Aus der Branche

Zurücksetzen
138 Ergebnisse
PrimaLoft erweitert Active Insulation-Portfolio (c) PrimaLoft, Inc.
28.07.2023

PrimaLoft erweitert Active Insulation-Portfolio

PrimaLoft Inc., ein weltweites Unternehmen im Bereich fortschrittlicher Materialtechnologie, erweitert augrund wachsender Nachfrage sein Active Insulation-Portfolio um vier neue Active Evolve-Modelle und bekräftigt damit sein Engagement, innovative Lösungen anzubieten, die sich an den Bedürfnissen der Verbraucher orientieren.

PrimaLoft® Active Evolve wurde erstmals 2018 eingeführt und ist eine Produktlinie von isolierenden Funktionsstoffen, die helfen sollen, Leistung, Design und Nachhaltigkeit in Einklang zu bringen. Diese Technologie kombiniert die leichte Wärme der Isolation mit der Atmungsaktivität des Gewebes und wurde speziell dafür entwickelt, um bei einer Vielzahl von Aktivitäten unabhängig von der Intensität oder Jahreszeit zu funktionieren. Ob im Winter bei einer schweißtreibenden Langlauftour oder einer anstrengenden Wanderung zum nächsten Gipfel, PrimaLoft® Active Evolve hält die Temperatur immer innerhalb der Komfortzone - auch wenn man sich selbst darüber hinausbewegt

PrimaLoft Inc., ein weltweites Unternehmen im Bereich fortschrittlicher Materialtechnologie, erweitert augrund wachsender Nachfrage sein Active Insulation-Portfolio um vier neue Active Evolve-Modelle und bekräftigt damit sein Engagement, innovative Lösungen anzubieten, die sich an den Bedürfnissen der Verbraucher orientieren.

PrimaLoft® Active Evolve wurde erstmals 2018 eingeführt und ist eine Produktlinie von isolierenden Funktionsstoffen, die helfen sollen, Leistung, Design und Nachhaltigkeit in Einklang zu bringen. Diese Technologie kombiniert die leichte Wärme der Isolation mit der Atmungsaktivität des Gewebes und wurde speziell dafür entwickelt, um bei einer Vielzahl von Aktivitäten unabhängig von der Intensität oder Jahreszeit zu funktionieren. Ob im Winter bei einer schweißtreibenden Langlauftour oder einer anstrengenden Wanderung zum nächsten Gipfel, PrimaLoft® Active Evolve hält die Temperatur immer innerhalb der Komfortzone - auch wenn man sich selbst darüber hinausbewegt

Einige Produkte aus der Active Evolve-Linie können als "Next-to-Skin-Stoff" verwendet werden. Markenhersteller können so auf zusätzliche Futterstoffe verzichten, und dadurch Wärme- und Feuchtigkeitsmanagement effizienter handhaben, die Atmungsaktivität unterstützen sowie den Tragekomfort erhalten oder verbessern. Zusätzlich zur optimalen Leistung bei aeroben Aktivitäten führt dies zu einem sehr breiten Einsatzbereich und einer ganzjährigen Verwendung. Gleichzeitig können die Markenpartner bei der Entwicklung des Kleidungsstücks insgesamt weniger Material verwenden und so den ökologischen Fußabdruck und Abfall reduzieren.

PrimaLoft® Active Evolve bietet den Designern viele Vorteile. Es ermöglicht ihnen, das gesamte Farbspektrum zu nutzen, einzigartige Muster einzubauen und ermöglicht eine größere Flexibilität bei der Stoffauswahl. Darüber hinaus entfällt bei Active Evolve die Notwendigkeit des Steppens im Designprozess. Die Produkte der Active Evolve-Linie werden aus bis zu 100 Prozent recyceltem Material hergestellt, darunter drei der vier neuen Modelle.

Mit mehr als einem Dutzend Marken, die PrimaLoft® Active Evolve bisher eingeführt haben, wird es aufgrund seiner Anpassungsfähigkeit für den Benutzer, seines Einsatzbereichs bei verschiedenen Aktivitäten und seines saisonalen Timings schnell zu einem der vielseitigsten Produkte im Portfolio von PrimaLoft. Zu den wichtigsten Partnermarken für Herbst/Winter 23/24 gehören neben Sitka und Löffler auch CP Company, Eddie Bauer, Endura, Martini Sportswear, OMM, Quiksilver, Ziener und weitere.

Quelle:

PrimaLoft, Inc.

Professor Dr. Gries mit dem Preisträger Flávio André Marter Diniz Hanns-Voith-Stiftung, Oliver Voge
Professor Dr. Gries mit dem Preisträger Flávio André Marter Diniz
11.07.2023

Künftig Kostensenkung durch ultradünne PE-Carbonfasern

  • ITA-Masterabsolvent gewinnt Hanns-Voith-Stiftungspreis 2023

Der Masterabsolvent Flávio André Marter Diniz des Instituts für Textiltechnik der RWTH Aachen (ITA) entwickelte in seiner Masterarbeit ultradünne Poly-Ethylen (PE)-Carbonfasern mit einem 2-3mal kleineren Filament-Durchmesser als üblich. Dazu kann mit dem Einsatz von PE-basierten Precursoren der Carbonfaser-Preis zukünftig um 50 Prozent gesenkt werden und eröffnet damit vielfältige weitere Anwendungsmöglichkeiten in Schlüsselbranchen wie Windkraft, Luft- und Raumfahrt und Automotive. Für diese bahnbrechende Entwicklung wurde Marter Diniz mit dem Hanns-Voith-Stiftungspreis in der Kategorie „Neue Werkstoffe“ ausgezeichnet. Der Preis ist mit 5.000 € Preisgeld dotiert.

Flávio André Marter Diniz gewann den Preis in der Kategorie „Neue Werkstoffe“ für seine Masterarbeit mit dem Titel „Untersuchung des Stabilisierungs- und Carbonisierungsprozesses für die Herstellung von ultra-dünnen polyethylenbasierten Carbonfasern“.

  • ITA-Masterabsolvent gewinnt Hanns-Voith-Stiftungspreis 2023

Der Masterabsolvent Flávio André Marter Diniz des Instituts für Textiltechnik der RWTH Aachen (ITA) entwickelte in seiner Masterarbeit ultradünne Poly-Ethylen (PE)-Carbonfasern mit einem 2-3mal kleineren Filament-Durchmesser als üblich. Dazu kann mit dem Einsatz von PE-basierten Precursoren der Carbonfaser-Preis zukünftig um 50 Prozent gesenkt werden und eröffnet damit vielfältige weitere Anwendungsmöglichkeiten in Schlüsselbranchen wie Windkraft, Luft- und Raumfahrt und Automotive. Für diese bahnbrechende Entwicklung wurde Marter Diniz mit dem Hanns-Voith-Stiftungspreis in der Kategorie „Neue Werkstoffe“ ausgezeichnet. Der Preis ist mit 5.000 € Preisgeld dotiert.

Flávio André Marter Diniz gewann den Preis in der Kategorie „Neue Werkstoffe“ für seine Masterarbeit mit dem Titel „Untersuchung des Stabilisierungs- und Carbonisierungsprozesses für die Herstellung von ultra-dünnen polyethylenbasierten Carbonfasern“.

Der Einsatz von Carbonfasern in hochbeanspruchten Leichtbaulösungen wie z.B. den aktuellen Wachstumsanwendungen von Windkraftanlagen oder Drucktanks ist wegen hervorragender mechanischer Eigenschaften bei gleichzeitig geringer Dichte heute nicht mehr wegzudenken. Hohe Herstellkosten konventioneller PAN-Präkursor-basierter Carbonfasern machen den Werkstoff sehr kostenintensiv. Dazu ist er nicht ausreichend verfügbar. Neue Fertigungsansätze, die alternative Rohmaterialien und Herstellprozesse erarbeiten, können ein Schlüssel und Wachstumsmotor für weitere industrielle Composites Anwendungen sein.

Ziel der Arbeit war die Entwicklung eines neuen und kostengünstigen Herstellprozesses für qualitativ hochwertige ultra-dünne Carbonfasern durch einen Polyethylen-Präkursor. Dazu sollte der heute zeitlich aufwändige Sulfonisierungsprozess deutlich verkürzt werden. Als Ergebnis stellte Marter Diniz neuartige ultra-dünne polyethylenbasierte Carbonfasern mit einem Filament-Durchmesser < 3 μm mit einer hervorragenden Oberflächenqualität der Fasern ohne erkennbare strukturelle Defekte her. Der Faserdurchmesser ist 2-3-mal kleiner als bei herkömmlichen PAN-basierten CF. Damit ist die Grundlage für mechanisch hochwertige Materialeigenschaften gegeben. Parallel konnte die Sulfonisierungsdauer um 25 Prozent gesenkt werden. Das entwickelte Material und die Technologie setzten wichtige Meilensteine auf dem Weg zu günstigeren Carbonfasern. Mit PE-basierten Precursoren kann der Preis von CF um 50 Prozent gesenkt werden, im Vergleich zu herkömmlichen PAN-basierten CF.

Insgesamt wurden fünf weitere Nachwuchswissenschaftler in sechs Kategorien (Antriebstechnik, Innovation & Technology/Künstliche Intelligenz, Neue Werkstoffe, Papier, Wasserkraft und Wirtschaftswissenschaften vergeben. Die Hanns-Voith-Stiftung hat in diesem Jahr zum 10. Mal herausragende Nachwuchswissenschaftler mit dem Hanns-Voith-Preis ausgezeichnet.

Quelle:

ITA Institut für Textiltechnik of RWTH Aachen University

(c) KARL MAYER GROUP
02.06.2023

KARL MAYER GROUP mit nachhaltigen Technischen Textilien auf der ITMA

Die KARL MAYER GROUP präsentiert auf der ITMA eine WEFTTRONIC® II G mit neuen Features und Upgrades für mehr Nutzeffekte. Die Schusswirkmaschine fertigt Gitterstrukturen aus hochfestem Polyester, die vor allem im Bauwesen fest etabliert sind. Sie bietet mit einer Arbeitsbreite von 213“ Produktivität und weitere Vorteile durch konstruktive Innovationen. Zu den Neuerungen gehören ein Monitoring der Schussfadenspannung und das neue Legesystem VARIO WEFT. Die Komponente für den Schusseintrag zielt auf hohe Flexibilität ab. Mit ihr kann die Musterung des Schussfadens schnell und einfach auf elektronischem Weg, ohne mechanische Eingriffe beim Fadeneinzug und ohne Limitierungen der Rapportlängen, geändert werden. Zudem fällt weniger Abfall an.

Die KARL MAYER GROUP präsentiert auf der ITMA eine WEFTTRONIC® II G mit neuen Features und Upgrades für mehr Nutzeffekte. Die Schusswirkmaschine fertigt Gitterstrukturen aus hochfestem Polyester, die vor allem im Bauwesen fest etabliert sind. Sie bietet mit einer Arbeitsbreite von 213“ Produktivität und weitere Vorteile durch konstruktive Innovationen. Zu den Neuerungen gehören ein Monitoring der Schussfadenspannung und das neue Legesystem VARIO WEFT. Die Komponente für den Schusseintrag zielt auf hohe Flexibilität ab. Mit ihr kann die Musterung des Schussfadens schnell und einfach auf elektronischem Weg, ohne mechanische Eingriffe beim Fadeneinzug und ohne Limitierungen der Rapportlängen, geändert werden. Zudem fällt weniger Abfall an.

Auch mit durchdachten Care Solutions steht die KARL MAYER GROUP ihren Kunden zur Seite. Zu den neuen Support-Angeboten gehören Retrofit-Packages zur Nachrüstung von Steuerungs- und Antriebstechnik für Schusseintrags- und Composite-Maschinen und Service Packages, die verschiedene Leistungen bündeln. Hier enthalten sind u. a. Maschineninspektionen und der Austausch aller Antriebsriemen. Der Kunde profitiert von festen Preisen, die die Kosten von Technikereinsätzen mit abdecken, verschiedenen Rabattmöglichkeiten und transparenten Leistungen.

Aus dem Anwendungsbereich für Technische Textilien wird eine neuartige Lösung zur vertikalen Begrünung von Städten vorgestellt. Kern der Innovation ist ein Netz, das auf Kettenwirkmaschinen mit Schusseintrag von der KARL MAYER Technische Textilien GmbH hergestellt wurde. Das Gittergewirke besteht aus Flachs. Es wird als Rankhilfe für schnell wachsende Pflanzen eingesetzt und lässt sich, nach der Begrünungsphase, im Herbst gemeinsam mit diesen als Biomasse in Pyrolyseanlagen zu Strom und Aktivkohle verwerten. Im Sommer senken die bepflanzten Segel durch Verdunstungseffekte die Umgebungstemperatur. Zudem entsteht durch die Photosynthese Frischluft, und es wird CO2 gebunden. Weitere wichtige Vorteile sind ein geringer Bodenbedarf und eine flexible Platzierung im öffentlichen Raum. Das Begrünungssystem wurde von dem Unternehmen Micro Climate Cultivation, OMC°C, mit Unterstützung von KARL MAYER Technische Textilien entwickelt.

Zudem zeigt die KARL MAYER GROUP eine nachhaltige Composite-Lösung aus Naturfasern. Das Verstärkungstextil des innovativen Leichtbaumaterials ist ein Multiaxialgelege, das auf einer COP MAX 4 von KARL MAYER Technische Textilien ebenfalls aus dem biobasierten Rohstoff Flachs hergestellt wurde. Der Bootsbauspezialist GREENBOATS verwendet Naturfaserverbundwerkstoffe, um nachhaltigere Produkte zu erreichen. Dass ihm dies gelingt, zeigt sich beispielsweise beim Global Warming Potential (GWP): 0,48 kg CO2 pro Kilogramm Flachsverstärkung stehen 2,9 kg CO2 pro Kilogramm Glastextil gegenüber.

Quelle:

KARL MAYER Verwaltungsgesellschaft mbH

Frau am Meer Foto Pixabay
17.04.2023

Kelheim Fibres, Sandler und pelzGROUP entwickeln plastikfreie Slipeinlage

Viskosespezialfaser-Hersteller Kelheim Fibres, Vliesstoffproduzent Sandler und Hygieneprodukt-Hersteller pelzGROUP haben eine neue Slipeinlage entwickelt, die gemäß der europäischen Einwegkunststoff-Richtlinie (SUPD) plastikfrei ist. Dies ist ein Schritt zur Reduzierung des Plastikanteils in Hygieneprodukten – und damit auch ein Beitrag zur Bewältigung des Problems der Plastikverschmutzung.

Laut einer Studie der UNEP zu „Marine Litter and Microplastics“ gelangen jedes Jahr acht Millionen Tonnen Plastik in die Ozeane. Ein großer Teil dieser Verschmutzung stammt aus Einweg-Kunststoffprodukten, einschließlich herkömmlicher Periodenprodukte wie Binden oder Slipeinlagen.

Viskosespezialfaser-Hersteller Kelheim Fibres, Vliesstoffproduzent Sandler und Hygieneprodukt-Hersteller pelzGROUP haben eine neue Slipeinlage entwickelt, die gemäß der europäischen Einwegkunststoff-Richtlinie (SUPD) plastikfrei ist. Dies ist ein Schritt zur Reduzierung des Plastikanteils in Hygieneprodukten – und damit auch ein Beitrag zur Bewältigung des Problems der Plastikverschmutzung.

Laut einer Studie der UNEP zu „Marine Litter and Microplastics“ gelangen jedes Jahr acht Millionen Tonnen Plastik in die Ozeane. Ein großer Teil dieser Verschmutzung stammt aus Einweg-Kunststoffprodukten, einschließlich herkömmlicher Periodenprodukte wie Binden oder Slipeinlagen.

Die Partnerschaft zwischen den drei Unternehmen wurde unter dem Open Innovation Prinzip gebildet, was einen kreativen Ideenaustausch ermöglichte und die Entwicklung eines innovativen Produkts erleichterte. Laut Jessica Zeitler, R&D Specialist bei Sandler ist "unsere Zusammenarbeit mit Kelheim Fibres und pelzGROUP ein großartiges Beispiel dafür, wie Unternehmen zusammenarbeiten können, um Lösungen zu schaffen, die sowohl der Umwelt als auch den Verbrauchern zugutekommen. Wir sind stolz darauf, Teil dieses Projekts zu sein und auf die Möglichkeiten, die es bietet."

Für Hygieneprodukthersteller pelzGROUP ist es wichtig, Nachhaltigkeit und Leistung zu kombinieren, um große Akzeptanz auf dem Markt zu erreichen. "Unsere Slipeinlage entspricht den strengen Anforderungen der Europäischen Einwegkunststoff-Richtlinie (SUPD) und steht dabei herkömmlichen synthetischen Produkten in puncto Leistung in nichts nach. Gleichzeitig steht hinter unserer neuen Slipeinlage eine komplett europäische Lieferkette. Das bedeutet kurze Wege und damit einen geringen CO2-Ausstoß und - gerade in Zeiten weltweiter Verwerfungen - Verlässlichkeit für unsere Kunden", betont Dr. Henning Röttger, Head of Business Development der pelzGROUP.

„Unsere Viskosespezialfasern sind eine umweltfreundliche und gleichzeitig leistungsstarke Alternative zu synthetischen Materialien“, so Dominik Mayer, Projektleiter Faser-& Anwendungsentwicklung bei Kelheim Fibres. „Sie stehen ganz am Anfang der Produktwertschöpfungskette und haben dennoch einen enormen Einfluss auf die Funktionalität des Endprodukts. Open Innovation ermöglicht es uns, alle Partner der Wertschöpfungskette an einen Tisch zu holen und gemeinsam in sehr kurzer Zeit die beste Lösung zu finden und zur Kommerzialisierung zu bringen – die Zusammenarbeit mit Sandler und pelzGROUP ist ein wichtiger Meilenstein unserer AHP-Reise.“

Quelle:

Kelheim Fibres GmbH

Dr. Ioana Slabu und Benedict Bauer mit dem nanomodifizierten Stent Photo Peter Winandy
30.03.2023

Nanomodifizierter Polymerstent: Neue Therapie für Hohlorgan-Tumore

  • Elektromagnetisch aufheizbarer nanomodifizierter Stent zur Behandlung von Hohlorgantumoren gewinnt zweiten Platz beim RWTH Innovation Award

Fast jeder vierte Krebstote hatte einen Hohlorgantumor etwa im Gallengang oder in der Speiseröhre. Ein derartiger Tumor kann meist nicht operativ entfernt werden. Möglich ist nur eine kurzzeitige Öffnung des Hohlorgans mit einem Stent, also einer röhrchenförmigen Prothese. Der Tumor wächst jedoch wieder ein und dringt durch den Stent in das Hohlorgan. Ioana Slabu vom Institut für Angewandte Medizintechnik und Benedict Bauer vom Institut für Textiltechnik haben nun eine neuartige Technologie für die Therapie von HohlorganTumoren entwickelt, die mit dem zweiten Platz des RWTH Innovation Award 2022 ausgezeichnet wurde.

  • Elektromagnetisch aufheizbarer nanomodifizierter Stent zur Behandlung von Hohlorgantumoren gewinnt zweiten Platz beim RWTH Innovation Award

Fast jeder vierte Krebstote hatte einen Hohlorgantumor etwa im Gallengang oder in der Speiseröhre. Ein derartiger Tumor kann meist nicht operativ entfernt werden. Möglich ist nur eine kurzzeitige Öffnung des Hohlorgans mit einem Stent, also einer röhrchenförmigen Prothese. Der Tumor wächst jedoch wieder ein und dringt durch den Stent in das Hohlorgan. Ioana Slabu vom Institut für Angewandte Medizintechnik und Benedict Bauer vom Institut für Textiltechnik haben nun eine neuartige Technologie für die Therapie von HohlorganTumoren entwickelt, die mit dem zweiten Platz des RWTH Innovation Award 2022 ausgezeichnet wurde.

Dabei handelt es sich um einen Polymerstent, der magnetische Nanopartikel enthält. Beim Anlegen von elektromagnetischen Feldern führen diese Nanopartikel zu einer kontrollierten Aufheizung des Stentmaterials und damit des Tumors. Weil der Tumor viel empfindlicher auf Hitze reagiert als gesundes Gewebe, wird er zerstört, das Hohlorgan bleibt offen. Der Stent entfaltet so eine selbstreinigende Wirkung.  

Ioana Slabu vom AME erläutert: „Damit können wir nicht nur die Behandlungskosten drastisch reduzieren, sondern vor allem ermöglichen wir eine große Erleichterung für Millionen Patienten weltweit.“
 
Es gibt bereits einen Herstellungsprozess und einen Nachweis für die magnetische Hyperthermie. Diese neuartige Technologie hat ein sehr hohes Entwicklungspotenzial, weil sie genauso bei Tumoren in anderen Körperteilen wie der Prostata, dem Magen, im Darm oder in der Harnblase oder bei kardiovaskulären Erkrankungen eingesetzt werden kann.  

Das AiF/IGF-Projekt startete unter dem Projekttitel „ProNano“ und wurde vom BMWK gefördert. Jetzt liegt auch die Bewilligung des Folgeprojektes „ProNano2“ vor. Das bewilligte Projekt heißt: „Validierung des Innovationspotentials aufheizbarer Stents zur hitzeinduzierten Behandlung von Hohlraumtumoren“ und wird vom VIP-Programm des BMBF gefördert. Das Klinik für Allgemein, Viszeral- und Transplantationschirurgie des Universitätsklinikums Aachen und das Institut für Technologie- und Innovationsmanagement der RWTH Aachen ergänzt das Konsortium mit klinischer und wirtschaftswissenschaftlicher Expertise.

Die RWTH Aachen zeichnet jedes Jahr besonders innovative Hochschulprojekte mit dem Innovation Award aus. Professor Malte Brettel, Prorektor für Wirtschaft und Industrie, übergab im Rahmen von RWTHtransparent die Urkunden an vier herausragende Projekte.

Quelle:

ITA – Institut für Textiltechnik of RWTH Aachen University

Aus Wasser gesponnene Lignin-Präkursorfasern, stabilisierte und carbonisierte Endlosfasern. Foto: DITF
Aus Wasser gesponnene Lignin-Präkursorfasern, stabilisierte und carbonisierte Endlosfasern.
13.03.2023

Neues Verfahren: Carbonfasern aus Lignin

Ein neuartiges, ebenso umweltfreundliches wie kostensparendes Verfahren zur Herstellung von Carbonfasern aus Lignin ist an den DITF entwickelt worden. Es zeichnet sich durch hohes Energiesparpotential aus. Die Vermeidung von Lösungsmitteln und die Nutzung natürlicher Rohstoffe machen das Verfahren umweltfreundlich.

Carbonfasern werden im industriellen Maßstab gewöhnlich aus Polyacrylnitril (PAN) hergestellt. Die Stabilisierung und die Carbonisierung der Fasern geschieht dabei mit langer Verweildauer in hochtemperierten Öfen. Das erfordert viel Energie und macht die Fasern teuer. Dabei entstehen giftige Nebenprodukte, die aufwendig und energieintensiv aus dem Herstellungsprozess abgetrennt werden müssen.

Ein neuartiges, ebenso umweltfreundliches wie kostensparendes Verfahren zur Herstellung von Carbonfasern aus Lignin ist an den DITF entwickelt worden. Es zeichnet sich durch hohes Energiesparpotential aus. Die Vermeidung von Lösungsmitteln und die Nutzung natürlicher Rohstoffe machen das Verfahren umweltfreundlich.

Carbonfasern werden im industriellen Maßstab gewöhnlich aus Polyacrylnitril (PAN) hergestellt. Die Stabilisierung und die Carbonisierung der Fasern geschieht dabei mit langer Verweildauer in hochtemperierten Öfen. Das erfordert viel Energie und macht die Fasern teuer. Dabei entstehen giftige Nebenprodukte, die aufwendig und energieintensiv aus dem Herstellungsprozess abgetrennt werden müssen.

Ein neuartiges, an den DITF entwickeltes Verfahren ermöglicht hohe Energieeinsparungen in all diesen Prozessschritten. Lignin ersetzt dabei das Polyacrylnitril für die Herstellung der Präkursorfasern, die in einem zweiten Prozessschritt zu Carbonfasern umgewandelt werden. Lignin als Ausgangsmaterial für die Herstellung von Carbonfasern hat bisher kaum Beachtung in der industriellen Fertigung gefunden. Lignin ist ein günstiger und in großen Mengen verfügbarer Rohstoff, der als Abfallprodukt in der Papierproduktion anfällt.

Im neuen Verfahren zur Herstellung von Ligninfasern wird zuerst Holz in seine Bestandteile Lignin und Cellulose getrennt. Ein Sulfit-Aufschluss ermöglicht die Erzeugung von Lignosulfonat, das in Wasser gelöst wird. Die wässrige Lösung von Lignin ist das Ausgangsmaterial für das Spinnen der Fasern.
Der Spinnprozess selbst erfolgt im sogenannten Trockenspinnverfahren. Dabei presst ein Extruder die Spinnmasse durch eine Düse in einen beheizten Spinnschacht. Die entstehenden Endlosfasern trocknen im Spinnschacht schnell und gleichmäßig. Das Verfahren benötigt weder Lösungsmittel noch giftige Additiven.

Die anschließenden Schritte zur Herstellung von Carbonfasern - die Stabilisierung in Heißluft und die anschließende Carbonisierung im Hochtemperaturofen - ähneln denen des üblichen Prozesses bei Verwendung von PAN als Präkursorfaser. Allerdings lassen sich die Ligninfasern im Ofen besonders schnell mit Heißluft stabilisieren und benötigen nur relativ niedrige Temperaturen in der Carbonisierung. Die Energieersparnis in diesen Prozessschritten gegenüber PAN liegt bei rund 50% und bedeutet einen echten Wettbewerbsvorteil.

Aus Wasser gesponnene Ligninfasern bieten Vorteile
Neben der umweltfreundlichen, da lösemittelfreien Herstellung, und der Energieeffizienz bietet das neue Verfahren weitere Vorteile gegenüber PAN: Lignin ist ein überaus günstiger und leicht verfügbarer Rohstoff, der aus Holz gewonnen wird. Die Verwendung eines natürlichen Rohstoffes für die Erzeugung von hochfesten Carbonfasern folgt dem Nachhaltigkeitsgedanken in der Produktion.

Der Trockenspinnprozess erlaubt hohe Spinngeschwindigkeiten. Hierdurch wird in kürzerer Zeit deutlich mehr Material produziert, als es mit PAN-Fasern möglich ist. Das ist ein weiterer Wettbewerbsvorteil, der dennoch keine Kompromisse an die Qualität der Lignin-Präkursorfasern zulässt: Diese sind äußerst homogen, haben glatte Oberflächen und keine Verklebungen. Solche strukturellen Merkmale erleichtern die Weiterverarbeitung zu Carbonfasern und letztlich auch zu Faserverbundwerkstoffen.

Zusammenfassend lässt sich sagen, dass die in dem neuen Spinnverfahren gewonnenen Präkursorfasern aus Lignin gegenüber PAN deutliche Vorteile in der Kosteneffizienz und in ihrer Umweltverträglichkeit zeigen. Die mechanischen Eigenschaften der aus ihnen hergestellten Carbonfasern sind hingegen nahezu vergleichbar – sie sind ebenso zugfest, widerstandsfähig und leicht, wie es von marktgängigen Produkten bekannt ist.

Besonders interessant dürften Carbonfasern aus Wasser gesponnenen Ligninfasern für Anwendungen in der Bau- und Automobilbranche sein, die von Kostensenkungen im Produktionsprozess in hohem Maße profitieren.

Quelle:

DITF

(c) STFI HiPeR_Integral RTM rib
09.03.2023

STFI mit textilem Leichtbau und Textilrecycling auf der JEC

Vom 25. bis zum 27. April 2023 findet die diesjährige JEC WORLD, die international führende Leichtbaumesse, in Paris statt. Das Sächsische Textilforschungsinstitut e.V. (STFI) wird seine jüngsten Innovationen aus dem textilen Leichtbau und dem Textilrecycling auf dem Stand der sächsischen Wirtschaftsförderung präsentieren. Das STFI fokussiert seinen Messeauftritt in Paris dieses Jahr vor allem auf erfolgreiche Beispiele aus Industriekooperationen, die zur Nachhaltigkeit des Herstellungsprozesses beitragen.

Im Forschungsvorhaben „optiformTEX“ innerhalb des BMBF-Förderprogramms „Zwanzig20 – futureTEX“ wurde eine neue Technologie für flächige Naturfaser (NF)-Halbzeuge mit belastungsgerechter topologischen Fasermasseverteilung entwickelt. Dies lässt eine signifikante Gewichtsreduzierung von bis zu 30 % bei Leichtbauteilen vor allem im automobilen Interieur zu.

Vom 25. bis zum 27. April 2023 findet die diesjährige JEC WORLD, die international führende Leichtbaumesse, in Paris statt. Das Sächsische Textilforschungsinstitut e.V. (STFI) wird seine jüngsten Innovationen aus dem textilen Leichtbau und dem Textilrecycling auf dem Stand der sächsischen Wirtschaftsförderung präsentieren. Das STFI fokussiert seinen Messeauftritt in Paris dieses Jahr vor allem auf erfolgreiche Beispiele aus Industriekooperationen, die zur Nachhaltigkeit des Herstellungsprozesses beitragen.

Im Forschungsvorhaben „optiformTEX“ innerhalb des BMBF-Förderprogramms „Zwanzig20 – futureTEX“ wurde eine neue Technologie für flächige Naturfaser (NF)-Halbzeuge mit belastungsgerechter topologischen Fasermasseverteilung entwickelt. Dies lässt eine signifikante Gewichtsreduzierung von bis zu 30 % bei Leichtbauteilen vor allem im automobilen Interieur zu.

Es entstand das Modul „3D-Lofter“ zur lokalen Verstärkung von Vliesstoffen mittels definierter Faseranhäufungen; entwickelt und gebaut durch den Projektpartner Oskar Dilo Maschinenfabrik KG, Eberbach. Ein Exemplar des Moduls wurde in eine Labornadelvliesstoffanlage im Technikum des STFI integriert und steht für Kundenversuche sowie nachfolgende Forschungsvorhaben zur Verfügung.

Im Ergebnis des internationalen BMBF-Vorhabens „HiPeR – Orientierte Carbonfaserstrukturen aus Luftfahrt-Produktionsabfällen zum Wiedereinsatz im Flugzeug“ entstand ein Strukturbauteil für die Luftfahrt aus Recycling-Carbon. Dafür wurden am STFI rCF-Tapes sowohl aus recoverten, mechanisch aufbereiteten Abfällen als auch aus pyrolysierten Fasern entwickelt. Die rCF-Tapes werden auf dem STFI-Stand, das Bauteil selbst am CU-Messestand/CTC präsentiert.

(c) Freudenberg Performance Materials
17.02.2023

Freudenberg: Verpackungstextilien für Automobil- und Industrieteile

Freudenberg Performance Materials (Freudenberg) erweitert seine Produktpalette an technischen Verpackungstextilien. Evolon® ESD schützt Automobil- und Industrieteile mit elektronischen Komponenten vor elektrostatischer Entladung und Verkratzen der Oberflächen. Beispiele sind Dekorleisten, Armaturenbretter, Spiegel, Lenkräder.

Die ESD-Funktion (Electro-Static Discharge) des neuen Evolon Verpackungstextils bietet durchgängigen Schutz vor elektrostatischer Entladung. Der spezifische Oberflächenwiderstand des Textils kann angepasst werden. Eine elektrostatische Aufladung durch Bewegung und Reibung während Transport und Lagerung wird sicher vermieden, sodass elektronische Komponenten optimal vor Beschädigung geschützt sind. Da diese Art von Beschädigung mit bloßem Auge nicht erkennbar ist, hilft Evolon® ESD, Ausfälle zu vermeiden, die nach der Montage und Freigabe des Endprodukts auftreten können. Hersteller profitieren von weniger Reklamations- und Garantiekosten sowie einer höheren Zufriedenheit ihrer Endkunden.

Freudenberg Performance Materials (Freudenberg) erweitert seine Produktpalette an technischen Verpackungstextilien. Evolon® ESD schützt Automobil- und Industrieteile mit elektronischen Komponenten vor elektrostatischer Entladung und Verkratzen der Oberflächen. Beispiele sind Dekorleisten, Armaturenbretter, Spiegel, Lenkräder.

Die ESD-Funktion (Electro-Static Discharge) des neuen Evolon Verpackungstextils bietet durchgängigen Schutz vor elektrostatischer Entladung. Der spezifische Oberflächenwiderstand des Textils kann angepasst werden. Eine elektrostatische Aufladung durch Bewegung und Reibung während Transport und Lagerung wird sicher vermieden, sodass elektronische Komponenten optimal vor Beschädigung geschützt sind. Da diese Art von Beschädigung mit bloßem Auge nicht erkennbar ist, hilft Evolon® ESD, Ausfälle zu vermeiden, die nach der Montage und Freigabe des Endprodukts auftreten können. Hersteller profitieren von weniger Reklamations- und Garantiekosten sowie einer höheren Zufriedenheit ihrer Endkunden.

Doppelter Schutz
Im Gegensatz zu herkömmlichen ESD-Verpackungslösungen bietet Evolon® ESD eine zweite Schutzfunktion. Die neue Textilverpackung vermeidet Mikrokratzer und Flusen auf empfindlichen Oberflächen. Durch die Verwendung von Mehrwegverpackungen aus Evolon® für den Transport von Teilen mit hochempfindlichen Oberflächen reduzieren Kunden die Anzahl beschädigter Teile und die Ausschussrate.

Weitere Stärken
Evolon-Mikrofilament-Textilien® sind extrem stark. Sie sind in verschiedenen Gewichten erhältlich, um eine Vielzahl von Anforderungen zu erfüllen – von leicht bis hochbelastbar. Mit ihnen lassen sich auch sehr schwere Teile ohne Beschädigung verpacken und transportieren. Zudem sind Evolon-Textilien® langlebig und sie sind bis zu 85 Prozent aus recyceltem PET hergestellt.

Quelle:

Freudenberg Performance Materials

(c) Freudenberg Performance Materials Holding SE & Co. KG
13.02.2023

Freudenberg Performance Materials mit Lösungen für die Verbundwerkstoff-Industrie auf der JEC 2023

Freudenberg Performance Materials (Freudenberg) präsentiert auf der JEC in Paris, Frankreich, Oberflächenvliesstoffe und Kernmaterialien für faserverstärkte Kunststoffe. Durchflussmedien und Abstandhalter von Enka® Solutions für effiziente Vakuuminfusions-, Harztransfer- und Schaumspritzguss-Prozesse erweitern das Produktportfolio des Herstellers technischer Textilien.

Die faserverstärkten Kunststoffe umfassen eine Vielzahl an Vliesstoffen aus Glas, PAN und PET sowie Kernmaterialien für die Herstellung von Leichtbaukonstruktionen. Die Materialien sind für verschiedene Anwendungsbereiche geeignet -  vom Aufbau einer Korrosionsschutzschicht im Rohr- und Behälterbau über die Erzeugung glatter, UV-beständiger Oberflächen bei Fassadenplatten bis hin zu speziellen Einsatzzwecken in diversen Endanwendungen. Für die Oberflächenvergütung faserverstärkter Kunststoffe bietet Freudenberg abriebfeste, korrosionsbeständige, optisch glatte und mechanisch belastbare Hightech-Vliesstoffe an.

Freudenberg Performance Materials (Freudenberg) präsentiert auf der JEC in Paris, Frankreich, Oberflächenvliesstoffe und Kernmaterialien für faserverstärkte Kunststoffe. Durchflussmedien und Abstandhalter von Enka® Solutions für effiziente Vakuuminfusions-, Harztransfer- und Schaumspritzguss-Prozesse erweitern das Produktportfolio des Herstellers technischer Textilien.

Die faserverstärkten Kunststoffe umfassen eine Vielzahl an Vliesstoffen aus Glas, PAN und PET sowie Kernmaterialien für die Herstellung von Leichtbaukonstruktionen. Die Materialien sind für verschiedene Anwendungsbereiche geeignet -  vom Aufbau einer Korrosionsschutzschicht im Rohr- und Behälterbau über die Erzeugung glatter, UV-beständiger Oberflächen bei Fassadenplatten bis hin zu speziellen Einsatzzwecken in diversen Endanwendungen. Für die Oberflächenvergütung faserverstärkter Kunststoffe bietet Freudenberg abriebfeste, korrosionsbeständige, optisch glatte und mechanisch belastbare Hightech-Vliesstoffe an.

Die Produkte von Enka® Solutions zeichnen sich durch ihre typischen 3D-Strukturen aus verschränkten Polymerfilamenten aus, durch die sie sich bei der Herstellung von Verbundwerkstoffen besonders gut als Fließmedien und Abstandhalter eignen.

Quelle:

Freudenberg Performance Materials Holding SE & Co. KG

(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
13.01.2023

AVK veröffentlicht Composites-Recycling-Studie

Die AVK – Industrievereinigung Verstärkte Kunststoffe e. V. hat gemeinsam mit dem IKK, Institut für Kunststoff und Kreislaufwirtschaft der Leibniz-Universität Hannover, eine umfassende Studie zum Composites-Recycling erarbeitet.

Sie bietet eine systematische und umfassende Übersicht über die anfallenden Abfallmengen und die aktuellen sowie zukünftig verfüg- und umsetzbaren Lösungen zum hochwertigen Recycling. Dabei werden die Vor- und Nachteile zu den verschiedenen Verfahren bewertet sowie relevante gesetzliche Vorgaben und Normen betrachtet.

Die AVK – Industrievereinigung Verstärkte Kunststoffe e. V. hat gemeinsam mit dem IKK, Institut für Kunststoff und Kreislaufwirtschaft der Leibniz-Universität Hannover, eine umfassende Studie zum Composites-Recycling erarbeitet.

Sie bietet eine systematische und umfassende Übersicht über die anfallenden Abfallmengen und die aktuellen sowie zukünftig verfüg- und umsetzbaren Lösungen zum hochwertigen Recycling. Dabei werden die Vor- und Nachteile zu den verschiedenen Verfahren bewertet sowie relevante gesetzliche Vorgaben und Normen betrachtet.

Das Thema Nachhaltigkeit und Recycling ist auch in der Kunststoffindustrie immer wichtiger geworden. Gerade im Bereich Leichtbau haben Composites enorme Vorteile. Darüber hinaus können die Materialien aber auch in Bezug auf Nachhaltigkeit einen hohen Mehrwert liefern. Warum Composites vorteilhaft sind, wurde bislang wenig systematisch oder eher punktuell untersucht. Mit der jetzt veröffentlichten Composites-Recycling-Studie, die vom IKK-Institutsleiter Professor Hans-Josef Endres und Dr. Madina Shamsuyeva mit Unterstützung von Industrievertretern aus dem AVK-Expertenarbeitskreis erarbeitet wurde, liegt die erste große Untersuchung zum Thema Recycling von Composites vor.

„Für Composites gibt es ein hohes Potential, auch wenn viele glauben, Faserverbundkunststoffe lassen sich schwer recyclen. Trotzdem darf man nicht vergessen, dass nicht alles, was beim Recycling möglich ist, auch wirtschaftlich oder nachhaltig ist. Hier gilt es genau hinzusehen. Diese Studie ist deshalb so wichtig, um herauszufinden, wie der aktuelle Stand ist, wohin sich der Markt entwickeln kann und wo noch Potential schlummert“, stellt AVK-Geschäftsführer Dr. Elmar Witten fest.

Prof. Hans-Josef Endres ergänzt: „Die Studie zeigt, dass in einigen Bereichen mehr recycelt wird, z. B. bei den Thermoplasten, in anderen Bereichen jedoch noch nicht. Gerade beim chemischen Recycling ist der Reifegrad der Technologien noch nicht sehr fortgeschritten und manchmal sind auch Anlagekapazitäten noch nicht ausgelastet. Hier muss noch Pionierarbeit geleistet werden, um z. B. interdisziplinäre Geschäftsmodelle auszuarbeiten. Gleichzeitig gibt es Anwendungen für Composites, die schon heute aus technischer Sicht einfach zu recyceln wären und es ‚nur‘ an der Logistik und dem Willen fehlt. Aber auch eine Harmonisierung von Gesetzen und Normen sowie der Rechtsprechung wäre wünschenswert, um das Composites-Recycling weiter voranzubringen.“

Die Studie ist zum Preis von 799,- Euro (zzgl. MwSt.) bei der AVK im PDF-Format erhältlich (ermäßigter Preis für AVK-Mitglieder: 399,- Euro zzgl. MwSt.).

Quelle:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

Grafik Freudenberg Performance Materials
10.01.2023

Freudenberg: Verpackungstextilien mit weniger CO2-Emissionen

Textilien für technische Verpackungen von Freudenberg Performance Materials (Freudenberg) haben einen um 35 Prozent reduzierten CO₂-Fußabdruck. Möglich macht das ein hoher Anteil an recycelten Rohstoffen. Eine unabhängige Studie zur Ökobilanz (LCA) von Evolon®-Materialien zeigte zusätzliche Vorteile wie Energieeinsparungen und geringeren Wasserverbrauch. Darüber hinaus verbessert die Haltbarkeit von Evolon® die Nachhaltigkeit der technischen Verpackungen über den gesamten Lebenszyklus.

Mit dem Ersatz von Virgin-PET durch recyceltes PET verringerte sich der CO₂-Fußabdruck von Evolon®-Verpackungstextilien um 35 Prozent. Dies ist das Ergebnis einer Studie eines unabhängigen Beratungsunternehmens für Ökobilanzen (Life Cycle Assessments, kurz LCA) und Ökodesign. Dabei handelt es sich um eine Cradle-to-Gate-Bewertung mehrerer Evolon®-Produkte, die Virgin-PET oder recyceltes PET enthalten. Die Studie erfolgte nach den Normen ISO 14040 / ISO 14044, wobei sie den Empfehlungen des „Product Environmental Footprint“ und der „Circular Footprint Formula“ der Europäischen Union folgt. Die Studie wurde 2022 abgeschlossen.

Textilien für technische Verpackungen von Freudenberg Performance Materials (Freudenberg) haben einen um 35 Prozent reduzierten CO₂-Fußabdruck. Möglich macht das ein hoher Anteil an recycelten Rohstoffen. Eine unabhängige Studie zur Ökobilanz (LCA) von Evolon®-Materialien zeigte zusätzliche Vorteile wie Energieeinsparungen und geringeren Wasserverbrauch. Darüber hinaus verbessert die Haltbarkeit von Evolon® die Nachhaltigkeit der technischen Verpackungen über den gesamten Lebenszyklus.

Mit dem Ersatz von Virgin-PET durch recyceltes PET verringerte sich der CO₂-Fußabdruck von Evolon®-Verpackungstextilien um 35 Prozent. Dies ist das Ergebnis einer Studie eines unabhängigen Beratungsunternehmens für Ökobilanzen (Life Cycle Assessments, kurz LCA) und Ökodesign. Dabei handelt es sich um eine Cradle-to-Gate-Bewertung mehrerer Evolon®-Produkte, die Virgin-PET oder recyceltes PET enthalten. Die Studie erfolgte nach den Normen ISO 14040 / ISO 14044, wobei sie den Empfehlungen des „Product Environmental Footprint“ und der „Circular Footprint Formula“ der Europäischen Union folgt. Die Studie wurde 2022 abgeschlossen.

Evolon®-Mikrofilament-Textilien haben eine geringe CO2-Bilanz, da ihr Herstellungsprozess CO2-arme Energiequellen verwendet. Die Textilien sind leicht und können über die gesamte Produktionsdauer eines zu verpackenden Teils, z.B. in der Automobilindustrie, wiederverwendet werden.  Darüber hinaus enthalten die neuen Evolon® RE-Textilien bis zu 85 Prozent recyceltes PET. Dies wird im eigenen Haus aus Post-Consumer-PET-Flaschen hergestellt.

Durch die Verwendung von wiederverwendbaren Verpackungen aus Evolon®-Textilien werden Einwegverpackungen vermieden. Transportverpackungen aus Evolon®-Textilien bieten kratzfreien, fusselfreien und erstklassigen Oberflächenschutz für Kunststoffformteile, lackierte Teile und andere empfindliche Industrie- und Automobilteile. Dies trägt zur Senkung der Ausschussrate bei und führt sowohl zu finanziellen als auch ökologischen Vorteilen.

Quelle:

Freudenberg Performance Materials

© ITM/TU Dresden
Gewebte Halbkugel für den Einsatz in Radomantennen
15.12.2022

AVK-Innovationspreis 2022 an Nachwuchsingenieur:innen vom ITM

  • Auszeichnung für endkonturnahe 3D Gewebe für den Einsatz in Faserkunststoffverbundbauteile verliehen

Im Rahmen des JEC FORUM DACH 2022 fand am 29. November die Verleihung der AVK-Innovationspreise in Augsburg statt. Der Innovationspreis in der Kategorie „Forschung/Wissenschaft“ (1. Platz) wurde für die Entwicklung sphärisch gekrümmte Faserkunststoffverbundbauteile (FKV) aus endkonturnah gefertigten Geweben an das Wissenschaftlerteam Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald und Prof. Dr.-Ing. habil. Chokri Cherif verliehen.

Mit der Entwicklung der Technologie des abzugsfreien Jacquard-Webens sowie des seit vielen Jahren am ITM der TU Dresden fest etablierten technologischen Know-hows auf dem Gebiet hochkomplexer 2D- und 3D-Gewebegeometrien ist es Dominik Nuss gelungen, allein durch gezielte Variation der Gewebebindung lokal unterschiedliche Garnlängen in die Gewebestruktur einzuarbeiten. Dadurch lassen sich ohne zusätzliches Drapieren völlig neuartige Gewebe herstellen, insbesondere sphärisch gekrümmte Gewebe, aber auch großformatige Spiralgewebe oder Kurvengewebe.

  • Auszeichnung für endkonturnahe 3D Gewebe für den Einsatz in Faserkunststoffverbundbauteile verliehen

Im Rahmen des JEC FORUM DACH 2022 fand am 29. November die Verleihung der AVK-Innovationspreise in Augsburg statt. Der Innovationspreis in der Kategorie „Forschung/Wissenschaft“ (1. Platz) wurde für die Entwicklung sphärisch gekrümmte Faserkunststoffverbundbauteile (FKV) aus endkonturnah gefertigten Geweben an das Wissenschaftlerteam Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald und Prof. Dr.-Ing. habil. Chokri Cherif verliehen.

Mit der Entwicklung der Technologie des abzugsfreien Jacquard-Webens sowie des seit vielen Jahren am ITM der TU Dresden fest etablierten technologischen Know-hows auf dem Gebiet hochkomplexer 2D- und 3D-Gewebegeometrien ist es Dominik Nuss gelungen, allein durch gezielte Variation der Gewebebindung lokal unterschiedliche Garnlängen in die Gewebestruktur einzuarbeiten. Dadurch lassen sich ohne zusätzliches Drapieren völlig neuartige Gewebe herstellen, insbesondere sphärisch gekrümmte Gewebe, aber auch großformatige Spiralgewebe oder Kurvengewebe.

Besonders hervorzuheben ist, dass mit deutlich reduzierten Preformingschritten die geforderte endkonturnahe Geometrie des zu verstärkenden Bauteils abgebildet werden kann. Ein durchgängiges simulations-gestütztes Engineering vom CAD-Entwurf bis zur integral gewebten 2D- und 3D-Preform mittels hochkomplexer Bindungsentwicklung für räumliche Konstruktionen ist ein Alleinstellungsmerkmal am ITM, welches unerlässlich für die Entwicklung dieser zukunftsträchtigen gewebten Hightech-Strukturen war. Diese Technologie ist völlig neuartig und wurde bisher so in keinster Weise durchgeführt. Die Gewebestrukturen zeichnen sich aufgrund ihrer Geometrievielfalt und den Einsatzmöglichkeiten durch einen hohen Innovationsgrad aus, können in zahlreichen Anwendungen eingesetzt werden und zur Erschließung völlig neuer Anwendungsfelder beitragen. Die Technologie ist auf allen Jacquard-Webmaschinen mit einer Zusatzvorrichtung umsetzbar und die Preformgeometrie wird lediglich durch die Ansteuerung der Jacquardmaschine bestimmt. Die Preformgeometrie kann die volle Arbeitsbreite der Webmaschine einnehmen.

Professor Chokri Cherif, Institutsdirektor des ITM freut sich mit seinem Team sehr über die kontinuierlichen Forschungserfolge auf dem stetig wachsenden Forschungsfeld der 3D-Webtechnik, die am ITM in enger Kooperation mit der Industrie und Anwendern erzielt werden. „Diese Auszeichnung ist für unser Institut eine besondere Ehre und bestätigt, dass unsere langjährigen exzellenten Forschungsleistungen auf dem Gebiet endkonturnahen 3D-Gewebe für den Faserkunststoffbereich eine bedeutende Rolle spielen und wir mit unserer Entwicklung einen wesentlichen Beitrag für eine nachhaltige und ressourceneffiziente Fertigung von Leichtbaustrukturen leisten“.

Quelle:

ITM/TU Dresden

02.11.2022

Black Edition Sportwear Range by McLaren Automotive und Castore

Das Sportbekleidungsunternehmen Castore und der Luxus-Sportwagenhersteller McLaren Automotive haben ihre Zusammenarbeit mit der Einführung der Black Edition-Kollektion vertieft - einer innovativen Sportbekleidungskollektion, inspiriert von den leichten McLaren-Sportwagen und bei der Funktionalität auf Leistung trifft.

Die Kollektion umfasst Herren- und Damen-Aktivbekleidungen und Accessoires, die so gestaltet sind, dass sie den Träger von intensiven Workouts bis zu alltäglichen Aufgaben begleiten können.

Jedes Kleidungsstück kombiniert eine Reihe von technischen Merkmalen, die die Bewegung verbessern. Die Designs hochwertig, trendgemäß minimalistisch und werden aus leichten, hochelastischen, atmungsaktiven und strapazierfähigen Stoffen hergestellt.

Das Sportbekleidungsunternehmen Castore und der Luxus-Sportwagenhersteller McLaren Automotive haben ihre Zusammenarbeit mit der Einführung der Black Edition-Kollektion vertieft - einer innovativen Sportbekleidungskollektion, inspiriert von den leichten McLaren-Sportwagen und bei der Funktionalität auf Leistung trifft.

Die Kollektion umfasst Herren- und Damen-Aktivbekleidungen und Accessoires, die so gestaltet sind, dass sie den Träger von intensiven Workouts bis zu alltäglichen Aufgaben begleiten können.

Jedes Kleidungsstück kombiniert eine Reihe von technischen Merkmalen, die die Bewegung verbessern. Die Designs hochwertig, trendgemäß minimalistisch und werden aus leichten, hochelastischen, atmungsaktiven und strapazierfähigen Stoffen hergestellt.

Weitere Informationen:
Sportwear McLaren Castore
Quelle:

McLaren

Foto McLaren
13.10.2022

TUMI und McLaren: Reisekollektion mit Kohlefasermaterial

TUMI, internationale Reise- und Lifestyle-Marke, stellt die jüngsten Ergänzungen ihrer Kollektion vor, die in Zusammenarbeit mit dem Sportwagenhersteller und Motorsportteam McLaren entwickelt wurde.
 
Die Designteams von TUMI und McLaren haben eine Capsule-Kollektion entworfen, die die Grenzen des Leichtgewichts und der Leistung weiter hinaustreibt.
 
Für die neue Farbgebung wurden Teile der aktuellen Kollektion aus CX6TM, einem flexiblen Kohlefasermaterial, neu konstruiert. Als Hochleistungsgewebe verfügt CX6TM über besondere Eigenschaften, die zu einem abriebfesten Material führen, um die Reinheit und Langlebigkeit der Kohlefaser zu bewahren.
 
Die Kollektion umfasst den Aero International, einen erweiterbaren Handgepäckkoffer in Carbon und geformter Carbonfaser mit Tegris-Seitenteilen sowie den Velocity Rucksack, den Torque Sling und den Quantum Duffel, die mit Lederdetails ausgestattet sind.

TUMI, internationale Reise- und Lifestyle-Marke, stellt die jüngsten Ergänzungen ihrer Kollektion vor, die in Zusammenarbeit mit dem Sportwagenhersteller und Motorsportteam McLaren entwickelt wurde.
 
Die Designteams von TUMI und McLaren haben eine Capsule-Kollektion entworfen, die die Grenzen des Leichtgewichts und der Leistung weiter hinaustreibt.
 
Für die neue Farbgebung wurden Teile der aktuellen Kollektion aus CX6TM, einem flexiblen Kohlefasermaterial, neu konstruiert. Als Hochleistungsgewebe verfügt CX6TM über besondere Eigenschaften, die zu einem abriebfesten Material führen, um die Reinheit und Langlebigkeit der Kohlefaser zu bewahren.
 
Die Kollektion umfasst den Aero International, einen erweiterbaren Handgepäckkoffer in Carbon und geformter Carbonfaser mit Tegris-Seitenteilen sowie den Velocity Rucksack, den Torque Sling und den Quantum Duffel, die mit Lederdetails ausgestattet sind.

Weitere Informationen:
Kohlefasermaterial McLaren TUMI
Quelle:

McLaren

(c) BRÜCKNER
Das Projektteam von BRÜCKNER und HEATHCOAT im Leonberger Technologiezentrum
04.10.2022

BRÜCKNER: Neue Anlage für britisches Unternehmen HEATHCOAT FABRICS

Der deutsche Hersteller von Textilveredlungsanlagen BRÜCKNER liefert zum wiederholten Male eine Anlage an HEATHCOAT FABRICS. HEATHCOAT FABRICS ist auf die Herstellung von technischen Textilien in den Bereichen Texturierung, Weberei und Wirkerei sowie Färberei und Ausrüstung spezialisiert. Die Produkte des britischen Textilherstellers werden unter anderem für die Automobil-, Gesundheits-, Verteidigungs- und Luftfahrtindustrie hergestellt.

Der deutsche Hersteller von Textilveredlungsanlagen BRÜCKNER liefert zum wiederholten Male eine Anlage an HEATHCOAT FABRICS. HEATHCOAT FABRICS ist auf die Herstellung von technischen Textilien in den Bereichen Texturierung, Weberei und Wirkerei sowie Färberei und Ausrüstung spezialisiert. Die Produkte des britischen Textilherstellers werden unter anderem für die Automobil-, Gesundheits-, Verteidigungs- und Luftfahrtindustrie hergestellt.

Regina Brückner, Geschäftsführerin und Inhaberin der BRÜCKNER Gruppe, erklärt: „Die komplexen Anforderungen von HEATHCOAT zu erfüllen ist nicht einfach, da die Vielfalt der hergestellten technischen Textilien sehr groß ist. Unsere Anlage muss leichte wie schwere Artikel veredeln. Die Auslegung, Steuerung und das gesamte Anlagenlayout müssen daher flexibel, funktional und trotzdem einfach zu bedienen sein. Glücklicherweise ist das Team von HEATHCOAT FABRICS sehr innovativ und aufgeschlossen. Gemeinsam haben wir in intensiver Zusammenarbeit die richtige Technologie und Handhabung entwickelt. Wir sind sehr glücklich, dass wir diesen von uns sehr geschätzten Kunden mit der Produktivität unserer Anlage und natürlich mit unserem technologischen Know-how überzeugen konnten.“

Die BRÜCKNER POWER-FRAME Spannmaschine mit direkter Gasheizung und gekonterten Thermozonen sorgt für gleichmäßige Temperaturen über die gesamte Länge und Breite des Trockners. Die Anlage ist mit einer schmierungsarmen, horizontal umlaufenden Nadel-Kluppen-Kombikette ausgestattet und ermöglicht mehrere Warenläufe, die speziell auf die zu verarbeitenden Gewebe abgestimmt sind. Zudem wurde gemeinsam mit HEATHCOAT FABRICS ein spezieller Auslauf mit unterschiedlichen Möglichkeiten für Kanten- und Mittenschnitt entwickelt. Je nach Art der Produkte kann die Ware auf Großdocken oder Papphülsen gewickelt oder auf Wagen abgetafelt werden.

Quelle:

Brückner Trockentechnik GmbH & Co. KG

Bild: Fraunhofer IAO
29.09.2022

Projekt CYCLOMETRIC: Rezyklierfähige Bauteile für das Automobil der Zukunft

Bauteile im Automobil müssen nicht mehr nur technologisch höchsten Ansprüchen genügen, sondern auch nachhaltig und rezyklierbar sein. Zukünftig müssen Ingenieurinnen und Ingenieure bei der Entwicklung nicht nur das fertige Produkt, sondern auch das Ende dessen Lebenszyklus im Blick haben. Künstliche Intelligenz soll helfen, in solchen Zyklen zu denken. dabei helfen. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) sind einer der Projektpartner im Forschungsprojekt CYCLOMETRIC, das durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert und vom Projektträger Karlsruhe (PTKA) betreut wird. Entwickelt wird ein Tool, das schon während der Produktplanung Verbesserungsvorschläge macht.

Bauteile im Automobil müssen nicht mehr nur technologisch höchsten Ansprüchen genügen, sondern auch nachhaltig und rezyklierbar sein. Zukünftig müssen Ingenieurinnen und Ingenieure bei der Entwicklung nicht nur das fertige Produkt, sondern auch das Ende dessen Lebenszyklus im Blick haben. Künstliche Intelligenz soll helfen, in solchen Zyklen zu denken. dabei helfen. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) sind einer der Projektpartner im Forschungsprojekt CYCLOMETRIC, das durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert und vom Projektträger Karlsruhe (PTKA) betreut wird. Entwickelt wird ein Tool, das schon während der Produktplanung Verbesserungsvorschläge macht.

Recycling von Hochleistungsmaterialien scheitert häufig daran, dass sich die Werkstoffe nicht in ihre ursprünglichen Bestandteile trennen lassen. CYCLOMETRIC soll dafür sorgen, dass dieses Problem nicht erst am Ende des Lebenszyklus eines Produkts gelöst werden muss. Mit den derzeitigen Methoden und Werkzeugen werden Auswirkungen auf die Umwelt oft erst gegen Ende der Entwicklung oder sogar erst nach Produktionsbeginn untersucht – obwohl die relevantesten Entscheidungen über Produkteigenschaften deutlich früher getroffen werden. Das neue System hilft, während der Entwicklung die richtigen Entscheidungen zu treffen. Dazu werden Daten, Informationen, Wissen über alle Entwicklungsphasen und Schnittstellen hinweg analysiert und bewertet. Dabei kommen Forschungsansätze des Advanced Systems Engineerings und Model-based Systems Engineerings in Verbindung mit Methoden der Ökobilanzierung sowie die Geschäftsmodellanalyse zum Einsatz.

Produktentwicklung muss täglich komplexe Parameter wie Produzierbarkeit, Rezyklierfähigkeit, Wiederverwendbarkeit, CO2-Emissionen und Kosten im Blick behalten. Nicht zuletzt müssen die Erwartungen und Gewohnheiten der Kundinnen und Kunden mitgedacht werden. Das Tool berechnet die Auswirkungen bei der Auswahl des Materials ebenso wie bei der Planung von Produktionsschritten und macht Verbesserungsvorschläge.

Als Anwendungsbeispiel für das digitale Werkzeug dient im Projekt CYCOMETRIC eine Mittelkonsolenverkleidung. Sie besteht aus nachhaltigen Textilmaterialien und verfügt über in das Textil integrierte smarte Funktionen. Das fertige Tool ist dennoch nicht auf die Automobilbranche beschränkt. Es kann in allen Industriefeldern eingesetzt werden.

Aufgabe der DITF ist die Auswahl und Prüfung geeigneter Materialien. Das Team erarbeitet die passenden Fertigungs- und Verarbeitungsprozesse und erstellt einen Prototyp. An den Prüflaboren werden Testläufe zu Funktions-, Alltags-, Langzeit- und Extremtauglichkeit der textilen Strukturen und Faserverbundwerkstoffen durchgeführt, die bei der späteren Anwendung reproduzierbar sind. Für die smarten Funktionen der Konsole werden Konzepte für Sensoren und Aktoren entwickelt.

Die DITF bringen als Partner im Forschungscampus ARENA2036 umfangreiche Erfahrungen im Leichtbau durch Funktionsintegration bei Automobilen mit. Nach Abschluss des Projekts werden die Denkendorfer Forscherinnen und Forscher Unternehmen beraten, wie Textilien verstärkt im Fahrzeuginterieur eingesetzt werden können.

Quelle:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

Susan Gabler und Johannes Leis vom STFI bei Untersuchungen zum Recycling smarter Textilien. Foto: Sächsisches Textilforschungsinstitut e.V. (STFI)
Susan Gabler und Johannes Leis vom STFI bei Untersuchungen zum Recycling smarter Textilien.
20.09.2022

SmartERZ-Projekt zum Recycling von Smart Composites

Im Automobilbau, dem Schiffsbau und der Luftfahrtindustrie sowie bei Windenergieanlagen steigen die Materialanforderungen zusehends. Die verwendeten Werkstoffe sollen leicht, ressourcenschonend und gleichzeitig hochbelastbar sein. Faserverstärkte Kunststoffe (Composites) rücken immer mehr in den Vordergrund, da deren Eigenschaften in Kombination mit Glas- oder Carbonfasern metallischen Materialien oftmals überlegen sind. Mit Fokus auf die klimaneutrale Herstellung und Nutzung von Produkten wächst auch der Bedarf an Recyclinglösungen. Im SmartERZ-Projekt TRICYCLE arbeiten Unternehmen gemeinsam an geeigneten skalierbaren und wirtschaftlich tragfähigen Prozessen zum Recycling von Smart Composites. Momentan gibt es dafür keine Anbieter oder Konzepte am Markt.

Im Automobilbau, dem Schiffsbau und der Luftfahrtindustrie sowie bei Windenergieanlagen steigen die Materialanforderungen zusehends. Die verwendeten Werkstoffe sollen leicht, ressourcenschonend und gleichzeitig hochbelastbar sein. Faserverstärkte Kunststoffe (Composites) rücken immer mehr in den Vordergrund, da deren Eigenschaften in Kombination mit Glas- oder Carbonfasern metallischen Materialien oftmals überlegen sind. Mit Fokus auf die klimaneutrale Herstellung und Nutzung von Produkten wächst auch der Bedarf an Recyclinglösungen. Im SmartERZ-Projekt TRICYCLE arbeiten Unternehmen gemeinsam an geeigneten skalierbaren und wirtschaftlich tragfähigen Prozessen zum Recycling von Smart Composites. Momentan gibt es dafür keine Anbieter oder Konzepte am Markt.

Smart Composites bestehen aus Werkstoffen, deren Funktionalisierung durch die Integration oder Applikation elektrisch leitfähiger Komponenten, z. B. Sensoren oder Mikroprozessoren, erreicht wird. Dazu zählen zum Beispiel smarte Textilien, die elektronisch wärmen, Lichtsignale geben oder zur Datenübertragung genutzt werden können. Das breite Anwendungsspektrum und die vielseitigen Einsatzgebiete dieser intelligenten Verbundwerkstoffe und Multimaterialverbunde werden perspektivisch zu einem wachsenden Bedarf und einer stärkeren Nachfrage führen.

Die funktionale und vielschichtige Verbindung verschiedener Materialien wie Kunststoff, Metall und Textil wirft beim Thema Recycling Nachhaltigkeitsfragen auf. Im Erzgebirge werden dafür bereits heute Lösungen entwickelt. Im Rahmen des WIR!-Projektes SmartERZ ist das Verbundprojekt TRICYCLE entstanden. Mit dem Fokus auf den Strukturwandel im Erzgebirge haben sich acht ortsansässige Partner aus Wissenschaft und Wirtschaft zusammengetan, um ein Recyclingkonzept aufzustellen und die Grobplanung für ein erzgebirgisches Recycling Center zu entwickeln. Das Ende des Produktlebenszyklus und die Nachnutzung bzw. Wiederaufbereitung stehen dabei im Mittelpunkt des Entwicklungsprozesses. Im Ergebnis sollen effektive und maßgeschneiderte Maßnahmen für eine möglichst hochwertige Wiederverwendung entstehen. Diese sollen dem steigenden Aufkommen an Abfällen aus diesem wachsenden Bereich der deutschen Industrie begegnen und anwendungsbereit sein.

Klassische Herausforderungen für die Projektbeteiligten sind die irreversiblen Verbindungstechniken (z. B. Kleben, Faser-Matrix-Haftung), die Integration vieler verschiedener Materialien in geringen Mengen sowie Form und Größe der Bauteile. Eigene Untersuchungen sowie Feedback von Partnerunternehmen bestätigen die Notwendigkeit sowie den Nutzen eines passgenauen Recyclingprozesses für Smart Composites und intelligente Multimaterialverbünde. Das Projekt soll dazu beitragen, den Wirtschaftsstandort Erzgebirge attraktiver und zukunftsfähiger zu gestalten.

Am 1. September 2021 gestartet, kann TRICYCLE erste Ergebnisse vorweisen. Zunächst wurden die Bedarfe bei mittelständischen Unternehmen in der Region Erzgebirge abgefragt, um die aktuellen Gegebenheiten und den Status quo in Bezug auf technologische Recyclingkonzepte bestmöglich abzubilden. Für ein fundiertes Recyclingkonzept hat das TRICYCLE-Team drei Referenzbauteile für den vorgesehenen Prozess ermittelt, die in der erzgebirgischen Wirtschaft Verwendung finden, und folgenden Bereichen zugeordnet: Automotive, Technische Textilien mit applizierter Zusatzfunktion und Technische Textilien mit integrierter Zusatzfunktion.

Basierend auf dieser Auswahl, analysiert das Projektteam momentan die Herstellungs- und bisherigen Recyclingprozesse der Referenzbauteile. Das beinhaltet auch die Planung praktischer Versuche zum Recycling. Dabei fokussieren sich die Projektpartner auf ihr Know-how in verschiedenen chemischen, thermischen und mechanischen Prozessen zur Separierung, Rückführung und Wiederverwendung der eingesetzten Materialien. Um die Produkte den Recyclingtechnologien zugänglich zu machen, wurde die Herangehensweise innerhalb des Projekts angepasst, da insbesondere Textil aufgrund von Form und Struktur (z. B. endlose Struktur) herausfordernd sein kann.

Obwohl die Materialien selbst recycelbar sind, müssen diese dennoch für den Prozess optimal vorbereitet bzw. fachgerecht aufbereitet werden. Die Expertise und die Technologiekompetenz, die hierfür benötigt werden, ist bei den beteiligten Projektpartnern durch jahrzehntelange Erfahrung und zahlreiche Innovationen vorhanden. Das Zusammenspiel aller Beteiligten im Projekt TRICYCLE stellt bereits jetzt die Weichen für das geplante Recycling Center, um dieses später zum Drehkreuz zwischen regionalen Produktionsunternehmen und dem Recycling weiterzuentwickeln. Dieses soll als „Open Factory“ aufgebaut werden, um den Unternehmen des SmartERZ-Bündnisses bzw. perspektivisch der Region Erzgebirge eine gemeinsame Nutzung zu ermöglichen.

„Die Wiederverwendung der eingesetzten Ressourcen ist sowohl aus ökonomischer als auch aus ökologischer Sicht zwingend geboten. Momentan gibt es weder Anlagenbauer noch Dienstleistungsanbieter mit den entsprechenden Kompetenzen zum Recycling von Smart Composites oder Multimaterialverbünden am Markt,“ stellt Johannes Leis, der Verbundkoordinator vom Sächsischen Textilforschungsinstitut e.V. (STFI) in Chemnitz fest.Unter Leitung des STFI als Verbundkoordinator mit seiner über 30-jährigen Erfahrung in der Textilbranche und speziellem Know-how im Recycling von Carbonabfällen haben sich weitere Unternehmen und Forschungseinrichtungen zusammengefunden. Dazu zählen das Textilunternehmen Curt Bauer GmbH, die Professur Fabrikplanung und Fabrikbetrieb der TU Chemnitz, das Ingenieurbüro Matthias Weißflog, der Hersteller für Faserverbundbauteile Cotesa GmbH, der Spezialvlieshersteller Norafin Industries (Germany) GmbH, das Recyclingunternehmen Becker Umweltdienste GmbH und die Hörmann Rawema Engineering & Consulting GmbH. Am Ende der Projektlaufzeit sollen ein einsatzfähiges, technologisches Recyclingkonzept für die zukünftigen entstehenden smarten Produkte sowie die in der Produktion entstehenden Abfälle (bspw. durch fehlerhafte Bauteile und Randbeschnitte) und ein Konzept für den Aufbau eines Recycling Centers vorliegen, das im Erzgebirge entstehen soll.

13.09.2022

Green Product Award und Green Concept Award 2023

Ein Jahrzehnt Nachhaltigkeitsförderung: Der Green Product Award und der Green Concept Award feiern 2023 zehnjähriges Jubiläum und sind bis zum 7. November 2022 offen für Bewerbungen

Bereits zum zehnten Mal lobt der Green Future Club zwei Nachhaltigkeitspreise aus: den Green Concept Award sowie den Green Product Award. Die 2013 ins Leben gerufenen Auszeichnungen prämieren Produkte, Konzepte und Dienstleistungen, die in den Disziplinen Nachhaltigkeit, Innovation und Design überzeugen. Der Green Product Award richtet sich an Start-ups und etablierte Unternehmen. Mit dem Green Concept Award werden Studenten und Absolventen für visionäre Konzepte ausgezeichnet, die noch nicht auf dem Markt sind.

Beide Preise werden in vierzehn Kategorien vergeben: Architektur & Tiny Houses, Arbeitswelt, Beauty & Personal Care, Fashion, Freestyle, Gebäudekomponenten, Interior & Lifestyle, Kinder, Konsumgüter, Küche, Mobilität, Neue Materialien, Sport und Verpackung.

Über die Jahre konnte der Green Future Club zahlreiche zukunftsträchtige Produkte und Konzepte der Öffentlichkeit vorstellen und zum Erfolg verhelfen, darunter:

Ein Jahrzehnt Nachhaltigkeitsförderung: Der Green Product Award und der Green Concept Award feiern 2023 zehnjähriges Jubiläum und sind bis zum 7. November 2022 offen für Bewerbungen

Bereits zum zehnten Mal lobt der Green Future Club zwei Nachhaltigkeitspreise aus: den Green Concept Award sowie den Green Product Award. Die 2013 ins Leben gerufenen Auszeichnungen prämieren Produkte, Konzepte und Dienstleistungen, die in den Disziplinen Nachhaltigkeit, Innovation und Design überzeugen. Der Green Product Award richtet sich an Start-ups und etablierte Unternehmen. Mit dem Green Concept Award werden Studenten und Absolventen für visionäre Konzepte ausgezeichnet, die noch nicht auf dem Markt sind.

Beide Preise werden in vierzehn Kategorien vergeben: Architektur & Tiny Houses, Arbeitswelt, Beauty & Personal Care, Fashion, Freestyle, Gebäudekomponenten, Interior & Lifestyle, Kinder, Konsumgüter, Küche, Mobilität, Neue Materialien, Sport und Verpackung.

Über die Jahre konnte der Green Future Club zahlreiche zukunftsträchtige Produkte und Konzepte der Öffentlichkeit vorstellen und zum Erfolg verhelfen, darunter:

DESSERTO, der Gewinner der Kategorie „Neue Materialien“ des Green Product Award 2020 wurde durch den Preis erstmalig in Deutschland vorgestellt und hat sich in der Folge erfolgreich in der Modebranche etabliert. Nur ein Jahr später wurde das vegane Material aus Kaktusfasern von Amber Valetta für Karl Lagerfeld in Szene gesetzt; seither folgten Givency, Everlane und viele andere Brands als Partner.

Auch Vank Panele setzen auf kreislauffähige Naturfasern – in diesem Falle Hanf und Flachs, die sich Dank ihrer Leichtigkeit und Fähigkeit, Schall zu absorbieren, hervorragend als Materialien für Akustikplatten eigenen. 2022 hat der Hersteller Vank den Green Product Award in der Kategorie “Interior & Lifestyle” gewonnen. Mit der Vielfalt der Anwendungsmöglichkeiten erfolgte der Markteintritt zwölf Monate später – aktiv begleitet vom Green Future Club.

Die Awards 2023
Bis zum 7. November 2022 können sich Start-Ups, Unternehmen, Studenten und Absolventen für den Green Product Award bzw. den Green Concept Award bewerben. Am 7. Dezember werden die Nominierten bekanntgegeben. Danach erfolgt eine vierwöchige öffentliche Publikumswahl, während die Expertenjury die Gewinner und die "Best of"-Projekte in jeder Kategorie bewertet. Die Ergebnisse werden bei der Preisverleihung im März in Deutschland bekannt gegeben. Im Jubiläumsjahr erhalten Mitglieder des Green Future Club 50 % Rabatt auf Award-Einreichungen, Einladungen zu Club Events, die Vorstellung neuer Tools, Matchmaking Events, uvm.

Die internationale Jury des Green Product Award 2023 und des Green Concept Award 2023 besteht aus:

  • Prof. Martin Charter
    Centre of Sustainable Design,
  • Prof. Claus-Christian Eckhardt
    Lund University,
  • Karsten Bleymehl
    The Circular Materials GmbH,
  • Gabriele Cavallaro
    Isola Design Awards,
  • Prof. Tina Kammer
    InteriorPark.,
  • Andrea Herold
    InteriorPark.,
  • Leonne Cuppen
    Yksi Expo Foundation,
  • Prof. Xin Liu
    Tsinghua University,
  • Kiersten Muenchinger
    University of Oregon,
  • Katharina Feuer
    md INTERIOR DESIGN ARCHITECTURE,
  • Dr. Robert Pludra
    Academy of Fine Arts Warsaw,
  • Katja Reich
    DBZ Deutsche BauZeitschrift,
  • Mimi Sewalski
    avocadostore.de,
  • Anna Theil
    Studio Für Morgen,
  • Sebastian Thies
    nat-2 / thies 1856®,
  • Katarzyna Dulko-Gaszyna
    Head of Sustainability IKEA Deutschland
  • Hon. Prof. Meike Weber
    Architektin und Kulturmanagerin,
  • Julius Wiedemann
    DOMESTIKA,
  • Melodie Abdollahi
    Haus von Eden,
  • Katja Keienberg
    baby&junior,
  • Petra Schmatz
    green Lifestyle,
  • Raz Godelink
    Parsons School of Design,
  • Katrin de Louw
    Trendfilter,
  • Sven Fischer
    LUWE GmbH,
  • Peter Michel Heilmann
    Reltime

Award-Zeitplan 2022/23

22-30.10. Dutch Design Week Ausstellung
07.11. Einreichungsfrist für den Green Product & Concept Award
9-10.11. Design meets Industry: The Greener Manufacturing Show
7.12. Bekanntgabe der Nominierten
7.12.-01.22 Bewertung der Jury und öffentliche Publikumswahl
März 2023 Preisverleihung

Weitere Informationen:
Green Product Award: https://gp-award.com/de/gpaward
Green Concept Award: https://gp-award.com/de/gcaward
Green Future Club: https://www.greenfutureclub.com

Weitere Informationen:
Green Product Award Green Concept Award
Quelle:

Green Future Club gUG

Foto: Pixabay
07.09.2022

EU-Chemikalienrecht contra Technische Textilien

Das Fluorcarbon PFHxA soll durch sehr niedrige Grenzwerte reguliert werden. Die Produktion technischer Textilien für Umweltschutz, Medizin, Schutzbekleidung und Bau sieht dadurch viele Anwendungen in Frage gestellt.

Das Fluorcarbon PFHxA soll durch sehr niedrige Grenzwerte reguliert werden. Die Produktion technischer Textilien für Umweltschutz, Medizin, Schutzbekleidung und Bau sieht dadurch viele Anwendungen in Frage gestellt.

Schusssichere Westen für Polizei und Militär, Schnittschutzhosen für Forstarbeiten, Spezialtextilien für Brennstoffzellen und Elektroisolation, Erosionsschutz im Tiefbau, ressourceneffizienter Leichtbau, Klima- und Sonnenschutzausstattung, flammgeschützte Auskleidungen von Transportmitteln, Wundpflaster und Verbandsmaterialien – die Produzenten von technischen Textilien sind Hidden Champions. Die deutsche Textilindustrie hat sich weltweit eine Vorreiterstellung bei den komplexen Lösungen erarbeitet und sieht jetzt zahlreiche Anwendungen durch das EU-Chemikalienrecht in Frage gestellt.
 
Grund dafür ist, dass der Stoff PFHxA mit einem extrem niedrigen Grenzwert belegt werden soll. Der Stoff findet sich aufgrund seiner thermischen und chemischen Stabilität in einer Vielzahl von Anwendungen und ist in der Textilindustrie in eingesetzten Hilfsmitteln zu finden. Auf einem fertigen Produkt ist PFHxA in nur sehr geringen Spuren zu finden – der Stoff selbst ist, nachgewiesen durch wissenschaftliche Studien, toxikologisch nicht bedenklich. Erst 2017 war PFHxA als Ersatzstoff in der PFOA-Regulierung ausgewiesen worden, zahlreiche Wertschöpfungsketten wurden umgestellt. Jetzt steht der Stoff selbst vor starken Regulierungen – einen Ersatzstoff gibt es nicht.

Um dies zu verhindern, macht die Textilindustrie einen Lösungsvorschlag: eine Ausnahme für technische Textilien gemäß DIN EN ISO 14419/Ölnote 3 (Mindestanforderung) verbunden mit einer Berichterstattung über Einsatz, Substitution und Minderung von PFHxA.

Südwesttextil, der als Verband zahlreiche Hersteller technischer Textilien in Baden-Württemberg. vertritt, sieht in der geplanten Grenzwerteinführung für PFHxA faktisch ein Anwendungsverbot. Das bedeute, dass viele technische Textilien am Standort Deutschland nicht mehr produziert werden können.

Quelle:

Verband der Südwestdeutschen Textil- und Bekleidungsindustrie Südwesttextil e.V.

03.08.2022

17. Chemnitzer Textiltechnik-Tagung (CTT) am 28. + 29. September

Unter dem Motto „Textiltechnik als Schlüsseltechnologie der Zukunft“ informieren sich Maschinenproduzenten, Anwender, Textilfachleute und Forschende über neueste Entwicklungen in den Themenbereichen:

  • Ressourceneffiziente und nachhaltige Prozesse
  • Textiltechnologien für den Leichtbau
  • Digitalisierung in der textilen Produktion
  • Additive Fertigung mit Fasern und Textilien

Das Format bietet neben klassischen Vorträgen im Plenarteil und vier Themenkomplexen auch Pitches sowie studentische und wissenschaftliche Projektvorstellungen bzw. Exponate-Präsentationen.

Im Plenarteil der Veranstaltung werden der europäische GFK-Markt vorgestellt und die Bedeutung des Mittelstandes für die deutsche Volkswirtschaft näher beleuchtet.

Ausgewählte technologische Highlights der Fachvorträge in diesem Jahr sind neuartige Verfahren zum 3D-Druck, innovative Carbon-Textilien für die Betonarmierung sowie neue Digitalisierungsstrategien für den Maschinenbau und die Textilindustrie.

Kooperationspartner der diesjährigen Veranstaltung sind das tschechische Generalkonsulat und tschechische Branchenverbände.

Unter dem Motto „Textiltechnik als Schlüsseltechnologie der Zukunft“ informieren sich Maschinenproduzenten, Anwender, Textilfachleute und Forschende über neueste Entwicklungen in den Themenbereichen:

  • Ressourceneffiziente und nachhaltige Prozesse
  • Textiltechnologien für den Leichtbau
  • Digitalisierung in der textilen Produktion
  • Additive Fertigung mit Fasern und Textilien

Das Format bietet neben klassischen Vorträgen im Plenarteil und vier Themenkomplexen auch Pitches sowie studentische und wissenschaftliche Projektvorstellungen bzw. Exponate-Präsentationen.

Im Plenarteil der Veranstaltung werden der europäische GFK-Markt vorgestellt und die Bedeutung des Mittelstandes für die deutsche Volkswirtschaft näher beleuchtet.

Ausgewählte technologische Highlights der Fachvorträge in diesem Jahr sind neuartige Verfahren zum 3D-Druck, innovative Carbon-Textilien für die Betonarmierung sowie neue Digitalisierungsstrategien für den Maschinenbau und die Textilindustrie.

Kooperationspartner der diesjährigen Veranstaltung sind das tschechische Generalkonsulat und tschechische Branchenverbände.

Quelle:

Förderverein Cetex Chemnitzer Textilmaschinenentwicklung e.V.