Aus der Branche

Zurücksetzen
9 Ergebnisse
(c) Matthias Leo / Hochschule Augsburg
21.06.2022

Recycling Atelier in Augsburg eröffnet

  • ITA Augsburg und Hochschule Augsburg setzen Modellfabrik zum nachhaltigen Stoffkreislauf im Rahmen des KI-Produktionsnetzwerks Augsburg um

Nur ein Prozent der Textilien wird aktuell im weltweiten Stoffkreislauf recycelt. Schnelllebige Modetrends, die ausgelagerte Unternehmensverantwortung und eine allgemein sinkende Rohstoffqualität befeuern diese Entwicklung. Das Recycling Atelier, das die Hochschule Augsburg und das Institut für Textiltechnik Augsburg (ITA Augsburg) eröffnet haben, stellt sich diesem Trend entgegen.

Das Recycling Atelier ist die erste Modellfabrik, die sich in Forschung und Entwicklung gemeinsam mit Partnern aus der Industrie dem nachhaltigen Stoffkreislauf entlang der kompletten textilen Produktionskette widmet.

  • ITA Augsburg und Hochschule Augsburg setzen Modellfabrik zum nachhaltigen Stoffkreislauf im Rahmen des KI-Produktionsnetzwerks Augsburg um

Nur ein Prozent der Textilien wird aktuell im weltweiten Stoffkreislauf recycelt. Schnelllebige Modetrends, die ausgelagerte Unternehmensverantwortung und eine allgemein sinkende Rohstoffqualität befeuern diese Entwicklung. Das Recycling Atelier, das die Hochschule Augsburg und das Institut für Textiltechnik Augsburg (ITA Augsburg) eröffnet haben, stellt sich diesem Trend entgegen.

Das Recycling Atelier ist die erste Modellfabrik, die sich in Forschung und Entwicklung gemeinsam mit Partnern aus der Industrie dem nachhaltigen Stoffkreislauf entlang der kompletten textilen Produktionskette widmet.

Das Recycling Atelier bietet als erste Modellfabrik ein weltweit bisher einzigartiges Konzept für ein ganzheitliches Recycling von Textilien an. Die Wissenschaftler:innen von ITA und Hochschule forschen dort an sämtlichen Prozessschritten des Textilrecyclings: von der Materialanalyse, über die Sortierung, die Aufbereitung und die textile Verarbeitung, bis hin zur Produktgestaltung. Sie betreiben die Prozesse zunächst modellhaft mit dem Fokus auf einer sinnhaften Produktion, bevor dann die Skalierung auf einen industriellen Produktionsmaßstab erfolgt.

Die Schwerpunkte des Recycling Ateliers liegen auf der Entwicklung neuer Produkte und Prozesse für textile Sekundärrohstoffe und der Erarbeitung von Konzepten für das vollständige Verwerten von Alttextilien mit bestmöglicher Qualität sowohl durch integriertes und hochwertiges Recycling als auch durch kreislauforientiertes Produktdesign. Die Ergebnisse münden letztendlich im industriellen Einsatz von Recyclingkonzepten und schlagen die Brücke hin zu aktuellen Geschäftsmodellen.

Bei jedem Prozessschritt unterstützen Unternehmen aus der gesamten Wertschöpfungskette die Forschung und bringen die industrielle Sichtweise und Kompetenz ein. In einem großen Workshop-Areal bietet das Recycling Atelier in Kooperation mit internationalen Unternehmen die Möglichkeit, die Produkte der Firmen auf den Prüfstand zu stellen und im direkten Austausch neue Konzepte für eine nachhaltige Textilproduktion zu erarbeiten.

Der Augenmerk liegt vor allem auf dem Bereich der Digitalisierung: Durch eine hochwertige und moderne Erfassung, Aufbereitung und Auswertung von Daten sollen neue Produktionsprozesse ermöglicht werden. Dabei wird der Einsatz von Künstlicher Intelligenz im Bereich des maschinellen Lernens und der Neuronalen Netze für die Textilbranche erforscht.

Das Recycling Atelier ist ein Beitrag der Hochschule Augsburg und des ITA Augsburg zum KI-Produktionsnetzwerk Augsburg. Das KI-Produktionsnetzwerk Augsburg, eingerichtet von der Bayerischen Landesregierung, ist ein Verbund von zahlreichen KI-Kompetenzträgern im Großraum Augsburg. Verbundpartner sind die Universität Augsburg, das Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV, das Zentrum für Leichtbauproduktionstechnologie (ZLP) des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Augsburg sowie die Hochschule Augsburg. Beteiligt sind zudem auch regionale Industriepartner. Ziel ist eine gemeinsame Erforschung KI-basierter Produktionstechnologien an der Schnittstelle zwischen Werkstoffen, Fertigungstechnologien, datenbasierter Modellierung und digitalen Geschäftsmodellen.

Quelle:

Hochschule Augsburg/ITA Augsburg

JEC World: METYX and ITA officially join forces (c) METYX
METYX and ITA officially join forces
11.05.2022

JEC World: METYX and ITA officially join forces

The ITA Group, consisting of the Institute for Textile Technology of RWTH Aachen University (ITA) and their research and development service provider ITA Technologietransfer GmbH (ITA GmbH) are proud to announce their new partnership with METYX Composites, Turkey today at JEC World in Paris. METYX is a globally leading manufacturer of high-performance technical textiles for applications in the transportation, wind energy, construction, sports and leisure industries.

Ugur Ustunel, CEO METYX Composites: “The access to ITA´s competences along the entire textile composite value chain and to the impressive machine parks with over 250 machines from lab scale to industrial scale and the exchange with other partners will be very welcome for our future pre-competitive developments.” Dr. Christoph Greb, Scientific Director of ITA: “We are very happy to welcome METYX to our
network and to collaborate in many joint projects and studies on topics like recycling and sustainability, tapes and hybrid yarns or natural fibres just to name a few.”

The ITA Group, consisting of the Institute for Textile Technology of RWTH Aachen University (ITA) and their research and development service provider ITA Technologietransfer GmbH (ITA GmbH) are proud to announce their new partnership with METYX Composites, Turkey today at JEC World in Paris. METYX is a globally leading manufacturer of high-performance technical textiles for applications in the transportation, wind energy, construction, sports and leisure industries.

Ugur Ustunel, CEO METYX Composites: “The access to ITA´s competences along the entire textile composite value chain and to the impressive machine parks with over 250 machines from lab scale to industrial scale and the exchange with other partners will be very welcome for our future pre-competitive developments.” Dr. Christoph Greb, Scientific Director of ITA: “We are very happy to welcome METYX to our
network and to collaborate in many joint projects and studies on topics like recycling and sustainability, tapes and hybrid yarns or natural fibres just to name a few.”

Dr. Michael Effing, Managing Director of AMAC GmbH: „I am very happy to support ITA in developing and growing their network. ITA is located in the centre of the RWTH Aachen University Campus in close proximity to numerous other institutes for lightweight developments.”

26.10.2021

ITA: Neues vorwettbewerbliches Partnerschaftsmodell für Industrieunternehmen

Die ITA-Gruppe, bestehend aus dem Institut für Textiltechnik der RWTH Aachen University (ITA) zusammen mit seinem Forschungs-und Entwicklungsdienstleister ITA Technologietransfer (ITA GmbH) und weiteren Tochtergesellschaften, stellt sich strategisch neu auf. Ab 25. Januar 2022 wird ein neues Partnerschaftsmodell angeboten. um den aktuellen Anforderungen und Bedürfnissen der Industrie besser zu entsprechen.

Das ITA ist ein führendes Forschungsinstitut mit 400 Mitarbeitern in den Bereichen faserbasierte Hochleistungswerkstoffe, textile Halbzeuge und deren Herstellungsverfahren. Die ITA GmbH ist der industrielle Partner für Forschung und Entwicklung, Technologie- und Wissenstransfer sowie für umfassende Lösungen entlang der gesamten textilen Wertschöpfungskette.

Die ITA-Gruppe, bestehend aus dem Institut für Textiltechnik der RWTH Aachen University (ITA) zusammen mit seinem Forschungs-und Entwicklungsdienstleister ITA Technologietransfer (ITA GmbH) und weiteren Tochtergesellschaften, stellt sich strategisch neu auf. Ab 25. Januar 2022 wird ein neues Partnerschaftsmodell angeboten. um den aktuellen Anforderungen und Bedürfnissen der Industrie besser zu entsprechen.

Das ITA ist ein führendes Forschungsinstitut mit 400 Mitarbeitern in den Bereichen faserbasierte Hochleistungswerkstoffe, textile Halbzeuge und deren Herstellungsverfahren. Die ITA GmbH ist der industrielle Partner für Forschung und Entwicklung, Technologie- und Wissenstransfer sowie für umfassende Lösungen entlang der gesamten textilen Wertschöpfungskette.

Prof. Dr. Thomas Gries, Direktor des ITA, erläutert das neue Partnerschaftsmodell: "Die Auswirkungen der Covid-19-Krise haben einmal mehr gezeigt, wie wichtig langfristige und vertrauensvolle Geschäftsbeziehungen sind. Daher etablieren wir unser neues Partnerschaftsmodell, bei dem wir noch enger mit unseren derzeitigen und künftigen Industriepartnern zusammenarbeiten und ihnen neueste Technologien und Innovationen aus den Bereichen Forschung und Entwicklung zur Verfügung stellen werden. Wir werden Networking- und Arbeitsgruppentreffen initiieren, Zugang zu den großen Maschinenparks und Labors des ITA anbieten, Partnerprojekte und gemeinsam organisierte öffentlich geförderte Projekte durchführen sowie Schulungen für die Mitarbeiter der Partner und Personalmöglichkeiten anbieten."

Dr. Christoph Greb, wissenschaftlicher Direktor des ITA: „Wir freuen uns sehr, dieses neue Partnerschaftsmodell zu initiieren, bei dem Wissenschaft, Forschung und Industrie in vorwettbewerblichen Projekten Schulter an Schulter arbeiten. In unseren zukünftigen Projekten entlang der gesamten Wertschöpfungskette von der Faser bis zum fertigen Bauteil werden wir so eine Lücke schließen und neue innovative Wege für verschiedene
Industriebereiche gestalten."

Während einer dreitägigen Informationsreihe im Hybridformat stellte das ITA im September 2021 den Industriepartnern erfolgreich erste Projekte vor, darunter "Recycling von Composite-basierten Batteriegehäusen", "Recycling von Composite-basierten Druckbehältern", "Naturfaserverbundwerkstoffe", "Textile Strukturen mit dem Fokus auf biaxiale Kettengewirke", "Fabrik der Zukunft", "Tapes  und Hybridgarne".

Kontaktmöglichkeiten zum ITA bieten sich auf der JEC DACH in Frankfurt (23. und 24. November 2021).

Weitere Informationen:
RWTH Aachen, ITA, Textiltechnik
Quelle:

ITA

02.07.2019

Covestro: Anziehen mit CO2

  • Covestro und RWTH Aachen University entwickeln Industrie-Prozess
  • Einsparung von Erdöl und Beitrag zur Kreislaufwirtschaft
  • Weiterer Meilenstein in der Nutzung von CO2 als alternativem Rohstoff

 Anziehen mit CO2: In zwei Forschungsprojekten ist es gelungen, elastische Textilfasern auf CO2-Basis herzustellen und so Erdöl als Rohstoff teilweise zu ersetzen. Covestro und seine Partner, vor allem das Institut für Textiltechnik der RWTH Aachen University sowie verschiedene Textilhersteller, entwickeln die Produktion in den Industriemaßstab und wollen die neuartigen Fasern zur Marktreife bringen. Sie können beispielsweise für Strümpfe und medizinische Textilien eingesetzt werden und so herkömmliche Elastikfasern auf Erdölbasis ablösen.

Die elastischen Fasern werden mit einer chemischen Komponente hergestellt, die zu einem Teil aus CO2 statt aus Erdöl besteht. Dieses Vorprodukt namens cardyon® wird bereits für Weichschaum in Matratzen und Unterbelägen für Sportböden genutzt. Nun wird der Bereich Textilindustrie erschlossen.

  • Covestro und RWTH Aachen University entwickeln Industrie-Prozess
  • Einsparung von Erdöl und Beitrag zur Kreislaufwirtschaft
  • Weiterer Meilenstein in der Nutzung von CO2 als alternativem Rohstoff

 Anziehen mit CO2: In zwei Forschungsprojekten ist es gelungen, elastische Textilfasern auf CO2-Basis herzustellen und so Erdöl als Rohstoff teilweise zu ersetzen. Covestro und seine Partner, vor allem das Institut für Textiltechnik der RWTH Aachen University sowie verschiedene Textilhersteller, entwickeln die Produktion in den Industriemaßstab und wollen die neuartigen Fasern zur Marktreife bringen. Sie können beispielsweise für Strümpfe und medizinische Textilien eingesetzt werden und so herkömmliche Elastikfasern auf Erdölbasis ablösen.

Die elastischen Fasern werden mit einer chemischen Komponente hergestellt, die zu einem Teil aus CO2 statt aus Erdöl besteht. Dieses Vorprodukt namens cardyon® wird bereits für Weichschaum in Matratzen und Unterbelägen für Sportböden genutzt. Nun wird der Bereich Textilindustrie erschlossen.

Weitere Informationen:
RWTH Aachen, ITA, Textiltechnik
Quelle:

Covestro AG

(c) ITA
3D braiding machine
05.06.2019

Institut für Textiltechnik der RWTH Aachen University (ITA) auf der ITMA

  • Neue 3D-Flechtmaschine und Mixed-Reality-Lernumgebung für den Webprozess

Das Institut für Textiltechnik der RWTH Aachen University (ITA) zeigt auf der ITMA im Under Linkway Stand D221 (UL D221) unter anderem das digitale Retrofitting einer 3D-Flechtmaschine zur Herstellung von dreidimensional verstärkten keramischen Turbinenkomponenten und eine Mixed-Reality-Lernumgebung für einen Webprozess zur Qualifizierung neuer und bestehender Mitarbeiter.

  • Neue 3D-Flechtmaschine und Mixed-Reality-Lernumgebung für den Webprozess

Das Institut für Textiltechnik der RWTH Aachen University (ITA) zeigt auf der ITMA im Under Linkway Stand D221 (UL D221) unter anderem das digitale Retrofitting einer 3D-Flechtmaschine zur Herstellung von dreidimensional verstärkten keramischen Turbinenkomponenten und eine Mixed-Reality-Lernumgebung für einen Webprozess zur Qualifizierung neuer und bestehender Mitarbeiter.

Digitales Retrofitting einer 3D-Flechtmaschine zur Produktion dreidimensional verstärkter keramischer Turbinenkomponenten
Basierend auf einer vorhandenen konventionellen Mechanik wurde eine 3D-Flechtmaschine digitalisiert und nach Industrie 4.0-Standard neu aufgebaut. Somit wird zum Beispiel das Prototyping und die Produktion dreidimensional verstärkter keramischer Turbi-nenkomponenten ermöglicht. Als virtuelle Mikrofabrik kann in einer entsprechenden Software-Umgebung die Verarbeitung sehr empfindlicher beziehungsweise spröder Fasermaterialien simuliert werden. Anschließend werden die Prozessdaten generiert und die Produktion in der realen Maschine abgebildet. Die Prozessstabilität wird somit auf annähernd 100 Prozent gesteigert, die Maschinengeschwindigkeit konnte um 150 Prozent erhöht werden. Die ortsunabhängige Simulations- und Steuerungssoftware (Open Source) erlaubt eine äußerst flexible Prozessplanung und –steuerung der Prozesskette mit einem mobilen Endgerät – im konkreten Anwendungsfall für die Herstellung eines textilen Preforms für eine keramische Komponente im Turbinenbau.

Mixed-Reality Lernumgebung für den Webprozess
Ausbildung und Qualifizierung von neuen und bestehenden Mitarbeitern sind gerade für Maschinen- und Textilhersteller wichtige Voraussetzungen für den Unternehmenserfolg. Das ITA hat hierfür eine  Lernumgebung an einem 3D-Modell einer-Bandwebmaschine entwickelt, die auf der Mixed-Reality-Technologie basiert. Unter Mixed-Reality versteht man die Vermischung von Daten aus der Realität und aus künstlichen 2D- oder 3D-Objekten (virtuelle Realität).

Das 3D-Modell einer Breitwebmaschine wird zur Veranschaulichung per Mixed-Reality-Technologie für den Mitarbeiter im Raum dargestellt. Eine Mixed-Reality-Brille überträgt schrittweise Arbeitsanweisungen zum Rüsten der Maschine auf reale Maschinenkomponenten. Nun kann der Mitarbeiter beispielsweise einen Prozessfehler, der zum Maschinenstillstand geführt hat, interaktiv an dem 3D-Modell beheben, ohne dass eine weitere Hilfestellung notwendig ist. Im konkreten Fall handelt es sich um den Bruch eines Schussfadens.

 

Quelle:

ITA

The cushion helps the user to operate different applications by means of sensor surfaces, light and wireless communication, for example an alarm function by light. (c) ITA
The cushion helps the user to operate different applications by means of sensor surfaces, light and wireless communication, for example an alarm function by light.
22.02.2019

Smart Textiles Micro Factory bringt Smart Textiles auf der Texprocess 2019 in Serienproduktion

Die Studie „Technologies, Markets and Players“ von E-Textiles 2018-2028 prognostiziert ein zwei Milliarden Dollar Wachstum des Smart Textile-Marktes. Dieses Wachstum kann nur erreicht werden, wenn die bisherige meist manuelle Fertigung durch Serienfertigung ersetzt wird. Das Institut für Textiltechnik der RWTH Aachen University, kurz ITA, zeigt mit der Smart Textiles Micro Factory auf dem Texprocess-Stand, Standnummer C02, im Übergang der Hallen 4.1 und 5.1 mit der Produktion eines smarten Kissens erstmalig, wie gemeinsam mit verschiedenen Partnern ein smartes Textil vom Design zum fertigen Produkt gefertigt werden kann.

Das Produkt und der Fertigungsprozess sind Ergebnis von Co-Innovation. Zukünftig soll Co-Innovation für Smart Textiles über die Plattform GeniusTex realisiert werden. Im strategischen Großprojekt des BMWi im Rahmen der Smart Service Welt entwickelt das ITA gemeinsam mit Partnern aus Industrie und Forschung den Online-Anlaufpunkt für Smart Textile Innovation.

Die Studie „Technologies, Markets and Players“ von E-Textiles 2018-2028 prognostiziert ein zwei Milliarden Dollar Wachstum des Smart Textile-Marktes. Dieses Wachstum kann nur erreicht werden, wenn die bisherige meist manuelle Fertigung durch Serienfertigung ersetzt wird. Das Institut für Textiltechnik der RWTH Aachen University, kurz ITA, zeigt mit der Smart Textiles Micro Factory auf dem Texprocess-Stand, Standnummer C02, im Übergang der Hallen 4.1 und 5.1 mit der Produktion eines smarten Kissens erstmalig, wie gemeinsam mit verschiedenen Partnern ein smartes Textil vom Design zum fertigen Produkt gefertigt werden kann.

Das Produkt und der Fertigungsprozess sind Ergebnis von Co-Innovation. Zukünftig soll Co-Innovation für Smart Textiles über die Plattform GeniusTex realisiert werden. Im strategischen Großprojekt des BMWi im Rahmen der Smart Service Welt entwickelt das ITA gemeinsam mit Partnern aus Industrie und Forschung den Online-Anlaufpunkt für Smart Textile Innovation.

Bushing heated via induction of the novel glass fibre production line (c) ITA
Bushing heated via induction of the novel glass fibre production line
21.02.2019

ITA at JEC World 2019: newly constructed induction heated glass fibre production line among other exhibits

At the joint stand of the Aachen Centre for Integrative Lightweight Construction (AZL) in Hall 5A, booth D17, the Institut für Textiltechnik of RWTH Aachen University (ITA) will demonstrate its expertise in the field of glass fibres, preforms and textile concrete 12-14 March 2019 in Paris.
The exhibits come from various fields of application and address the automotive, aerospace and mechanical engineering sectors.

At the joint stand of the Aachen Centre for Integrative Lightweight Construction (AZL) in Hall 5A, booth D17, the Institut für Textiltechnik of RWTH Aachen University (ITA) will demonstrate its expertise in the field of glass fibres, preforms and textile concrete 12-14 March 2019 in Paris.
The exhibits come from various fields of application and address the automotive, aerospace and mechanical engineering sectors.

  1. Innovative glass fibre research at ITA
    The newly constructed induction heated glass fibre production line enables increased flexibility in research. For the first time, glass fibres will be produced live at the ITA booth at JEC World. One of the innovations of the system is the inductively heated bushing. It features a flexible design and consists of a platinum/rhodium alloy (Pt/Rh20) for use in high-temperature glasses.
    The glass fibre production line was designed in such a way that new concepts and ideas can be tested quickly. The modular design allows a high flexibility, the induction system a significantly faster operability.
    Research and development projects can therefore be carried out faster and more cost-effectively.
     
  2. DrapeCube - Forming of textile semi-finished products
    The DrapeCube offers a cost-effective design for the production of fibre preforms from textile semi-finished products. It is used in the production of preforms for prototypes and in small series and is suit-able for companies active in the production of fibre-reinforced plas-tics (FRP).
    In the production of FRP components, the preforming process de-fines a large part of the subsequent component costs. In small- and medium-sized enterprises, this process step is often still carried out manually. This results in high quality fluctuations and component prices. Especially in the case of highly stressed structural components, the fluctuation in quality leads to oversizing of the components.
    Thus, the lightweight construction potential of fiber-reinforced plastics is underused. One solution is offered by the stamp forming process adapted from the sheet metal forming industry for shaping rein-forcing textiles. The textile is inserted between two mould halves (male and female) and automatically formed. Due to high plant and tooling costs, this process is used almost exclusively in large-scale production.
    The ITA has developed the DrapeCube forming station which offers a cost-effective alternative and is able to completely reproduce the current state of the art for forming textile half branches. The process steps will be demonstrated in a video at the booth.
     
  3. Carbon fibre reinforced plastic (CFRP) preform
    The CFRP preform consists of carbon multiaxial fabrics formed by expanded polystyrene (EPS) to optimise draping quality. Preforms of increased quality can be produced by gentle, textile-compatible forming with foam expansion. For the first time, foam expansion was used to form preforms in such a way that the draping quality is improved compared to classic stamp forming.
    The advantages of the CFRP preform lie in the savings in plant costs, as the investment is much lower. In addition, the proportion of waste is reduced because near-net-shape production is possible. In addition, rejects are reduced, as fewer faults occur in the textile.
     
  4. Embroidered preform with integrated metal insert
    The 12k carbon fibre rovings are shaped into a preform using Tai-lored Fibre Placement (TFP) which is a technical embroidery pro-cess. For the further layer build-up, a fastener is not only integrated under the roving layers but also fixed by additional loops. The highly integrative preforming approach offers the possibility of reducing weight and process steps as well as increasing mechanical perfor-mance.
    Until now, inserts were glued or holes had to be drilled in the com-ponent. Bonded fasteners are limited by the adhesive surface. The bonding of fasteners into drilled holes results in high drill abrasion and thus high tool wear.
    The advantages of the embroidered preform with integrated metal fasteners are the reduction of scrap due to TFP preforming and the increase in the specific pull-out force. In addition, it is possible to automatize the production of integrative preforms. This makes the preform with integrated metal fasteners interesting for the automotive and aerospace industries.
Weitere Informationen:
RWTH Aachen, ITA, Textiltechnik
Quelle:

Institut für Textiltechnik of RWTH Aachen University

Induktiv beheiztes Bushing der neuartigen Glasfaserspinnanlage (c) ITA
Induktiv beheiztes Bushing der neuartigen Glasfaserspinnanlage,
21.02.2019

ITA zeigt auf der JEC World 2019 u.a. neue Glasfaserspinnanlage

Am Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 5A Stand D17 demonstriert das Institut für Textiltechnik der RWTH Aachen University (ITA) vom 12.-14. März 2019 in Paris seine Kompetenzen in den Bereichen Glasfasern, Preforms und Carbon Composites.
Die Exponate stammen aus unterschiedlichen Anwendungsfeldern und adressieren die Branchen Automotive, Luft- und Raumfahrt und Maschinenbau.

Am Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 5A Stand D17 demonstriert das Institut für Textiltechnik der RWTH Aachen University (ITA) vom 12.-14. März 2019 in Paris seine Kompetenzen in den Bereichen Glasfasern, Preforms und Carbon Composites.
Die Exponate stammen aus unterschiedlichen Anwendungsfeldern und adressieren die Branchen Automotive, Luft- und Raumfahrt und Maschinenbau.

  1. Innovative Glasfaserforschung am ITA
    Der modulare Aufbau der neu entwickelten, induktiv beheizten Glasfaserproduktionsanlage ermöglicht hohe Flexibilität in der Forschung und das Induktionssystem eine deutlich schnellere Bedienbarkeit. Erstmalig werden am Stand des ITA Glasfasern live auf der JEC World hergestellt. Zu den Neuheiten der Anlage gehört das induktiv beheizte Bushing. Es hat ein flexibles Design und besteht aus einer Platin-/Rhodium-Legierung (Pt/Rh20) zum Einsatz für Hochtemperaturgläser. Die Glasfaserproduktionsanlage wurde so konstruiert, dass sich neue Konzepte und Ideen schnell erproben lassen.
     
  2. DrapeCube – Umformung textiler Halbzeuge
    Der DrapeCube bietet eine kostengünstige Konstruktion zur Herstellung von Faservorformlingen aus textilen Halbzeugen. Er kommt zum Tragen bei der Fertigung von Preforms für Prototypen und in der Kleinserie und eignet sich für Unternehmen, die in der von faserverstärkten Kunststoffen (FVK) tätig sind.
    Bei der Produktion von FVK-Bauteilen wird im Preformingprozess ein Großteil der späteren Bauteilkosten definiert. In kleinen und mittelständischen Unternehmen wird dieser Prozessschritt oft noch manuell ausgeführt. Daraus resultieren hohe Qualitätsschwankungen und Bauteilpreise. Besonders bei hochbelasteten Strukturbauteilen führt die Qualitätsschwankung dazu, dass die Bauteile überdimensioniert sind. So wird das Leichtbaupotential von faserverstärkten Kunststoffen zu wenig genutzt.
    Eine Lösung bietet das aus der blechumformende Industrie adaptierte Stempelumformverfahren zur Formgebung von Verstärkungstextilien. Dabei wird das Textil zwischen zwei Formhälften (Patrize und Matrize) eingelegt und automatisiert umgeformt. Dieses Verfahren kommt aufgrund hoher Anlagen- und Werkzeugkosten fast ausschließlich in der Großserie zum Einsatz. Das ITA hat die Formgebungsstation DrapeCube entwickelt, die eine kostengünstige Alternative bietet und in der Lage ist, den aktuellen Stand der Technik für die Formgebung textiler Halbzeige vollständig abzubilden. Am Stand werden die Prozessschritte in einem Video demonstriert.
     
  3. Kohlenstoffaserverstärkter Kunststoff (CFK)-Preform
    Der CFK-Preform besteht aus Carbon-Multiaxial-Gelege, das durch expandiertes Polystyrol (EPS) umgeformt ist, um die Drapierqualität zu optimieren. Durch die schonende, textilgerechte Umformung mittels Schaumexpansion können Preforms in erhöhter Qualität hergestellt werden. Erstmalig wurde die Schaumexpansion genutzt, um Preforms so umzuformen, dass die Drapierqualität im Vergleich zur klassischen Stempelumformung verbessert wird.
    Die Vorteile des so umgeformten CFK-Preforms liegen in der Einsparung von Anlagenkosten, da das Investment viel geringer ist. Dazu wird der Verschnittanteil reduziert, weil eine endkonturnahe Fertigung ermöglicht wird. Darüber hinaus wird der Ausschuß verringert, da weniger Fehler im Textil entstehen.
    Zielgruppe sind die Hersteller von faserverstärkten Bauteilen, insbesondere für die Klein- und Mittelserie, bei denen die klassische Stempelumformung nicht wirtschaftlich ist.
     
  4. Gestickter Preform mit integriertem Metallinsert
    Die 12k Carbonfaserrovings werden durch das Spezial-Stickverfahren Tailored Fibre Placement (TFP) zu einem Preform abgelegt. Beim weiteren Lagenaufbau wird der Insert nicht nur unter den Rovinglagen integriert, sondern durch zusätzliches Umschlaufen fixiert. Der hochintegrative Preformingansatz bietet die Möglichkeit zur Reduktion von Gewicht und Prozessschritten sowie zur Steigerung der mechanischen Performance.
    Bisher wurden Inserts geklebt oder es waren Bohrungen im Bauteil notwendig. Aufgeklebte Inserts sind durch die Klebefläche limitiert. Das Einkleben von Inserts in Bohrungen zieht hohe Bohrerabrasion und damit hohen Werkzeugverschleiß nach sich.
    Die Vorteile des gestickten Preforms mit integriertem Metallinsert bestehen in der Reduktion von Verschnitt durch TFP-Preforming und der Steigerung der spezifischen Ausreißkraft. Dazu besteht die Möglichkeit, die Herstellung integrativer Preforms zu automatisieren. Damit ist der Preform mit integriertem Metallinsert interessant für die Zielgruppe Automotive und Luft- und Raumfahrt.
Weitere Informationen:
RWTH Aachen, ITA, Textiltechnik
Quelle:

Institut für Textiltechnik of RWTH Aachen University

Prof. Dr. Konstantin Kornev Prof. Dr. Konstantin Kornev
Prof. Dr. Konstantin Kornev
30.06.2017

Kármán-Fellow Prof. Dr. Kornev, Clemson University, USA, am ITA

Prof. Dr. Konstantin Kornev, Clemson University, USA, hat am Institut für Textiltechnik (ITA) der RWTH-Aachen University einen Vortrag über biologisch inspirierte, Faser-basierte Nanofluidik gehalten. In einem sehr lebendigen Vortrag zeigte er auf, wie durch Butterfly proboscis, eine flexible Faser, die als Fütterungsgerät von Schmetterlingen und Motten dient, die Rolle der Oberflächenmorphologie und Chemie dieser komplexen multifunktionellen Fasern zu verstehen ist. Hierbei konnte er mit Hilfe der Röntgenphasen-Kontrast-Bildgebung, der Hochgeschwindigkeitsoptischen Bildgebung und von magnetischen Sonden komplexe Mechanismen von Fluid- und Rüssel-Wechselwirkungen nachweisen. Mit den Grundprinzipien des Rüssel-Funktionierens demonstrierte er anschaulich in dem Vortrag, wie flexible Faser-basierte Sonden für den Transport von kleinen Mengen an Flüssigkeiten entworfen und produziert wurden. Garne aus Nanofasern mit entsprechender Porosität haben außergewöhnliche Fähigkeiten, unterschiedliche Flüssigkeiten zu transportieren. Einige Biotechnologie-Anwendungen von Faser-basierten Sonden wurden im Vortrag gezeigt.

Prof. Dr. Konstantin Kornev, Clemson University, USA, hat am Institut für Textiltechnik (ITA) der RWTH-Aachen University einen Vortrag über biologisch inspirierte, Faser-basierte Nanofluidik gehalten. In einem sehr lebendigen Vortrag zeigte er auf, wie durch Butterfly proboscis, eine flexible Faser, die als Fütterungsgerät von Schmetterlingen und Motten dient, die Rolle der Oberflächenmorphologie und Chemie dieser komplexen multifunktionellen Fasern zu verstehen ist. Hierbei konnte er mit Hilfe der Röntgenphasen-Kontrast-Bildgebung, der Hochgeschwindigkeitsoptischen Bildgebung und von magnetischen Sonden komplexe Mechanismen von Fluid- und Rüssel-Wechselwirkungen nachweisen. Mit den Grundprinzipien des Rüssel-Funktionierens demonstrierte er anschaulich in dem Vortrag, wie flexible Faser-basierte Sonden für den Transport von kleinen Mengen an Flüssigkeiten entworfen und produziert wurden. Garne aus Nanofasern mit entsprechender Porosität haben außergewöhnliche Fähigkeiten, unterschiedliche Flüssigkeiten zu transportieren. Einige Biotechnologie-Anwendungen von Faser-basierten Sonden wurden im Vortrag gezeigt.

Weitere Informationen:
RWTH Aachen, ITA, Textiltechnik
Quelle:

Institut für Textiltechnik of RWTH Aachen University