Textination Newsline

Reset
ISPO Awards (c) Messe München
03.12.2024

ISPO 2024: Awarded Innovations & Tomorrow’s Newcomers

ISPO Munich, the world’s leading trade fair for the sports industry and the world’s largest sports business event, is about to begin and will soon present the prestigious ISPO Awards to the most innovative products and newcomers of tomorrow. The ISPO Awards are regarded as a global driving force for the sports industry. Showcasing the latest trends and innovations in product design, materials and digital solutions, these awards set new standards for the future of the sports industry.

The best products of 2024 will be honoured at ISPO Munich in December and can be seen at the ISPO Award area in Hall B1 from 3 to 5 December 2024. At the same time, newcomers to the sports and outdoor industry will be given a stage at ISPO Brandnew, the largest start-up competition in the sports business, where they will present their innovative products in exciting live pitches during ISPO Munich. The grand finale will take place on the second day of the event on the Main Stage.

ISPO Munich, the world’s leading trade fair for the sports industry and the world’s largest sports business event, is about to begin and will soon present the prestigious ISPO Awards to the most innovative products and newcomers of tomorrow. The ISPO Awards are regarded as a global driving force for the sports industry. Showcasing the latest trends and innovations in product design, materials and digital solutions, these awards set new standards for the future of the sports industry.

The best products of 2024 will be honoured at ISPO Munich in December and can be seen at the ISPO Award area in Hall B1 from 3 to 5 December 2024. At the same time, newcomers to the sports and outdoor industry will be given a stage at ISPO Brandnew, the largest start-up competition in the sports business, where they will present their innovative products in exciting live pitches during ISPO Munich. The grand finale will take place on the second day of the event on the Main Stage.

The ISPO Award seal of quality is given to sports products with a particularly high level of innovation, thus providing a curated overview of the most important trends in the industry. For the brands, innovations are enormously important and indispensable, whether in the textile sector, where much has changed in terms of materials, or in the integration of AI into all sub-sectors of the sporting goods industry. An expert jury of business professionals and regularly changing, sports-loving retail consumers from the ISPO Collaborators Club will review the submitted product innovations in advance and award prizes to the ones that meet the relevant criteria.

The submitted products make it possible to identify and observe trends. In 2024, the spectrum of trends continues to include sustainability in relation to textile innovations, the circular economy and recycling, as well as retail consumers’ desire for multipurpose use of diverse products. The integration of technology and the ever-growing role of AI numbers among the most exciting observations.

SUSTAINABILITY AS THE STANDARD
New EU legislation has led to an acceleration in the development of sustainable, functional materials. At this year’s ISPO Award jury meetings, numerous exciting material innovations were observed, especially in the textile sector. Progress in chemical treatments, such as PFC-free DWRs and textiles, is also remarkable. “Sustainability is increasingly becoming the norm, which means that consumers are coming to expect it as standard”, says juror and textile expert Dr Regina Henkel. “Progress is visible, for example, in the use of mono-materials or bio-based fabrics such as wool-Tencel blends”, which are used, for example, in this year’s ISPO Award winner Icebreaker with the Merino Blend 800 RealFleece Classic Pile LS Zip.

The ISPO Award entries also make it obvious that the performance of sustainable products made from recycled fibres has improved markedly so that the functionality of these products is now fully on a par with non-recycled items. Nevertheless, recycling will not be the solution to all future challenges, which is why manufacturers are increasingly incorporating into their collections natural fibres and biodegradable sports textiles, either in pure form or as a blend.

MULTI-USE REMAINS A TOP TREND
The trend towards multifunctional products reflects consumers’ desire for practical solutions. Particularly in Asia, multifunctional hardware products are perceived positively, while in Europe the focus is on textiles for multifunctional use. “High-quality, high-performance materials and designs are being adapted as everyday fashion, thus appealing to a broader target group”, explains trade journalist Dr Martina Wengenmeir, who is also one of the ISPO Award’s jurors. The “urban outdoor” trend is continuing and multipurpose products are also coming into focus in the area of commitment. One example of this is the Outdoor Backpack 45L from Peak Design, which combines fashionable and multifunctional design with full performance.

ISPO Award juror Dr Wengenmeir has identified another trend: “There is a growing focus on technical sports products designed specifically for women. These include football shoes with a design that is genuinely their own. This development goes beyond simple adjustments and includes well-thought-out designs in terms of fit and functionality.” These also include the BettHer - Bra Antishock+: the bra relies on a patented thermoplastic gel technology that provides excellent shock absorption and protection during intense activities.

INTEGRATION OF TECHNOLOGY
A trend from Asia that is also arriving in Europe is the integration of technology into clothing, for example through sensors and warmth apps. The personalisation of garments using technologies such as AI and sensor technology for temperature regulation is regarded as a potential growth area, despite concerns about sustainability.

Technology is also playing an increasingly important role for brick-and-mortar retailers, for example, when it comes to analysing the right product for the customer. Treadmills for running analysis are well known, but this year’s ISPO Award winner, the Skimulator, is a patented world first for a perfect fit of ski boots. This state-of-the-art simulator precisely simulates slope gradients, thus enabling the perfect fit of the ski boot.

ISPO BRANDNEW AWARD
ISPO Munich also provides a stage for the most innovative and creative newcomers in the sports and outdoor industry. Previous ISPO Brandnew winners include pioneering brands from all over the world that have redefined the boundaries of their respective fields with innovative materials, cutting-edge technology and sustainable action. Four start-ups each from the categories “Outdoor & Adventure & Snowsports”, “Performance, Body & Mind (physical product)”, “Sustainability” and “Sports Technology & Platforms” will pitch their ideas live on the main stage. A sneak peek at the innovations on show includes: BreezeLabs, which monitors breathing patterns during exercise; no normal coffee, coffee in a tube; and the AeroGraph Puffer Jacket, a weather-insulating jacket. The winner will be announced in the grand finale on the second day of the fair (4 December 2024).

Source:

Messe München

Graphik University of Copenhagen
22.11.2024

New nanofiber patch for treatment of psoriasis

Researchers at the University of Copenhagen have developed a patch for easier and more effective treatment of psoriasis. The method may also be used in treatment of other inflammatory skin diseases.

4-5 per cent of the Danish population has psoriasis, which is one of the most common skin conditions in the world. The inflammatory disease is characterised by a red rash with white scales, which may vary in form, size and severity.

Today, there are several treatment options for psoriasis patients. Creams and ointments are among the most common. The problem is that the cream must be applied several times a day and leaves the skin feeling greasy, and therefore, some patients often fail to use it consistently, which is vital for treatment success.

Now researchers at the University of Copenhagen have produced a prototype for a patch that may help solve this problem for patients with smaller demarcated areas of plaque psoriasis.

Researchers at the University of Copenhagen have developed a patch for easier and more effective treatment of psoriasis. The method may also be used in treatment of other inflammatory skin diseases.

4-5 per cent of the Danish population has psoriasis, which is one of the most common skin conditions in the world. The inflammatory disease is characterised by a red rash with white scales, which may vary in form, size and severity.

Today, there are several treatment options for psoriasis patients. Creams and ointments are among the most common. The problem is that the cream must be applied several times a day and leaves the skin feeling greasy, and therefore, some patients often fail to use it consistently, which is vital for treatment success.

Now researchers at the University of Copenhagen have produced a prototype for a patch that may help solve this problem for patients with smaller demarcated areas of plaque psoriasis.

“We have developed a dry patch, which contains active ingredients for treatment of psoriasis, and which reduces the frequency of use to once a day. It has the potential to make treatment more comfortable for plaque psoriasis patients,” says Associate Professor Andrea Heinz from the Department of Pharmacy, who is the corresponding author on a series of articles exploring the patch’s ability to treat plaque psoriasis.

One patch serving several functions
The patch is designed to contain two active ingredients at once and release them onto the skin at different rates.

“It is really clever, because treatment of psoriasis often requires more than one product. The two ingredients are released in a controlled manner and at different rates, as they serve different functions: Salicylic acid is released immediately to remove the dead cells that have accumulated on the skin, while hydrocortisone decreases inflammation of the skin – a process that takes more time,” says first author of the studies Anna-Lena Gürtler and adds:

“We have tested the prototype on pig skin and human skin cells and compared the results to the creams and ointments available at pharmacies, and our studies show that the patch is just as effective as standard treatments.”

Potential to treat other conditions
The researchers used electrospinning to produce the patch – a method where high voltage is applied to a polymer solution to produce synthetic nanofibers. The fibres are then used to make a fibre mat that may be attached to the skin like a plaster.

The researchers are still working on the patch. More research, product development and clinical trials are needed before the method is ready for use. According to Andrea Heinz, though, it has great potential that extends beyond psoriasis treatment:

“A patch containing active ingredients may be an alternative to creams and ointments in the treatment of other inflammatory skin diseases, for instance atopic eczema. It may also be useful in connection with wound healing.”

More information:
psoriasis patch Elektrospinning
Source:

William Brøns Petersen, University of Copernhagen

PhD scholar Nayanatara Ruppegoda Gamage (left) and Dr Chamila Gunasekara with concrete samples made using textiles. Credit: RMIT University
19.11.2024

Carpet fibres stop concrete cracking

Engineers in Australia have found a way to make stronger and crack-resistant concrete with scrap carpet fibres, rolling out the red carpet for sustainability in the construction sector.

The research team is engaging with partners including Textile Recyclers Australia, Godfrey Hirst Australia and councils in Victoria to conduct field studies of on-ground slabs made of reclaimed textiles.

Lead researcher Dr Chamila Gunasekara from RMIT University said the team had developed a technique using waste carpet fibres to reduce early-age shrinkage cracking in concrete by up to 30%, while also improving the concrete’s durability.

This research addresses a major challenge in the construction sector, as the annual cost of repair for cracks in reinforced concrete structures in Australia is about A$8 billion. In the US, the cost is estimated at US$76 billion per year.

Engineers in Australia have found a way to make stronger and crack-resistant concrete with scrap carpet fibres, rolling out the red carpet for sustainability in the construction sector.

The research team is engaging with partners including Textile Recyclers Australia, Godfrey Hirst Australia and councils in Victoria to conduct field studies of on-ground slabs made of reclaimed textiles.

Lead researcher Dr Chamila Gunasekara from RMIT University said the team had developed a technique using waste carpet fibres to reduce early-age shrinkage cracking in concrete by up to 30%, while also improving the concrete’s durability.

This research addresses a major challenge in the construction sector, as the annual cost of repair for cracks in reinforced concrete structures in Australia is about A$8 billion. In the US, the cost is estimated at US$76 billion per year.

Publishing their latest results in the Construction and Building Materials journal, the team has shown that waste carpet material can be used to improve concrete.

With state-of-the-art textile research facilities at RMIT, the team of civil engineers and textile researchers has also been able to use other discarded textiles including clothing fabrics to make concrete stronger.

“Cracking in early-age concrete slabs is a long-standing challenge in construction projects that can cause premature corrosion, not only making a building look bad but also risking its structural integrity and safety,” said Gunasekara, an ARC DECRA fellow from the School of Engineering.

“Scrap carpet fibres can be used to increase concrete’s strength by 40% in tension and prevent early cracking, by reducing shrinkage substantially.”

Laboratory concrete samples have been created using the various textile materials and shown to meet Australian Standards for engineering performance and environmental requirements.

Addressing a big waste challenge
The disposal of carpets and other textiles including discarded fabrics poses an enormous environmental challenge, Gunasekara said.

“Australia is the second largest consumer of textiles per person in the world, after the US. The average Australian purchases 27kg of new clothing and textiles every year, and discards 23kg into landfill,” he said.

“Burning carpet waste releases various toxic gases, creating environmental concerns.”

Dr Shadi Houshyar, a textile and material scientist at RMIT, said firefighting clothes waste also posed a challenge, as the same qualities that made these materials ideal for firefighting also made them difficult to recycle.

“Up to 70% of textile waste would be suitable for conversion into usable fibres, presenting an opportunity in the materials supply chain,” said Houshyar, from the School of Engineering.  

Working with industry and government to support the recycling of waste
Field trials conducted with support from industry and local government partners will help capture the unexpected conditions encountered in real-world construction projects.

The ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste Resources to Engineered Materials and Solutions for a Circular Economy (TREMS) and an early-career research grant will fund the field trials as well as computational modelling. TREMS is led by Professor Sujeeva Setunge from RMIT.

The team is collaborating with Professor Andrzej Cwirzen Luleå University of Technology in Sweden on computational modelling.

Source:

Will Wright, RMIT University

Waterfiltration Photo Manuel Darío Fuentes Hernández , Pixabay
10.11.2024

New filtration material could remove long-lasting chemicals from water

Membranes based on natural silk and cellulose can remove many contaminants, including “forever chemicals” and heavy metals.

Water contamination by the chemicals used in today’s technology is a rapidly growing problem globally. A recent study by the U.S. Centers for Disease Control found that 98 percent of people tested had detectable levels of PFAS, a family of particularly long-lasting compounds also known as “forever chemicals,” in their bloodstream.

A new filtration material developed by researchers at MIT might provide a nature-based solution to this stubborn contamination issue. The material, based on natural silk and cellulose, can remove a wide variety of these persistent chemicals as well as heavy metals. And, its antimicrobial properties can help keep the filters from fouling.

Membranes based on natural silk and cellulose can remove many contaminants, including “forever chemicals” and heavy metals.

Water contamination by the chemicals used in today’s technology is a rapidly growing problem globally. A recent study by the U.S. Centers for Disease Control found that 98 percent of people tested had detectable levels of PFAS, a family of particularly long-lasting compounds also known as “forever chemicals,” in their bloodstream.

A new filtration material developed by researchers at MIT might provide a nature-based solution to this stubborn contamination issue. The material, based on natural silk and cellulose, can remove a wide variety of these persistent chemicals as well as heavy metals. And, its antimicrobial properties can help keep the filters from fouling.

The findings are described in the journal ACS Nano, in a paper by MIT postdoc Yilin Zhang, professor of civil and environmental engineering Benedetto Marelli, and four others from MIT.

PFAS chemicals are present in a wide range of products, including cosmetics, food packaging, water-resistant clothing, firefighting foams, and antistick coating for cookware. A recent study identified 57,000 sites contaminated by these chemicals in the U.S. alone. The U.S. Environmental Protection Agency has estimated that PFAS remediation will cost $1.5 billion per year, in order to meet new regulations that call for limiting the compound to less than 7 parts per trillion in drinking water.

Contamination by PFAS and similar compounds “is actually a very big deal, and current solutions may only partially resolve this problem very efficiently or economically,” Zhang says. “That’s why we came up with this protein and cellulose-based, fully natural solution,” he says.

“We came to the project by chance,” Marelli notes. The initial technology that made the filtration material possible was developed by his group for a completely unrelated purpose — as a way to make a labelling system to counter the spread of counterfeit seeds, which are often of inferior quality. His team devised a way of processing silk proteins into uniform nanoscale crystals, or “nanofibrils,” through an environmentally benign, water-based drop-casting method at room temperature.

Zhang suggested that their new nanofibrillar material might be effective at filtering contaminants, but initial attempts with the silk nanofibrils alone didn’t work. The team decided to try adding another material: cellulose, which is abundantly available and can be obtained from agricultural wood pulp waste. The researchers used a self-assembly method in which the silk fibroin protein is suspended in water and then templated into nanofibrils by inserting “seeds” of cellulose nanocrystals. This causes the previously disordered silk molecules to line up together along the seeds, forming the basis of a hybrid material with distinct new properties.

By integrating cellulose into the silk-based fibrils that could be formed into a thin membrane, and then tuning the electrical charge of the cellulose, the researchers produced a material that was highly effective at removing contaminants in lab tests.

The electrical charge of the cellulose, they found, also gave it strong antimicrobial properties. This is a significant advantage, since one of the primary causes of failure in filtration membranes is fouling by bacteria and fungi. The antimicrobial properties of this material should greatly reduce that fouling issue, the researchers say.

“These materials can really compete with the current standard materials in water filtration when it comes to extracting metal ions and these emerging contaminants, and they can also outperform some of them currently,” Marelli says. In lab tests, the materials were able to extract orders of magnitude more of the contaminants from water than the currently used standard materials, activated carbon or granular activated carbon.

While the new work serves as a proof of principle, Marelli says, the team plans to continue working on improving the material, especially in terms of durability and availability of source materials. While the silk proteins used can be available as a byproduct of the silk textile industry, if this material were to be scaled up to address the global needs for water filtration, the supply might be insufficient. Also, alternative protein materials may turn out to perform the same function at lower cost.

Initially, the material would likely be used as a point-of-use filter, something that could be attached to a kitchen faucet, Zhang says. Eventually, it could be scaled up to provide filtration for municipal water supplies, but only after testing demonstrates that this would not pose any risk of introducing any contamination into the water supply. But one big advantage of the material, he says, is that both the silk and the cellulose constituents are considered food-grade substances, so any contamination is unlikely.

“Most of the normal materials available today are focusing on one class of contaminants or solving single problems,” Zhang says. “I think we are among the first to address all of these simultaneously.”

“What I love about this approach is that it is using only naturally grown materials like silk and cellulose to fight pollution,” says Hannes Schniepp, professor of applied science at the College of William and Mary, who was not associated with this work. “In competing approaches, synthetic materials are used — which usually require only more chemistry to fight some of the adverse outcomes that chemistry has produced. [This work] breaks this cycle! ... If this can be mass-produced in an economically viable way, this could really have a major impact.”

The research team included MIT postdocs Hui Sun and Meng Li, graduate student Maxwell Kalinowski, and recent graduate Yunteng Cao PhD ’22, now a postdoc at Yale University. The work was supported by the U.S. Office of Naval Research, the U.S. National Science Foundation, and the Singapore-MIT Alliance for Research and Technology.