention to two of them - you have been a system partner since the foundation of bluesign® and you work closely with Archroma in sales matters. In which aspects do you see the special value of partnerships? Are there segments existing where you can imagine new partners and collaborations?
Partnerships are important and work if all pursue common goals and can mutually fertilize each other. For example, the partnership with the company Consolidates Pathway in the United States is brand new one.

For which socially relevant topics do you see a particularly great need for innovation and action in the next 5 years? What is your assessment that your company will be able to offer solutions for this with its products? And what role do the experiences from the corona pandemic play in this assessment?
Nobody can predict what the corona pandemic will change in the long term. Environmental protection and thus the conservation of our resources is and remains an important issue.
The fact that the textile industry can make a big contribution to this is slowly gaining awareness among the masses. Keywords are cheap production or water consumption for jeans production. People are becoming more sensitive to what companies and brands are doing. It will be all the more important to act and communicate openly and transparently.
For SANITIZED, it is a mission and a matter of course that only products with official approvals are used and that we work ac-cording to the bluesign principle. This is where traceability and transparency begin.


This interview was conducted by Ines Chucholowius, CEO Textination GmbH

Texprocess 2017 © Messe Frankfurt Exhibition GmbH
18.04.2017

DIGITAL TEXTILE PRINTING A FOCAL-POINT THEME AT TEXPROCESS

  • First European Digital Textile Conference at Texprocess
  • Exhibitors present the latest digital-printing Technologies

Colour and function: digital textile printing is one of the focal-point themes at this year’s Texprocess. For the first time, the World Textile Information Network (WTiN) is holding the European Digital Textile Conference at Texprocess. And there will be a separate lecture block on digital printing in the programme of the Texprocess Forum. Moreover, the Digital Textile Microfactory in Hall 6.0 will present a textile production chain in action – from design, via digital printing and cutting, to making up. As well, numerous exhibitors, including Brother, Epson, Ergosoft and Mimaki, will be showing digital printing technologies.

  • First European Digital Textile Conference at Texprocess
  • Exhibitors present the latest digital-printing Technologies

Colour and function: digital textile printing is one of the focal-point themes at this year’s Texprocess. For the first time, the World Textile Information Network (WTiN) is holding the European Digital Textile Conference at Texprocess. And there will be a separate lecture block on digital printing in the programme of the Texprocess Forum. Moreover, the Digital Textile Microfactory in Hall 6.0 will present a textile production chain in action – from design, via digital printing and cutting, to making up. As well, numerous exhibitors, including Brother, Epson, Ergosoft and Mimaki, will be showing digital printing technologies.

„“We are expanding our programme on the subject of digital printing in response to the growing demand for digitalised technologies for processing garments, technical textiles and flexible materials. This programme is of particular interest to manufacturers of technical textiles and companies that process textiles”, says Michael Jänecke, Head of Brand Management, Textiles and Textile Technologies, Messe Frankfurt.

Elgar Straub, Managing Director, VDMA Textile Care, Fabric and Leather Technologies: “Thanks to digital textile printing, it is now possible to print apparel, shoes and technical textiles directly. Given the general trend towards individualisation, demand for individualised products is increasing in the apparel industry. This is turning digital textile printing into one of the future-oriented technologies for companies that process garments and textiles.”

European Digital Textile Conference at Texprocess

In cooperation with Texprocess and Techtextil, the World Textile Information Network (WTiN) will hold the European Digital Textile Conference at Texprocess for the first time. The focus of the conference will be on digital textile printing for adding functional and decorative features to technical textiles. The WTiN European Digital Textile Conference will take place in ‘Saal Europa’ of Hall 4.0 from 09.00 to 16.30 hrs on
10 May. Tickets for the conference can be obtained from WTiN under
https://www.digitaltextileconference.com/edtc2017/

The subjects to be covered in the lectures include direct yarn colouring in the embroidery plants (Coloreel, Sweden), plasma pre-treatment for textiles before digital printing (GRINP, Italy) and chemical finishing for textiles using inkjet printing technology (EFI-REGGIANI, USA).

Texprocess Forum to spotlight digital printing technology

Digital printing technology will also be the subject of a separate lecture block at Texprocess Forum. At this international conference, experts from science and industry will focus on the latest findings relating to subjects of major importance to the sector in over 30 lectures and panel discussions on all four days of the fair. Texprocess Forum is free of charge for visitors of Texprocess and Techtextil and will be held in Hall 6.0. For the first time, three partner organisations are organising the lecture blocks: DTB – Dialogue Textile Apparel, the International Apparel Federation (IAF) and the World Textile Information Network (WTiN).

Digital Textile Microfactory

In cooperation with the German Institutes of Textile and Fibre Research Denkendorf (DITF) and renowned textile companies, Texprocess presents the complete interlinked textile production chain – the Digital Textile Microfactory – live in Hall 6.0. The digital-printing station shows large-scale inkjet printing in the form of sublimation printing on polyester and pigment printing on cotton and blended fabrics. Production orders can be combined flexibly and printed colour consistently with a variety of printing parameters. Ensuring optimum printing results at this station are hardware and software partners, Mimaki and Ergosoft, and Coldenhove and Monti Antonio. In addition to the Microfactory partners, other renowned companies, including Brother and Epson, will be showing state-of-the-art printing processes for textiles and apparel at Texprocess.

Digital-printing Outlook

Originally developed for fashion fabrics, digital textile printing is also used for printing technical textiles, such as sports clothing, and textiles for the automobile industry whereby the primary focus is on functionalising textiles. For example, swimwear can be made more colour fast to resist frequent contact with water and chlorine, and exposure to the sun. Also, textiles can be finished by applying chemicals via an inkjet printer and thus be given dirt-repellent, antimicrobial and fire-retardant properties. Additionally, using an inkjet printer in the finishing process is advantageous in terms of sustainability and efficiency.