Aus der Branche

Zurücksetzen
2 Ergebnisse
30.07.2021

Industrie kann Flexi-Joker in der Energiewende werden

  • Teilhabe des Sektors an den Energiemärkten verspricht Stabilität der Netze und Nutzen für Unternehmen

Damit sich Verbraucher und Industrie möglichst schnell mit immer größeren Anteilen von Wind- und Solarstrom versorgen lassen, muss das deutsche Energiesystem flexibler werden. Das geht nicht ohne die Industrie. Als einer der größten Energiekunden sollte sie künftig mit ihrem Bedarf aber auch mit der Bereitstellung und Speicherung von Energie aktiv und flexibel an den Energiemärkten handeln. Wie das geht und wie sich das lohnen kann, erforscht, erprobt und verwirklicht angewandte Forschung aus der Zuse-Gemeinschaft.
 

  • Teilhabe des Sektors an den Energiemärkten verspricht Stabilität der Netze und Nutzen für Unternehmen

Damit sich Verbraucher und Industrie möglichst schnell mit immer größeren Anteilen von Wind- und Solarstrom versorgen lassen, muss das deutsche Energiesystem flexibler werden. Das geht nicht ohne die Industrie. Als einer der größten Energiekunden sollte sie künftig mit ihrem Bedarf aber auch mit der Bereitstellung und Speicherung von Energie aktiv und flexibel an den Energiemärkten handeln. Wie das geht und wie sich das lohnen kann, erforscht, erprobt und verwirklicht angewandte Forschung aus der Zuse-Gemeinschaft.
 
Rund 28 Prozent des deutschen Endenergieverbrauchs entfallen auf die Industrie. Für die Energiewende nimmt der Sektor auch deshalb eine Schlüsselstellung ein, weil er hohe Bedarfe sowohl an Strom wie auch an Wärme bzw. Kälte hat. Für die künftig erforderliche erhöhte Flexibilität an den Energiemärkten müssen jedoch Wärme- und Strommarkt gemeinsam für höhere Anteile erneuerbarer Energien erschlossen werden. Die Gesellschaft zur Förderung angewandter Informatik (GFaI) aus Berlin entwickelt aktuell mit Partnern im vom Bundeswirtschaftsministerium geförderten Projekt „Flexibilitätswende“ Modelle, um für Industriebetriebe die Eintrittsschwelle zur Teilnahme an den Energiemärkten zu senken. Das geht mit möglichst praxisnahen Software-Prototypen, die aber dennoch auf das jeweilige Unternehmen angepasst werden müssen.

Nicht nur den Strom- und Wärme-, sondern auch den Kältemarkt gilt es künftig für die mit der Energiewende steigenden Anforderungen an die Flexibilisierung von Angebot und Nachfrage zu ertüchtigen, zumal er in Zeiten von Klimaerhitzung und Digitalisierung eine wachsende Bedeutung am Energiemarkt erlangt. Besonders hoch ist der Kältebedarf in vielen Branchen am frühen Nachmittag, wenn auch die Strompreise hoch sind. Sinnvoll sind deshalb Kältespeicher, damit die Unternehmen ihren Strombedarf für Kälteanwendungen größtenteils zu Zeiten niedriger Strompreise, z.B. nachts, decken können. Möglich ist das mit einem  vom Institut für Luft- und Kältetechnik (ILK) perfektionierten Eisspeicher,  der Vakuum-Flüssigeis-Technologie. Sie lässt sich mit dem Knowhow der Forschenden aus Dresden für Verbraucher in Industrie- und Dienstleistungsbranchen skalieren und entsprechend dimensionieren, z.B. für Rechenzentren.

Weitere Informationen:
Zuse-Gemeinschaft Energie Energiewende
Quelle:

Zuse-Gemeinschaft

Zuse-Gemeinschaft: Mit gutem Auge für gefährliche Teilchen (c) Gerhardt/GNF
Mikroplastik an einem Filterkorn aus porösem Keramikmaterial (angeschliffen), sichtbar gemacht durch Farbstoff und UV-Anregung im Fluoreszenzmikroskop.
10.02.2021

Zuse-Gemeinschaft: Mit gutem Auge für gefährliche Teilchen

  •  Wie Berliner Forscher mit digitaler Technik Mikroplastik aufspüren und analysieren

Beim Kampf gegen Mikroplastik in der Umwelt drängt die Zeit. Forschende aus der Zuse-Gemeinschaft beschreiten mit innovativen Monitoring- und Analysetools neue Wege bei der Erfassung und Bestimmung von Kunststoffabfällen. „Mikroplastik finden und vermeiden“ fokussiert auf den Nachweis von Mikroplastik in Gewässern.

Jahr für Jahr gelangen laut einer Schätzung des Weltwirtschaftsforums (WEF) mindestens acht Millionen Tonnen Kunststoffabfälle in die Weltmeere. Einmal dort angelangt, zersetzen sich diese, sofern Gegenmaßnahmen fehlen, schrittweise zu gefährlichem Mikroplastikpartikeln (MPP). Während die Verschmutzung rapide wächst, ist der MPP-Nachweis verhältnismäßig zeitaufwändig. So muss für die heutigen Analysemethoden wie spezielle Infrarot-Spektrometer das Mikroplastik in mehreren Schritten aus der Probe isoliert werden.

Zu einer deutlichen Verkürzung der Analysezeit für Mikroplastik will Tobias Gerhardt, Chemiker an der Berliner Gesellschaft zur Förderung der naturwissenschaftlich-technischen Forschung (GNF) kommen.

  •  Wie Berliner Forscher mit digitaler Technik Mikroplastik aufspüren und analysieren

Beim Kampf gegen Mikroplastik in der Umwelt drängt die Zeit. Forschende aus der Zuse-Gemeinschaft beschreiten mit innovativen Monitoring- und Analysetools neue Wege bei der Erfassung und Bestimmung von Kunststoffabfällen. „Mikroplastik finden und vermeiden“ fokussiert auf den Nachweis von Mikroplastik in Gewässern.

Jahr für Jahr gelangen laut einer Schätzung des Weltwirtschaftsforums (WEF) mindestens acht Millionen Tonnen Kunststoffabfälle in die Weltmeere. Einmal dort angelangt, zersetzen sich diese, sofern Gegenmaßnahmen fehlen, schrittweise zu gefährlichem Mikroplastikpartikeln (MPP). Während die Verschmutzung rapide wächst, ist der MPP-Nachweis verhältnismäßig zeitaufwändig. So muss für die heutigen Analysemethoden wie spezielle Infrarot-Spektrometer das Mikroplastik in mehreren Schritten aus der Probe isoliert werden.

Zu einer deutlichen Verkürzung der Analysezeit für Mikroplastik will Tobias Gerhardt, Chemiker an der Berliner Gesellschaft zur Förderung der naturwissenschaftlich-technischen Forschung (GNF) kommen.

In einem seit Anfang 2020 laufenden, vom Bundeswirtschaftsministerium geförderten Verbundprojekt zur Entwicklung von Mikroemulsionen für die Analytik von MPP und Biofilmen arbeitet sein Team zusammen mit der Universität Bayreuth, der Firma mibic und anderen Partnern daran, durch den gezielten Einsatz von Farbstoffen die Analyse von Mikroplastik zu verbessern und zu beschleunigen. „Durch die Auswahl spezieller Farbstoffe ist es möglich, in der Analyse bestimmte Kunststoffklassen wie z.B. Nylon, PET oder Polypropylen (PP) nur anhand der Fluoreszenzfarbe zu unterscheiden, wodurch wir die Analysezeiten massiv verkürzen können“, sagt Gerhardt. Die Forschenden wollen die Analysezeiten von mehreren Wochen auf einen bis wenige Tage reduzieren. Sichtbar werden die Mikroplastikteilchen dann mit ultraviolettem Licht unter dem Fluoreszenz-Mikroskop.

Farbstoffe für Mikroemulsionen
Eine Herausforderung für die Forschenden: Die Mikroplastikteilchen in der Analyse mit den Farbstoffen optisch von ihrer organischen Umgebung zu trennen. Denn an den Kunststoffpartikeln bilden sich in Gewässern schnell Biofilme und generell enthalten Umweltproben häufig viel organisches Material. Um die notwendige optische Trennung zu erreichen, nutzt Gerhardt in den wässrigen Lösungen, die er untersucht, die Eigenschaften von besonderen Mizellsystemen, und zwar von sogenannten Mikroemulsionen. Das sind dreidimensionale, zusammengelagerte Aggregate aus Tensidmolekülen, in die er Farbstoffe einbringt. Die Mizellen dienen als Transportmittel, um den Farbstoff direkt zum Plastik zu transportieren und dieses dann einzufärben.

„Mit den Mikroemulsionen die wir entwickelt haben, können wir Mikroplastik mit hoher Selektivität einfärben“, erläutert der GNF-Experte. Ein häufiges Problem beim Einfärben von Mikroplastik mit anderen Methoden ist, dass häufig auch biologische Bestandteile der Probe wie Holz und andere Pflanzenreste eingefärbt werden. „Da wir das Mikroplastik nicht nur oberflächlich anfärben, können alle störenden Anfärbungen von biologischem Material wieder abgewaschen werden und nur das Mikroplastik fluoresziert im UV-Licht“, so Gerhardt. Auf diese Weise will das GNF-Team innerhalb kurzer Zeit die Belastung an Mikroplastikpartikeln in einer Probe bestimmen. Die Kunststoffreste, denen die GNF-Wissenschaftler auf der Spur sind, reichen vom Millimeter großen Partikel bis in den Mikrometer-Bereich, der winzigste Teilchen von wenigen Tausendstel Millimeter Größe erfasst.

„Flocki“ für die Wasserwirtschaft
Im optimalen Fall wird Kunststoff in Gewässern gar nicht erst so klein oder aber im Klärwerk erfasst. Um im Klärwerk kleinste Schmutzpartikel im Mikrometerbereich filtern zu können, setzt die Wasserwirtschaft so genannte Flockungsmittel ein, welche die Partikel binden, damit diese zunächst Mikro- und dann Makropartikel bilden. Für deren Dosierung gibt es noch kein industriell etabliertes Verfahren und bekanntlich hilft viel nicht immer viel. Die Gesellschaft zur Förderung angewandter Informatik (GFaI e.V.), wie die GNF in Berlin-Adlershof ansässig, hat deshalb im vom Bundeswirtschaftsministerium geförderten Projekt „Flocki“ zusammen mit einem Industriepartner ein bildbasiertes Messsystem zur optimalen Dosierung für den Einsatz von Flockungsmitteln entwickelt. Es lässt sich auch für Mikroplastik einsetzen. Aus dem Projekt ist ein Aufnahmesystem hervorgegangen, an dem das Schmutzwasser direkt vorbei transportiert und im Anschluss die Aufnahmen analysiert und die Partikel vermessen werden. „Von den aufgezeichneten Bildern mit den sichtbar gemachten Partikeln und Flocken können wir Rückschlüsse auf die nötige Dosierung ableiten“, erklärt GFaI-Experte Martin Pfaff. Neben dem Aufnahmesystem zur Erfassung des Schmutzwassers, spielt der Schwellwertalgorithmus zur Erkennung der Partikel eine zentrale Rolle bei der Auswertung.

Eigene Berechnungen für kleine Bildbereiche
Anders als in der klassischen Digitalfotografie greift der Algorithmus im Projekt „Flocki“ nicht für das ganze Bild, sondern bezieht sich auf viele kleine Bildbereiche, für die jeweils eigene Berechnungen stattfinden. „So lassen sich im Klärwerk unabhängig vom Verschmutzungs- und Flockungsgrad die Agglomerate im Mikrometerbereich zuverlässig aufspüren und gleichzeitig die Dosierung der Flockungsmittel optimieren“, erklärt Pfaff. Dreh- und Angelpunkt des Systems ist jedoch neben dem Aufnahmesystem die Verwendung geeigneter Messparameter, die sich im Forschungsprojekt als aussagekräftig herauskristallisiert haben. Sie beschreiben die Formveränderungen der Partikel über die gesamte Messung und lassen Rückschlüsse über den jeweils aktuellen Dosiergrad zu. Mit ihrer Hilfe kann somit die Beigabe des Flockungsmittels automatisiert werden.

Seitens der GFaI ist man bereit für eine Kommerzialisierung der Technik. „Angesichts der nötigen und voranschreitenden Digitalisierung in der Wasserwirtschaft versprechen wir uns viel von der Technik. Sie kann zu verbesserter Rohstoffeffizienz und zu einem hohen Umweltschutzniveau beim Vermeiden auch des Eintrags von Mikroplastik in Gewässer beitragen“, erklärt GFaI-Abteilungsleiter Frank Püschel.

„Forschende aus Instituten der Zuse-Gemeinschaft nutzen interdisziplinär ihre Expertise aus Chemie, Informatik und Umweltwissenschaften, um die von Mikroplastik ausgehenden Gefahren für die Umwelt einzudämmen“, erklärt der Geschäftsführer der Zuse-Gemeinschaft, Dr. Klaus Jansen.

Quelle:


Zuse-Gemeinschaft