Aus der Branche

Zurücksetzen
19 Ergebnisse
Foto: Messe Frankfurt
16.04.2024

Techtextil Innovation Awards 2024

Die Gewinner der diesjährigen Innovation Awards der internationalen Leitmessen Techtextil und Texprocess stehen fest. 15 Preisträger in acht Kategorien erhalten die Auszeichnung für wegweisende Forschung, neue Produkte, Verfahren oder Technologien. Die prämierten Innovationen zeigen textile Lösungen als essenzielle Treiber für Weiterentwicklungen in zahlreichen Branchen wie Luftfahrt, Automobil, Medizin oder Bau.

Die Gewinner der diesjährigen Innovation Awards der internationalen Leitmessen Techtextil und Texprocess stehen fest. 15 Preisträger in acht Kategorien erhalten die Auszeichnung für wegweisende Forschung, neue Produkte, Verfahren oder Technologien. Die prämierten Innovationen zeigen textile Lösungen als essenzielle Treiber für Weiterentwicklungen in zahlreichen Branchen wie Luftfahrt, Automobil, Medizin oder Bau.

Gewinner Techtextil Innovation Award

Flugzeuge besser recyceln
Leichter als viele Metalle und flexibel im Design: Faserverbundwerkstoffe sind aus der modernen Luft- und Raumfahrt nicht mehr wegzudenken. Die textilverstärkten Leichtbaumaterialien, meist eine Mischung aus Glas- oder Kohlenstofffasern und Kunstharz, reduzieren das Gewicht von Flugzeugen – und damit deren Treibstoffverbrauch – so stark, dass manche modernen Flieger inzwischen zu mehr als 50 Prozent aus ihnen bestehen. Damit stellt sich auch immer dringlicher die Frage nach dem Recycling dieser Verbundmaterialien. Für ein neues Verfahren, mit dem Flugzeugteile aus thermoplastischem Faserverbund künftig besser recycelt werden können sollen, erhält das belgische Textilforschungsinstitut Centexbel den Techtextil Innovation Award in der Kategorie „New Approaches on Sustainability & Circular Economy“. Das prämierte Verfahren, dessen Entwicklung nach Angaben von Centexbel eng von Airbus begleitet wurde, nutzt Induktionswärme. Mit ihrer Hilfe kann man verschweißte thermoplastische, textilverstärkte Verbundwerkstoffe erhitzen und anschließend voneinander lösen. Stringer, Teile von Tragflächen und andere textilbasierte Flugzeugteile sollen sich so künftig besser trennen und wiederverwenden lassen.

Smartes Dach
Der Techtextil Innovation Award in der Kategorie „New Product“ geht an das portugiesische Technologiezentrum für Textil- und Bekleidungsindustrie CITEVE für ein intelligentes, textilverstärktes Abdichtungssystem für Flachdächer. Das „Smart Roofs System“ (SRS) besteht aus einer thermisch reflektierenden, flüssigen Abdichtungsmembran auf Wasserbasis und einer intelligenten textilen Verstärkungsstruktur aus einem Jacquard-Gewebe aus recyceltem Polyester. Diese enthält elektronische Garne, die auf Wärme, Temperatur und Feuchtigkeit reagieren. Das innovative System bietet laut CITEVE eine bessere technische Leistung und ist nachhaltiger als bisherige Lösungen für Flüssigmembranen.

Drei Preisträger in der Kategorie „New Technology“:

Selbstkühlende Textilien gegen Klimawandel-Folgen
Eine neuartige Beschichtung für selbstkühlende Textilien der Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) erhält einen Techtextil Innovation Award in der Kategorie „New Technology“. Anders als Sonnenschirme oder Markisen, die die Sonneneinstrahlung nur indirekt abhalten, ermöglicht die Beschichtung es Textilien, selbst aktiv zu kühlen. Dazu reflektiert sie nicht nur das Sonnenlicht, sondern strahlt auch Wärmeenergie wieder ab. Die Entwicklung der Beschichtung erfolgt auch vor dem Hintergrund steigender Temperaturen durch den Klimawandel. Der Kühlenergiebedarf in Städten sei zwischen 1970 und 2010 um 23 Prozent gestiegen. Bisher sorgen vor allem Ventilatoren und Klimaanlagen für Abkühlung. Doch die verbrauchen viel Strom: Bereits 2018 schätzte die Internationale Energieagentur (IEA), dass rund zehn Prozent des weltweiten Strombedarfs auf Klimaanlagen und Ventilatoren entfallen; 2050 könnten Klimaanlagen laut IEA nach der Industrie der zweitgrößte Treiber des globalen Energiebedarfs sein.

Besserer Schutz vor Sepsiserregern
Sepsis, auch bekannt als Blutvergiftung, ist weltweit für jeden fünften Todesfall verantwortlich. Ursache der Infektion sind häufig Mikroorganismen wie Bakterien, Pilze oder Viren, die auch in Krankenhauswäsche vorkommen und von dort über Wunden in den Körper gelangen können. Das hessische Unternehmen Heraeus Precious Metals erhält einen Techtextil Innovation Award in der Kategorie „New Technology“ für eine neue antimikrobielle Technologie, die Krankenhauspatient*innen künftig besser vor Sepsiserregern schützen soll. Dabei handelt es sich um ein Additiv auf Edelmetallbasis mit dem Namen AGXX. Kleidung und Bettwäsche in Krankenhäusern und Pflegeeinrichtungen sollen so künftig besser antimikrobiell ausgestattet werden können als mit derzeitigen Lösungen. Und so funktioniert es: In Textilien eingearbeitet, löst AGXX durch das Zusammenwirken der Edelmetalle Silber und Ruthenium eine katalytische Reaktion aus, die reaktiven Sauerstoff erzeugt, der Mikroorganismen wirksam abtöten soll. Die antimikrobielle Wirksamkeit der prämierten Neuentwicklung konnte Heraeus nach eigenen Angaben bisher bei 130 verschiedenen Mikroorganismen nachweisen und zudem zeigen, dass diese auch nach 100 Wäschen im Textil erhalten bleibt.

Smarte Textilpumpe hält Kleidung trocken
Bei Kleidung ist Komfort einer der wichtigsten Aspekte. Er leidet schnell, wenn ein Kleidungsstück nass wird, zum Beispiel durch Schweiß. Um diesen künftig schon während des Tragens aus Hemd oder Jacke zu entfernen, hat das schwedische Unternehmen LunaMicro eine intelligente Feuchtigkeitsmanagement-Technologie entwickelt. Dabei handelt es sich um ein mehrlagiges, poröses Textil, das mit einer kleinen Batterie verbunden ist. Eingearbeitet in ein Kleidungsstück, soll diese smarte Textilpumpe Flüssigkeiten wie Schweiß aktiv aus dem Inneren der Kleidung nach außen befördern und die Träger*innen trocken halten. Für die in Schweden und den USA patentierte elektroosmotische Textilpumpe erhält das Unternehmen einen Techtextil Innovation Award in der Kategorie „New Technology“. Die Innovation soll schon bald in Outdoor- und Arbeitsschutzkleidung sowie in persönlicher Schutzausrüstung (PSA) zum Einsatz kommen.

Zwei Preisträger in der Kategorie “New Concept”:

Nachhaltiges Bauen: Bis zu 30 Prozent Beton einsparen
Rund 40 Prozent der globalen CO2-Emissionen entfallen derzeit auf den Bau- und Gebäudebereich. Vor allem bei der Herstellung von Beton, einem der wichtigsten Baustoffe, werden große Mengen CO2 freigesetzt. Das Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) und das Institut für Massivbau (IMB) an der TU Dresden erhalten einen von zwei Techtextil Innovation Awards in der Kategorie „New Concept“ für ein neues Fertigungsverfahren von Betonfertigteilen unter Verwendung von Carbon, mit dem sich bis zu einem Drittel Beton einsparen lassen soll. Darum geht es: Um Material zu sparen, kommen im Neubau vorzugsweise sogenannte Hohlkörperdecken zum Einsatz. Das sind Betonfertigteile, die im Gegensatz zu massiven Stahlbetondecken Hohlräume enthalten und daher weniger Beton benötigen. Mit dem neuen Fertigungsverfahren, das die Institute mit Unternehmen der Textil- und Baubranche entwickelt haben, lassen sich Hohlkörperdecken-Betonfertigteile mit Carbon herstellen, die künftig noch weitaus mehr Beton und damit CO2 einsparen sollen. Mit dem prämierten Verfahren sollen sich Privat- und Industriegebäude schon bald nachhaltiger und ressourcenschonender bauen lassen als bisher.

Veganes Leder aus Hanfabfällen
Ebenfalls in der Kategorie „New Concept“ wird das Biotech-Start-up Revoltech mit einem Techtextil Innovation Award ausgezeichnet. Das junge Unternehmen aus Darmstadt erhält den Preis für seinen veganen, vollständig recycelbaren Lederersatz aus Hanffasern namens „LOVR“ (ein Akronym für „lederähnlich, ohne Plastik, vegan, reststoffbasiert“). Laut Revoltech ist es der „weltweit erste wirklich zirkuläre Lederersatz“. Vegane Lederalternativen hätten bisher oft zwei Probleme: Entweder seien sie nicht rein pflanzlich, weil sie erdölbasierte Bestandteile enthielten, oder sie würden im Labor gezüchtet und seien daher schwer skalierbar. LOVR dagegen vereint laut Fuhrmann Skalierbarkeit und 100-prozentige Kompostierbarkeit. Die für LOVR verwendeten Hanfabfälle stammen aus dem industriellen Hanfanbau. Der prämierte Lederersatz ist Revoltech zufolge bereits in Schuhen und in einem Konzeptfahrzeug des Autoherstellers KIA im Einsatz. Bald soll er auch bei Polstermöbeln, in Autoinnenräumen und Bekleidung für mehr Nachhaltigkeit sorgen.

Zwei Preisträger in der Kategorie “New Technologies on Sustainability & Recycling”:

Fasern nachhaltiger zu 3D-Formen verbinden
In der Kategorie „New Technologies on Sustainability & Recycling“ geht ein Techtextil Innovation Award an Norafin Industries aus dem sächsischen Mildenau. Der Preis würdigt das neue Verfahren „Hydro-Shape“, mit dem sich Fasern mit Hochdruckwasserstrahlen zu einer 3D-Form verbinden lassen. „Statt nur textile Flächen zu erzeugen, können mit dem neuen Verfahren dreidimensionale Strukturen von der Faser bis zum Endprodukt in einem Schritt hergestellt werden. Im Ergebnis entstehe ein textiles 3D-Produkt, das in Sachen Abfallreduzierung neue Wege gehe und zudem aus biologisch abbaubaren Naturfasern hergestellt werden könne. Die Entwicklung der Technologie erfolgte laut Jolly auch vor dem Hintergrund der Single-Use-Plastics Directive, einer EU-Richtlinie zur Bekämpfung von Einwegplastik, die 2021 in Kraft trat. Auf der Techtextil will Norafin das nun ausgezeichnete Fügeverfahren erstmals der Öffentlichkeit vorstellen.

Biobasierte Isolationstextilien statt synthetischer Dämmstoffe
Eine gute Wärmedämmung von Gebäuden ist wichtig für den Klimaschutz, denn sie reduziert den Energieverbrauch und damit die benötigte Heizenergie. Dämmstoffe wie Polyurethan oder Styropor dämmen zwar gut, enthalten aber auch fossile Rohstoffe. Um solche synthetischen Materialien in Zukunft zu ersetzen und nachhaltiger zu dämmen, hat das Aachener Start-up SA-Dynamics gemeinsam mit Industriepartnern recycelbare Dämmtextilien aus biobasierten Aerogelfasern entwickelt. Dafür erhält das Unternehmen den zweiten Techtextil Innovation Award in der Kategorie „New Technologies on Sustainability & Recycling“. Die EU und Regierungen vieler Staaten setzen auch bei der Gebäudedämmung verstärkt auf regulatorische Maßnahmen für mehr Klima- und Umweltschutz. Die neuen Isolationstextilien aus Aerogelfasern, die zu über 90 Prozent aus Luft bestehen und sich auf Textilmaschinen verarbeiten lassen, sollen synthetische Dämmstoffe in ihrer Schutzwirkung sogar übertreffen

Quelle:

Messe Frankfurt

08.04.2024

CHT mit nachhaltigen Hilfsmitteln auf Techtextil 2024

Vom 23. bis 26. April präsentiert die CHT auf der Techtextil 2024 nachhaltige Hilfsmittel für technische Textilien.

Das Produktportfolio der CHT Gruppe umfasst wässrige, aber auch silikonbasierte (z.B. LSR) Ausrüstungs- und Beschichtungssysteme, die neue innovative Funktionalitäten zulassen.

Produkte der TUBCOSIL-Reihe sind LSR-Beschichtungen, die auf fast allen Textilien und Nonwoven appliziert werden können. Aufgrund ihrer Materialeigenschaften können sie höchste technische Anforderungen hinsichtlich Beständigkeit, Mechanik, Haptik und Optik erfüllen. TUBCOSIL-Produkte sind lösemittelfrei und somit auch aus ökologischer Sicht interessant.

Ein sortenreines Endprodukt (z.B. Teppiche, Filter, Gepäcknetze usw.) lässt sich leicht recyceln und kann damit dem Wertstoffkreislauf wieder zugeführt werden. CHTs TUBICOAT PET-Linie ist speziell für sortenreine Materialien auf Basis Polyester (PES) entwickelt worden.

Vom 23. bis 26. April präsentiert die CHT auf der Techtextil 2024 nachhaltige Hilfsmittel für technische Textilien.

Das Produktportfolio der CHT Gruppe umfasst wässrige, aber auch silikonbasierte (z.B. LSR) Ausrüstungs- und Beschichtungssysteme, die neue innovative Funktionalitäten zulassen.

Produkte der TUBCOSIL-Reihe sind LSR-Beschichtungen, die auf fast allen Textilien und Nonwoven appliziert werden können. Aufgrund ihrer Materialeigenschaften können sie höchste technische Anforderungen hinsichtlich Beständigkeit, Mechanik, Haptik und Optik erfüllen. TUBCOSIL-Produkte sind lösemittelfrei und somit auch aus ökologischer Sicht interessant.

Ein sortenreines Endprodukt (z.B. Teppiche, Filter, Gepäcknetze usw.) lässt sich leicht recyceln und kann damit dem Wertstoffkreislauf wieder zugeführt werden. CHTs TUBICOAT PET-Linie ist speziell für sortenreine Materialien auf Basis Polyester (PES) entwickelt worden.

TUBINGAL® RISE ist der erste Textilweichmacher der CHT Gruppe aus recycelten Silikonen. Ganz im Sinne der Kreislaufwirtschaft werden „End-oflife“-Silikone wiederverwertet und mit Emulgatoren aus nachwachsenden Rohstoffen zu einem neuen hydrophilen Weichmacher formuliert. Die Produktqualität ist identisch zu einem Silikonweichmacher aus Primärrohstoffen – nur nachhaltiger. TUBINGAL® RISE ist für alle Faserarten geeignet.

Ebenfalls nach den Prinzipien der Kreislaufwirtschaft hat die CHT Gruppe das Produkt ARRISTAN rAIR entwickelt. Hierbei werden Kunststoffabfälle in ein hochwertiges Textilveredelungsprodukt umgewandelt, um damit beispielsweise ein optimales Feuchtigkeitsmanagement bei Sport- und Aktivbekleidung zu erzielen. Weitere Anwendungsfelder sind Socken und Strumpfhosen im Bekleidungsbereich, Filtrationsmedien und Vliesstoffe im Bereich der technischen Textilen sowie Kissen und Vorhänge bei den Heimtextilien.

POLYAVIN bPEN ist die neue Plug-in-Lösung zum Ersatz von fossilen Rohstoffen. POLYAVIN bPEN ist das erste Ausrüstungsmittel mit einer Kohlenstoffaufnahme. Die Reduktion wird durch die Verwendung von biobasierten Rohstoffen, die Kohlendioxid aus der Atmosphäre binden, erreicht. Das Produkt kann als Prozesshilfsmittel eingesetzt werden, um die Reibung von Garnen zu verringern, um Nähschäden bei der Konfektionierung zu verhindern, um gleichmäßige Raueffekte zu erzielen sowie um das Sanforisieren/Kompaktieren von Maschenwaren und Geweben zu unterstützen. POLYAVIN bPEN eignet sich auch als Leistungsadditiv zur Erhöhung der Reiß- und Scheuerfestigkeit sowie zur Veränderung der Haptik.

Produkte der APYROL-Reihe sind Flammschutzmittel, die im Brandfall die Flammenausbreitung zeitlich verzögern und so gefährdeten Personen mehr Zeit für Rettungs- bzw. Löschmaßnahmen oder zur Flucht verschaffen.

Eine Weiterentwicklung, speziell für die Anforderungen im Bereich wässriger Beschichtungen, stellt die neue PFC-freie Hydrophobierungsgamme unter der Bezeichnung ECOPERL COAT dar.

Die TUBICOAT PU ECO-Gamme umfasst biobasierte Beschichtungslösungen auf Basis von wässrigen Polyurethandispersionen.

Quelle:

CHT Germany GmbH

DITF: Biopolymere aus Bakterien schützen technische Textilien Foto: DITF
Befüllung der Rakel mit geschmolzenem PHA unter Einsatz einer Heißklebepistole
23.02.2024

DITF: Biopolymere aus Bakterien schützen technische Textilien

Textilien für technische Anwendungen erhalten ihre besondere Funktion meistens durch eine Beschichtung. Sie macht Textilien zum Beispiel wind- und wasserdicht oder abriebbeständiger. Üblicherweise kommen dabei auf Erdöl basierende Stoffe wie Polyacrylate oder Polyurethane zum Einsatz. Mit diesen werden jedoch endliche Ressourcen verbraucht und die Materialien können durch unsachgemäßen Umgang in die Umwelt gelangen. Die Deutschen Institute für TextiI- und Faserforschung Denkendorf (DITF) forschen deshalb an Materialien aus nachwachsenden Quellen, die recyclingfähig sind und nach Gebrauch die Umwelt nicht belasten. Interessant sind hier Polymere, die aus Bakterien hergestellt werden können.

Textilien für technische Anwendungen erhalten ihre besondere Funktion meistens durch eine Beschichtung. Sie macht Textilien zum Beispiel wind- und wasserdicht oder abriebbeständiger. Üblicherweise kommen dabei auf Erdöl basierende Stoffe wie Polyacrylate oder Polyurethane zum Einsatz. Mit diesen werden jedoch endliche Ressourcen verbraucht und die Materialien können durch unsachgemäßen Umgang in die Umwelt gelangen. Die Deutschen Institute für TextiI- und Faserforschung Denkendorf (DITF) forschen deshalb an Materialien aus nachwachsenden Quellen, die recyclingfähig sind und nach Gebrauch die Umwelt nicht belasten. Interessant sind hier Polymere, die aus Bakterien hergestellt werden können.

Diese Biopolymere haben den Vorteil, dass sie in kleinen Laborreaktoren bis hin zu großen Produktionsanlagen hergestellt werden können. Zu den vielversprechendsten Biopolymeren zählen Polysaccharide, Polyamide aus Aminosäuren und Polyester wie Polymilchsäure oder Polyhydroxyalkanoate (PHA), die alle aus nachwachsenden Rohstoffen stammen. PHA sind ein Überbegriff für eine Gruppe biotechnologisch hergestellter Polyester. Diese Polyester unterscheiden sich im Wesentlichen durch die Anzahl der Kohlenstoffatome in der Wiederholungseinheit. Bisher wurden sie vor allem für medizinische Anwendungen untersucht. Da PHA-Produkte am Markt zunehmend verfügbar sind, können Beschichtungen aus PHA in Zukunft auch verstärkt im technischen Bereich eingesetzt werden.

Die Bakterien, aus denen die PHA gewonnen werden, wachsen mithilfe von Kohlenhydraten und Fetten als auch durch eine erhöhte CO2 Konzentration und Licht mit angepasster Wellenlänge.

PHA sind in ihren Eigenschaften durch die Variation der molekularen Struktur der Wiederholungseinheit anpassbar. Dadurch stellen Polyhydroxyalkanoate eine besonders interessante Verbindungsklasse für die Beschichtung technischer Textilien dar. Aufgrund der wasserabweisenden Eigenschaften, die schon vom Molekülaufbau herrühren, und der stabilen Struktur haben Polyhydroxyalkanoate ein großes Potential für die Herstellung wasserabweisender, mechanisch belastbarer Textilien, wie sie beispielsweise im Automobilbereich und auch bei Outdoor Bekleidung gefragt sind.

Die DITF leisteten hierzu bereits erfolgreiche Forschungsarbeiten. So zeigten Beschichtungen auf Garnen aus Baumwolle und Gewebe aus Baumwolle, Polyamid und Polyester glatte und recht gut haftende Beschichtungen. Die PHA-Typen für die Beschichtung wurden sowohl am freien Markt beschafft als auch vom Forschungspartner Fraunhofer IGB hergestellt. Es zeigte sich, dass durch Extrusion das geschmolzene Polymer durch eine Ummantelungsdüse auf Baumwollgarne aufgetragen werden kann. Die Beschichtung des geschmolzenen Polymers auf Gewebe gelang mithilfe einer Rakel. Die Länge der molekularen Seitenkette des PHA spielt bei den Eigenschaften des beschichteten Textils eine wichtige Rolle. So sind zwar PHA mit mittellangen Seitenketten besser geeignet, um eine geringe Steifigkeit und einen guten textilen Griff zu erzielen, jedoch ist ihre Waschbeständigkeit gering. PHA mit kurzen Seitenketten sind dafür geeignet eine hohe Wasch- und Scheuerbeständigkeit zu erreichen, jedoch wird der textile Griff etwas steifer.

Aktuell untersucht das Team, wie die Eigenschaften von PHA verändert werden können, um die gewünschten Beständigkeiten und die textilen Eigenschaften gleichermaßen zu erreichen. Des Weiteren ist die Formulierung wässriger Rezepturen für die Garn- und Textilausrüstung geplant. Damit können wesentlich dünnere Beschichtungen auf die Textilien aufgebracht werden als dies mit geschmolzenem PHA möglich ist.

In weiteren Forschungsteams der DITF wird untersucht, ob PHA auch für die Herstellung von Fasern und Vliesstoffen geeignet sind.

Quelle:

Deutsche Institute für Textil- und Faserforschung (DITF)

nominees Grafik: nova Institut
19.01.2024

Nominierte Innovationen für den Cellulose Fibre Innovation of the Year 2024

Erneut vergibt das nova-Institut im Rahmen der „Cellulose Fibres Conference“, die am 13. und 14. März 2024 in Köln stattfinden wird, den Preis „Cellulose Fibre Innovation of the Year“. Von ressourceneffizienten und recycelten Fasern für Textilien und Wandpaneelen bis hin zu Geotextilien für den Gletscherschutz: Im Vorfeld hat der Expertenbeirat der Konferenz sechs bemerkenswerte Produkte nominiert, darunter Cellulosefasern aus Textilabfällen und Stroh, eine neuartige Technologie zum Färben von Textilien auf Cellulose-Basis, eine Wandpaneele sowie Geotextilien. Die Innovationen werden von den Unternehmen am ersten Tag der Veranstaltung vorgestellt. Alle Konferenzteilnehmer können für einen der sechs Nominierten und somit über die „Top Drei“ abstimmen.

Erneut vergibt das nova-Institut im Rahmen der „Cellulose Fibres Conference“, die am 13. und 14. März 2024 in Köln stattfinden wird, den Preis „Cellulose Fibre Innovation of the Year“. Von ressourceneffizienten und recycelten Fasern für Textilien und Wandpaneelen bis hin zu Geotextilien für den Gletscherschutz: Im Vorfeld hat der Expertenbeirat der Konferenz sechs bemerkenswerte Produkte nominiert, darunter Cellulosefasern aus Textilabfällen und Stroh, eine neuartige Technologie zum Färben von Textilien auf Cellulose-Basis, eine Wandpaneele sowie Geotextilien. Die Innovationen werden von den Unternehmen am ersten Tag der Veranstaltung vorgestellt. Alle Konferenzteilnehmer können für einen der sechs Nominierten und somit über die „Top Drei“ abstimmen.

Darüber hinaus bieten die ständig wachsenden Bereiche der Vliesstoffe, Verpackungen und Hygieneprodukte auf Cellulose-Basis den Konferenzteilnehmern Einblicke, die über den Horizont der traditionellen Textilanwendungen hinausgehen. Nachhaltigkeit und andere Themen wie Faser-zu-Faser-Recycling und alternative Faserquellen sind die Hauptthemen der „Cellulose Fibres Conference“, die am 13. und 14. März 2024 in Köln (Deutschland) und online stattfindet. Auf der Konferenz werden die erfolgreichsten Lösungen auf Cellulose-Basis vorgestellt, die derzeit auf dem Markt oder für die nahe Zukunft geplant sind

Die Nominierten:

The Straw Flexi-Dress: Design trifft Nachhaltigkeit – DITF & VRETENA (DE)
Das Flexi-Dress-Design wurde durch die natürliche goldene Farbe und den seidigen Griff von HighPerCell® (HPC)-Filamenten inspiriert, die auf ungebleichtem Strohzellstoff basieren. Diese Cellulosefilamente werden mit einer umweltfreundlichen Spinntechnologie in einem geschlossenen Produktionsprozess hergestellt. Die Designentscheidungen konzentrierten sich auf die emotionale Verbindung und Verbundenheit mit dem HPC-Material, um ein lokales und zirkuläres Modeprodukt zu schaffen. Flexi-Dress ist als vielseitiges Strickkleidungsstück konzipiert – von der Arbeit bis zur Straße – das als Kleid getragen werden kann, aber auch in zwei Teile geteilt werden kann – separat als Oberteil und als gerader Rock. Das Oberteil kann auch mit einem V-Ausschnitt vorne oder hinten getragen werden. Die Struktur des HPC-Textilgestricks wurde als wichtig für den Komfort und die emotionalen Eigenschaften erachtet.

HONEXT® Board FR-B (B-s1, d0) – Flammenhemmendes Wandpaneel aus recycelten Faserabfällen aus der Papierindustrie – Honext Material (ES)
HONEXT® FR-B board (B-s1, d0) ist eine flammenhemmende Platte, die zu 100 % aus upgecycelten Industrieabfällen der Papierindustrie hergestellt wird. Dank Innovationen in der Biotechnologie wird Papierschlamm - der bisher "wertlose" Rückstand aus der Papierherstellung - zu einem vollständig recycelbaren Material aufbereitet, und zwar ohne den Einsatz von Harzen. Diese leichte und einfach zu handhabende Platte zeichnet sich durch eine hohe mechanische Leistung und Stabilität sowie eine geringe Wärmeleitfähigkeit aus und eignet sich daher perfekt für verschiedene Anwendungen in allen Innenräumen, in denen der Brandschutz eine wichtige Rolle spielt. Das Material ist ungiftig und enthält keine flüchtigen organischen Verbindungen (VOC), was sowohl für die Menschen als auch für die Umwelt sicher ist. Als nachhaltiges und gesundes Material für Bauten erreicht es Cradle-to-Cradle Certified GOLD und Material Health Certificate™ Gold Level Version 4.0 mit einem kohlenstoffnegativen Fußabdruck. Außerdem ist dies im Product Environmental Footprint verifiziert.

LENZING™ Cellulosefasern für den Gletscherschutz – Lenzing (AT)
Gletscher sind heute durch die globale Erwärmung einer noch nie dagewesenen Bedrohung ausgesetzt. Geotextilien auf der Basis von Kunstfasern verlangsamen zwar die Gletscherschmelze, schaffen aber ein neues Umweltproblem: Verschmutzung von Gletschermilieus durch Mikroplastik. Die Verwendung solcher Materialien widerspricht dem eigentlichen Zweck des Gletscherschutzes, da sie ein bereits kritisches Umweltproblem noch verschärft. Die innovative Verwendung von LENZING™-Fasern aus Cellulose stellt eine bahnbrechende Lösung für dieses Problem dar. Das Institut für Ökologie der Universität Innsbruck hat gemeinsam mit Lenzing und anderen Partnern im Jahr 2022 erste Versuche durchgeführt, indem kleine Testfelder mit Geotextilien auf Basis von LENZING™-Fasern abgedeckt wurden. Die Ergebnisse waren vielversprechend und bestätigten die Wirksamkeit dieses Ansatzes bei der Verlangsamung der Gletscherschmelze ohne Rückstände von Mikroplastik.

Die RENU Jacke – Fortschrittliches Recycling für Textilien aus Cellulose – Pangaia (UK) & Evrnu (US)
PANGAIA LAB wurde aus der Vision geboren, die Barrieren zwischen den Menschen und den bahnbrechenden Innovationen in der Materialwissenschaft abzubauen. Im Jahr 2023 brachte PANGAIA LAB die RENU Jacke auf den Markt, ein Produkt in limitierter Auflage, bestehend zu 100 % aus Nucycl® – einer Technologie, die Textilien aus Cellulose recycelt, indem sie diese in ihre molekularen Bausteine zerlegt und zu neuen Fasern formt. Das Ergebnis dieses Prozesses ist ein Produkt, das zu 100 % recycelt und zu 100 % wiederverwertet werden kann, wenn es in den richtigen Abfallstrom zurückgeführt wird – wobei die Stärke der Faser erhalten bleibt, so dass sie nicht mit neuem Material gemischt werden muss.

In Zusammenarbeit mit Evrnu hat das PANGAIA-Team die weltweit erste zu 100 % chemisch recycelte Jeansjacke entwickelt, die ein Material ersetzt, das traditionell aus 100 % reiner Baumwolle hergestellt wird. Durch die Einbindung von Nucycl® in diesen ikonischen Stoff, die mit natürlichem Indigo gefärbt wurde, haben die Teams gezeigt, dass es möglich ist, allgegenwärtige Materialien durch diese Innovation zu ersetzen

Textilien aus leicht färbbarem Biocelsol – VTT Technical Research Centre of Finland (FI)
Ein Drittel des Abwasseraufkommens der Textilindustrie entsteht beim Färben und ein Fünftel bei der Veredelung. Durch die Verwendung von chemisch modifizierten Biocelsol-Fasern wird das Abwasser jedoch reduziert. Der Strickstoff wird aus Viskose- und Biocelsol-Fasern hergestellt und erst nach dem Stricken gefärbt. Dadurch erhalten die Biocelsol-Fasern einen dunkleren Farbton, wobei die gleiche Menge an Farbstoff und kein Salz im Färbeprozess verwendet wird. Ein interessanter visueller Effekt kann dadurch erzielt werden. Außerdem wird für den dunkleren Farbton im fertigen Textil weniger Farbstoff benötigt und die Möglichkeit salzfrei zu färben ist umweltfreundlicher. Diese besonderen Eigenschaften werden die Fasern als Ersatz für die bestehenden Fasern auf fossiler Basis stärken und damit die Nachfrage nach umweltfreundlicheren Färbelösungen in der Textilindustrie erfüllen. Die funktionalisierten Biocelsol-Fasern, die im Rahmen des FinnCERES-Projekts der Finnischen Akademie hergestellt wurden und hier verwendet werden, werden im Nassspinnverfahren aus Cellulose-Spinnmasse mit geringen Mengen an 3-Allyloxy-2-hydroxypropyl-Substituenten hergestellt. Die Funktionalität ist dauerhaft und verbessert nachweislich die Färbbarkeit der Fasern erheblich. Darüber hinaus senkt die Funktionalisierung von Biocelsol-Fasern die Kosten der Textilveredelung und -färbung sowie die Abwasserbelastung.

Eine neue Generation von bio-basierten und ressourceneffizienten Fasern – TreeToTextile (SE)
TreeToTextile hat eine einzigartige, nachhaltige und ressourceneffiziente Faser entwickelt, die es auf dem Markt noch nicht gibt. Sie hat einen natürlichen, trockenen Griff, der dem von Baumwolle ähnelt, einen halbmatten Glanz und einen hohen Faltenwurf wie Viskose. Sie basiert auf Cellulose und hat das Potenzial, Baumwolle, Viskose und Polyester als Einzelfaser oder in Mischungen zu ergänzen oder, je nach Anwendung, zu ersetzen.

TreeToTextile Technology™ hat einen geringen Bedarf an Chemikalien, Energie und Wasser. Laut einer von Dritten durchgeführten Ökobilanz hat die TreeToTextile-Faser eine Klimawirkung von 0,6 kg CO2 eq/Kilo Faser. Die Faser wird aus bio-basierten und rückverfolgbaren Ressourcen hergestellt und ist biologisch abbaubar.

Weitere Informationen:
Nova Institut nova Institute
Quelle:

nova Institut

Prof. Dr. Tae Jin Kang (Seoul National University), Dr. Musa Akdere (CarboScreen), Dr. Christian P. Schindler (ITMF), von links nach rechts. Quelle: ITMF
Prof. Dr. Tae Jin Kang (Seoul National University), Dr. Musa Akdere (CarboScreen), Dr. Christian P. Schindler (ITMF), von links nach rechts.
01.12.2023

Schnellere und günstigere Carbonfaserproduktion durch CarboScreen

Felix Pohlkemper und Tim Röding vom Institut für Textiltechnik (ITA) der RWTH Aachen lassen die Carbonfaserproduktion durch Sensortechnologie überwachen und erreichen so mittelfristig eine Verdopplung der Produktionsgeschwindigkeit von derzeit 15 auf 30 m/min und dadurch eine Umsatzsteigerung von bis zum 37,5 Mio. € pro Jahr und Anlage. Diese Entwicklung überzeugte auch die Jury der ITMF und wurde mit dem ITMF StartUp Award 2023 auf der diesjährigen ITMF Annual Conference in Keqiao (China) ausgezeichnet.

Dr. Musa Akdere nahm den Preis stellvertretend für das CarboScreen-Gründerteam entgegen.

Kohlenstofffasern können ihr volles Potenzial nur dann entfalten, wenn sie bei der Herstellung und Weiterverarbeitung nicht beschädigt werden. Zwei Arten von Faserschädigungen treten bei der Faserherstellung verstärkt auf: Oberflächliche oder mechanische Schäden an den Fasern oder Schäden an der chemischen Struktur.

Felix Pohlkemper und Tim Röding vom Institut für Textiltechnik (ITA) der RWTH Aachen lassen die Carbonfaserproduktion durch Sensortechnologie überwachen und erreichen so mittelfristig eine Verdopplung der Produktionsgeschwindigkeit von derzeit 15 auf 30 m/min und dadurch eine Umsatzsteigerung von bis zum 37,5 Mio. € pro Jahr und Anlage. Diese Entwicklung überzeugte auch die Jury der ITMF und wurde mit dem ITMF StartUp Award 2023 auf der diesjährigen ITMF Annual Conference in Keqiao (China) ausgezeichnet.

Dr. Musa Akdere nahm den Preis stellvertretend für das CarboScreen-Gründerteam entgegen.

Kohlenstofffasern können ihr volles Potenzial nur dann entfalten, wenn sie bei der Herstellung und Weiterverarbeitung nicht beschädigt werden. Zwei Arten von Faserschädigungen treten bei der Faserherstellung verstärkt auf: Oberflächliche oder mechanische Schäden an den Fasern oder Schäden an der chemischen Struktur.

Beide Schäden können durch die derzeitigen Mittel nicht optimal erkannt werden oder fallen erst nach der Produktion auf, um nur zwei Beispiele zu nennen. Dies führt zu höheren Produktionskosten. Eine fehlerhafte Produktion kann im Ernstfall sogar zu Anlagenbränden führen. Deshalb und um eine gute Produktionsqualität zu gewährleisten, wird die Anlage sicherheitshalber mit 15 m/min unter ihrer Produktionskapazität gefahren. Möglich wären jedoch 30 m/min oder mehr. Durch die sensorbasierte Online-Überwachung von CarboScreen kann die Produktionskapazität auf 30 m/min verdoppelt werden. Dies würde zu einer höheren Produktion, dadurch sinkenden Herstellkosten und einem breiteren Einsatz von Carbonfasern in Massenmärkten wie Automotive, Luft- und Raumfahrt und Windenergie führen.

Weitere Informationen:
Carbonfasern Sensortechnik Startup
Quelle:

ITA – Institut für Textiltechnik of RWTH Aachen University
 

12.04.2023

Comeback der CIOSH Messe in Shanghai

Als Fachmesse für Sicherheit und Gesundheit am Arbeitsplatz in China findet die 104. China International Occupational Safety & Health Goods Expo (CIOSH 2023), die vom Chinesischen Textil-Handelsverband (CTCA) und der Messe Düsseldorf (Shanghai) Co., Ltd. (MDS) veranstaltet wird, vom 13. - 15. April 2023 in der Halle E1-E7 des Shanghai New International Expo Centre (SNIEC) statt. Gut drei Jahre nach Beginn der Corona-Pandemie hat sich die Lage in China so stabilisiert, dass auch für den Markt für Persönliche Schutzausrüstungen (PSA) eine rasche Erholung erwartet wird. An der CIOSH 2023 werden sich mehr als 1.500 Unternehmen aus 14 Nationen beteiligen, die auf einer Ausstellungsfläche von gut 80.000 Quadratmetern ihre neuesten Produkte, Technologien und Services präsentieren.

Als Fachmesse für Sicherheit und Gesundheit am Arbeitsplatz in China findet die 104. China International Occupational Safety & Health Goods Expo (CIOSH 2023), die vom Chinesischen Textil-Handelsverband (CTCA) und der Messe Düsseldorf (Shanghai) Co., Ltd. (MDS) veranstaltet wird, vom 13. - 15. April 2023 in der Halle E1-E7 des Shanghai New International Expo Centre (SNIEC) statt. Gut drei Jahre nach Beginn der Corona-Pandemie hat sich die Lage in China so stabilisiert, dass auch für den Markt für Persönliche Schutzausrüstungen (PSA) eine rasche Erholung erwartet wird. An der CIOSH 2023 werden sich mehr als 1.500 Unternehmen aus 14 Nationen beteiligen, die auf einer Ausstellungsfläche von gut 80.000 Quadratmetern ihre neuesten Produkte, Technologien und Services präsentieren.

Integration von Online- und Offline-Plattformen
Die CIOSH 2023 umfasst vier große Bereiche: Sicherheit am Arbeitsplatz, Betriebliche Sicherheit, Gesundheit am Arbeitsplatz und Notfallrettungsmanagement. Namhafte nationale und internationale Aussteller, darunter 3M, Honeywell, Ansell, SATA, JSP, MSA, DELTAPLUS, Lakeland, Cortina, UVEX, CM Chaomei, Xing Yu Gloves, DS, East Asia Glove, Hanvo, SOMO Zhongmai Safety, SAFETY-INXS oder TELPS, werden vertreten sein. Gleichzeitig hat die CIOSH 2023 eine innovative Online-Plattform geschaffen - CIOSH VIRTUAL. Durch Online-Präsentationen, Live-Streaming-Optionen sowie weitere interaktive Funktionen bietet sie in Ergänzung zur Präsenzveranstaltung eine Plattform für den geschäftlichen Austausch über die physische Messe hinaus. Das Angebot der CIOSH VIRTUAL umfasst mehr als 3.000 Online-Präsentationen von Produkten, die bereits über 70.000 Mal abgerufen wurden.

CIOSH-Fachseminar für die Industrie: Nachhaltige Entwicklung steht im Mittelpunkt
Das jährlich stattfindende technische Fachseminar, das zeitgleich zur CIOSH ausgerichtet wird, dient unterdessen als Plattform für Fachleute, um sich über Produkttrends zu informieren und auszutauschen. 2021 hat China Maßnahmen zur Eindämmung des Klimawandels in seinen 14. Fünfjahresplan aufgenommen, einen Aktionsplan für die Erreichung eines sinkenden Kohlenstoffausstoßes nach 2030 aufgestellt und das Ziel der Kohlenstoffneutralität bis 2060 proaktiv ausgerufen. Im Rahmen dieser „Carbon Peaking“ und „Kohlenstoffneutralität“-Ziele wurde die nachhaltige Entwicklung der PSA-Branche zum Hauptthema des diesjährigen Seminars. Expertinnen und Experten der China Carbon Low-Carbon Certification (Jiangsu) Co., Ltd., des China Certification Centre, Inc. und der SGS-CSTC Standards Technical Services Co., Ltd. werden die damit zusammenhängende Politik, die Auswirkungen der „Kohlenstoffneutralität“ auf die PSA-Wertschöpfungskette und Branchen, die PSA nutzen, aus verschiedenen Blickwinkeln untersuchen.

Bereich für Absturzsicherung
Stürze aus der Höhe gehören zu den häufigsten Ursachen für schwere oder tödliche Unfälle von Beschäftigten. Eine wirksame Absturzsicherung erfordert nicht nur wirksame Schutzausrüstung, sondern auch professionelle Unterweisungen und Schulungen. Die CIOSH greift dieses wichtige Thema auf mit einem neuen Themenbereich „Absturzsicherung“. Hier zeigen Unternehmen, die sich auf Sturzsicherung spezialisiert haben (z. B. SKYLOTEC, rothoblaas, JECH, Mode und NTR Safety), in Live-Vorführungen, wie Stürzen vorgebeugt werden kann durch entsprechende Absturzsicherungslösungen und wie – im Fall der Fälle – eine sichere Höhenrettung durchzuführen ist.

Gesundheit am Arbeitsplatz
Die CIOSH hat sich stets breit aufgestellt, um innovative Möglichkeiten und neue Impulse für die Nachhaltigkeit der Branche für Sicherheit und Gesundheitsschutz am Arbeitsplatz zu bieten. In diesem Jahr rückt die Fachmesse das Thema „Gesundheit am Arbeitsplatz“ näher in den Fokus mit einem eigenen Bereich für Ergonomie-Aspekte. Hier werden u. a. auch neueste Exoskelett-Technologien wie beispielsweise Exoskelett-Roboter präsentiert.

19.06.2022

Indorama Venures: Faserinnovationen auf der Techtextil

Indorama Ventures Public Company Limited (IVL), einer der weltweit führenden Petrochemieproduzenten mit globaler Präsenz in Europa, Afrika, Nord- und Südamerika sowie im asiatisch-pazifischen Raum, wird auf der Techtextil die neuesten Entwicklungen und Innovationen seiner drei Faser-Sparten MOBILITY, HYGIENE und LIFESTYLE vorstellen. Diese drei Geschäftsbereiche vereinen Schlüsselkompetenzen in den Bereichen Fasern, Vliesstoffe und Gewebe für die Märkte Automobil, Hygiene, Funktionsmaterialien und Verbundwerkstoffe.

Unter dem Motto "Reimaging Chemistry together for a better World" wird ein breites Portfolio an nachhaltigen Produkten, fortschrittlichen Technologien und verbraucherorientierten Lösungen vorgestellt.

Ein Schwerpunkt wird die Marke Deja® sein — die Plattform für nachhaltige Produkte von Indorama Ventures. Sie umfasst u.a. Materialien wie Fasern aus recyceltem PET (rPET). Ziel ist es, Produkte im Umlauf zu halten und die Kreislaufwirtschaft zu etablieren.  Außerdem werden Materialien mit einem neutralen Kohlenstoff-Fußabdruck, darunter Breathair® und bio-basierte Produkte, präsentiert.

Indorama Ventures Public Company Limited (IVL), einer der weltweit führenden Petrochemieproduzenten mit globaler Präsenz in Europa, Afrika, Nord- und Südamerika sowie im asiatisch-pazifischen Raum, wird auf der Techtextil die neuesten Entwicklungen und Innovationen seiner drei Faser-Sparten MOBILITY, HYGIENE und LIFESTYLE vorstellen. Diese drei Geschäftsbereiche vereinen Schlüsselkompetenzen in den Bereichen Fasern, Vliesstoffe und Gewebe für die Märkte Automobil, Hygiene, Funktionsmaterialien und Verbundwerkstoffe.

Unter dem Motto "Reimaging Chemistry together for a better World" wird ein breites Portfolio an nachhaltigen Produkten, fortschrittlichen Technologien und verbraucherorientierten Lösungen vorgestellt.

Ein Schwerpunkt wird die Marke Deja® sein — die Plattform für nachhaltige Produkte von Indorama Ventures. Sie umfasst u.a. Materialien wie Fasern aus recyceltem PET (rPET). Ziel ist es, Produkte im Umlauf zu halten und die Kreislaufwirtschaft zu etablieren.  Außerdem werden Materialien mit einem neutralen Kohlenstoff-Fußabdruck, darunter Breathair® und bio-basierte Produkte, präsentiert.

Auch andere neue Technologien werden vor Ort zu sehen sein. Um die Verschmutzung der Umwelt durch Kunststoffe zu verringern, führt Indorama Ventures Polyolefinfasern und Vliesstoffe ein, die durch die kürzlich eingeführte Biotransformationstechnologie biologisch abbaubar sind. Biotransformation ist ein Prozess, bei dem sich der physikalische Zustand einer Faser von einem kristallinen Feststoff in ein bioverfügbares Wachs ändert.

30.08.2021

Die Renewable Carbon Initiative (RCI) bündelt ihre Kräfte

  • Umstellung von fossilen auf erneuerbare Rohstoffe: RCI-Mitglieder stehen für Politikanalyse und fokussierte Umsetzung der Strategie für erneuerbaren Kohlenstoff ein

Die Mitglieder der im September 2020 gegründeten Renewable Carbon Initiative (RCI) bündeln ihre Kräfte, um die Wende vom fossilen hin zum erneuerbaren Zeitalter auch in der Chemie- und Werkstoffindustrie voranzutreiben. Dazu soll das Konzept des erneuerbaren Kohlenstoffs bekannter gemacht werden. Zudem sollen neue Wertschöpfungsketten aufgebaut werden, die auf erneuerbaren Kohlenstoff als Rohstoff setzen.

Gleichzeitig wurden mehrere Aktivitäten aufgenommen, von denen auch künftige Mitglieder profitieren können. Eine davon ist die Einleitung einer umfassenden Politikanalyse. Wie werden sich künftige Regulierungsbestimmungen auf die Chemie-, Plastik- und andere Werkstoffbranchen auswirken? Wann und wo sollte man auf erneuerbaren Kohlenstoff setzen und diesen empfehlen?

Im Rahmen der Politikanalyse sollen Gesetzgebungsinitiativen innerhalb der Europäischen Union näher untersucht werden. Später soll die Perspektive dann auch auf Amerika und Asien ausgeweitet werden.

  • Umstellung von fossilen auf erneuerbare Rohstoffe: RCI-Mitglieder stehen für Politikanalyse und fokussierte Umsetzung der Strategie für erneuerbaren Kohlenstoff ein

Die Mitglieder der im September 2020 gegründeten Renewable Carbon Initiative (RCI) bündeln ihre Kräfte, um die Wende vom fossilen hin zum erneuerbaren Zeitalter auch in der Chemie- und Werkstoffindustrie voranzutreiben. Dazu soll das Konzept des erneuerbaren Kohlenstoffs bekannter gemacht werden. Zudem sollen neue Wertschöpfungsketten aufgebaut werden, die auf erneuerbaren Kohlenstoff als Rohstoff setzen.

Gleichzeitig wurden mehrere Aktivitäten aufgenommen, von denen auch künftige Mitglieder profitieren können. Eine davon ist die Einleitung einer umfassenden Politikanalyse. Wie werden sich künftige Regulierungsbestimmungen auf die Chemie-, Plastik- und andere Werkstoffbranchen auswirken? Wann und wo sollte man auf erneuerbaren Kohlenstoff setzen und diesen empfehlen?

Im Rahmen der Politikanalyse sollen Gesetzgebungsinitiativen innerhalb der Europäischen Union näher untersucht werden. Später soll die Perspektive dann auch auf Amerika und Asien ausgeweitet werden.

Einen besonderen Schwerpunkt bilden bevorstehende Gesetze und Bestimmungen und deren Bedeutung für erneuerbaren Kohlenstoff. Derzeit erörtern die Mitglieder noch ihre genaue Herangehensweise. Dabei gehen sie der Frage nach, was das neue Klimagesetz und das „Fit für 55“-Klimaziel für die Chemie- und Werkstoffbranche bedeuten und was man von der REACH-Verordnung und Mikroplastikverboten zu erwarten hat. Andere Fragen drehen sich um die Bedeutung der „Initiative für nachhaltige Produkte“ und anstehende Beschränkungen zu umweltschutzbezogenen Werbeaussagen. Kreislaufwirtschaft, „Null Verschmutzung“ und nachhaltige Finanzierung sind Schlüsselwörter im Europa der Zukunft, die in der Chemie- und Werkstoffindustrie schon in wenigen Jahren Wirklichkeit werden könnte. Doch inwieweit wird das Konzept des erneuerbaren Kohlenstoffs für Werkstoffe bereits in der Politik berücksichtigt? Und wie ließe es sich in künftigen Gesetzgebungsinitiativen stärker verankern? Dies sind zwei der Hauptfragen, mit denen sich die Arbeitsgruppe „Politik“ aktuell beschäftigt.

Die Arbeitsgruppe steht allen RCI-Mitgliedern offen. Als Gesprächsgrundlage dienen Analysen von Politikexperten, die dann entsprechende Diskussionsformate innerhalb der Arbeitsgruppe organisieren und auch Gespräche mit der Politik planen, um das Konzept des erneuerbaren Kohlenstoffs dort bekannter zu machen.

Zudem wurden weitere Arbeitsgruppen gebildet, die sich mit dem Thema Kommunikation und der Entwicklung eines Siegels für erneuerbaren Kohlenstoff befassen. Anfang September soll dann eine „Renewable Carbon Community“ ins Leben gerufen werden und den Austausch zwischen den einzelnen Mitgliedern intensivieren. Dort sollen dann Strategien besprochen, neue Wertschöpfungsketten aufgebaut und Projektkonsortien gebildet werden.

Weitere Informationen:
Renewable Carbon Initiative
Quelle:

nova-Institut für politische und ökologische Innovation GmbH für RCI

(c) Teijin Carbon Europe GmbH
19.05.2021

Teijin Carbon produziert neues Carbonfaser-PPS-Tape

Teijin Carbon Europe stellt ein thermoplastisches, unidirektionales Kohlenstofffaser-Tape (TPUD) auf PPS-Basis vor. Das neue Tenax™ TPUD mit PPS-Matrix ermöglicht den Einstieg in neue kostensensitive Märkte und bietet die typischen Vorteile von TPUD wie hohe Chemikalien- und Lösungsmittelbeständigkeit, Schwerentflammbarkeit, Lagerung oder Versand bei Raumtemperatur und außerdem ist es recyclebar.

Teijin Carbon Europe stellt ein thermoplastisches, unidirektionales Kohlenstofffaser-Tape (TPUD) auf PPS-Basis vor. Das neue Tenax™ TPUD mit PPS-Matrix ermöglicht den Einstieg in neue kostensensitive Märkte und bietet die typischen Vorteile von TPUD wie hohe Chemikalien- und Lösungsmittelbeständigkeit, Schwerentflammbarkeit, Lagerung oder Versand bei Raumtemperatur und außerdem ist es recyclebar.

Aufgrund seiner flammhemmenden Eigenschaften und der geringen Rauchentwicklung kann es unter anderem in Interieuranwendungen von Flugzeugen oder Schienenfahrzeugen eingesetzt werden. Die maximale Dauerbetriebstemperatur liegt bei bis zu 220 °C. Eine sehr geringe Wasseraufnahme, eine hervorragende Kriechfestigkeit auch bei erhöhten Temperaturen und eine hohe Dimensionsstabilität runden das Eigenschaftsportfolio dieses neuen TPUD ab. Somit ist es auch für anspruchsvolle Anwendungen aus den Bereichen der Luft- und Raumfahrt, Öl & Gas, Sportartikel oder Industrie geeignet und bleibt dabei kostengünstig. Gerade diese Eigenschaften machen das Produkt perfekt für hochautomatisierte Verarbeitungsrouten wie ATL oder AFP in Kombination mit Overmolding für komplexe Geometrien. Produktionsstart für das Tenax™ TPUD mit PPS-Matrix ist das erste Quartal 2021.

Seit fast 10 Jahren werden in Heinsberg unidirektionale Tapes (TPUD) aus Carbonfasern und Thermoplasten hergestellt. Die Halbzeuge werden bisher mit PEEK oder PAEK angeboten - und jetzt kommt PPS als weitere Matrix hinzu. PPS ermöglicht im Vergleich zu PEEK und PAEK eine niedrigere Prozesstemperatur. Vor allem für den industriellen Markt ist dies eine Möglichkeit, die Produktionsrate zu erhöhen, um Prozesse kosteneffizienter zu gestalten.

Weitere Informationen:
Carbonfaser Teijin Carbon Fibers
Quelle:

Teijin Carbon Europe GmbH

AMAC kooperiert mit ITA (Institut für Textiltechnik der RWTH Aachen und deren ITA GmbH) für die weitere Geschäftsentwicklung im Bereich Composites  © AMAC
vlnr: Markus Beckmann, Prof. Thomas Gries, Dr. Michael Effing, Dr. Christoph Greb
19.04.2021

AMAC kooperiert mit ITA

  • AMAC kooperiert mit ITA (Institut für Textiltechnik der RWTH Aachen und deren ITA GmbH) für die weitere Geschäftsentwicklung im Bereich Composites  

Zum 19. April 2021 gibt das Unternehmen AMAC unter der Leitung von Dr. Michael Effing seine Kooperation mit dem Institut für Textiltechnik (ITA) der RWTH Aachen und deren ITA GmbH bekannt. Ziel der Kooperation ist es, die Geschäftsaktivitäten von Institut und GmbH im Bereich Verbundwerkstoffe zu stärken und weiter auszubauen.

  • AMAC kooperiert mit ITA (Institut für Textiltechnik der RWTH Aachen und deren ITA GmbH) für die weitere Geschäftsentwicklung im Bereich Composites  

Zum 19. April 2021 gibt das Unternehmen AMAC unter der Leitung von Dr. Michael Effing seine Kooperation mit dem Institut für Textiltechnik (ITA) der RWTH Aachen und deren ITA GmbH bekannt. Ziel der Kooperation ist es, die Geschäftsaktivitäten von Institut und GmbH im Bereich Verbundwerkstoffe zu stärken und weiter auszubauen.

Das ITA als eines der größten Institute auf dem Campus der Exzellenz-Universität RWTH Aachen, entwickelt Komplettlösungen von der Faserherstellung über die Verarbeitung von textilen Vorprodukten mit thermoplastischen und duroplastischen Harzen über die textilbasierte Bauteilherstellung bis hin zu Technologien wie Flechten, Pultrusion und In-situ-Imprägnierung textiler Preforms. Die Top 3 Schwerpunktbranchen sind das Transportwesen, insbesondere der Bereich E-Mobilität, das Bauwesen sowie der Bereich Windenergie. Darüber hinaus ist die ITA GmbH als Partner der Industrie im Bereich Forschung und Entwicklung auf 8 Geschäftsfelder fokussiert und bietet Technologie- und Wissenstransfer sowie umfassende Lösungen entlang der gesamten textilen Wertschöpfungskette.

Prof. Dr. Thomas Gries, Geschäftsführer der ITA, erläutert die Hintergründe der strategischen Kooperation mit Fokus auf Composites: "Unsere langjährige Erfahrung und unser unübertroffenes Know-how rund um Endlosfasern, Vliese und andere textile Verstärkungen ermöglichen es uns, den Composite-Herstellern ein komplettes Technologie- und Serviceangebot rund um die Entwicklung technischer Textilien zu liefern, von der Entwicklung der Glas- und Kohlenstofffasern bis hin zur textilbasierten Verarbeitung von Composite-Bauteilen. In allen Prozessschritten unserer Forschung und Entwicklung legen wir den Schwerpunkt auf nachhaltige und recycelbare Lösungen, auf ein effizientes Preis-Leistungs-Verhältnis, den möglichen Einsatz biobasierter Materialien sowie die Reduzierung des CO2-Fußabdrucks. Wir freuen uns auf die Zusammenarbeit mit Dr. Michael Effing und AMAC, um von seinem breiten Netzwerk in der Composites-Industrie zu profitieren."

Dr. Michael Effing, Geschäftsführer der AMAC GmbH: "Ich freue mich sehr, das ITA dabei zu unterstützen, durch weitere industrielle Vernetzung und vorwettbewerbliche Gemeinschaftsprojekte weitere Innovationen zu generieren. Mehr als je zuvor ist es durch die Covid-19-Krise wichtig, Kräfte industrieübergreifend zu bündeln. So bietet das ITA mit seiner langjährigen Tradition und vielen zufriedenen Kunden textilbasierte Composite-Lösungen von der Faser bis zur kosteneffizienten Herstellung von Endteilen aus einer Hand: wertvolle Vernetzungsmöglichkeiten für die Composites-Industrie sowie Zugang zu komplementärer faserbasierter Exzellenz und 250 verschiedene Technologien in ihrem umfassend bestückten Maschinenpark."

MaruHachi/AMAC: Thermoplastische Hochtemperatur-Tapes und Laminate (c) MaruHachi
16.02.2021

MaruHachi/AMAC: Thermoplastische Hochtemperatur-Tapes und Laminate

Mit seiner kürzlich in Betrieb genommenen Hochtemperatur-Unidirektional-Tape-Linie eröffnet der japanische Composites-Hersteller MaruHachi neue Möglichkeiten für High-End-Anwendungen in anspruchsvollen Marktsegmenten wie Luft- und Raumfahrt oder im Automobilbau und erweitert damit das Spektrum herkömmlicher, auf PP- und PA- basierender Materialien.

Mit seiner kürzlich in Betrieb genommenen Hochtemperatur-Unidirektional-Tape-Linie eröffnet der japanische Composites-Hersteller MaruHachi neue Möglichkeiten für High-End-Anwendungen in anspruchsvollen Marktsegmenten wie Luft- und Raumfahrt oder im Automobilbau und erweitert damit das Spektrum herkömmlicher, auf PP- und PA- basierender Materialien.

In einer ersten Phase wird MaruHachi bis zu 40 Tonnen/Jahr produzieren und konzentriert sich speziell auf hochtemperaturbeständige thermoplastische unidirektionale (UD) Tapes sowie mehrschichtige Plattenlaminate. Das Material basiert auf Hochleistungsfasern wie Kohlenstoff, Aramid, Glas oder Naturfasern und einer Matrix, die aus Hochleistungspolymeren wie PPS, PEEK oder anderen Hochtemperaturpolymeren bestehen kann.  Diese sind wesentlich schlagzäher als Epoxidharze und einfach zu recyceln. Mit einer Breite von 500 mm, einem spezifischen Gewicht von 60 bis 350 g/m2, je nach gewähltem Material, kann die Anlage bis zu Temperaturen von 420 Grad Celsius arbeiten. Das Herstellen unter diesen extrem hohen Temperaturen führt zu besseren Materialeigenschaften in der Endanwendung wie gesteigerte Leistungsfähigkeit, erhöhte Widerstandsfähigkeit und integrierte Hochleistungsfunktionalitäten wie sie z.B. durch das sogenannte Umspritzen erreicht werden.

Seit 2017 ist die MaruHachi Group auf dem europäischen Markt in Kooperation mit Dr. Michael Effing, Geschäftsführer der AMAC GmbH in Aachen, aktiv, der das Unternehmen strategisch berät und unterstützt. Die etablierte, familiengeführte MaruHachi Group hat eine starke Historie in den Bereichen Automobil- und Medizintextilien und ist seit mehr als 15 Jahren im Bereich innovative Verbundwerkstoffe aktiv.

Toshi Sugahara, Geschäftsführer von MaruHachi: "Wir arbeiten bereits seit vielen Jahren mit in- und ausländischen Partnern an nachfragestarken Anwendungen zusammen. Daher hat sich MaruHachi nun dazu entschlossen, in Phase 1 über 1 Mio. EUR in diese neue Anlage zu investieren, wobei ein Teil der Finanzierung von der japanischen Regierung NEDO stammt. Neue Entwicklungen in Phase 2 werden bis Ende 2021 an den nachgelagerten Technologien wie dem automatisierten Preforming und der Konsolidierung vorgenommen. Mit unseren neuen Produkten wollen wir zu einer deutlichen Gewichtsreduzierung der Endprodukte beitragen, die Energieeffizienz verbessern und gleichzeitig eine kosteneffiziente und hochwertige Lösung anbieten."

Dr. Effing, Geschäftsführer der AMAC GmbH bestätigt: "Die Fokussierung auf die Nische der Hochtemperaturprodukte auf Basis von PPS und PEEK ermöglicht es MaruHachi, sehr anspruchsvolle High-End-Anwendungen wie Strukturelemente in Raum- und Flugzeugen, Flugzeugsitze oder Triebwerkskomponenten etc. anbieten zu können. Die Tapes sind vollständig recycelbar und können beispielsweise in hoher Geschwindigkeit bis zu 0.5 Metern pro Sekunde mit laserbasierten Tape-Placement-Maschinen und Robotern verarbeitet werden."

 

Quelle:

AMAC GmbH

Pumpenkomponenten aus Zirkoniumoxid-Keramik (c) Oerlikon
Pumpenkomponenten aus Zirkoniumoxid-Keramik
12.11.2020

Oerlikon: Robuste Pumpen für anspruchsvolle Spezialfasern

Auf den ersten Blick haben Ruderboote, der Airbus 380, Sicherheitsausrüstungen oder Stadionüberdachungen nur wenig gemeinsam. Dabei erhalten sie ihre spezifischen Eigenschaften unter anderem durch den Einsatz von speziellen Fasern: Aramidfasern und Kohlenstofffasern (Carbonfasern) werden zu Spezialgarnen verarbeitet, die häufig als Verbundstoffe eingesetzt werden. Die Nachfrage nach diesen Fasern wächst, da weltweit versucht wird, die Abhängigkeit von fossilen Brennstoffen zu verringern; neue Lösungen sind erforderlich, um das Gewicht zu reduzieren und schwere Metallteile zu ersetzen.

Aramidfasern werden in einem sehr aggressiven, hochchemischen Prozess hergestellt. Auch das Verfahren, mit dem das polymere Ausgangsprodukt aus Acryl produziert wird, das zur Herstellung von Kohlenstofffasern verwendet wird, ist zwar ein anderer, aber nicht minder schwieriger Vorgang. Bei diesen anspruchsvollen Prozessen sind die Zahnradpumpen nicht nur für die hochpräzise Steuerung der Schmelzeförderung verantwortlich; Langlebigkeit, Widerstandsfähigkeit in einer aggressiven Umgebung und Kosteneffizienz spielen eine ebenso entscheidende Rolle.

Auf den ersten Blick haben Ruderboote, der Airbus 380, Sicherheitsausrüstungen oder Stadionüberdachungen nur wenig gemeinsam. Dabei erhalten sie ihre spezifischen Eigenschaften unter anderem durch den Einsatz von speziellen Fasern: Aramidfasern und Kohlenstofffasern (Carbonfasern) werden zu Spezialgarnen verarbeitet, die häufig als Verbundstoffe eingesetzt werden. Die Nachfrage nach diesen Fasern wächst, da weltweit versucht wird, die Abhängigkeit von fossilen Brennstoffen zu verringern; neue Lösungen sind erforderlich, um das Gewicht zu reduzieren und schwere Metallteile zu ersetzen.

Aramidfasern werden in einem sehr aggressiven, hochchemischen Prozess hergestellt. Auch das Verfahren, mit dem das polymere Ausgangsprodukt aus Acryl produziert wird, das zur Herstellung von Kohlenstofffasern verwendet wird, ist zwar ein anderer, aber nicht minder schwieriger Vorgang. Bei diesen anspruchsvollen Prozessen sind die Zahnradpumpen nicht nur für die hochpräzise Steuerung der Schmelzeförderung verantwortlich; Langlebigkeit, Widerstandsfähigkeit in einer aggressiven Umgebung und Kosteneffizienz spielen eine ebenso entscheidende Rolle.

Spezielle Werkstoffe für spezielle Aufgaben
Der Prozess, die erwartete Lebensdauer der Pumpe und die Wartungshäufigkeit sind für die Wahl der Materialien, aus denen die Pumpe und ihre Komponenten hergestellt werden, die ausschlaggebenden Faktoren. Für ein optimales Ergebnis bietet Oerlikon Barmag Lösungen, die unterschiedliche Werkstoffe und neueste Technologien intelligent miteinander kombinieren. Ob Oberflächen mit keramischer Beschichtung, Zahnräder und Wellen mit DLC Beschichtungen, Pumpen aus Kobaltlegierungen (StelliteTM) oder die robusten und langlebigen Oerlikon Barmag-Hybridkonstruktionen aus Zirkoniumoxid-Keramik und Duplex-Stahl, die hochpräzisen Pumpen der ZP- und GM-Baureihen werden je nach Einsatzart optimiert ausgelegt. Unterschiedliche Dichtsysteme und individuelle Antriebskonzepte runden das Pumpenprogramm ab.

Weitere Informationen:
Oerlikon aramid Carbonfaser Fasern
Quelle:

Oerlikon

Fraunhofer UMSICHT: Auf dem Weg zu einem geschlossenen Kohlenstoffkreislauf © Fraunhofer UMSICHT
Ein Blick auf den Hochdruckreaktor, der bei der elektrochemischen Reduktion zum Einsatz kam.
28.10.2020

Fraunhofer UMSICHT: Auf dem Weg zu einem geschlossenen Kohlenstoffkreislauf

  • Wie überkritisches Kohlendioxid die elektrochemische Reduktion von CO2 beeinflusst

Auf dem Weg zu einer klimaneutralen Industrie spielt die elektrochemische Reduktion von Kohlendioxid eine wichtige Rolle: Mit ihrer Hilfe lässt sich unter Einsatz erneuerbarer Energien CO2 in Brennstoffe oder Grundchemikalien umwandeln. Der Haken an der Sache: Bislang funktioniert diese Katalyse lediglich im Labor. Bei der Übertragung auf den industriellen Maßstab treten immer noch Schwierigkeiten auf – von der begrenzten Haltbarkeit der Katalysatorsysteme bis zur unerwünschten Entwicklung von Wasserstoff. Forschende der Ruhr-Universität Bochum, des Fritz-Haber-Instituts und des Fraunhofer UMSICHT haben sich auf die Suche nach Lösungen gemacht und dabei den Einfluss von überkritischem Kohlendioxid auf die elektrochemische Reduktion von CO2 untersucht.

  • Wie überkritisches Kohlendioxid die elektrochemische Reduktion von CO2 beeinflusst

Auf dem Weg zu einer klimaneutralen Industrie spielt die elektrochemische Reduktion von Kohlendioxid eine wichtige Rolle: Mit ihrer Hilfe lässt sich unter Einsatz erneuerbarer Energien CO2 in Brennstoffe oder Grundchemikalien umwandeln. Der Haken an der Sache: Bislang funktioniert diese Katalyse lediglich im Labor. Bei der Übertragung auf den industriellen Maßstab treten immer noch Schwierigkeiten auf – von der begrenzten Haltbarkeit der Katalysatorsysteme bis zur unerwünschten Entwicklung von Wasserstoff. Forschende der Ruhr-Universität Bochum, des Fritz-Haber-Instituts und des Fraunhofer UMSICHT haben sich auf die Suche nach Lösungen gemacht und dabei den Einfluss von überkritischem Kohlendioxid auf die elektrochemische Reduktion von CO2 untersucht.

Im Zentrum ihrer Überlegungen stand sogenanntes überkritisches Kohlendioxid. Kurz: scCO2. Dabei handelt es sich um Kohlenstoffdioxid in einem fluiden Zustand – sowohl über seiner kritischen Temperatur als auch über seinem kritischen Druck. »Jüngste Berichte haben gezeigt, dass die Entwicklung von Wasserstoff bei der elektrochemischen Reaktion signifikant unterdrückt werden kann, wenn aprotische Lösungsmittel mit wohldefiniertem Wassergehalt als Elektrolyt verwendet werden«, erläutert Ulf-Peter Apfel, Professor an der Ruhr-Universität Bochum und Wissenschaftler am Fraunhofer UMSICHT. »Da eine Erhöhung des CO2-Drucks zu einer höheren CO2-Konzentration in aprotischen Lösungsmitteln führt, schien die Verwendung von überkritischem Kohlendioxid als Lösungsmittel eine elegante Möglichkeit.«

In der Folge führten die Forschenden eine Vergleichsstudie durch: Sie beleuchteten die Katalyse sowohl unter normalen als auch unter überkritischen Bedingungen und setzten dabei auf kohlenstoffgeträgerte Kupferkatalysatoren als Benchmark-Systeme. »Wir konnten u.a. zeigen, dass die Verwendung von überkritischem Kohlendioxid zu einer Unterdrückung der Entwicklung von Wasserstoff und zur Bildung von Ameisensäure führt«, so Ulf-Peter Apfel. »Um die vorteilhaften Eigenschaften von scCO2 für die elektrochemische Reduktion von Kohlendioxid zu nutzen, wird sich die zukünftige Forschung auf die Untersuchung weiterer Katalysatoren für den Einsatz mit scCO2-Gemischen, alternativen Co-Lösungsmitteln und die Verbesserung der Elektrodenstabilität konzentrieren.«

Quelle:

Fraunhofer UMSICHT

Anlagentechnik zum Carbonfaser-Recycling im Zentrum für Textilen Leichtbau am STFI, Foto: Dirk Hanus.
28.10.2020

Innovationen beim Recycling von Carbonfasern

  • Kohlenstoff mit mehreren Leben

Geht es um die Zukunft der motorisierten Mobilität, reden alle vom Antrieb: Wie viel E-Auto, wie viel Verbrenner verträgt die Umwelt und braucht der Mensch? Zugleich stellen neue Antriebe erhöhte Anforderungen nicht nur an den Motor, sondern auch an dessen Gehäuse und die Karosse: Für solch anspruchsvolle Anwendungen kommen häufig Carbonfasern zum Einsatz. Wie der Antrieb der Zukunft, sollten auch die Werkstoffe am Fahrzeug umweltfreundlich sein. Deshalb ist Recycling von Carbonfasern gefragt. Lösungen dafür haben Institute der Zuse-Gemeinschaft entwickelt.

  • Kohlenstoff mit mehreren Leben

Geht es um die Zukunft der motorisierten Mobilität, reden alle vom Antrieb: Wie viel E-Auto, wie viel Verbrenner verträgt die Umwelt und braucht der Mensch? Zugleich stellen neue Antriebe erhöhte Anforderungen nicht nur an den Motor, sondern auch an dessen Gehäuse und die Karosse: Für solch anspruchsvolle Anwendungen kommen häufig Carbonfasern zum Einsatz. Wie der Antrieb der Zukunft, sollten auch die Werkstoffe am Fahrzeug umweltfreundlich sein. Deshalb ist Recycling von Carbonfasern gefragt. Lösungen dafür haben Institute der Zuse-Gemeinschaft entwickelt.

Carbonfasern, auch als Kohlenstofffasern oder verkürzt als Kohlefasern bekannt, bestehen fast vollständig aus reinem Kohlenstoff. Sehr energieaufwändig wird er bei 1.300 Grad Celsius aus dem Kunststoff Polyacrylnitril gewonnen. Die Vorteile der Carbonfasern: Sie haben kaum Eigengewicht, sind enorm bruchfest und stabil. Solche Eigenschaften benötigt man z.B. am Batteriekasten von E-Mobilen oder in Strukturbauteilen der Karosserie. So arbeitet das Sächsische Textilforschungsinstitut e.V. (STFI) aktuell gemeinsam mit Industriepartnern daran, statisch-mechanische Stärken der Carbonfasern mit Eigenschaften zur Schwingungsdämpfung zu verknüpfen, um die Gehäuse von E-Motoren im Auto zu verbessern. Angedacht ist in dem vom Bundeswirtschaftsministerium geförderten Projekt die Entwicklung sogenannter Hybridvliesstoffe, die neben der Carbonfaser als Verstärkung weitere Faserstoffe enthalten. „Wir wollen, die Vorteile unterschiedlicher Faserstoffe verbinden und so ein optimal auf die Anforderungen abgestimmtes Produkt entwickeln“, erläutert Marcel Hofmann, STFI-Abteilungsleiter Textiler Leichtbau.

Damit würden die Chemnitzer Forschenden bisherige Vliesstoff-Lösungen ergänzen. Sie blicken auf eine 15-jährige Geschichte in der Arbeit mit recycelten Carbonfasern zurück. Der globale Jahresbedarf der hochwertigen Fasern hat sich im vergangenen Jahrzehnt fast vervierfacht, laut Angaben der Industrievereinigung AVK auf zuletzt rd. 142.000 t. „Die steigende Nachfrage hat das Recycling immer stärker in den Fokus gerückt“, betont Hofmann. Carbonfaserabfälle sind ihm zufolge für etwa ein Zehntel bis ein Fünftel des Preises von Primärfasern erhältlich, müssen aber noch aufbereitet werden. Dreh- und Angelpunkt für den Forschungserfolg der recycelten Fasern sind konkurrenzfähige Anwendungen. Die hat das STFI nicht nur am Auto, sondern auch im Sport-Freizeitsektor sowie in der Medizintechnik gefunden, so in Komponenten für Computertomographen. "Während Metalle oder Glasfasern als potenzielle Konkurrenzprodukte Schatten werfen, stört Carbon die Bilddarstellung nicht und kann seine Vorteile voll ausspielen“, erläutert Hofmann.

Papier-Knowhow nutzen
Können recycelte Carbonfasern nochmals den Produktkreislauf durchlaufen, verbessert das ihre CO2-Bilanz deutlich. Zugleich gilt: Je kürzer die Carbonfasern, desto unattraktiver sind sie für die weitere Verwertung. Vor diesem Hintergrund entwickelten das Forschungsinstitut Cetex und die Papiertechnische Stiftung (PTS), beide Mitglieder der Zuse-Gemeinschaft, im Rahmen eines Forschungsvorhabens ein neues Verfahren, das bislang wenig geeignet erscheinende Recycling-Carbonfasern ein zweites Produktleben gibt. „Während klassische Textilverfahren die ohnehin sehr spröden Recycling-Carbonfasern in Faserlängen von mind. 80 mm trocken verarbeiten, beschäftigten wir uns mit einem Verfahren aus der Papierindustrie, welches die Materialien nass verarbeitet. Am Ende des Prozesses erhielten wir, stark vereinfacht gesprochen, eine flächige Matte aus recycelten Carbonfasern und Kunststofffasern“, erläutert Cetex-Projektingenieur Johannes Tietze das Verfahren, mit dem auch 40 mm kurze Carbonfasern zu attraktiven Zwischenprodukten recycelt werden können. Das danach in einem Heißpressprozess entstandene Erzeugnis dient als Grundmaterial für hochbelastbare Strukturbauteile. Zusätzlich wurden die mechanischen Eigenschaften der Halbzeuge durch die Kombination mit endlosfaserverstärkten Tapes verbessert. Das Recyclingprodukt soll, so die Erwartung der Forschenden, glasfaserverstärkten Kunststoffen, Konkurrenz machen, z.B. bei Anwendungen im Schienen- und Fahrzeugbau. Die Ergebnisse fließen nun in weiterführende Forschung und Entwicklung im Kooperationsnetzwerk Ressourcetex ein, einem geförderten Verbund von 18 Partnern aus Industrie und Wissenschaft.

Erfolgreiche Umsetzung in der Autoindustrie
Industriereife Lösungen für die Verwertung von Carbonfaser-Produktionsabfällen werden im Thüringischen Institut für Textil- und Kunststoff-Forschung Rudolstadt (TITK) entwickelt. Mehrere dieser Entwicklungen wurden mit Partnern beim Unternehmen SGL Composites in Wackersdorf industriell umgesetzt. Die Aufbereitung der so genannten trockenen Abfälle, hauptsächlich aus Verschnittresten, erfolgt nach einem eigenen Verfahren. „Dabei führen wir die geöffneten Fasern verschiedenen Prozessen zur Vliesherstellung zu“, sagt die zuständige Abteilungsleiterin im TITK, Dr. Renate Lützkendorf. Neben den Entwicklungen für den Einsatz z.B. im BMW i3 in Dach oder Hintersitzschale wurden im TITK spezielle Vliesstoffe und Verfahren für die Herstellung von Sheet Molding Compounds (SMC) etabliert, das sind duroplastische Werkstoffe, die aus Reaktionsharzen und Verstärkungsfasern bestehen und zum Pressen von Faser-Kunststoff-Verbunden verwendet werden. Eingang fand dies z.B. in einem Bauteil für die C-Säule des 7er BMW. „In seinen Projekten setzt das TITK vor allem auf die Entwicklung leistungsfähigerer Prozesse und kombinierter Verfahren, um den Carbonfaser-Recyclingmaterialien auch von den Kosten her bessere Chancen in Leichtbauanwendungen einzuräumen“, betont Lützkendorf. So liege der Fokus gegenwärtig auf dem Einsatz von CF-Recyclingfasern in thermoplastischen Prozessen zur Platten- und Profilextrusion. „Ziel ist es, die Kombination von Kurz- und Endlosfaserverstärkung in einem einzigen, leistungsfähigen Prozess-Schritt zu realisieren.“

Quelle:

Deutsche Industrieforschungsgemeinschaft Konrad Zuse e.V.

Muster aus der Entwicklung des nanoporösen Hochtemperatur-Wärmedämmstoffs Muster aus der Entwicklung des nanoporösen Hochtemperatur-Wärmedämmstoffs (© ZAE Bayern).
12.08.2020

Konsortium entwickelt neue Generation der Wärmedämmung für Hochtemperaturöfen

In dem vom Bundeswirtschaftsministerium (BMWi) geförderten Verbundprojekt „AeroFurnace“ ist es dem Konsortium, bestehend aus dem Bayerischen Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) als Verbundkoordinator, dem Ofenbauer FCT Systeme und der SGL Carbon, gelungen, die Wärmedämmeigenschaften eines neuen Verbundwerkstoffs gegenüber kommerziell verfügbaren filzbasierten Kohlenstoff-Werkstoffen um bis zu 120 Prozent zu verbessern. Damit konnten die Projektpartner in eine neue Qualitätsstufe der Wärmedämmung bei industriellen Hochtemperaturanwendungen vorstoßen und den Weg für energieeffizientere Wärmedämmung ebnen.

Dr. Gudrun Reichenauer, Koordinatorin des Verbundprojekts und Leiterin der Arbeitsgruppe Nanomaterialien am ZAE Bayern: „In diesem Projekt ist es uns durch intensive Zusammenarbeit gelungen, neueste Erkenntnisse aus der Welt der Nanomaterialien für den Markt zugänglich zu machen und damit neue Maßstäbe im Bereich der Wärmedämmmaterialien zu setzen.“

In dem vom Bundeswirtschaftsministerium (BMWi) geförderten Verbundprojekt „AeroFurnace“ ist es dem Konsortium, bestehend aus dem Bayerischen Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) als Verbundkoordinator, dem Ofenbauer FCT Systeme und der SGL Carbon, gelungen, die Wärmedämmeigenschaften eines neuen Verbundwerkstoffs gegenüber kommerziell verfügbaren filzbasierten Kohlenstoff-Werkstoffen um bis zu 120 Prozent zu verbessern. Damit konnten die Projektpartner in eine neue Qualitätsstufe der Wärmedämmung bei industriellen Hochtemperaturanwendungen vorstoßen und den Weg für energieeffizientere Wärmedämmung ebnen.

Dr. Gudrun Reichenauer, Koordinatorin des Verbundprojekts und Leiterin der Arbeitsgruppe Nanomaterialien am ZAE Bayern: „In diesem Projekt ist es uns durch intensive Zusammenarbeit gelungen, neueste Erkenntnisse aus der Welt der Nanomaterialien für den Markt zugänglich zu machen und damit neue Maßstäbe im Bereich der Wärmedämmmaterialien zu setzen.“

Dr. Thomas Kirschbaum, Leiter des Projekts bei der SGL Carbon: „In Ofensimulationen beim Partner FCT konnten wir bereits nachweisen, was das neue Material kann: Je nach Temperaturprogramm können mit dem neuen Wärmedämmwerkstoff bis zu 40 Prozent der benötigten Prozessenergie eingespart werden. Das Potential des neuen Werkstoffs ist groß.“ Diese Vorhersage wird im Rahmen des noch laufenden BMWi-Projekts im zweiten Halbjahr 2020 in einem Demonstratorbauteil unter realen Bedingungen überprüft werden.

Dr. Jürgen Hennicke, Leiter des Projekts und der F&E-Abteilung bei FCT Systeme: „Als führender Hersteller von industriellen Vakuum- oder Schutzgas-Hochtemperaturöfen können wir mit der neuen Generation von Isoliermaterialien Öfen realisieren, die ein günstigeres Verhältnis von Nutzraum zu den Außenmaßen haben, und damit dem Kunden eine bessere Kosteneffizienz und Produktivität bieten.“

Aktuell konnte anhand von Labormustern in Form von Platten bereits gezeigt werden, dass sich die Herstellung des neuen Werkstoffs über technisch einfache Prozesse abbilden lässt und prinzipiell gut skalierbar ist. Bis zum serienreifen Produkt ist allerdings noch ein Stück Weg zu gehen.

Der drittgrößte Anteil der Endenergie in Deutschland wird für die Erzeugung von Wärme in industriellen Prozessen verbraucht (22,6 Prozent). In vielen Branchen, z. B. in der Stahl- und Keramikindustrie, laufen energieintensive Hochtemperaturprozesse oberhalb von 1000°C ab – diese allein benötigen knapp 50 Prozent der industriellen Prozesswärme. Geeignete Wärmedämmmaterialien können den Energiebedarf bei gleichbleibendem Nutzvolumen deutlich senken.

Quelle:

SGL CARBON SE

(c) Sabine Schmidt, das-design-plus.de
21.02.2019

Technische Textilien: In Aachen entwickeln Bauwirtschaft und Wissenschaft gemeinsam Innovationen

Aus Luft- und Raumfahrt, Automobilbau oder Windkraft sind Textilfasern bereits nicht mehr wegzudenken. Technische Textilien, zum Beispiel aus Kohlenstofffasern, sowie aus ihnen produzierte Halbzeuge werden auch das Bauwesen nachhaltig verändern. Die innovativen Werkstoffe und Bauteile bergen enormes Potenzial für die Branche. Dies zu heben, ist ein Ziel des Vereins AACHEN BUILDING EXPERTS. Hierfür bringt er alle relevanten Akteure zusammen.

Aus Luft- und Raumfahrt, Automobilbau oder Windkraft sind Textilfasern bereits nicht mehr wegzudenken. Technische Textilien, zum Beispiel aus Kohlenstofffasern, sowie aus ihnen produzierte Halbzeuge werden auch das Bauwesen nachhaltig verändern. Die innovativen Werkstoffe und Bauteile bergen enormes Potenzial für die Branche. Dies zu heben, ist ein Ziel des Vereins AACHEN BUILDING EXPERTS. Hierfür bringt er alle relevanten Akteure zusammen.

Ressourceneffizientes und nachhaltiges Bauen mit technischen Textilien
Textilbeton oder Gelege aus textilen Werkstoffen weisen entscheidende Vorteile gegenüber klassischen Baustoffen wie Stahl, Glas und Beton auf. Die textile Bewehrung im Betonbau ermöglichst aufgrund ihrer Korrosionsbeständigkeit vergleichsweise schlanke Betonbauteile mit geringem Eigengewicht, die dennoch sehr tragfähig und beständig sind. Die enorme Gewichtseinsparung senkt Transportkosten und ermöglicht es, höher zu bauen. Dies spart Grundfläche. Textilbeton benötigt darüber hinaus bis zu 80 Prozent weniger Beton. Daher schont der Baustoff Ressourcen, zum Beispiel den knapp werdenden Bausand. Besonders die starke Reduktion des Zementbedarfs ermöglicht 80 Prozent weniger Kohlendioxid-Emissionen. Die Zementherstellung der globalen Bauwirtschaft verursacht höhere CO2 -Emissionen als der weltweite Luftverkehr. Somit leistet Textilbeton einen wichtigen Beitrag zum ressourceneffizienten und nachhaltigen Bauen – der Zukunft der Bauwirtschaft.
Bei der Membranbauweise spielt die Leichtigkeit der Konstruktionen eine große Rolle. Hiermit lassen sich große Flächen überdachen. Gleichzeitig wird die textile Architektur höchsten ästhetischen Ansprüchen gerecht. Bekanntes Beispiel bildet das Gerry-Weber-Stadion mit seiner etwa 6.000 m2 umfassenden Dachkonstruktion.
Tragende Komponenten beim textilen Bauen sind textile Konstruktionen aus Hochleistungsfasern. Sie zeichnen sich durch extrem hohe Festigkeiten auch bei hohen Zugkräften aus - bei gleichzeitig geringem Gewicht. Meist werden die textilen Ausgangsmaterialien vor ihrer Verwendung zusätzlich beschichtet oder imprägniert. Diese Behandlungen ermöglichen spezifische Funktionalisierungen für den jeweiligen Zweck. Dies sorgt für eine große Anwendungsbreite. Teilweise sind textile Bauteile lichtdurchlässig, gleichzeitig schützen sie vor Wärme. Auch verbessern „Hightex“-Materialien akustische Eigenschaften von Räumen. Nicht zuletzt bieten textile Architekturen nahezu unbegrenzte Möglichkeiten der Form- und Farbgebung.

Aachener Innovationsnetzwerk fördert Wissenstransfer
„Die vielfältigen Möglichkeiten des Baustoffes Textil und das hohe Potenzial von technischen Fasern und Textilien sind in der Baubranche noch viel zu wenig bekannt“, so Goar T. Werner, Geschäftsführer des AACHEN BUILDING EXPERTS e. V. (ABE). Daher führt der ABE gezielt Experten aus Wissenschaft und Wirtschaft zusammen. Unterstützt wird er dabei unter anderem vom Institut für Textiltechnik und Lehrstuhl für Textilmaschinenbau (ITA) an der RWTH Aachen University. „Bauunternehmer und Architekten fragen sich, wo sie technische Textilien anwenden können und welche Vorteile diese Bauprodukte haben. Die Anbieter technischer Textilien wiederum überlegen: Wo können wir unsere innovativen Produkte unterbringen?“, weiß Prof. Dr.-Ing. Thomas Gries, Leiter des ITA. Zur Beantwortung eben dieser Fragen auf beiden Marktseiten und der Vernetzung dieser beiden „Welten“ will der ABE, das interdisziplinäre Kompetenznetzwerk für innovatives Bauen, beitragen. Dabei kooperiert der ABE ebenfalls eng mit den Instituten für Baustoffforschung (ibac) der RWTH Aachen University sowie dem TFI - Institut für Bodensysteme an der RWTH Aachen e.V. „Gemeinsam sorgen wir für den entsprechenden Wissenstransfer und bieten mit unserem `Innovationsnetzwerk Textiles Bauen´ ein Forum dafür, dass Innovationen eng am Bedarf der Bauwirtschaft entstehen“, erläutert Goar T. Werner.

Weitere Informationen:
Bauwirtschaft
Quelle:

AACHEN BUILDING EXPERTS e. V.

04.02.2019

EU-Produktpolitik: Auch Textilien im Fokus

  • BTE beteiligt sich an öffentlicher Konsultation

2015 verabschiedete die EU den Aktionsplan für die Kreislaufwirtschaft. Eine Maßnahme dieses Plans ist die Analyse des bestehenden Rahmens der EU-Produktpolitik. Die breite Palette von Produkten im EU Binnenmarkt unterliegt einer Vielzahl unterschiedlicher EU-Politiken, die sich in Bezug auf Anwendungsbereich, Art und Ansatz voneinander unterscheiden.

Diese Politiken umfassen verschiedene Formen von Rechtsvorschriften, Leitlinien sowie finanzielle und/oder Marktanreize. Sie verfolgen verschiedene politische Ziele, wie die Gewährleistung der Sicherheit von Menschen, die die Produkte nutzen oder verbrauchen, die Aufrechterhaltung eines fairen Wettbewerbs im EU-Binnenmarkt, Klima-, Umwelt- und Verbraucherschutz und die Förderung nachhaltigerer Produkte. Diese Ziele stehen im Allgemeinen in Einklang mit einer Kreislaufwirtschaft. Die politischen Instrumente wurden jedoch in ihrem jeweiligen spezifischen Kontext entwickelt, ohne dabei notwendigerweise den Übergang der EU zu einer kohlenstoffarmen Kreislaufwirtschaft zu berücksichtigen.

  • BTE beteiligt sich an öffentlicher Konsultation

2015 verabschiedete die EU den Aktionsplan für die Kreislaufwirtschaft. Eine Maßnahme dieses Plans ist die Analyse des bestehenden Rahmens der EU-Produktpolitik. Die breite Palette von Produkten im EU Binnenmarkt unterliegt einer Vielzahl unterschiedlicher EU-Politiken, die sich in Bezug auf Anwendungsbereich, Art und Ansatz voneinander unterscheiden.

Diese Politiken umfassen verschiedene Formen von Rechtsvorschriften, Leitlinien sowie finanzielle und/oder Marktanreize. Sie verfolgen verschiedene politische Ziele, wie die Gewährleistung der Sicherheit von Menschen, die die Produkte nutzen oder verbrauchen, die Aufrechterhaltung eines fairen Wettbewerbs im EU-Binnenmarkt, Klima-, Umwelt- und Verbraucherschutz und die Förderung nachhaltigerer Produkte. Diese Ziele stehen im Allgemeinen in Einklang mit einer Kreislaufwirtschaft. Die politischen Instrumente wurden jedoch in ihrem jeweiligen spezifischen Kontext entwickelt, ohne dabei notwendigerweise den Übergang der EU zu einer kohlenstoffarmen Kreislaufwirtschaft zu berücksichtigen.

Dies soll sich nach Auffassung der EU zukünftig ändern. Um Änderungen in diesem Bereich vorzunehmen, wurde von Ende November 2018 bis zum 24. Januar 2019 eine öffentliche Konsultation durchgeführt. Die Abfrage konzentrierte sich auf Produktkategorien mit nachweislich hohem Potential für die Kreislaufwirtschaft.

Im Fokus standen die Produktkategorien Elektro- und Elektronik-Geräte, Möbel, Textilien (Kleidung, Schuhwerk, Teppiche usw.) und Spielzeug. Der BTE hat über den HDE an der Konsultation teilgenommen und für den Bereich Textilien auf die derzeitigen, bestehenden Regelwerke (z.B. Textilkennzeichnungsverordnung, ProduktsicherheitsVO, REACH, EU-Umweltzeichen, Abfallrahmenrichtlinie) hingewiesen.

Der BTE erachtet die bestehenden Regelwerke als völlig ausreichend, da sie den o.g. Zielen bereits schon heute gerecht werden. Der BTE hat darauf hingewiesen, dass weitere, schärfere Vorschriften und Regelwerke unverhältnismäßig sind und zusätzliche Bürokratie nach sich ziehen würden. Mit hoher Wahrscheinlichkeit wäre auch mit zusätzlichen Kosten für die jeweiligen Branchen zu rechnen.

Die Kommission wird die Beiträge der Konsultation zur Ausarbeitung einer Arbeitsunterlage verwenden, in der analysiert wird, inwiefern die Instrumente der EU-Produktpolitik den Übergang zur Kreislaufwirtschaft fördern und welche möglichen Lücken oder Hindernisse der Erreichung dieses Ziels im Wege stehen.

 

Weitere Informationen:
BTE Kreislaufwirtschaft
Quelle:

BTE/BLE/VDB

Die Carbonfaser revolutionieren – RCCF eröffnet Technikum (c) TU Dresden
05.11.2018

Die Carbonfaser revolutionieren – RCCF eröffnet Technikum

  • Mit einem Festakt haben Dr. Eva-Maria Stange, Staatsministerin für Wissenschaft und Kunst des Freistaates Sachsen, Prof. Gerhard Rödel, Prorektor für Forschung der Technischen Universität Dresden, Prof. Hubert Jäger und Prof. Chokri Cherif am 02.11.2018 das Carbonfaser-Technikum des Research Center Carbon Fibers (RCCF) eröffnet.

Das RCCF, eine gemeinsame wissenschaftliche Einrichtung des Instituts für Leichtbau und Kunststofftechnik (ILK) und des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden, wurde gegründet, um die Carbonfasern vom Faserrohstoff bis zum fertigen Bauteil zu erforschen und neue Eigenschaften und Anwendungsmöglichkeiten zu entdecken.

  • Mit einem Festakt haben Dr. Eva-Maria Stange, Staatsministerin für Wissenschaft und Kunst des Freistaates Sachsen, Prof. Gerhard Rödel, Prorektor für Forschung der Technischen Universität Dresden, Prof. Hubert Jäger und Prof. Chokri Cherif am 02.11.2018 das Carbonfaser-Technikum des Research Center Carbon Fibers (RCCF) eröffnet.

Das RCCF, eine gemeinsame wissenschaftliche Einrichtung des Instituts für Leichtbau und Kunststofftechnik (ILK) und des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden, wurde gegründet, um die Carbonfasern vom Faserrohstoff bis zum fertigen Bauteil zu erforschen und neue Eigenschaften und Anwendungsmöglichkeiten zu entdecken.

„Sachsen verfügt in der Schlüsseltechnologie Werkstoff-, Material- und Nanowissenschaft über hervorragende Rahmenbedingungen und hoch motivierte Wissenschaftler an Hochschulen und Forschungseinrichtungen, die in dieser Spezialisierung weltweit ihresgleichen suchen“, erklärt dazu Staatsministerin Dr. Stange. „Beinahe alle Materialklassen von Metallen, Polymeren, Keramiken bis hin zu Verbund- und Naturwerkstoffen werden auf international hohem Niveau bearbeitet. Dabei greifen Grundlagen- und Angewandte Forschung in zahlreichen Feldern eng ineinander und bilden geschlossene Entwicklungsketten bis zu einem Transfer in die Wirtschaft – regional, national und international.“

Der Prorektor für Forschung der TU Dresden, Prof. Gerhard Rödel, ergänzt: „Mit dem Carbonfaser-Technikum ist im Research Center Carbon Fibers eine weltweit einzigartige Anlage entstanden, die völlig neue Möglichkeiten eröffnet. Es geht darum, Fasern mit einem möglichst hohen Individualisierungsgrad zu designen – je nach Bedarf und Einsatzbereich.“

Auf der derzeit installierten, einzigartigen Anlage erforschen Wissenschaftler des RCCF unter Reinraum-Bedingungen die Grundlagen für maßgeschneiderte Kohlenstofffasern und erschließen deren hohes Innovationspotential. Dabei greifen die Forscher auf einzelne Anlagenmodule zur Stabilisierung und Carbonisierung mit industrienahem Ofendesign und individuell einstellbaren Parameterkombinationen zurück. Durch den außerordentlichen Reinheitsgrad sind die Carbonfasern für die Anforderungen der Luft-/Raumfahrt- und der Automobilindustrie maßgeschneidert.

„Die Carbonfaser ist der Stahl des 21. Jahrhunderts“, führt Prof. Hubert Jäger, Sprecher des Instituts für Leichtbau und Kunststofftechnik (ILK), aus. „Ganze Branchen erfinden sich derzeit durch diesen Werkstoff neu und erreichen mit ihren Produkten nie gedachte Dimensionen. Das Problem ist jedoch die Verfügbarkeit. Wir werden mit dem Carbonfaser-Technikum einen Beitrag dazu leisten, dass aus Sachsen heraus dieser Werkstoff nicht nur leichter verfügbar, sondern auch besser und maßgeschneidert einsetzbar wird für Anwendungen in der Luft- und Raumfahrt, Fahrzeugbau, Architektur und Hochleistungselektronik.“

„Mit der Inbetriebnahme des Carbonfaser-Technikums unter Reinraumbedingungen am RCCF gelingt es uns, die Prozesskette zur Fertigung maßgeschneiderter Kohlenstofffasern signifikant zu erweitern. Die notwendigen Maschinentechniken des ITM einschließlich der bereits gewonnenen Erfahrungen bei Prozessoptimierungen zur Herstellung von Precursorfasern, dem Ausgangsmaterial für die neuen Stabilisierungs- und Carbonisierungslinien, stehen in künftigen Forschungsvorhaben den Wissenschaftlern des RCCF zur Verfügung. Somit geben wir am exzellenten Forschungsstandort Dresden die Initialzündung für die weiterführende Grundlagen- und anwendungsorientierte Forschung auf dem Gebiet der Kohlenstofffasern“, ergänzt Prof. Chokri Cherif, Direktor des ITM und Inhaber der Professur für Textiltechnik.

Das Carbonfaser-Technikum umfasst einen mehr als 300 m² großen Reinraum der Klasse ISO 8. Neben den beiden auf etwa 30 Metern aufgestellten Stabilisierungs- und Carbonisierungslinien sind weitere Flächen für künftige Erweiterungen der Gesamtanlage vorgesehen, zum Beispiel ein weiterer Hochtemperaturofen, in dem Carbonfasern bis zu Temperaturen über 2000°C graphitierbar sind oder unikale Beschichtungsanlagen zur Oberflächenaktivierung.

Die RCCF-Wissenschaftler ergründen die Wechselwirkungen zwischen Prozessparametern, Faserstruktur und weiteren mechanischen, thermischen und elektrischen Eigenschaften bei der Herstellung von Carbonfasern, um die Fähigkeiten des Hightech-Werkstoffes weiter zu steigern. Zusätzlich nehmen die Forscher die Entwicklung multifunktionaler Fasern mit neuartigen Eigenschaftsprofilen wie hohe Leitfähigkeit bei hoher Festigkeit oder ausgeprägter Verformbarkeit sowie die Nutzung erneuerbarer Ausgangsstoffe in den Fokus ihrer Arbeiten.

Ein weiterer Schwerpunkt der RCCF-Aktivitäten ist die tiefgreifende studentische Ausbildung im Bereich der Carbonfaser-Herstellung. Den Studierenden werden dabei fundierte Kenntnisse in Herstellung und Weiterverarbeitung von Carbonfasern vermittelt, damit sie in diesem Bereich der Zukunftstechnologien dem sächsischen und deutschen Arbeitsmarkt zur Verfügung stehen. Etwa 15 Studierende werden pro Jahr in Forschungsbereiche wie die Prozessführung, -modellierung und -überwachung sowie die Entwicklung, Fertigung und Charakterisierung neuer Carbonfasern und Verbundwerkstoffe einbezogen.

Weitere Informationen:
TU Dresden Carbonfaser
Quelle:

Technische Universität Dresden  - Fakultät Maschinenwesen   
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

 

Erstes thermoplastisches Polyurethan auf Basis der CO2-Technologie (c) Covestro
11.10.2018

Erstes thermoplastisches Polyurethan auf Basis der CO2-Technologie

  • Neue Polyole verringern Kohlenstoff-Fußabdruck
  • Weitere TPU-Entwicklungen für die Textilanwendung und Oberflächengestaltung

Unter dem Namen cardyon™ entwickelt und vermarktet Covestro neue Polyethercarbonatpolyole, die mit Hilfe des Treibhausgases Kohlendioxid (CO2) hergestellt werden. Mit Desmopan® 37385A bietet das Unternehmen nun den ersten Vertreter einer neuen Reihe von thermoplastischen Polyurethanen (TPU) an, die Polyethercarbonatpolyole auf Basis der CO2-Technologie enthalten.

Verglichen mit konventionellen TPU-Materialien hinterlassen die neuen TPU-Werkstoffe einen geringeren ökologischen Fußabdruck und helfen, den Kohlenstoffkreislauf zu schließen. Außerdem schonen sie die fossilen Rohstoffquellen und treten im Gegensatz zu vielen biobasierten Materialien nicht in Konkurrenz zur Produktion von Nahrungsmitteln.

  • Neue Polyole verringern Kohlenstoff-Fußabdruck
  • Weitere TPU-Entwicklungen für die Textilanwendung und Oberflächengestaltung

Unter dem Namen cardyon™ entwickelt und vermarktet Covestro neue Polyethercarbonatpolyole, die mit Hilfe des Treibhausgases Kohlendioxid (CO2) hergestellt werden. Mit Desmopan® 37385A bietet das Unternehmen nun den ersten Vertreter einer neuen Reihe von thermoplastischen Polyurethanen (TPU) an, die Polyethercarbonatpolyole auf Basis der CO2-Technologie enthalten.

Verglichen mit konventionellen TPU-Materialien hinterlassen die neuen TPU-Werkstoffe einen geringeren ökologischen Fußabdruck und helfen, den Kohlenstoffkreislauf zu schließen. Außerdem schonen sie die fossilen Rohstoffquellen und treten im Gegensatz zu vielen biobasierten Materialien nicht in Konkurrenz zur Produktion von Nahrungsmitteln.

„Unsere Kunden können mit dem neuen TPU den ökologischen Fußabdruck ihrer Erzeugnisse verringern und dadurch gegenüber ihren Wettbewerbern eine Vorreiterrolle in puncto Nachhaltigkeit einnehmen“, erklärt Georg Fuchte, TPU-Experte bei Covestro. „Das gilt besonders für Unternehmen der Konsumgüterindustrie, die häufig Produkte mit nur kurzer Lebensdauer herstellen.“

Exzellente mechanische Eigenschaften

Desmopan® 37385A hat eine Härte von 85 Shore A. Seine mechanischen Eigenschaften liegen mindestens auf dem Niveau von konventionellen TPU-Typen ähnlicher Härte, übertreffen diese sogar zum Teil. Beispielsweise hat es eine Zugfestigkeit von 36 Megapascal. Die Reißdehnung erreicht 660 Prozent (DIN 53504). Der Kunststoff ist für die Extrusion ausgelegt, eignet sich aber auch für das Spritzgießen. „Das Einsatzspektrum deckt typische Anwendungen von konventionellen TPU-Typen mit vergleichbarer Härte ab und reicht von Sohlen und Komponenten des Oberschuhs über Sportbekleidung, Griffe und Knäufe bis hin zu Verpackungen für empfindliche Elektronik“, so Fuchte.

Verschiedene Produktvarianten

Covestro plant, die neue TPU-Reihe um Varianten unterschiedlicher Härte zu erweitern. In der Entwicklung weit vorangeschritten ist zum Beispiel ein Produkt mit einer Härte von 95 Shore A, dessen Schmelze bei der Verarbeitung schnell aushärtet. „Wir zielen damit auf spritzgegossene Anwendungen, in denen es besonders auf eine wirtschaftliche Fertigung in kurzen Zykluszeiten ankommt“, erläutert Fuchte.

Covestro kooperiert eng mit Unternehmen und Forschungseinrichtungen, um die CO2-Technologie auch als Syntheseplattform für andere großchemisch eingesetzte Rohstoffe zu nutzen. Zum Beispiel wird an neuen CO2-basierten Polyolen für Polyurethan-Hartschäume gearbeitet, die etwa in der Wärmedämmung von Gebäuden, im Automobil und in Sportartikeln Verwendung finden könnten. Im Werk Dormagen betreibt Covestro bereits eine Produktionsanlage, auf der CO2-basierte Polyole für Polyurethan-Weichschäume produziert werden. Letztere kommen in der kommerziellen Fertigung von Polstermöbeln und Matratzen zum Einsatz.

Weitere TPU-Highlights auf der Fakuma

Garn: Covestro zeigt auch innovative TPU-Entwicklungen auf petrochemischer Basis. Dazu gehören gleichförmige und glänzende Fasern aus TPU und Polyamid für gestrickte Gewebe. Die Fasern haben eine einzigartige Haptik und kommen vor allem in Sportschuhen zum Einsatz, wo die Verwendung gestrickten Obermaterials groß in Mode ist. Dabei sind viele dekorative Varianten möglich. Die Gewebe lassen sich wirtschaftlich in einem einzigen Strickprozess herstellen, auch mittels automatisierter Produktion.

Oberflächenstruktur: Seit Jahrzehnten ist die herausragende Abbildegenauigkeit von TPU-Produkten der Desmopan® Serie bekannt. Durch Einsatz verschiedener Technologien können einzigartige Oberflächenstrukturen erzeugt werden. Zurzeit arbeitet Covestro mit dem Partner J. & F. Krüth in Solingen zusammen, um mit Hilfe der innovativen und volldigitalen 3D-Laser-Gravur nahezu unbegrenzte Möglichkeiten für die Oberflächengestaltung zu erschließen.

Weitere Informationen:
Covestro polyurethane
Quelle:

Covestro AG Communications