Textination Newsline

Zurücksetzen
188 Ergebnisse
Foto: Udo Jandrey
22.03.2024

Neues Modell für nachhaltige Strukturen aus textilbewehrtem Beton

Durch die Verstärkung von Beton mit Textilgeweben anstelle von Stahl ist es möglich, weniger Material zu verwenden und schlanke, leichte Strukturen mit deutlich geringeren Umweltbelastungen zu schaffen. Die Technologie zur Verwendung von Carbonfasertextilien existiert bereits, aber es war jedoch eine Herausforderung, eine Grundlage für zuverlässige Berechnungen für komplexe und gewölbte Strukturen zu schaffen. Forscher der Chalmers University of Technology in Schweden stellen nun eine Methode vor, die es erleichtert, Berechnungen zu skalieren und so den Bau von umweltfreundlicheren Brücken, Tunneln und Gebäuden zu ermöglichen.

Durch die Verstärkung von Beton mit Textilgeweben anstelle von Stahl ist es möglich, weniger Material zu verwenden und schlanke, leichte Strukturen mit deutlich geringeren Umweltbelastungen zu schaffen. Die Technologie zur Verwendung von Carbonfasertextilien existiert bereits, aber es war jedoch eine Herausforderung, eine Grundlage für zuverlässige Berechnungen für komplexe und gewölbte Strukturen zu schaffen. Forscher der Chalmers University of Technology in Schweden stellen nun eine Methode vor, die es erleichtert, Berechnungen zu skalieren und so den Bau von umweltfreundlicheren Brücken, Tunneln und Gebäuden zu ermöglichen.

„Ein Großteil des Betons, den wir heute verwenden, hat die Funktion einer Schutzschicht, die verhindert, dass die Stahlbewehrung korrodiert. Wenn wir stattdessen Textilbewehrung einsetzen, können wir den Zementverbrauch senken und so weniger Beton verbauen - und damit die Auswirkungen auf das Klima verringern“, sagt Karin Lundgren, Professorin für Betonkonstruktionen an der Fakultät für Architektur und Bauingenieurwesen in Chalmers.

Zement ist ein Bindemittel für Beton und seine Herstellung aus Kalkstein hat große Auswirkungen auf das Klima. Eines der Probleme besteht darin, dass bei der Herstellung große Mengen an Kohlendioxid freigesetzt werden, die im Kalkstein gebunden sind. Jedes Jahr werden weltweit etwa 4,5 Milliarden Tonnen Zement hergestellt, und die Zementindustrie ist für rund 8 Prozent der weltweiten Kohlendioxidemissionen verantwortlich. Es wird daher intensiv an alternativen Methoden und Materialien für Betonkonstruktionen geforscht.

Geringerer Kohlenstoff-Fußabdruck durch dünnere Konstruktionen und alternative Bindemittel
Durch die Verwendung alternativer Bindemittel anstelle von Zement, z. B. Ton oder Vulkanasche, lassen sich die Kohlendioxidemissionen weiter verringern. Bislang ist jedoch unklar, wie gut solche neuen Bindemittel die Stahlbewehrung langfristig schützen können.

„Man könnte das Problem des Korrosionsschutzes umgehen, indem man anstelle von Stahl Kohlenstofffasern als Verstärkungsmaterial verwendet, da diese nicht auf dieselbe Weise geschützt werden müssen. Außerdem kann man noch mehr erreichen, indem man dünne Schalenstrukturen mit geringerer Klimabelastung optimiert“, so Karin Lundgren.

In einer kürzlich in der Fachzeitschrift Construction and Building Materials veröffentlichten Studie beschreiben Karin Lundgren und ihre Kollegen eine neue Modellmethode, die sich bei Analysen zur Beschreibung der Wechselwirkung zwischen Textilbewehrung und Beton als zuverlässig erwiesen hat.

„Wir haben eine Methode entwickelt, die die Berechnung komplexer Strukturen erleichtert und die Notwendigkeit von Tragfähigkeitsprüfungen verringert“, erläutert Karin Lundgren.

Ein Bereich, in dem die textile Bewehrungstechnologie die Umweltauswirkungen erheblich reduzieren könnte, ist die Konstruktion von Geschossdecken. Da der größte Teil der Klimabelastung eines Gebäudes während der Produktion von den Deckenkonstruktionen ausgeht, ist dies eine effektive Möglichkeit, nachhaltiger zu bauen. Eine frühere Forschungsstudie der Universität Cambridge zeigt, dass Textilverstärkungen die Kohlendioxidemissionen im Vergleich zu herkömmlichen Massivdecken um bis zu 65 Prozent reduzieren können.

Ein Methode zur Vereinfachung der Kalkulation
Ein textiles Bewehrungsnetz besteht aus Garnen, wobei jedes Garn aus Tausenden von dünnen Filamenten (langen Endlosfasern) besteht. Die Bewehrungsmatte wird in Beton gegossen, und wenn der textilbewehrte Beton belastet wird, gleiten die Filamente sowohl gegen den Beton als auch gegeneinander im Inneren des Garns. Ein Textilgarn in Beton verhält sich nicht wie eine Einheit, was für das Verständnis der Tragfähigkeit des Verbundmaterials wichtig ist. Die von den Chalmers-Forschern entwickelte Modellierungstechnik beschreibt diese Effekte.

„Man könnte es so beschreiben, dass das Garn aus einem inneren und einem äußeren Kern besteht, die bei Belastung des Betons in unterschiedlichem Maße beeinflusst werden. Wir haben eine Test- und Berechnungsmethode entwickelt, die diese Wechselwirkung beschreibt. In Experimenten konnten wir zeigen, dass unsere Berechnungsmethode auch für komplexe Strukturen zuverlässig genug ist“, sagt Karin Lundgren.

Gemeinsam mit Kollegen wird die Arbeit nun fortgesetzt, um Optimierungsmethoden für größere Strukturen zu entwickeln.

„Angesichts der Tatsache, dass das Umweltprogramm der Vereinten Nationen (UNEP) davon ausgeht, dass sich die Gesamtbodenfläche in der Welt in den nächsten 40 Jahren aufgrund des zunehmenden Wohlstands und des Bevölkerungswachstums verdoppeln wird, müssen wir alles tun, um so ressourceneffizient wie möglich zu bauen, um der Herausforderung des Klimawandels zu begegnen“, sagt Karin Lundgren.

Quelle:

Chalmers | Mia Halleröd Palmgren

Smart glove teaches new physical skills Bild: Alex Shipps/MIT CSAIL
18.03.2024

Intelligenter Handschuh trainiert neue körperliche Fähigkeiten

Der anpassungsfähige intelligente Handschuh der Forscher am MIT CSAIL (Computer Science and Artificial Intelligence Laboratory) kann dem Benutzer taktile Rückmeldungen geben, um ihm neue Techniken beizubringen, Roboter mit präziserer Handhabung zu steuern und Chirurgen und Piloten zu schulen.

Wahrscheinlich kennen Sie jemanden, der eher visuell oder auditiv lernt, andere nehmen Wissen über eine andere Art und Weise auf: durch Berührung. Die Fähigkeit, taktile Interaktionen zu verstehen, ist besonders wichtig für Aufgaben wie das Erlernen filigraner Operationen und das Spielen von Musikinstrumenten, aber im Gegensatz zu Video und Audio ist es schwierig, Berührungen aufzuzeichnen und zu übertragen.

Der anpassungsfähige intelligente Handschuh der Forscher am MIT CSAIL (Computer Science and Artificial Intelligence Laboratory) kann dem Benutzer taktile Rückmeldungen geben, um ihm neue Techniken beizubringen, Roboter mit präziserer Handhabung zu steuern und Chirurgen und Piloten zu schulen.

Wahrscheinlich kennen Sie jemanden, der eher visuell oder auditiv lernt, andere nehmen Wissen über eine andere Art und Weise auf: durch Berührung. Die Fähigkeit, taktile Interaktionen zu verstehen, ist besonders wichtig für Aufgaben wie das Erlernen filigraner Operationen und das Spielen von Musikinstrumenten, aber im Gegensatz zu Video und Audio ist es schwierig, Berührungen aufzuzeichnen und zu übertragen.

Um diese Herausforderung zu meistern, haben Forscher des Computer Science and Artificial Intelligence Laboratory (CSAIL) des MIT und anderer Institute einen bestickten intelligenten Handschuh entwickelt, der berührungsbasierte Anweisungen erfassen, reproduzieren und weitergeben kann. Ergänzend entwickelte das Team einen einfachen maschinellen Lernassistenten, der sich daran anpasst, wie verschiedene Benutzer auf taktile Rückmeldungen reagieren, und so ihre Erfahrungen optimiert. Das neue System könnte möglicherweise dazu beitragen, Menschen körperliche Fähigkeiten beizubringen, die Teleoperation von Robotern zu verbessern und das Training in der virtuellen Realität zu unterstützen.

Werde ich Klavier spielen können?
Zur Herstellung ihres intelligenten Handschuhs verwendeten die Forscher eine digitale Stickmaschine, um taktile Sensoren und haptische Aktoren (ein Gerät, das berührungsbasiertes Feedback liefert) nahtlos in Textilien einzubetten. Diese Technologie ist bereits in Smartphones vorhanden, wo haptische Reaktionen durch Antippen des Touchscreens ausgelöst werden. Wenn Sie beispielsweise auf eine iPhone-App tippen, spüren Sie eine leichte Vibration, die von diesem bestimmten Teil des Bildschirms ausgeht. Auf die gleiche Weise sendet das neue adaptive Wearable Feedback an verschiedene Teile Ihrer Hand, um die optimalen Bewegungen für die Ausführung verschiedener Fähigkeiten anzuzeigen.

Mit dem intelligenten Handschuh könnten Nutzer beispielsweise das Klavierspielen erlernen. In einer Demonstration wurde ein Experte damit beauftragt, eine einfache Melodie über eine Reihe von Tasten aufzunehmen und dabei den intelligenten Handschuh zu verwenden, um die Sequenz zu erfassen, mit der er seine Finger auf die Tastatur drückt. Anschließend wandelte ein maschinell lernender Mechanismus diese Sequenz in ein haptisches Feedback um, das dann in die Handschuhe der Studenten eingespeist wurde, damit diese den Anweisungen folgen konnten. Wenn die Hände über demselben Abschnitt schwebten, vibrierten die Aktuatoren an den Fingern entsprechend den darunter liegenden Tasten. Die Software optimiert diese Anweisungen für jeden Benutzer und berücksichtigt dabei die subjektive Ausprägung von Berührungsinteraktionen.

"Menschen führen eine Vielzahl von Aufgaben aus, indem sie ständig mit der Welt um sie herum interagieren", sagt Yiyue Luo MS '20, Hauptautorin der Studie, Doktorandin am MIT Department of Electrical Engineering and Computer Science (EECS) und CSAIL-Mitglied. "Normalerweise teilen wir diese physischen Interaktionen nicht mit anderen. Stattdessen lernen wir oft, indem wir ihre Bewegungen beobachten, wie beim Klavierspielen oder Tanzen.

"Menschen führen eine Vielzahl von Aufgaben aus, indem sie ständig mit der Welt um sie herum interagieren", sagt Yiyue Luo MS '20, Hauptautorin der Studie, Doktorandin am MIT Department of Electrical Engineering and Computer Science (EECS) und CSAIL-Mitglied. "Normalerweise teilen wir diese physischen Interaktionen nicht mit anderen. Stattdessen lernen wir oft, indem wir ihre Bewegungen beobachten, wie beim Klavierspielen oder Tanzen.

"Die größte Herausforderung bei der Vermittlung von taktilen Interaktionen besteht darin, dass jeder Mensch haptisches Feedback anders wahrnimmt", fügt Luo hinzu. "Dieses Hindernis hat uns dazu inspiriert, einen intelligenten Agenten zu entwickeln, der lernt, eine adaptive Haptik für die Handschuhe des Einzelnen zu erzeugen, und ihnen so einen praxisnahen Ansatz zum Erlernen der optimalen Bewegung vermittelt."^

Das tragbare System wird mit Hilfe eines digitalen Herstellungsverfahrens an die Spezifikationen der Hand des Benutzers angepasst. Ein Computer erstellt einen Ausschnitt auf der Grundlage der individuellen Handmaße, dann näht eine Stickmaschine die Sensoren und Haptik ein. Innerhalb von 10 Minuten ist das weiche, stoffbasierte Wearable fertig zum Tragen. Das adaptive maschinelle Lernmodell, das zunächst anhand der haptischen Reaktionen von 12 Benutzern trainiert wurde, benötigt nur 15 Sekunden an neuen Benutzerdaten, um das Feedback zu personalisieren.

In zwei weiteren Experimenten wurden Nutzern, die die Handschuhe trugen, beim Spielen von Laptop-Spielen taktile Anweisungen mit zeitabhängigem Feedback gegeben. In einem Rhythmusspiel mussten die Spieler lernen, einem schmalen, gewundenen Pfad zu folgen, um in einen Zielbereich zu gelangen, und in einem Rennspiel mussten die Fahrer Münzen sammeln und das Gleichgewicht ihres Fahrzeugs auf dem Weg zur Ziellinie halten. Das Team von Luo fand heraus, dass die Teilnehmer mit optimierter Haptik die höchste Punktzahl erreichten, im Gegensatz zu Spielern ohne und mit nicht optimierter Haptik.

"Diese Arbeit ist der erste Schritt zum Aufbau personalisierter KI-Assistenten, die kontinuierlich Daten über den Benutzer und die Umgebung erfassen", sagt der Hauptautor Wojciech Matusik, MIT-Professor für Elektrotechnik und Informatik sowie Leiter der Computational Design and Fabrication Group im CSAIL. "Diese Assistenten unterstützen sie dann bei der Ausführung komplexer Aufgaben, beim Erlernen neuer Fähigkeiten und bei der Förderung verbesserten Nutzerverhaltens."

Lebensechte Erfahrung in elektronischen Umgebungen
Bei der Fernsteuerung von Robotern fanden die Forscher heraus, dass ihre Handschuhe Kraftempfindungen auf Roboterarme übertragen können, was ihnen hilft, feinere Greifaufgaben zu erledigen. "Es ist so, als würde man versuchen, einem Roboter beizubringen, sich wie ein Mensch zu verhalten", sagt Luo. In einem Fall setzte das MIT-Team menschliche Teleoperatoren ein, um einem Roboter beizubringen, wie er verschiedene Brotsorten festhalten kann, ohne sie zu deformieren. Indem sie dem Menschen optimales Greifen beibringen, kann er die Robotersysteme in Umgebungen wie der Fertigung präzise steuern, wo diese Maschinen sicherer und effektiver mit ihren Bedienern zusammenarbeiten können."

"Die Technologie des bestickten intelligenten Handschuhs ist eine wichtige Innovation für Roboter", so Daniela Rus, Andrew (1956) und Erna Viterbi Professor für Elektrotechnik und Informatik am MIT, Direktorin des CSAIL und Autorin der Studie. "Mit seiner Fähigkeit, taktile Interaktionen mit hoher Auflösung zu erfassen, ähnlich wie die menschliche Haut, ermöglicht dieser Sensor Robotern, die Welt durch Berührung wahrzunehmen. Die nahtlose Integration von taktilen Sensoren in Textilien überbrückt die Kluft zwischen physischen Handlungen und digitalem Feedback und bietet ein enormes Potenzial für die reaktionsschnelle Steuerung von Robotern und immersives Virtual-Reality-Training."

Auch in der virtuellen Realität könnte die Schnittstelle für ein intensiveres Erlebnis sorgen. Das Tragen von intelligenten Handschuhen würde digitale Umgebungen in Videospielen mit taktilen Eindrücken versehen, so dass die Spieler ihre Umgebung ertasten könnten, um Hindernissen auszuweichen. Darüber hinaus würde die Schnittstelle in virtuellen Trainingskursen für Chirurgen, Feuerwehrleute und Piloten, bei denen es auf Präzision ankommt, eine persönlichere und berührungsbasierte Erfahrung ermöglichen.

Während diese Wearables den Nutzern eine praktischere Erfahrung bieten könnten, glauben Luo und ihre Gruppe, dass sie ihre Wearable-Technologie über die Finger hinaus erweitern könnten. Mit einer stärkeren haptischen Rückmeldung könnten die Schnittstellen Füße, Hüften und andere Körperteile führen, die weniger empfindlich sind als Hände.

Luo betonte auch, dass die Technologie ihres Teams mit einem komplexeren Agenten mit künstlicher Intelligenz auch bei komplexeren Aufgaben wie der Verarbeitung von Ton oder dem Steuern eines Flugzeugs helfen könnte. Derzeit kann die Schnittstelle nur bei einfachen Bewegungen wie dem Drücken einer Taste oder dem Ergreifen eines Objekts helfen. In Zukunft könnte das MIT-System mehr Nutzerdaten einbeziehen und besser angepasste und eng anliegende Wearables herstellen, um die Auswirkungen der Handbewegungen auf die haptischen Wahrnehmungen noch besser zu berücksichtigen.

Luo, Matusik und Rus erstellten die Studie zusammen mit dem Direktor der EECS Microsystems Technology Laboratories und Professor Tomás Palacios, den CSAIL-Mitgliedern Chao Liu, Young Joong Lee, Joseph DelPreto, Michael Foshey und Professor und Studienleiter Antonio Torralba, Kiu Wu von LightSpeed Studios und Yunzhu Li von der University of Illinois in Urbana-Champaign.

Die Arbeit wurde teilweise durch ein MIT Schwarzman College of Computing Fellowship über Google und ein GIST-MIT Research Collaboration Grant unterstützt, mit zusätzlicher Hilfe von Wistron, Toyota Research Institute und Ericsson.

Quelle:

Alex Shipps, MIT CSAIL

Empa-Forscher Simon Annaheim arbeitet an einer Matratze für Neugeborene. Bild: Empa
11.03.2024

Medizin-Textilien und Sensoren: Smarter Schutz für zarte Haut

Hautverletzungen durch anhaltenden Druck entstehen häufig bei Menschen, die ihre Position nicht selbstständig verändern können – etwa erkrankte Neugeborene im Spital oder ältere Menschen. Empa-Forschende bringen jetzt dank erfolgreicher Partnerschaften mit Industrie und Forschung zwei smarte Lösungen für das Wundliegen auf den Weg.

Lastet längere Zeit zu viel Druck auf unserer Haut, nimmt sie Schaden. Zu den Bevölkerungsgruppen, die einem hohen Risiko für derartige Druckverletzungen ausgesetzt sind, gehören beispielsweise Menschen im Rollstuhl, Neugeborene auf der Intensivstation oder Betagte. Die Folgen sind Wunden, Infektionen und Schmerzen.

Hautverletzungen durch anhaltenden Druck entstehen häufig bei Menschen, die ihre Position nicht selbstständig verändern können – etwa erkrankte Neugeborene im Spital oder ältere Menschen. Empa-Forschende bringen jetzt dank erfolgreicher Partnerschaften mit Industrie und Forschung zwei smarte Lösungen für das Wundliegen auf den Weg.

Lastet längere Zeit zu viel Druck auf unserer Haut, nimmt sie Schaden. Zu den Bevölkerungsgruppen, die einem hohen Risiko für derartige Druckverletzungen ausgesetzt sind, gehören beispielsweise Menschen im Rollstuhl, Neugeborene auf der Intensivstation oder Betagte. Die Folgen sind Wunden, Infektionen und Schmerzen.

Die Behandlung ist aufwändig und teuer: Jährlich entstehen Gesundheitskosten von rund 300 Millionen Schweizer Franken. "Darüber hinaus können bestehende Erkrankungen durch derartige Druckverletzungen verschlimmert werden", sagt Empa-Forscher Simon Annaheim vom "Biomimetic Membranes and Textiles"-Labor in St. Gallen. Nachhaltiger wäre es, so Annaheim, den Gewebeschäden vorzubeugen, um sie gar nicht erst entstehen zu lassen. Zwei aktuelle Forschungsprojekte unter Beteiligung der Empa bringen nun entsprechende Lösungen voran: Entwickelt wird hierbei eine Druck-ausgleichende Matratze für Neugeborene auf der Intensivstation und ein textiles Sensorsystem für querschnittsgelähmte Personen und bettlägerige Menschen.

Optimal gebettet am Start des Lebens
Dabei sind die Ansprüche der Haut je nach Alter völlig unterschiedlich: Bei Erwachsenen stehen die Reibung der Haut auf der Liegefläche, physikalische Scherkräfte im Gewebe und eine fehlende Atmungsaktivität von Textilien als Risikofaktoren im Vordergrund. Die Haut von Neugeborenen, die intensivmedizinisch behandelt werden, ist dagegen per se äusserst empfindlich, jeder Flüssigkeits- und Wärmeverlust über die Haut kann zum Problem werden. "Während diese besonders verletzlichen Babys gesundgepflegt werden, sollte die Liegesituation keine zusätzlichen Komplikationen hervorrufen", so Empa-Forscher Annaheim. Dass herkömmliche Matratzen die Lösung für Neugeborene mit ganz unterschiedlichem Gewicht und verschiedenen Erkrankungen sein können, glaubt er nicht. Das Team um Annaheim sucht daher mit Forschenden der ETH Zürich, der Zürcher Hochschule für Angewandte Wissenschaften (ZHAW) und des Universitäts-Kinderspital Zürich nach einer optimalen Liegefläche für die zarte Kinderhaut. Diese Matratze müsste sich individuell an den Körper anpassen können, um Kindern bei einem schwierigen Start ins Leben helfen zu können.

Hierzu ermittelten die Forschenden zunächst die Druckverhältnisse an den verschiedenen Körperregionen von Neugeborenen. "Unsere Drucksensoren haben gezeigt, dass Kopf, Schultern und untere Wirbelsäule die Zonen mit dem grössten Risiko für Druckstellen sind", sagt Annaheim. Diese Ergebnisse flossen in die Entwicklung einer luftgefüllten Matratze der besonderen Art ein: Ihre drei Kammern können mit Hilfe von Drucksensoren und einem Mikroprozessor über eine elektronische Pumpe präzise so befüllt werden, dass der Druck an den jeweiligen Stellen minimiert wird. Eine an der Empa entwickeltes Infrarot-Laser-Verfahren erlaubte es dabei die Matratze aus einer flexiblen, mehrschichtigen und hautschonenden Polymermembran ohne störende Kanten zu erzeugen.

Nach einem mehrstufigen Entwicklungsprozess im Labor durften erste kleine Patientinnen und Patienten auf dem Prototyp der Matratze liegen. Der Effekt machte sich sofort bemerkbar, als die Forschenden die Matratze je nach den individuellen Bedürfnissen der Babys unterschiedlich stark mit Luft füllten: Gegenüber einer herkömmlichen Schaumstoffmatratze reduzierte der Prototyp den Druck auf die gefährdeten Körperstellen um bis zu 40 Prozent.

Nach dieser erfolgreichen Pilotstudie wird der Prototyp in den Empa-Labors nun weiter optimiert. Demnächst starten Simon Annaheim und Doktorand Tino Jucker eine grösser angelegte Studie mit der neuen Matratze mit der Abteilung für Intensivmedizin & Neonatologie am Kinderspital Zürich.

Intelligente Sensoren beugen vor
In einem weiteren Projekt arbeiten Empa-Forschende daran, den sogenannten Dekubitus-Gewebeschäden bei Erwachsenen vorzubeugen. Hierbei werden die Risikofaktoren Druckbelastung und Durchblutungsstörung in hilfreiche Warnsignale umgewandelt.

Liegt man längere Zeit in der gleichen Position, führen Druck und Durchblutungsstörungen zu einer Unterversorgung des Gewebes mit Sauerstoff. Während der Sauerstoffmangel bei gesunden Menschen einen Reflex ausgelöst, sich zu bewegen, kann dieser neurologische Feedback-Loop etwa bei Menschen mit Querschnittslähmung oder bei Koma-Patienten gestört sein. Hier können smarte Sensoren helfen, frühzeitig vor dem Risiko eines Gewebeschadens zu warnen.

Im Projekt "ProTex" hat ein Team aus Forschenden der Empa, der Universität Bern, der Fachhochschule OST und der Bischoff Textil AG in St. Gallen ein Sensorsystem aus smarten Textilien mit zugehöriger Datenanalyse in Echtzeit entwickelt. "Die hautverträglichen textilen Sensoren enthalten zwei verschiedene funktionelle Polymerfasern», sagt Empa-Forscher Luciano Boesel vom "Biomimetic Membranes and Textiles"-Labor in St. Gallen. Neben Druck-sensitiven Fasern integrierten die Forschenden lichtleitende Polymerfasern (POFs), die der Sauerstoffmessung dienen. "Sobald der Sauerstoffgehalt in der Haut abfällt, signalisiert das hochempfindliche Sensorsystem ein steigendes Risiko für Gewebeschäden", erklärt Boesel. Die Daten werden dann direkt an den Patienten oder das Pflegepersonal übermittelt. So könne etwa eine liegende Person rechtzeitig umgelagert werden, bevor das Gewebe Schaden nimmt.

Patentierte Technologie
Die Technologie dahinter beinhaltet auch ein an der Empa entwickeltes neuartiges Mikrofluidik-Nassspinnverfahren für die Herstellung von POFs. Es erlaubt eine präzise Steuerung der Polymerkomponenten im Mikrometerbereich und eine sanftere, umweltfreundlichere Verarbeitung der Fasern. Das Mikrofluidik-Verfahren ist eines von drei Patenten, die bisher aus dem "ProTex"-Projekt hervorgegangen sind.

Ein weiteres Produkt ist ein atmungsaktiver Textilsensor, der direkt auf der Haut getragen wird. Das 2023 aus dem Projekt entstandene Spin-off "Sensawear" in Bern treibt derzeit die Markteinführung voran. Darüber hinaus ist Empa-Forscher Boesel überzeugt: "Die Erkenntnisse und Technologien aus "ProTex" werden künftig weitere Anwendungen im Bereich der tragbaren Sensorik und der smarten Kleidung ermöglichen."

Quelle:

Dr. Andrea Six, Empa

Federn und Daunen von Wassergeflügel (c) Daunen- und Federnverbände Mainz
05.03.2024

Klebstoffe: Federn statt Erdöl

Klebstoffe beruhen fast immer auf fossilen Rohstoffen wie Erdöl. Fraunhofer-Forschende haben nun ein Verfahren entwickelt, mit dem der biobasierte Rohstoff Keratin erschlossen wird. Die leistungsfähige Protein-Verbindung ist beispielsweise in Hühnerfedern enthalten. Damit kann man nicht nur eine Vielzahl unterschiedlicher Klebstoffe für verschiedene Anwendungsbereiche herstellen. Die Verfahren und Endprodukte sind vielmehr nachhaltig und orientieren sich am Grundprinzip einer bioinspirierten Kreislaufwirtschaft. Das gemeinsame Projekt mit der Henkel AG & Co. KGaA adressiert einen Milliardenmarkt.

Klebstoffe beruhen fast immer auf fossilen Rohstoffen wie Erdöl. Fraunhofer-Forschende haben nun ein Verfahren entwickelt, mit dem der biobasierte Rohstoff Keratin erschlossen wird. Die leistungsfähige Protein-Verbindung ist beispielsweise in Hühnerfedern enthalten. Damit kann man nicht nur eine Vielzahl unterschiedlicher Klebstoffe für verschiedene Anwendungsbereiche herstellen. Die Verfahren und Endprodukte sind vielmehr nachhaltig und orientieren sich am Grundprinzip einer bioinspirierten Kreislaufwirtschaft. Das gemeinsame Projekt mit der Henkel AG & Co. KGaA adressiert einen Milliardenmarkt.

Klebstoffe sind fast überall: in Sportschuhen, im Smartphone, im Bodenbelag, in Möbeln, in Textilien oder in Verpackungen. Sogar die Frontscheiben von Autos werden eingeklebt. Experten kennen mehr als 1000 unterschiedliche Klebstoff-Varianten. Diese verbinden fast alle denkbaren Materialien miteinander. Klebstoffe wiegen nicht viel und sind deshalb für den Leichtbau geeignet. Zudem verziehen sich geklebte Flächen nicht, da der Druck anders als bei Schraubverbindungen gleichmäßig verteilt wird. Klebstoff rostet nicht und dichtet gegen Feuchtigkeit ab. Zudem sind mit Klebstoff verbundene Flächen weniger empfindlich gegen Schwingungen. Und Klebstoffe sind preiswert und relativ einfach zu verarbeiten.

Federn aus der Geflügelfleischproduktion
Bisher werden Klebstoffe fast immer aus fossilen Rohstoffen wie Erdöl hergestellt. Das Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB geht nun einen anderen Weg. Die Forscherinnen und Forscher nutzen Federn als Ausgangsmaterial statt Erdöl. Federn fallen bei der Geflügelfleischherstellung als Abfälle an. Sie werden vernichtet oder in Tierfutter gemischt. Doch für Abfall sind die Federn viel zu schade, denn Federn enthalten das Strukturprotein Keratin. Dieses Biopolymer wird von Tieren für Krallen, Klauen, Hufe oder eben Federn gebildet. Seine Faserstruktur verleiht hohe Festigkeit.

Warum Keratin ideal für die Klebstoff-Herstellung ist
Keratin ist ein umweltfreundlicher, weil biologisch abbaubarer Stoff, der darüber hinaus durch seine Struktur jene Eigenschaften besitzt, die ihn für die Herstellung von Klebstoffen besonders geeignet machen. Die Polymer-Struktur, also die besonders langkettigen Moleküle, in Verbindung mit der Eigenschaft, über seine funktionellen Gruppen Vernetzungsreaktionen einzugehen, prädestiniert Keratin für die Herstellung von Klebstoffen aller Art. »Die für Klebstoffe erforderlichen Merkmale sind im Ausgangsmaterial gewissermaßen schon angelegt und müssen nur freigelegt, modifiziert und formuliert werden«, erklärt Projektleiter Dr. Michael Richter.

Plattform-Chemikalie und Spezialklebstoffe
Beim Projekt KERAbond »Spezialchemikalien aus maßgeschneiderten funktionalen Keratin-Proteinen« – Kera steht für Keratin, das englische Wort bond für Kleben – hat das Fraunhofer IGB in den letzten drei Jahren mit der Henkel AG & Co. KGaA zusammengearbeitet. Das Unternehmen ist Weltmarktführer im Klebstoff-Bereich.

Dabei haben die Projektpartner ein neues Verfahren entwickelt und optimiert. Im ersten Schritt werden die vom Schlachtbetrieb angelieferten Federn sterilisiert, gewaschen und mechanisch zerkleinert. Anschließend erfolgt ein enzymatischer Prozess, bei dem die langkettigen Polymere bzw. Protein-Ketten via Hydrolyse in kurzkettige Polymere gespalten werden.

Im Ergebnis soll eine Plattform-Chemikalie entstehen, die als Ausgangsstoff für die Weiterentwicklung speziell formulierter Klebstoffe dienen kann. „Wir nutzen das Verfahren und die Plattform-Chemikalie wie eine Toolbox, mit der wir die gewünschten Merkmale des Endprodukts herstellen“, sagt Richter. Auf diese Weise könnte man Parameter wie Aushärtezeit, Elastizität, Temperaturverhalten oder Festigkeit des gewünschten Spezialklebers festlegen. Daneben lassen sich nicht nur einfach Klebstoffe, sondern auch verwandte Substanzen wie Härter, Beschichtungen oder Grundierungen produzieren.

Im nächsten Schritt peilte das Fraunhofer-Team die Konversion der Federn im Großmaßstab an. Diese Hochskalierung fand am Fraunhofer-Zentrum für Chemisch-Biotechnologische Prozesse CBP in Leuna statt. Ziel war es zu beweisen, dass die Herstellung der Plattform-Chemikalien auf Keratin-Basis auch im industriellen Maßstab kostengünstig realisierbar ist. Dabei wurden mehrere Kilogramm Hühnerfedern verarbeitet, und das dabei produzierte Material konnte für erste vielversprechende Materialtests am Fraunhofer IGB und bei Henkel eingesetzt werden.

Baustein für eine bioinspirierte Ökonomie
Für die Fraunhofer-Gesellschaft hat diese bioinspirierte Verfahrenstechnik eine besondere Bedeutung. Biotechnologie zählt zu den zentralen Forschungsfeldern der Fraunhofer-Gesellschaft: „Wir lassen uns von Funktionen oder Eigenschaften inspirieren, die in der Natur oder in natürlichen Rohstoffen bereits vorhanden sind. Und wir versuchen, diese Eigenschaften durch innovative Herstellungsprozesse in die Produkte zu übersetzen. So entsteht ein bioinspirierter Kreislauf der wertvollen Rohstoffe,“ so Richter.

Ökonomisch hat das Projekt Gewicht. Nach Angaben von Statista wurden allein in Deutschland im Jahr 2019 rund eine Million Tonnen Klebstoffe produziert. Deren Gesamtwert beträgt etwa 1,87 Milliarden Euro.

Zum neuen Verfahren wurde eine Patentanmeldung eingereicht sowie eine Veröffentlichung in einem wissenschaftlichen Fachjournal publiziert. Zwei Doktoranden, die bei Henkel und Fraunhofer intensiv an dem Projekt forschten, werden ihre Doktorarbeiten voraussichtlich im ersten Quartal 2024 abschließen können. Mit der neuen Technologie auf Keratin-Basis werden sich viele Plattform-Chemikalien nachhaltig und bioinspiriert produzieren lassen.

Das KERAbond-Projekt wurde über drei Jahre von der Fachagentur Nachwachsende Rohstoffe (FNR) in Gülzow im Auftrag des Bundesministeriums für Ernährung und Landwirtschaft aus dem Förderprogramm „Nachwachsende Rohstoffe“ gefördert und unterstützt (Förderkennzeichen 22014218).

Quelle:

Fraunhofer IBG

(c) RMIT University
26.02.2024

Abkühlung durch Nanodiamanten

Forschende der RMIT University nutzen Nanodiamanten, um smarte Textilien zu entwickeln, die Menschen schneller abkühlen können.

Die Studie ergab, dass Stoffe aus Baumwolle, die mit Nanodiamanten beschichtet sind, im Vergleich zu unbehandelter Baumwolle während des Abkühlungsprozesses um 2-3 Grad Celsius kühler sind. Die Nanodiamanten ziehen die Körperwärme an und geben sie an den Stoff ab - ein Ergebnis der enormen Wärmeleitfähigkeit der Nanodiamanten.

Dr. Shadi Houshyar, Projektleiterin und Dozentin, sagte in der Zeitschrift Polymers for Advanced Technologies, dass es eine große Chance gebe, diese Erkenntnisse zu nutzen, um neue Textilien für Sportbekleidung und sogar für persönliche Schutzkleidung zu entwickeln, wie z. B. Unterzieher, die Feuerwehrleute kühl halten.

Die Studie ergab auch, dass Nanodiamanten den UV-Schutz von Baumwolle erhöhen, was sie ideal für Sommerkleidung im Freien macht.

Forschende der RMIT University nutzen Nanodiamanten, um smarte Textilien zu entwickeln, die Menschen schneller abkühlen können.

Die Studie ergab, dass Stoffe aus Baumwolle, die mit Nanodiamanten beschichtet sind, im Vergleich zu unbehandelter Baumwolle während des Abkühlungsprozesses um 2-3 Grad Celsius kühler sind. Die Nanodiamanten ziehen die Körperwärme an und geben sie an den Stoff ab - ein Ergebnis der enormen Wärmeleitfähigkeit der Nanodiamanten.

Dr. Shadi Houshyar, Projektleiterin und Dozentin, sagte in der Zeitschrift Polymers for Advanced Technologies, dass es eine große Chance gebe, diese Erkenntnisse zu nutzen, um neue Textilien für Sportbekleidung und sogar für persönliche Schutzkleidung zu entwickeln, wie z. B. Unterzieher, die Feuerwehrleute kühl halten.

Die Studie ergab auch, dass Nanodiamanten den UV-Schutz von Baumwolle erhöhen, was sie ideal für Sommerkleidung im Freien macht.

„2 oder 3 Grad mögen nicht viel erscheinen, aber sie machen einen Unterschied in Bezug auf den Komfort und die Auswirkungen auf die Gesundheit über einen längeren Zeitraum und könnten in der Praxis den Unterschied ausmachen, ob man seine Klimaanlage aus- oder anschaltet“, so Houshyar. „Es gibt auch die Möglichkeit zu erforschen, wie Nanodiamanten eingesetzt werden können, um Gebäude vor Überhitzung zu schützen, was wiederum Vorteile für die Umwelt mit sich bringen kann.“

Die Verwendung dieses Gewebes in der Kleidung wird voraussichtlich zu einer Energieeinsparung von 20-30 % führen, da der Verbrauch von Klimaanlagen reduziert wird.

Das Forschungsteam des Centre for Materials Innovation and Future Fashion (CMIFF) besteht aus Ingenieuren und Textilforschern des RMIT, die über fundierte Kenntnisse in der Entwicklung smarter Textilien der nächsten Generation verfügen und mit der Industrie zusammenarbeiten, um realistische Lösungen zu entwickeln.

Entgegen der landläufigen Meinung sind Nanodiamanten nicht dasselbe wie die Diamanten, die Schmuck schmücken, sagte Houshyar. „Sie sind tatsächlich billig herzustellen - billiger als Graphenoxid und andere Arten von Kohlenstoffmaterialien“, sagte sie. „Sie haben zwar eine Kohlenstoff-Gitterstruktur, sind aber viel kleiner. Außerdem lassen sie sich leicht durch Methoden wie Detonation oder aus Abfallmaterialien herstellen.“

Wie es funktioniert
Das Baumwollmaterial wurde zunächst mit einem Klebstoff beschichtet und dann mit einer Polymerlösung aus Nanodiamanten, Polyurethan und Lösungsmittel elektrogesponnen.

Durch dieses Verfahren entsteht ein Netz aus Nanofasern auf den Baumwollfasern, die dann ausgehärtet werden, um die beiden zu verbinden.

Die leitende Forscherin und Forschungsassistentin, Dr. Aisha Rehman, erklärte, dass die Beschichtung mit Nanodiamanten bewusst nur auf einer Seite des Gewebes aufgebracht wurde, um zu verhindern, dass die Wärme aus der Atmosphäre auf den Körper zurück übertragen wird.  

„Die Seite des Stoffes mit der Nanodiamantenbeschichtung berührt die Haut. Die Nanodiamanten leiten dann die Wärme vom Körper an die Luft weiter“, so Rehman, die im Rahmen ihrer Doktorarbeit an der Studie mitarbeitete. „Weil Nanodiamanten so gute Wärmeleiter sind, geht das schneller als bei unbehandeltem Stoff.“

Nanodiamanten wurden für diese Studie aufgrund ihrer hohen Wärmeleitfähigkeit ausgewählt, so Rehman. Nanodiamanten werden häufig in der IT-Branche eingesetzt und können auch dazu beitragen, die thermischen Eigenschaften von Flüssigkeiten und Gelen zu verbessern und die Korrosionsbeständigkeit von Metallen zu erhöhen.

„Nanodiamanten sind auch biokompatibel, d. h. sie sind für den menschlichen Körper ungefährlich. Daher haben sie ein großes Potenzial nicht nur für Textilien, sondern auch für den biomedizinischen Bereich“, so Rehman.
Obwohl die Forschung noch vorläufig ist, sagte Houshyar, hat diese Methode der Beschichtung von Textilien mit Nanofasern ein großes kommerzielles Potenzial.

„Dieser Ansatz des Elektrospinnens ist einfach und kann die Vielfalt der Herstellungsschritte im Vergleich zu den bisher getesteten Methoden, die langwierige Prozesse und die Verschwendung von Nanodiamanten mit sich bringen, erheblich reduzieren“, sagte Houshyar.

Weitere Forschungsarbeiten werden die Haltbarkeit der Nanofasern, insbesondere während des Waschvorgangs, untersuchen.

Quelle:

Shu Shu Zheng, RMIT University

Tragbare Roboter für Parkinson-Kranke Bild: Tom Claes, unsplash
19.02.2024

Tragbare Roboter für Parkinson-Kranke

Freezing, plötzliche Blockaden bei Bewegungsabläufen, ist eines der häufigsten und belastendsten Symptome der Parkinson-Krankheit, einer neurodegenerativen Erkrankung, von der weltweit mehr als 9 Millionen Menschen betroffen sind. Wenn Menschen mit Parkinson „einfrieren“, verlieren sie plötzlich die Fähigkeit, ihre Füße zu bewegen, oft mitten im Schritt, was zu einer Reihe von stakkatoartigen, stotternden Schritten führt, die immer kürzer werden, bis die Person schließlich ganz stehen bleibt. Diese Episoden sind eine der Hauptursachen für Stürze bei Menschen mit Parkinson.

Heutzutage wird Freezing mit einer Reihe von pharmakologischen, chirurgischen oder Verhaltenstherapien behandelt, von denen keine besonders wirksam ist. Was wäre, wenn es einen Weg gäbe, Freezing gänzlich zu verhindern?

Freezing, plötzliche Blockaden bei Bewegungsabläufen, ist eines der häufigsten und belastendsten Symptome der Parkinson-Krankheit, einer neurodegenerativen Erkrankung, von der weltweit mehr als 9 Millionen Menschen betroffen sind. Wenn Menschen mit Parkinson „einfrieren“, verlieren sie plötzlich die Fähigkeit, ihre Füße zu bewegen, oft mitten im Schritt, was zu einer Reihe von stakkatoartigen, stotternden Schritten führt, die immer kürzer werden, bis die Person schließlich ganz stehen bleibt. Diese Episoden sind eine der Hauptursachen für Stürze bei Menschen mit Parkinson.

Heutzutage wird Freezing mit einer Reihe von pharmakologischen, chirurgischen oder Verhaltenstherapien behandelt, von denen keine besonders wirksam ist. Was wäre, wenn es einen Weg gäbe, Freezing gänzlich zu verhindern?

Forscher der Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) und des Boston University Sargent College of Health & Rehabilitation Sciences haben einen weichen, tragbaren Roboter eingesetzt, der einem Parkinson-Patienten hilft, ohne Freezing zu gehen. Das Roboterkleidungsstück, das um Hüfte und Oberschenkel getragen wird, gibt beim Schwingen des Beins einen sanften Druck auf die Hüfte und hilft dem Patienten, einen längeren Schritt zu machen.

Mit dem Hilfsmittel konnte das Freezing der Teilnehmer beim Gehen in geschlossenen Räumen vollständig beseitigt werden, so dass sie schneller und weiter gehen konnten als ohne die Hilfe des Kleidungsstückes.

„Wir stellten fest, dass schon eine geringe mechanische Unterstützung durch unsere weiche Roboterkleidung eine Sofortwirkung hatte und das Gehen der Versuchspersonen unter verschiedenen Bedingungen nachhaltig verbesserte“, so Conor Walsh, Paul A. Maeder Professor für Ingenieur- und angewandte Wissenschaften am SEAS und Mitautor der Studie.

Die Forschung zeigt das Potenzial der Soft-Robotik zur Behandlung dieses frustrierenden und potenziell gefährlichen Symptoms der Parkinson-Erkrankung auf und könnte es Menschen, die mit dieser Krankheit leben, ermöglichen, nicht nur ihre Mobilität, sondern auch ihre Unabhängigkeit wiederzuerlangen.

Seit über einem Jahrzehnt entwickelt das Biodesign Lab von Walsh am SEAS unterstützende und rehabilitative Robotertechnologien zur Verbesserung der Mobilität von Menschen nach einem Schlaganfall, mit ALS oder anderen Krankheiten, die die Mobilität beeinträchtigen. Ein Teil dieser Technologie, insbesondere ein Exosuit für das Gehtraining nach einem Schlaganfall, wurde vom Wyss Institute for Biologically Inspired Engineering, and Harvard’s Office of Technology Development unterstützt, und das Harvard’s Office of Technology Development  koordinierte eine Lizenzvereinbarung mit ReWalk Robotics zur Vermarktung der Technologie.

Im Jahr 2022 erhielten SEAS und Sargent College einen Zuschuss von der Massachusetts Technology Collaborative, um die Entwicklung und Umsetzung von Robotik und Wearable Technologies der nächsten Generation zu unterstützen. Die Forschung ist im Move Lab angesiedelt, dessen Aufgabe es ist, Fortschritte bei  der Verbesserung der menschlichen Leistungsfähigkeit zu unterstützen, indem es den Raum für die Zusammenarbeit, die Finanzierung, die F&E-Infrastruktur und die Erfahrung bereitstellt, die notwendig sind, um vielversprechende Forschung in ausgereifte Technologien zu verwandeln, die durch die Zusammenarbeit mit Industriepartnern umgesetzt werden können. Diese Forschung ist aus dieser Partnerschaft hervorgegangen.

„Der Einsatz weicher, tragbarer Roboter zur Verhinderung des Freezing beim Gangbild von Parkinson-Patienten erforderte eine Zusammenarbeit zwischen Ingenieuren, Rehabilitationswissenschaftlern, Physiotherapeuten, Biomechanikern und Bekleidungsdesignern", so Walsh, dessen Team eng mit dem von Terry Ellis, Professor und Lehrstuhlinhaber für Physiotherapie sowie Leiter des Zentrums für Neurorehabilitation an der Universität Boston, zusammenarbeitete.

Das Team arbeitete sechs Monate lang mit einem 73-jährigen Mann, der an Parkinson erkrankt war und trotz chirurgischer und medikamentöser Behandlung mehr als zehnmal am Tag unter erheblichem und behinderndem Freezing litt, was immer wieder zu Stürzen führten. Diese Episoden hinderten ihn daran, sich in seiner Nachbarschaft zu bewegen, und zwangen ihn, sich draußen mit einem Elektromobil fortzubewegen.

In früheren Forschungsarbeiten wiesen Walsh und sein Team mithilfe der Human-in-the-Loop-Optimierung nach, dass ein weiches, am Körper zu tragendes Gerät die Hüftbeugung verstärken und den Schwung des Beins nach vorne unterstützen kann, um den Energieverbrauch beim Gehen bei gesunden Menschen effizient zu senken.

In diesem Fall verwendeten die Forscher den gleichen Ansatz, um das Freezing zu bekämpfen. Das tragbare Gerät verwendet kabelgesteuerte Aktoren und Sensoren, die um Taille und Oberschenkel getragen werden. Anhand der von den Sensoren erfassten Bewegungsdaten schätzen Algorithmen die Phase des Gangs und erzeugen im Zusammenspiel mit der Muskelbewegung Unterstützung.

Die Wirkung trat sofort ein. Ohne spezielles Training war der Patient in der Lage, ohne Freezing in geschlossenen Räumen und mit nur gelegentlichen Episoden im Freien zu gehen. Er war ebenfalls in der Lage, ohne Stocken zu gehen und zu sprechen, was ohne das Gerät kaum möglich war.

„Unser Team war sehr gespannt darauf, wie sich die Technologie auf das Gangbild der Teilnehmer auswirkt“, sagt Jinsoo Kim, ehemaliger Doktorand am SEAS und Mitautor der Studie.

Während der Studienbesuche erzählte der Teilnehmer den Forschern: „Der Anzug hilft mir, längere Schritte zu machen, wenn er nicht aktiv ist, merke ich, dass ich meine Füße viel mehr nachziehe. Er hat mir wirklich geholfen, und ich empfinde ihn als einen positiven Schritt nach vorn. Er könnte mich darin unterstützen, länger zu gehen und meine Lebensqualität zu erhalten."

„Unsere Studienteilnehmer, die freiwillig ihre Zeit opfern, sind echte Partner“, so Walsh. „Da die Mobilität schwierig ist, war es für diese Person eine echte Herausforderung, überhaupt ins Labor zu kommen, aber wir haben so sehr von ihrer Perspektive und ihrem Feedback profitiert.“

Das Gerät könnte auch eingesetzt werden, um die Mechanismen des Freezing besser zu verstehen, die nur unzureichend erforscht sind.

„Da wir das Freezing nicht wirklich verstehen, wissen wir nicht, warum dieser Ansatz so gut funktioniert“, so Ellis. Aber diese Arbeit deutet auf die potenziellen Vorteile einer "Bottom-up"-Lösung statt einer "Top-down"-Lösung zur Behandlung von Gangfehlern hin. Wir sehen, dass die Wiederherstellung einer fast normalen Biomechanik die periphere Dynamik des Gangs verändert und die zentrale Verarbeitung der Gangkontrolle beeinflussen kann.“

Das Team arbeitete sechs Monate lang mit einem 73-jährigen Mann, der an Parkinson erkrankt war und trotz chirurgischer und medikamentöser Behandlung mehr als zehnmal am Tag unter erheblichem und behinderndem Freezing litt, was immer wieder zu Stürzen führten. Diese Episoden hinderten ihn daran, sich in seiner Nachbarschaft zu bewegen, und zwangen ihn, sich draußen mit einem Elektromobil fortzubewegen.

In früheren Forschungsarbeiten wiesen Walsh und sein Team mithilfe der Human-in-the-Loop-Optimierung nach, dass ein weiches, am Körper zu tragendes Gerät die Hüftbeugung verstärken und den Schwung des Beins nach vorne unterstützen kann, um den Energieverbrauch beim Gehen bei gesunden Menschen effizient zu senken.

In diesem Fall verwendeten die Forscher den gleichen Ansatz, um das Freezing zu bekämpfen. Das tragbare Gerät verwendet kabelgesteuerte Aktoren und Sensoren, die um Taille und Oberschenkel getragen werden. Anhand der von den Sensoren erfassten Bewegungsdaten schätzen Algorithmen die Phase des Gangs und erzeugen im Zusammenspiel mit der Muskelbewegung Unterstützung.

Die Wirkung trat sofort ein. Ohne spezielles Training war der Patient in der Lage, ohne Freezing in geschlossenen Räumen und mit nur gelegentlichen Episoden im Freien zu gehen. Er war ebenfalls in der Lage, ohne Stocken zu gehen und zu sprechen, was ohne das Gerät kaum möglich war.

„Unser Team war sehr gespannt darauf, wie sich die Technologie auf das Gangbild der Teilnehmer auswirkt“, sagt Jinsoo Kim, ehemaliger Doktorand am SEAS und Mitautor der Studie.

Während der Studienbesuche erzählte der Teilnehmer den Forschern: „Der Anzug hilft mir, längere Schritte zu machen, wenn er nicht aktiv ist, merke ich, dass ich meine Füße viel mehr nachziehe. Er hat mir wirklich geholfen, und ich empfinde ihn als einen positiven Schritt nach vorn. Er könnte mich darin unterstützen, länger zu gehen und meine Lebensqualität zu erhalten."

„Unsere Studienteilnehmer, die freiwillig ihre Zeit opfern, sind echte Partner“, so Walsh. „Da die Mobilität schwierig ist, war es für diese Person eine echte Herausforderung, überhaupt ins Labor zu kommen, aber wir haben so sehr von ihrer Perspektive und ihrem Feedback profitiert.“

Das Gerät könnte auch eingesetzt werden, um die Mechanismen des Freezing besser zu verstehen, die nur unzureichend erforscht sind.

„Da wir das Freezing nicht wirklich verstehen, wissen wir nicht, warum dieser Ansatz so gut funktioniert“, so Ellis. Aber diese Arbeit deutet auf die potenziellen Vorteile einer "Bottom-up"-Lösung statt einer "Top-down"-Lösung zur Behandlung von Gangfehlern hin. Wir sehen, dass die Wiederherstellung einer fast normalen Biomechanik die periphere Dynamik des Gangs verändert und die zentrale Verarbeitung der Gangkontrolle beeinflussen kann.“

Die Studie wurde von Jinsoo Kim, Franchino Porciuncula, Hee Doo Yang, Nicholas Wendel, Teresa Baker und Andrew Chin mitverfasst. Asa Eckert-Erdheim und Dorothy Orzel trugen ebenfalls zur Entwicklung der Technologie bei, ebenso wie Ada Huang, Sarah Sullivan leitete die klinische Forschung. Das Projekt wurde von der National Science Foundation unter dem Zuschuss CMMI-1925085, von den National Institutes of Health unter dem Zuschuss NIH U01 TR002775 und von der Massachusetts Technology Collaborative, Collaborative Research and Development Matching Grant unterstützt.

Quelle:

Die Forschungsergebnisse erschienen in Nature Medicine.
Quelle: Leah Burrows
Harvard John A. Paulson. School of Engineering and Applied Sciences

  Forschende um Bernd Nowack haben die Freisetzung von Nanopartikeln beim Waschen von Polyestertextilien untersucht. Bild: Empa
14.02.2024

Freisetzung von Oligomeren aus Polyester-Textilien

Wenn Nanoplastik keiner ist ... Textilien aus synthetischen Fasern geben beim Waschen Mikro- und Nanoplastik ab. Empa-Forschende konnten nun zeigen, dass ein Teil des vermeintlichen Nanoplastiks gar nicht aus Plastikpartikeln besteht, sondern aus wasserunlöslichen Oligomeren. Welche Auswirkungen sie auf Mensch und Umwelt haben, ist noch kaum erforscht.

Gebrauchsgegenstände aus Kunststoff und Kleider aus Kunstfasern setzen Mikroplastik frei: Partikel unter fünf Millimeter Größe, die unbemerkt in die Umwelt gelangen können. Ein kleiner Teil dieser Partikel befindet sich sogar im Nanometerbereich. Solcher Nanoplastik ist Gegenstand intensiver Forschung, denn aufgrund ihrer geringen Größe können Nanoplastik-Teilchen in den menschlichen Körper aufgenommen werden – über ihre potenzielle Toxizität ist jedoch noch wenig bekannt.

Wenn Nanoplastik keiner ist ... Textilien aus synthetischen Fasern geben beim Waschen Mikro- und Nanoplastik ab. Empa-Forschende konnten nun zeigen, dass ein Teil des vermeintlichen Nanoplastiks gar nicht aus Plastikpartikeln besteht, sondern aus wasserunlöslichen Oligomeren. Welche Auswirkungen sie auf Mensch und Umwelt haben, ist noch kaum erforscht.

Gebrauchsgegenstände aus Kunststoff und Kleider aus Kunstfasern setzen Mikroplastik frei: Partikel unter fünf Millimeter Größe, die unbemerkt in die Umwelt gelangen können. Ein kleiner Teil dieser Partikel befindet sich sogar im Nanometerbereich. Solcher Nanoplastik ist Gegenstand intensiver Forschung, denn aufgrund ihrer geringen Größe können Nanoplastik-Teilchen in den menschlichen Körper aufgenommen werden – über ihre potenzielle Toxizität ist jedoch noch wenig bekannt.

Empa-Forschende aus der Gruppe von Bernd Nowack aus dem Labor „Technologie und Gesellschaft" haben nun gemeinsam mit Kollegen aus China Nanopartikel aus Textilien unter die Lupe genommen. Tong Yang, Erstautor der Studie, hat die Untersuchungen während seines Doktorats an der Empa durchgeführt. Bereits in früheren Studien konnten die Empa-Forscher zeigen, dass beim Waschen von Polyester Mikro- und Nanoplastik freigesetzt wird. Eine genaue Untersuchung der freigesetzten Nanopartikel hat nun ergeben, dass nicht alles, was auf den ersten Blich nach Nanoplastik aussieht, auch tatsächlich Nanoplastik ist.

Zu einem beträchtlichen Teil handelte es sich tatsächlich nicht um Nanoplastik, sondern um Klumpen von sogenannten Oligomeren, also kleinen bis mittelgroßen Moleküle, die eine Zwischenstufe zwischen den langen verketteten Polymeren und ihren Einzelbausteinen, den Monomeren, darstellen. Diese Moleküle sind noch kleiner als Nanoplastik-Partikel. Auch über ihre Toxizität ist kaum etwas bekannt. Die Ergebnisse veröffentlichten die Forschenden in der Zeitschrift „Nature Water“.

Für die Studie haben die Forschenden zwölf unterschiedliche Polyesterstoffe untersucht, darunter etwa Mikrofaser, Satin und Jersey. Die Stoffproben wurden bis zu vier Mal gewaschen und die dabei freigesetzten Nanopartikel analysiert und charakterisiert. Keine einfache Aufgabe, sagt Bernd Nowack. „Plastik, vor allem Nanoplastik, ist überall, auch an unseren Geräten und Utensilien“, so der Wissenschaftler. „Bei Nanoplastik-Messungen müssen wir dieses 'Hintergrundrauschen' berücksichtigen.“

Großer Anteil löslicher Partikel
Um Nanoplastik von Oligomerklumpen zu unterscheiden, nutzten die Forschenden ein Ethanolbad. Plastikstückchen, egal wie klein, lösen sich darin nicht auf, Ansammlungen von Oligomeren dagegen schon. Der Befund: Rund ein Drittel bis knapp 90 Prozent der beim Waschen freigesetzten Nanopartikel ließen sich in Ethanol auflösen. „Dadurch konnten wir zeigen, dass nicht alles, was im ersten Moment nach Nanoplastik aussieht, auch Nanoplastik ist“, sagt Nowack.

Ob die Freisetzung von „nanopartikulären“ Oligomeren beim Waschen von Textilien negative Auswirkungen auf Mensch und Umwelt hat, ist noch nicht klar. „Bei anderen Kunststoffen haben Studien bereits gezeigt, dass nanopartikuläre Oligomere toxischer sind als Nanoplastik“, sagt Nowack. „Das ist ein Hinweis, dass man das genauer untersuchen sollte.“ Die Forschenden konnten jedoch feststellen, dass die Beschaffenheit des Textils sowie die Schnittmethode – Schere oder Laser – keinen großen Einfluss auf die Menge der freigesetzten Partikel haben.

Auch der Mechanismus der Freisetzung ist noch nicht geklärt – weder für Nanoplastik noch für die Oligomerpartikel. Die erfreuliche Nachricht ist, dass die Menge der freigesetzten Partikel mit wiederholten Waschgängen stark abnimmt. Denkbar wäre, dass die Oligomerpartikel bei der Herstellung des Textils entstehen oder sich durch chemische Prozesse bei der Lagerung von den Fasern abspalten. Auch hierzu sind weitere Studien notwendig.

Nowack und sein Team widmen sich jedoch vorerst wieder größeren Partikeln: In einem nächsten Projekt wollen sie untersuchen, welche Fasern beim Waschen von Textilien aus nachwachsenden Rohstoffen freigesetzt werden und ob diese die Umwelt und die Gesundheit belasten könnten. „Halbsynthetische Textilien wie Viskose oder Lyocell werden als Ersatz für Polyester angepriesen“, sagt Nowack. „Aber wir wissen noch gar nicht, ob sie wirklich besser sind, wenn es um die Freisetzung von Fasern geht.“

 

Quelle:

Empa

Foto: Walmart Inc.
15.01.2024

Was ist eine virtuelle Umkleide? Vorzüge und Pioniere

Eines der Hauptprobleme beim Online-Shopping ist, dass Verbraucher Produkte nicht anfassen, fühlen und erleben kann. Dieses Problem ist bei Modeprodukten noch schwieriger, da die richtige Passform für die Kaufentscheidung auschlaggebend ist. Die virtuelle Umkleide (Virtual Fitting Room, VFR), eine Technologie, die es den Verbrauchern ermöglicht, Größe und Passform zu testen, ohne die Kleidung anprobieren zu müssen, räumt mit dieser Sorge auf.

Was ist eine virtuelle Umkleide (VFR)?
Eine virtuelle Umkleide (VFR) ist eine Funktion, die das Outfit eines Kunden anzeigt und visualisiert, ohne dass er die Artikel physisch anprobieren und anfassen muss. VFR nutzt erweiterte Realität (Augmented Reality, AR) und künstliche Intelligenz (KI). Bei der Verwendung von AR für virtuelle Umkleiden scannt eine Webcam die Körperform der Kunden und erstellt ein 360-Grad-3D-Modell auf der Grundlage ihrer Körperform.

Eines der Hauptprobleme beim Online-Shopping ist, dass Verbraucher Produkte nicht anfassen, fühlen und erleben kann. Dieses Problem ist bei Modeprodukten noch schwieriger, da die richtige Passform für die Kaufentscheidung auschlaggebend ist. Die virtuelle Umkleide (Virtual Fitting Room, VFR), eine Technologie, die es den Verbrauchern ermöglicht, Größe und Passform zu testen, ohne die Kleidung anprobieren zu müssen, räumt mit dieser Sorge auf.

Was ist eine virtuelle Umkleide (VFR)?
Eine virtuelle Umkleide (VFR) ist eine Funktion, die das Outfit eines Kunden anzeigt und visualisiert, ohne dass er die Artikel physisch anprobieren und anfassen muss. VFR nutzt erweiterte Realität (Augmented Reality, AR) und künstliche Intelligenz (KI). Bei der Verwendung von AR für virtuelle Umkleiden scannt eine Webcam die Körperform der Kunden und erstellt ein 360-Grad-3D-Modell auf der Grundlage ihrer Körperform.

KI unterstützt VFR außerdem durch die Verwendung von Algorithmen und maschinellem Lernen, um ein 3D-Ganzkörpermodell eines vor der Kamera stehenden Käufers zu erstellen. Eine Kombination aus AR- und KI-Technologie ermöglicht es, Artikel auf Echtzeitbildern als Live-Video zu platzieren, sodass Kunden die Größe, den Stil und die Passform der Produkte, die sie kaufen möchten, überprüfen können.

Die Kunden können Kleidung und Schuhe zu Hause anprobieren, ohne ein Geschäft zu besuchen. Dazu müssen sie zunächst sicherstellen, dass sich die richtigen Einstellungen auf ihrem Telefon finden. Dann laden sie die mobilen Anwendungen einer Marke mit der Funktion VFR herunter oder besuchen die Websites von Bekleidungsmarken, die diese Funktion unterstützen, und laden dann ein Foto ihrer Körperform hoch. Bei einigen Marken können die Kunden einen Avatar mit ihrer Körperform erstellen, um die Modeartikel virtuell zu testen, anstatt ein Foto von sich selbst hochzuladen.

Welchen Nutzen hat der Einsatz einer virtuellen Umkleide für Modehändler?

  • Bietet ein bequemes Einkaufserlebnis
    Eine Studie der National Retail Federation aus dem Jahr 2020 hat ergeben, dass 97 % der Verbraucher einen Einkauf abgebrochen oder die Suche nach dem gewünschten Artikel unterbrochen haben, weil der Vorgang zu umständlich war.
    Die befragten Käufer gaben nicht nur an, dass das persönliche Einkaufen unbequem ist, sondern dass sie das Online-Shopping als noch unbequemer empfinden.
    Mit der VFR entfallen all diese Vorgänge. Die Kunden können in eine virtuelle Umkleide gehen und schnell sehen, wie die Kleidung aussieht, ohne sich umziehen zu müssen.
     
  • Überwindet die Grenzen des Online-Shoppings
    Im Jahr 2017 bevorzugten 62 % der Kunden den Einkauf in physischen Bekleidungsgeschäften, weil sie dort die Produkte sehen, anfassen, fühlen und erleben konnten. Dies war ein großes Problem, das das Online-Shopping nicht lösen konnte.
    VFR löst dieses Problem effektiv. Laut einem Retail Perceptions Report gaben etwa 40 % der Käufer an, dass sie bereit wären, mehr zu bezahlen, wenn sie das Produkt durch AR-Technologie erleben könnten. Durch die Integration neuer Technologien macht VFR das Einkaufen zum Vergnügen und bietet den Kunden ein personalisiertes Einkaufserlebnis, das mehr Menschen in die Online-Kanäle locken kann.
     
  • Reduziert die Rücksendequote
    Hohe Rücksendequoten bereiten den Modemarken große administrative Probleme. Außerdem drohen sie die Gewinne der Modemarken zu schmälern, wenn sie kostenlose Rücksendungen anbieten. 30 % der Rücksendungen beim Einkauf von Mode im elektronischen Handel sind auf den Kauf von Produkten in zu kleinen Größen zurückzuführen, weitere 22 % auf den Kauf von Produkten in zu großen Größen.
    Mit der VFR wird dieses Problem jedoch verringert. Ob im Geschäft oder online, Menschen können Passform und Größe von Artikeln überprüfen, ohne sie selbst tragen zu müssen.

Welche Marken nutzen bereits die VFR-Technologie?
Gucci

Gucci ist die erste Luxusmarke, die VFR einsetzt. Sie hat sich mit Snapchat zusammengetan, um eine AR-Kampagne zur Schuhanprobe zu starten. Dabei wurde eine virtuelle Linse erstellt, die eine digitale Version des Schuhs auf dem Fuß des Käufers überlagert, wenn dieser mit einer Handykamera fotografiert wird.

Zusammen mit dem "Shop Now"-Button, der die Kunden zum Online-Shop führt, erreichte Gucci 18,9 Millionen Snapchat-Nutzer und meldete einen positiven Return on Ad Spend (ROAS), eine Marketing-Kennzahl, die den Umsatz aller für die Kampagne ausgegebenen Werbegelder misst.

Otero Menswear
Otero Menswear ist eine Marke, die sich auf Bekleidung für Männer unter 1,78 m (5'10") konzentriert. Otero hat seinen Online-Shop um die VFR-Software erweitert, um seinen Kunden perfekt passende Größen anbieten zu können. Zunächst werden den Kunden vier kurze Fragen zu ihrer Größe, Beinlänge, Taillenumfang und ihrem Körpertyp gestellt. Dann wird ein virtueller Avatar angeboten, der den Antworten entspricht. Anhand dieses Avatars können die Kunden dann sehen, wie die Otero-Kleidung in verschiedenen Größen an ihnen aussehen würde.

Walmart
Im Mai 2021 kündigte Walmart die Übernahme von Zeekit, einer Plattform für virtuelle Umkleiden, an, um den Kunden während der Pandemie ein verbessertes und soziales Einkaufserlebnis bieten zu können.

Wenn Kunden Bilder von sich selbst hochladen und ihre Körpermaße eingeben, erstellt Zeekit einen virtuellen Körper, den die Kunden dann entsprechend anziehen können. Kunden stellen einfach ihre Fotos ein oder wählen virtuelle Modelle auf der Plattform aus, die am besten zu ihrer Größe, ihrem Körper und ihrem Hautton passen. Sie können ihre virtuelle Kleidung sogar mit anderen teilen, um verschiedene Meinungen einzuholen. Durch die Übernahme von VFR bietet Walmart seinen Kunden ein umfassendes und soziales Erlebnis beim digitalen Einkaufen.

Laut einer Studie von Valuates Reports wird erwartet, dass der Umsatz des globalen Marktes für virtuelle Umkleiden bis 2025 auf 6,5 Millionen Dollar ansteigen wird. Durch die Einführung der VFR werden die Verbraucher in der Lage sein, die Bequemlichkeit einer modernen Einkaufsumgebung zu erleben. Gleichzeitig können Modehändler ihren Online-Umsatz steigern und die Rücksendequote senken, indem sie ihren Kunden mithilfe der VFR-Technologie ein personalisiertes Online-Einkaufserlebnis bieten.

Quelle:

Heekyeong Jo und B. Ellie Jin
Dieser Artikel wurde ursprünglich von Mitgliedern des Wilson College of Textiles' Fashion Textile and Business Excellence Cooperative veröffentlicht

Chemiker entwickelt Kunststoffalternativen aus Proteinen und Kleiderresten Foto: Challa Kumar, emeritierter Professor für Chemie, in seinem Labor. (zur Verfügung gestelltes Foto)
21.12.2023

Chemiker entwickelt Kunststoffalternativen aus Proteinen und Kleiderresten

Challa Kumar hat Methoden zur Herstellung neuartiger kunststoffähnlicher Materialien aus Proteinen und Textilien entwickelt.

Jedes Jahr fallen weltweit 400 Millionen Tonnen Plastikmüll an. Zwischen 19 und 23 Millionen Tonnen dieses Plastikmülls gelangen in aquatische Ökosysteme, der Rest landet im Boden. Weitere 92 Millionen Tonnen Textilabfälle werden zusätzlich jährlich erzeugt.

Challa Kumar, emeritierter Chemieprofessor, war es leid, dass die Menschen immer mehr Giftmüll in die Umwelt pumpen und fühlte sich gezwungen, etwas zu tun. Für den Chemiker bedeutete dies, sein Fachwissen für die Entwicklung neuer, nachhaltiger Materialien einzusetzen.

Challa Kumar hat Methoden zur Herstellung neuartiger kunststoffähnlicher Materialien aus Proteinen und Textilien entwickelt.

Jedes Jahr fallen weltweit 400 Millionen Tonnen Plastikmüll an. Zwischen 19 und 23 Millionen Tonnen dieses Plastikmülls gelangen in aquatische Ökosysteme, der Rest landet im Boden. Weitere 92 Millionen Tonnen Textilabfälle werden zusätzlich jährlich erzeugt.

Challa Kumar, emeritierter Chemieprofessor, war es leid, dass die Menschen immer mehr Giftmüll in die Umwelt pumpen und fühlte sich gezwungen, etwas zu tun. Für den Chemiker bedeutete dies, sein Fachwissen für die Entwicklung neuer, nachhaltiger Materialien einzusetzen.

„Jeder sollte darüber nachdenken, wo immer er kann, auf fossilen Brennstoffen basierende Materialien durch natürliche zu ersetzen, um unserer Zivilisation zu helfen zu überleben", sagt Kumar. „Das Haus brennt, wir können nicht warten. Wenn das Haus brennt und man beginnt, einen Brunnen zu graben, dann wird das nicht funktionieren. Es ist an der Zeit, das Haus zu löschen.“

Kumar hat zwei Technologien entwickelt, die Proteine bzw. Textilien verwenden, um neue Materialien zu schaffen. Die Technology Commercialization Services (TCS) der UConn haben für beide Technologien vorläufige Patente angemeldet.

Inspiriert von der Fähigkeit der Natur, eine Vielzahl funktioneller Materialien zu konstruieren, entwickelten Kumar und sein Team eine Methode zur Herstellung stufenlos steuerbarer, ungiftiger Materialien.

„Die Chemie ist das Einzige, was uns in die Quere kommt“, so Kumar. „Wenn wir die Proteinchemie verstehen, können wir Proteinmaterialien herstellen, die so stark wie ein Diamant oder so weich wie eine Feder sind.“

Die erste Innovation ist ein Verfahren zur Umwandlung natürlich vorkommender Proteine in kunststoffähnliche Materialien. Kumars Student, Ankarao Kalluri '23 Ph.D., arbeitete an diesem Projekt.

Proteine haben „reaktive Gruppen“ auf ihrer Oberfläche, die mit Substanzen reagieren können, mit denen sie in Berührung kommen. Kumar und sein Team nutzten sein Wissen über die Funktionsweise dieser Gruppen, um Proteinmoleküle durch eine chemische Verbindung miteinander zu verknüpfen.

Bei diesem Prozess entsteht ein sogenannter Dimer - ein Molekül, das aus zwei Proteinen besteht. Anschließend wird das Dimer mit einem anderen Dimer zu einem Tetramer verbunden, und so weiter, bis ein großes 3D-Molekül entsteht. Dieser 3D-Aspekt der Technologie ist einzigartig, da die meisten synthetischen Polymere lineare Ketten aufweisen.

Dank dieser innovativen 3D-Struktur kann sich das neue Polymer wie ein Kunststoff verhalten. Genau wie die Proteine, aus denen es besteht, kann sich das Material dehnen, seine Form verändern und falten. So kann das Material mit Hilfe der Chemie für eine Vielzahl von spezifischen Anwendungen maßgeschneidert werden.

Da Kumars Material aus Proteinen und einer biologisch verbindenden Chemikalie besteht, kann es im Gegensatz zu synthetischen Polymeren biologisch abgebaut werden, so wie es pflanzliche und tierische Proteine natürlich tun.

„Die Natur baut Proteine ab, indem sie die Amidbindungen in ihnen aufspaltet“, sagt Kumar. „Sie verfügt über Enzyme, die diese Art von Chemie beherrschen. Wir haben die gleichen Amidbindungen in unseren Materialien. Die gleichen Enzyme, die in der Biologie arbeiten, sollten also auch bei diesem Material funktionieren und es auf natürliche Weise abbauen.“

Im Labor stellte das Team fest, dass sich das Material innerhalb weniger Tage in saurer Lösung zersetzt. Jetzt untersuchen sie, was passiert, wenn sie dieses Material im Boden vergraben, was das Los vieler Post-Consumer-Kunststoffe ist.

Sie haben gezeigt, dass das Material auf Proteinbasis eine Vielzahl von kunststoffähnlichen Produkten bilden kann, darunter Kaffeetassendeckel und dünne transparente Folien. Es könnte auch zur Herstellung von feuerfesten Dachziegeln oder höherwertigen Materialien wie Autotüren, Raketenspitzen oder Herzklappen verwendet werden.

Die nächsten Schritte für diese Technologie bestehen darin, ihre mechanischen Eigenschaften, wie Festigkeit oder Flexibilität, sowie ihre Toxizität weiter zu testen.

„Ich denke, wir brauchen ein soziales Bewusstsein dafür, dass wir keine toxischen Substanzen in die Umwelt bringen dürfen“, sagt Kumar. „Das geht einfach nicht. Wir müssen damit aufhören. Und wir können auch keine Materialien verwenden, die aus fossilen Brennstoffen stammen.“

Kumars zweite Technologie beruht auf einem ähnlichen Prinzip, verwendet aber nicht nur Proteine, sondern solche, die mit Naturfasern, insbesondere Baumwolle, verstärkt sind.

„Durch die sich schnell verändernde Modeindustrie entsteht jedes Jahr eine Menge Textilabfall“, sagt Kumar. „Warum sollten wir diese Abfälle nicht nutzen, um nützliche Materialien herzustellen - Abfall in Wohlstand umzuwandeln.“

Genau wie die kunststoffähnlichen Proteinmaterialien (Proteios, abgeleitet von den griechischen Originalwörtern) erwartet Kumar, dass die aus Proteinen und Naturfasern hergestellten Verbundmaterialien biologisch abbaubar sind, ohne toxische Abfälle zu produzieren.

Im Labor hat Kumars ehemaliger Student, der Doktorand Adekeye Damilola, viele Objekte aus Protein-Gewebe-Verbundstoffen hergestellt, darunter kleine Schuhe, Tische, Blumen und Stühle. Dieses Material enthält Textilfasern, die als Bindemittel für die Proteine dienen, und nicht die Vernetzungschemikalien, die Kumar für die proteinbasierten Kunststoffe verwendet.

Die Querverbindung verleiht dem neuartigen Material die Festigkeit, die es braucht, um dem Gewicht standzuhalten, das beispielsweise auf einem Stuhl oder Tisch lastet. Die natürliche Affinität zwischen Fasern und Proteinen ist der Grund, warum es so schwierig ist, Lebensmittelflecken aus der Kleidung zu entfernen. Die gleiche Anziehungskraft sorgt für starke Materialien aus Proteinfasern.

Kumars Team hat zwar bisher nur mit Baumwolle gearbeitet, geht aber davon aus, dass sich andere Fasermaterialien wie Hanffasern oder Jute aufgrund ihrer inhärenten, jedoch ähnlichen chemischen Eigenschaften wie Baumwolle auch so verhalten würden.

„Das Protein haftet auf natürliche Weise an der Oberfläche des Materials“, sagt Kumar. „Wir nutzten diese Erkenntnis, um zu sagen: 'Hey, wenn es sich so fest an Baumwolle bindet, warum machen wir dann nicht ein Material daraus? Und es funktioniert, es funktioniert erstaunlich."

Mit der Unterstützung von TCS sucht Professor Kumar derzeit nach Industriepartnern, um diese Technologien auf den Markt zu bringen. Für weitere Informationen wenden Sie sich bitte an Michael Invernale unter michael.invernale@uconn.edu.

Weitere Informationen:
Polymere Kunststoffe Naturfasern Baumwolle
Quelle:

Anna Zarra Aldrich '20 (CLAS), Büro des Vizepräsidenten für Forschung

LED-Kleid verbindet 3D-Druck und futuristische Mode Fotos von Natalie Cartz , Model Perpetua Sermsup Smith, Make-Up Artist Yaying Zheng
20.11.2023

LED-Kleid verbindet 3D-Druck und futuristische Mode

  • Die Designerin Anouk Wipprecht kooperiert mit Chromatic 3D Materials und entwickelt ein leuchtendes, bewegungsaktiviertes Display.

Chromatic 3D Materials, ein Unternehmen für 3D-Drucktechnologie, und die niederländische Hightech-Modedesignerin Anouk Wipprecht haben ein neues futuristisches 3D-gedrucktes Kleid vorgestellt, das über LEDs auf seine Umgebung reagiert. Das bewegungsaktivierte Design ist eines der ersten Kleidungsstücke der Welt, bei dem Elektronik direkt in 3D-gedruckte Elastomere eingebettet ist. Es veranschaulicht, wie die Zukunft des kreativen Schaffens und der sozialen Interaktion aussehen könnten, wenn der Mensch weiter mit der Technologie verschmilzt. Wipprechts Entwurf wurde auf der Formnext, der Veranstaltung zum 3D-Druck in Deutschland, präsentiert.

  • Die Designerin Anouk Wipprecht kooperiert mit Chromatic 3D Materials und entwickelt ein leuchtendes, bewegungsaktiviertes Display.

Chromatic 3D Materials, ein Unternehmen für 3D-Drucktechnologie, und die niederländische Hightech-Modedesignerin Anouk Wipprecht haben ein neues futuristisches 3D-gedrucktes Kleid vorgestellt, das über LEDs auf seine Umgebung reagiert. Das bewegungsaktivierte Design ist eines der ersten Kleidungsstücke der Welt, bei dem Elektronik direkt in 3D-gedruckte Elastomere eingebettet ist. Es veranschaulicht, wie die Zukunft des kreativen Schaffens und der sozialen Interaktion aussehen könnten, wenn der Mensch weiter mit der Technologie verschmilzt. Wipprechts Entwurf wurde auf der Formnext, der Veranstaltung zum 3D-Druck in Deutschland, präsentiert.

Wipprechts avantgardistisches Design verdeutlicht das Potenzial der 3D-Drucktechnologie und des Chroma-Flow 70™-Materials von Chromatic für die kommerzielle Nutzung. Die Designerin verwendete 3D-Druck, um fast 75 flexible LED-Kuppeln ohne Klebstoff oder Nähte auf dem Stoff des Kleides zu befestigen. Diese Fähigkeit könnte zur Herstellung von innovativer Laufbekleidung, Taschen, Schuhen und anderen Produkten genutzt werden, z. B. für die Innenausstattung von Fahrzeugen und in der Luft- und Raumfahrt, für Outdoor-Freizeitausrüstung und persönliche Schutzausrüstung.

Das besondere Kleidungsstück demonstriert auch die Flexibilität der Materialien von Chromatic. Im Gegensatz zu anderen 3D-gedruckten Materialien, die in der Regel spröde und hart sind, besteht das Kleid aus ChromaFlow 70™, einem biegsamen, hitzebeständigen Material, das sich um mehr als das Vierfache seiner Länge dehnen kann, ohne zu reißen. Durch diese Flexibilität eignet es sich zum Hinzufügen weicher und nahtloser struktureller, funktionaler und ästhetischer Elemente, die für Intim- und Freizeitkleidung, Sport- und Badebekleidung und andere Kleidungsstücke geeignet sind, bei denen Komfort, Silhouette und Haltbarkeit von entscheidender Bedeutung sind.

„Die Verwendung der 3D-Materialien von Chromatic für den Druck bietet zahlreiche Optionen für die Modeindustrie. Für Designer wie mich, die Elektronik in ihre Kreationen einbauen, bietet es eine einzigartige Möglichkeit, elektronische Teile in den Druckprozess einzubetten und zu sichern", sagt Anouk Wipprecht. "Dies ist mein bisher tragbarstes - und waschbarstes - 3D-gedrucktes Kleid! Da die Elektronik eingeschlossen ist, erlaubt mir das Material, meine LED-Lichter zu streuen, und das Elastomer ist sowohl flexibel als auch stark - und lässt sich daher hervorragend mit Stoffen verbinden.“

„Diese Zusammenarbeit ist mehr als eine Partnerschaft - sie ist eine Vision, die zum Leben erwacht. Indem wir die Genialität von Anouk Wipprecht mit unserem innovativen 3D-Druck verbinden, setzen wir einen Präzedenzfall für die Zukunft der Mode. Wir begeben uns auf eine Reise, die die grenzenlose Integration von Technologie und Kunst verstärkt und Türen für unendliche Möglichkeiten und Anwendungen in der Textil- und Modeindustrie öffnet", sagt Cora Leibig, Gründerin und CEO von Chromatic 3D Materials.

Quelle:

Chromatic 3D Materials

Vom MIT zum Burning Man: Der Living Knitwork Pavilion Credit Irmandy Wicaksono
24.10.2023

Vom MIT zum Burning Man: Der Living Knitwork Pavilion

Vor der gewaltigen und surrealen Kulisse der Black Rock Desert in Nevada findet alljährlich der Burning Man statt, der die flache, karge Wüste in einen riesigen Spielplatz für künstlerischen und kreativen Ausdruck verwandelt. Die "Burners" kommen hierher, um die flüchtige Black Rock City, die die Teilnehmer jedes Jahr aufs Neue errichten, zu erleben und mitzugestalten. Mit ihren zahllosen Kunstinstallationen und Performances ist die Black Rock City ein temporäres Zuhause für kreative Köpfe aus der ganzen Welt.

Vor der gewaltigen und surrealen Kulisse der Black Rock Desert in Nevada findet alljährlich der Burning Man statt, der die flache, karge Wüste in einen riesigen Spielplatz für künstlerischen und kreativen Ausdruck verwandelt. Die "Burners" kommen hierher, um die flüchtige Black Rock City, die die Teilnehmer jedes Jahr aufs Neue errichten, zu erleben und mitzugestalten. Mit ihren zahllosen Kunstinstallationen und Performances ist die Black Rock City ein temporäres Zuhause für kreative Köpfe aus der ganzen Welt.

Unter den großformatigen Kunstwerken befand sich in diesem Jahr der Living Knitwork Pavilion, ein ungewöhnliches architektonisches Werk, das aus gestrickten Textilien und einem Holzgitter gefertigt wurde. Die Installation wurde von einem Forscherteam des MIT Media Lab und der MIT School of Architecture and Planning unter der Leitung der Doktorandin Irmandy Wicaksono entwickelt und gebaut und mit dem Black Rock City Honorarium 2023 ausgezeichnet. Für das Team war es ein äußerst anspruchsvolles und erfüllendes Projekt, das viele neue Erkenntnisse und Überraschungen bot. Zu erleben, wie die Installation mitten in der Wüste entstanden ist und erstrahlt, war wirklich magisch.

Im Living Knitwork Pavilion sind 12 modulare Stoffbahnen, die so genannten Knitwork Petals (gestrickte Blütenblätter), durch einen zentralen Turm miteinander verbunden. Die gesamte Installation bildet eine zwölfeckige pyramidenförmige Schattenstruktur, die 18 Fuß hoch und 26 Fuß breit ist und an ein Tipi erinnert. Die Stoffe wurden mit Hilfe von digitalem Strickmaschinen und einer Sammlung von funktionellen und herkömmlichen Garnen, einschließlich photochromer, leuchtender und leitfähiger Garne, entwickelt. Wicaksono ließ sich von den komplizierten Textilmustern und Tempelschnitzereien in Indonesien inspirieren und nutzte die Spannung zwischen gestrickten Polyester- und Spandexgarnen, um textile Texturmuster oder Reliefs zu schaffen. Die Verschmelzung von parametrischen und handgefertigten Motiven verwandelt das "Living Knitwork" in ein erzählerisches Kunstwerk, das sowohl die Ehrfurcht vor der alten Kunst als auch eine Vision für die Zukunft widerspiegelt. Diese Reliefs voller Symbole und Illustrationen stellen 12 Geschichten der Zukunft dar - von Solarpunk-Städten und Bio-Maschinen-Schnittstellen bis hin zur Tiefsee und Weltraumforschung.

Burning Man und die Black Rock Wüste sind für ihre Kletteren-thusiasten und starken Winde bekannt. Da solche Windböen dazu führen können, dass sich Stoffe wie Segel verhalten und eine erhebliche Kraft ausüben, entwarf das Team eine Struktur, die das Körpergewicht vieler Kletterer tragen und Windgeschwindigkeiten von bis zu 70 mph standhalten kann.

Die fertige Mittelstruktur des Pavillons besteht aus einem asymptotischen Gittergeflecht aus Holz- und Verbindungselementen, das für die statische Festigkeit optimiert ist und gleichzeitig den Materialverbrauch minimiert. Die gestrickten Blütenblätter, die mit einer doppelt gestrickten Struktur und Netzöffnungen integriert und durch das Schmelzen von Garnen thermogeformt wurden, sorgen für strukturelle Stabilität. Maßgeschneiderte Kanäle für Seile und Kabel wurden ebenfalls in das Strickdesign integriert, um sicherzustellen, dass jedes Gewebe und jede elektrische Komponente sicher verankert und geschützt ist, ohne die ästhetische Gestaltung zu beeinträchtigen. Der Living Knitwork Pavillon, der dieses Jahr Windstärken von bis zu 36 mph ausgesetzt war, blieb während der gesamten Burning Man-Veranstaltung standhaft und bewies damit seine Widerstandsfähigkeit unter extremen Wüstenbedingungen.

Zur Unterstützung von Burning Man's Anliegen einer nachhaltigeren Kunst, nutzte der Living Knitwork Pavillon die additive Fertigung von digitalem Stricken. Diese Methode ermöglichte die Herstellung individueller, mehrschichtiger Textilien, die sowohl ästhetisch als auch funktional sind, während gleichzeitig der Verbrauch von Rohstoffen und Abfall minimiert wurde. Das Team verwendete für seine Stoffe recycelte Materialien, wobei 60 Prozent der Garne aus recycelten Plastikflaschen stammen. Der Pavillon wird außerdem vollständig mit Batterieenergie und Solarzellen betrieben. Das Team arbeitete mit der Solar Library zusammen, einem skulpturalen Solarpanel, das Energie an andere Kunstwerke auf der Playa verteilt, um Generatoren und Lärm zu vermeiden und gleichzeitig die Nutzung erneuerbarer Energiequellen zu fördern.

Tagsüber dient der Living Knitwork Pavilion als Schattenspender und gemeinschaftlichee Raum für Meditati-on und Entdeckungen. Wenn sich die Sonne im Laufe des Tages weiterbewegt, werden verborgene, verschlüsselte Textilmuster und visuelle Erfahrungen durch Photochromie und leuchtendes Glühen enthüllt. Wenn die Dämmerung über der Wüste hereinbricht, vollzieht der Pavillon eine Metamorphose und beleuchtet seine Umgebung durch ein beeindruckendes Licht- und Audiosystem. Durch ein verteiltes Netzwerk von Antennen, die in die zentrale Struktur und in jedes gestrickte Blütenblatt eingebettet sind, wollte das Team letztlich eine persönliche Erfahrung schaffen, die es individuellen und kollektiven Bewegungen und Aktivitäten ermöglicht, das Gesamtambiente des Raums zu beeinflussen, einschließlich Klang und Beleuchtung

Während des gesamten Burning Man fanden im Pavillon auch Pop-up-Events statt, von Yoga-Sitzungen über Tanzvorführungen und Live-Musik bis hin zu einer Hochzeitszeremonie. Leider wurde die Black Rock Desert in den letzten beiden Tagen der Veranstaltung von einem heftigen Regenschauer heimgesucht - eine Seltenheit für diese Veranstaltung. Diese klimatische Wendung wirkte sich jedoch positiv auf den Pavillon aus, da die Textiloberfläche von dem angesammelten Staub befreit wurde und ihre leuchtend blaue Farbe wieder auflebte.

Das Ergebnis dieses umfassenden Projekts ist eine Zusammenarbeit, die Grenzen zwischen den Disziplinen überschreitet. Das Forschungsteam möchte Communities zusammenbringen und die bemerkenswerten Möglichkeiten aufzeigen, die sich ergeben, wenn Architektur, Technologie und Textilkunst zusammenkommen.

The interdisciplinary group behind the Living Knitwork Pavilion includes researchers from across the Media Lab, the MIT Center for Bits and Atoms, and the Department of Architecture: Irmandy Wicaksono, Sam Chin, Alfonso Parra Rubio, Nicole Bakker, Erik Strand, Gabriela Advincula, Manaswi Mishra, Age van der Mei, Judyta Cichoka, Tongge Yu, and Angelica Zhang.  

 

Quelle:

Massachusetts Institute of Technology MIT News

offshore windpark Nicholas Doherty, unsplash
17.10.2023

Recyclinglösung für Faserverbundwerkstoffe durch Pyrolyse

Nach 20 bis 30 Jahre haben Windenergieanlagen ihre Lebensdauer erreicht. Anschließend werden sie abgebaut und dem Recyclingverfahren zugeführt. Allerdings ist das Recycling der Faserverbundwerkstoffe, insbesondere aus dickwandigen Rotorblattteilen, bislang unzureichend. Stand der Technik ist die thermische oder mechanische Verwertung. Für einen nachhaltigen und ganzheitlichen Recyclingprozess bündelt ein Forschungskonsortium unter der Leitung des Fraunhofer IFAM ihr Know-how, um die eingesetzten Fasern durch Pyrolyse zurückzugewinnen. Eine anschließende Oberflächenbehandlung und Qualitätsprüfung der Rezyklate ermöglichen die erneute industrielle Anwendung.

Nach 20 bis 30 Jahre haben Windenergieanlagen ihre Lebensdauer erreicht. Anschließend werden sie abgebaut und dem Recyclingverfahren zugeführt. Allerdings ist das Recycling der Faserverbundwerkstoffe, insbesondere aus dickwandigen Rotorblattteilen, bislang unzureichend. Stand der Technik ist die thermische oder mechanische Verwertung. Für einen nachhaltigen und ganzheitlichen Recyclingprozess bündelt ein Forschungskonsortium unter der Leitung des Fraunhofer IFAM ihr Know-how, um die eingesetzten Fasern durch Pyrolyse zurückzugewinnen. Eine anschließende Oberflächenbehandlung und Qualitätsprüfung der Rezyklate ermöglichen die erneute industrielle Anwendung.

Windenergieanlagen lassen sich bereits heute zu sehr großen Teilen sauber recyceln. Bei den Rotorblättern steht das Recycling jedoch erst am Anfang. Aufgrund der Nutzungsdauer von ca. 20 Jahren sind in den kommenden Jahren und Jahrzehnten steigende Rotorblattmengen zu erwarten, die einer möglichst hochwertigen Verwertung zugeführt werden müssen. Im Jahr 2000 wurden beispielsweise ca. 6.000 Windenergieanlagen in Deutschland errichtet, die jetzt einem nachhaltigen Recyclingverfahren zugeführt werden müssen. Insgesamt waren im Jahr 2022 allein in Deutschland etwa 30.000 Windenergieanlagen an Land und auf See mit einer Leistung von 65 Gigawatt im Einsatz. [1]

Da die Windenergie die wichtigste Säule für eine klimaneutrale Stromversorgung ist, hat sich die Bundesregierung zum Ziel gesetzt, den Ausbau bis 2030 mit größeren und moderneren Anlagen weiter zu steigern. Die Offshore-Rotorblätter werden länger, der Anteil an eingesetzten Kohlenstofffasern wird weiter steigen – und somit auch die Abfallmengen. Zudem ist für die Zukunft zu erwarten, dass der bestehende Materialmix in den Rotorblättern zunimmt und zum Recycling genaue Kenntnisse über den Aufbau der Komponenten noch wichtiger werden. Dies unterstreicht die Dringlichkeit, insbesondere für das Recycling der dickwandigen Faserverbundwerkstoffe in den Rotorblättern, nachhaltige Aufbereitungsverfahren zu entwickeln.

 
Ökonomische und ökologische Recyclinglösung für Faserverbundwerkstoffe in Sicht
Rotorblätter der jetzt zum Recycling anstehenden Windenergieanlagen setzen sich mit über 85 Gewichtsprozent aus glas- und kohlefaserverstärkten Duroplasten (GFK/CFK) zusammen. Ein großer Anteil dieser Materialien befindet sich im Flansch- und Wurzelbereich sowie innerhalb der faserverstärkten Gurte als dickwandige Laminate mit Wandstärken von bis zu 150 mm. Die Erforschung des hochwertigen stofflichen Faserrecyclings als Endlosfaser ist nicht zuletzt wegen des Energiebedarfs zur Kohlenstofffaserproduktion von besonderer Bedeutung. Hier setzt das vom Bundesministerium für Wirtschaft und Klimaschutz geförderte Projekt »Pyrolyse dickwandiger Faserverbundwerkstoffe als Schlüsselinnovation im Recyclingprozess für Rotorblätter von Windenergieanlagen« – kurz »RE SORT« – an. Ziel des Projektteams ist das vollständige Recycling mittels Pyrolyse.

Voraussetzung für eine hochwertige Verwertung der Faserverbundwerkstoffe ist die Trennung der Fasern von der zumeist duroplastischen Matrix. Die Pyrolyse ist für diesen Prozess zwar ein geeignetes Verfahren, konnte sich aber bislang nicht durchsetzen. Innerhalb des Projekts untersuchen und entwickeln die Projektpartner daher Pyrolysetechnologien, die das Recycling von dickwandigen Faserverbundstrukturen wirtschaftlich ermöglichen und sich von den heute üblichen Verwertungsverfahren für Faserverbundwerkstoffe technisch unterscheiden. Dabei werden sowohl eine quasikontinuierliche Batch- als auch die Mikrowellen-Pyrolyse betrachtet.

Bei der Batch-Pyrolyse, die innerhalb des Vorhabens entwickelt wird, handelt es sich um einen Pyrolyseprozess, in dem die duroplastische Matrix dicker Faserverbundbauteile durch externe Erhitzung in ölige und vor allem gasförmige Kohlenwasserstoffverbindungen langsam zersetzt wird. Bei der Mikrowellenpyrolyse erfolgt die Energiezufuhr durch die Absorption von Mikrowellenstrahlung, sodass es zu einer inneren schnellen Wärmeentwicklung kommt. Die quasikontinuierliche Batch-Pyrolyse als auch die Mikrowellenpyrolyse erlauben die Abscheidung von Pyrolysegasen bzw. – ölen. Die geplante Durchlauf-Mikrowellenpyrolyse ermöglicht zudem den Erhalt und die Wiederverwendung der Fasern in ihrer gesamten Länge.

 
Wie die Kreislaufwirtschaft gelingt – ganzheitliche Verwertung der gewonnenen Recyclingprodukte
In einem nächsten Schritt werden die Oberflächen der zurückgewonnenen Rezyklatfasern mittels atmosphärischer Plasmen und nasschemischer Beschichtungen aufbereitet, um einer erneuten industriellen Anwendung zugeführt werden zu können. Anhand von Festigkeitsuntersuchungen lässt sich schließlich entscheiden, ob die Rezyklatfasern erneut in der Windenergie oder beispielsweise im Automobilbau oder im Sportartikelbereich Einsatz finden.

Die in der Batch- und Mikrowellenpyrolyse gewonnenen Pyrolyseöle und Pyrolysegase werden bezüglich der Nutzbarkeit als Rohstoff für die Polymersynthese (Pyrolyseöle) oder als Energiequelle zur energetischen Nutzung in Blockheizkraftwerken (BHKW) (Pyrolysegase) bewertet.

Sowohl die quasikontinuierliche Batch-Pyrolyse als auch die Durchlauf-Mikrowellenpyrolyse versprechen einen wirtschaftlichen Betrieb und eine maßgebliche Verringerung des ökologischen Fußabdrucks bei der Entsorgung von Windenergieanlagen. Daher stehen die Chancen für eine technische Umsetzung und Verwertung der Projektergebnisse sehr gut, sodass mit diesem Projekt ein entscheidender Beitrag zum Erreichen der Nachhaltigkeits- und Klimaziele der Bundesregierung geleistet werden kann.

Quelle:

Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM

Ein kurzer Check mit dem Smartphone und der integrierten Spektralanalyse erkennt das Gewebe des Kleidungsstücks. Foto: © Fraunhofer IPMS. Ein kurzer Check mit dem Smartphone und der integrierten Spektralanalyse erkennt das Gewebe des Kleidungsstücks.
10.10.2023

Kleider-Check mit Smartphone, KI und Infrarot-Spektroskopie

Fraunhofer-Forschende haben ein ultrakompaktes Nah-Infrarot-Spektrometer entwickelt, das sich für die Analyse und Bestimmung von Textilien eignet. Durch die Kombination von Bildgebung, speziellen KI-Algorithmen (KI, Künstliche Intelligenz) und Spektroskopie lassen sich auch Mischgewebe zuverlässig erkennen. Die Technologie könnte das Recycling von Altkleidern optimieren und eine sortenreine Trennung von Altkleidern ermöglichen. Eine miniaturisierte Variante des Systems passt sogar in Smartphones. Dadurch könnten sich für Konsumenten zahlreiche neue Anwendungen im Alltag ergeben – vom Kleider-Check beim Shopping bis zur Prüfung auf Plagiate.

Fraunhofer-Forschende haben ein ultrakompaktes Nah-Infrarot-Spektrometer entwickelt, das sich für die Analyse und Bestimmung von Textilien eignet. Durch die Kombination von Bildgebung, speziellen KI-Algorithmen (KI, Künstliche Intelligenz) und Spektroskopie lassen sich auch Mischgewebe zuverlässig erkennen. Die Technologie könnte das Recycling von Altkleidern optimieren und eine sortenreine Trennung von Altkleidern ermöglichen. Eine miniaturisierte Variante des Systems passt sogar in Smartphones. Dadurch könnten sich für Konsumenten zahlreiche neue Anwendungen im Alltag ergeben – vom Kleider-Check beim Shopping bis zur Prüfung auf Plagiate.

Infrarot-Spektrometer sind leistungsstarke Messinstrumente, wenn es darum geht, organische Materialien zerstörungsfrei zu analysieren. Jetzt hat das Fraunhofer-Institut für Photonische Mikrosysteme IPMS in Dresden ein Spektralanalyse-System entwickelt, das Textilgewebe analysiert und erkennt. Auch Mischgewebe erkennt das System zuverlässig. Die Anwendungsmöglichkeiten reichen vom Materialcheck beim Kauf über das korrekte Reinigen der Kleidung bis hin zum nachhaltigen und sortenreinen Recycling. Das Spektrometer ist so klein, dass es sich in ein Smartphone integrieren lässt.

Um die nötige Zuverlässigkeit und Präzision bei der Bestimmung von Textilien zu erreichen, setzen die Fraunhofer-Forschenden auf die Nah-Infrarot-Spektroskopie (NIR). Das System arbeitet mit Wellenlängen zwischen 950 und 1900 Nanometer, also nah am sichtbaren Spektralbereich. Vorteile der Nah-Infrarot-Technik sind die einfache Handhabung und die vielfältigen Einsatzgebiete. »Wir kombinieren NIR-Spektroskopie mit Bildgebung und KI und erreichen so eine höhere Genauigkeit bei der Erkennung und Bewertung von Objekten«, erklärt Dr. Heinrich Grüger, wissenschaftlicher Mitarbeiter der Abteilung Sensorische Mikromodule am Fraunhofer IPMS.

So funktioniert die Textilanalyse
Im ersten Schritt wird ein Bild des Kleidungsstücks mit einem herkömmlichen Kameramodul aufgenommen. Die KI wählt aus den Bildinformationen des Textilgewebes einen prägnanten Punkt, der vom Spektralanalyse-Modul untersucht werden soll. Das vom Stoff reflektierte Licht wird vom Spektrometer-Modul erfasst. Dort dringt es durch einen Eintrittsspalt, wird mit einem Kollimations-Spiegel in parallele Lichtstrahlen gebracht und über einen Scanner-Spiegel auf ein Gitter gelenkt. Je nach Ein- und Austrittswinkel teilt das Gitter die Lichtstrahlen in verschiedene Wellenlängen auf. Das vom Gitter reflektierte Licht wird über den Scanner-Spiegel auf einen Detektor geleitet, der das Licht als elektrisches Signal erfasst. Dann digitalisiert ein A/D-Wandler (Analog-Digital) die Signale, die schließlich im Signalprozessor ausgewertet werden. Das so entstehende spektrometrische Profil des Textilgewebes verrät durch Abgleich mit einer Referenzdatenbank, um welche Fasern es sich handelt. »Das optische Auflösungsvermögen liegt bei 10 Nanometer. Durch die hohe Auflösung kann das NIR-Spektrometer mithilfe von KI auch Mischgewebe wie etwa Kleidungsstücke aus Polyester und Baumwolle bestimmen«, sagt Grüger. Mit einer Fläche von 10 mal 10 und einer Höhe von 6,5 Millimeter ist das System so kompakt, dass man es problemlos in ein handelsübliches Smartphone integrieren könnte.

Recycling von Altkleidern
Eine wichtige Anwendung für das KI-gesteuerte Spektrometer sieht Grüger vor allem im Recycling. Nach Angaben des Statistischen Bundesamts wurden 2021 bei den privaten Haushalten in Deutschland rund 176 200 Tonnen Textil- und Bekleidungsabfälle gesammelt. Durch die NIR-Spektroskopie könnte das Recycling optimiert und der Altkleiderberg reduziert werden. Altkleiderverwerter hätten dann die Möglichkeit, Kleidung besser und schneller zu sortieren. Textilien, die noch intakt sind, gehen beispielsweise in den Second-Hand-Handel. Beschädigte Textilien werden sortenrein recycelt und die darin enthaltenen Fasern wie Leinen, Seide, Baumwolle oder Lyocell wiederverwendet. Hoffnungslos verschmutzte Textilwaren würden thermisch verwertet oder beispielsweise zu Dämmmatten verarbeitet. Die Spektroskopie-Technik erledigt das Bestimmen und Sortieren der Textilien genauer und deutlich schneller als ein Mensch.

Wird die NIR-Spektroskopie in ein Smartphone integriert, könnten auch Konsumenten von der Technik des Fraunhofer-Instituts profitieren. Beim Kauf von Kleidern zeigt ein schneller Check mit dem Smartphone, ob der teure Seidenschal auch wirklich aus Seide ist und das exklusive Kleid des Modelabels nicht vielleicht doch ein Plagiat, das sich durch eine andere Gewebemischung verrät. Und sollte einmal das Etikett mit den Reinigungshinweisen nicht mehr lesbar sein, hilft das Smartphone via Textilscanner, das Gewebe zu identifizieren und damit den passenden Waschgang einzustellen.

Lebensmittel-Check und Dermatologie
Für die Forschenden aus dem Fraunhofer IPMS sind auch Anwendungen außerhalb des Textilbereichs denkbar. Mit Spektrometer ausgestattete Smartphones können beim Kauf von Lebensmitteln wie Gemüse und Obst Auskunft über die Qualität geben. Außerdem wäre es denkbar, die Technik für die Untersuchung der Haut einzusetzen. Ein schneller Scan mit dem Handy-Spektrometer könnte besonders trockene oder fettige Stellen identifizieren. Selbst Anwendungen in der medizinischen Diagnose etwa bei der Untersuchung von Stellen auf der Haut, bei denen der Verdacht auf ein Melanom besteht, ließen sich realisieren, hier allerdings mit fachärztlicher Unterstützung.

Bei der Entwicklung kommt dem Fraunhofer-Team jahrzehntelange Erfahrung mit dem Bau von NIR-Spektrometern in MEMS-Technik (Micro-Electro-Mechanical Systems) zugute. »Über die Jahre ist es uns gelungen, die großen Spektroskopie-Geräte aus dem Labor mit MEMS-Technologie so zu verkleinern, dass sie auch für den mobilen Einsatz geeignet sind«, sagt Grüger. Er hatte bereits im Jahr 2000 gemeinsam mit dem heutigen Institutsleiter Prof. Harald Schenk das Scanning-Grating-Spektrometer erfunden, das noch heute als Einstieg in die MEMS-Spektroskopie gilt.

Quelle:

Fraunhofer-Institut für Photonische Mikrosysteme

TiHive gewinnt RISE® Innovationspreis für seine SAPMonit Technologie Foto INDA
03.10.2023

TiHive gewinnt RISE® Innovationspreis für SAPMonit Technologie

Auf der RISE®-Konferenz (Research, Innovation & Science for Engineered Fabrics) am 26. und 27. September in Raleigh, NC, trafen sich Führungskräfte aus der Wirtschaft, Produktentwickler und Technologie-Scouts, um zwei Tage lang wertvolle Einblicke in Materialwissenschaft, Prozess- und Nachhaltigkeitsinnovationen zu erhalten. Die RISE wird gemeinsam von der INDA und dem Nonwovens Institute der North Carolina State University organisiert.

Experten aus Industrie, Hochschulen und Behörden tauschten ihr Fachwissen zu folgenden Schlüsselbereichen aus:

Auf der RISE®-Konferenz (Research, Innovation & Science for Engineered Fabrics) am 26. und 27. September in Raleigh, NC, trafen sich Führungskräfte aus der Wirtschaft, Produktentwickler und Technologie-Scouts, um zwei Tage lang wertvolle Einblicke in Materialwissenschaft, Prozess- und Nachhaltigkeitsinnovationen zu erhalten. Die RISE wird gemeinsam von der INDA und dem Nonwovens Institute der North Carolina State University organisiert.

Experten aus Industrie, Hochschulen und Behörden tauschten ihr Fachwissen zu folgenden Schlüsselbereichen aus:

  • Die Zukunft der Vliesstoffherstellung
  • Praktische Anwendungen und Fortschritte bei Filtermedien
  • rPolymere und Nachhaltigkeit
  • Innovative Strategien und Kreislauflösungen
  • Fortschritte bei nachhaltigen Vliesstoffanwendungen
  • Marktstatistiken und Datentrends

Ein Highlight war eine Posterpräsentation der grundlegenden Vliesstoff-Forschung durch die Studenten des Nonwovens Institute. Als zusätzliches Angebot offerierte das Nonwovens Institute den RISE-Teilnehmern eine Führung durch seine weltweit anerkannten Einrichtungen auf dem Centennial Campus der North Carolina State University, die über die umfangreichste Ausstattung im Labor- und Pilotmaßstab verfügen, einschließlich aller Vliesstoffplattformen und Testtechnologien.

Gewinner des RISE®-Innovationspreises
TiHive hat den RISE Innovation Award 2023 für seine SAPMonit-Technologie gewonnen. Die Innovation von TiHive, SAPMonit - ein technologischer Durchbruch - prüft wöchentlich Millionen von Windeln. SAPMonit ermöglicht eine blitzschnelle Inline-Inspektion von Gewicht und Verteilung der Superabsorber, optimiert die Ressourcen, erkennt Fehler und beschleunigt Forschung und Entwicklung. SAPMonit nutzt fortschrittliche, intelligente Kameras, Hochgeschwindigkeits-Vision-Algorithmen und eine sichere Cloud-Integration und revolutioniert damit die Industrienormen. SAPMonit hat ein großes Potenzial für Nachhaltigkeit, Kostensenkung und verbesserte Kundenzufriedenheit, da pro Maschine Hunderte von Tonnen Kunststoffabfall pro Jahr vermieden werden.

Zu den Finalisten des RISE Innovation Award gehörten Curt. G. Joa, Inc. für ihren ESC-8 - The JOA® Electronic Size Change, Fiberpartner Aps für ihre BicoBio Fiber und Reifenhäuser REICOFIL GmbH & Co. KG für ihr Reifenhäuser Reicofil RF5 XHL.  Zusammen haben die Innovationen dieser Finalisten das Potenzial, den Kunststoffabfall um Millionen von Kilogramm zu reduzieren.

DiaperRecycle erhielt den RISE® Innovation Award 2022 für seine innovative Technologie zur Wiederverwertung gebrauchter Windeln zu saugfähigem und spülbarem Katzenstreu. Durch die Rücknahme gebrauchter Windeln aus Haushalten und Einrichtungen und die Trennung von Plastik und Fasern ist DiaperRecycle in der Lage, die klimaschädlichen Emissionen von Windeln aus Mülldeponien zu verringern.

2023 INDA Lifetime Technical Achievement Award
Ed Thomas, Präsident von Nonwoven Technology Associates, LLC, erhielt den INDA Lifetime Technical Achievement Award 2023 für seine jahrzehntelangen Beiträge zum Wachstum und Erfolg der Vliesstoffindustrie.

RISE 2024 findet vom 1. bis 2. Oktober 2024 in der James B. Hunt Jr. Library der North Carolina State University in Raleigh, NC, statt.

Weitere Informationen:
INDA RISE® Vliesstoffe
Quelle:

INDA

Carbon U Profil (c) vombaur GmbH & Co. KG
19.09.2023

„Ein Raumschiff wird ja nicht von der Stange gefertigt.“

vombaur-Pioniere für Spezialtextilien im Interview
Technische Schmaltextilien, Speziallösungen, mittelständischer Textilproduzent und Entwicklungspartner für Filtration Textiles, Composite Textiles und Industrial Textiles: vombaur. Digitalisierung, Nachhaltigkeit, Energiepreise, Pionierarbeit und ungebrochene Begeisterung – Textination sprach mit zwei leidenschaftlichen Textilern: Carl Mrusek, Chief Sales Officer (CSO), und Johannes Kauschinger, Sales Manager für Composites und Industrietextilien, in der vombaur GmbH, die wie JUMBO-Textil zur Textation Group gehört.
 

vombaur-Pioniere für Spezialtextilien im Interview
Technische Schmaltextilien, Speziallösungen, mittelständischer Textilproduzent und Entwicklungspartner für Filtration Textiles, Composite Textiles und Industrial Textiles: vombaur. Digitalisierung, Nachhaltigkeit, Energiepreise, Pionierarbeit und ungebrochene Begeisterung – Textination sprach mit zwei leidenschaftlichen Textilern: Carl Mrusek, Chief Sales Officer (CSO), und Johannes Kauschinger, Sales Manager für Composites und Industrietextilien, in der vombaur GmbH, die wie JUMBO-Textil zur Textation Group gehört.
 
Wer auf Ihre Geschichte und damit bis in die Anfänge des 19. Jahrhunderts zurückschaut, sieht eine Bändermanufaktur und ab 1855 eine Fabrikation von Seiden- und Hutbändern. Heute produzieren Sie Filtra¬tionstextilien, Industrietextilien und Textilien für Verbundstoffe. Zwar fertigen Sie auch heute noch Schmaltextilien, aber das Motto „Transformation als Chance“ scheint bei vombaur gelebte Realität.
 
Carl Mrusek, Chief Sales Officer: Ja, vombaur hat sich in seiner fast 220-jährigen Unternehmensgeschichte einige Male verwandelt. Dabei ist sich das Unternehmen als Schmaltextiler immer treu geblieben. Das zeugt von der Veränderungsbereitschaft bei den Menschen im Unternehmen und von ihrer Neugier. Erfolgreiche Transformation ist eine gemeinsame Entwicklung, es liegt eine Chance in der Veränderung. Das hat vombaur in den vergangenen fast 220 Jahren schon häufig bewiesen: Wir haben unsere Produkt-Portfolio an neue Zeiten angepasst, wir haben neue Fabrikgebäude und neue Maschinenparks errichtet, haben neue Materialien eingeführt und neue Technologien entwickelt, wir sind neue Partnerschaften – wie zuletzt als Teil der Textation Group – eingegangen. Aktuell planen wir unsere neue Zentrale. Wir erfinden uns damit nicht neu, aber eine Art Transformationsprozess werden wir auch mit dem Umzug in die brandneuen, klimagerechten Hightech-Räume durchlaufen.

 

Können Sie die Herausforderungen dieses Transformationsprozesses beschreiben?
 
Johannes Kauschinger, Sales Manager für Composites und Industrietextilien: Eine Transformation vollzieht sich in der Regel technisch, fachlich, organisatorisch und nicht zuletzt – vielleicht sogar zuallererst – kulturell. Die technischen Herausforderungen liegen auf der Hand. Um die neuen Technologien zu managen und zu nutzen, braucht es zweitens entsprechendes Fachwissen im Unternehmen. Jede Transformation bringt drittens neue Prozesse mit sich, Teams und Abläufe müssen angepasst werden. Und schließlich verändert sich viertens auch die Unternehmenskultur. Technik, kann man sich beschaffen, Fachwissen erwerben, die Organisation anpassen. Zeit dagegen können wir nicht kaufen. Die größte Herausforderung sehe ich deshalb darin, die personellen Ressourcen bereitzustellen: Damit wir die Transformation aktiv gestalten und nicht durch die Entwicklung getrieben werden, brauchen wir ausreichend Fachkräfte.

 

Beim Besuch Ihrer Website fällt sofort der Claim „pioneering tech tex“ ins Auge. Weshalb sehen Sie Ihr Unternehmen als Pionier, und worin bestehen die bahnbrechenden oder wegbereitenden Innovationen von vombaur?

Carl Mrusek: Wir sind mit unserem einzigartigen Maschinenpark Pionier*innen für nahtlos rundgewebte Textilien. Und als Entwicklungspartner betreten wir mit jedem Auftrag ein kleines Stück weit Neuland. Wir nehmen immer neue projektspezifische Veränderungen vor: an den Endprodukten, an den Produkteigenschaften, an den Maschinen. Dass wir für ein spezielles nahtlos gewebtes Formtextil eine Webmaschine anpassen, bisweilen auch ganz neu entwickeln, kommt regelmäßig vor.
 
Mit unserem jungen, erstklassigen und wachsenden Team für Development and Innovation um Dr. Sven Schöfer, lösen wir unseren Anspruch „pioneering tech tex“ immer wieder ein, indem wir mit und für unsere Kunden spezielle textile Hightech-Lösungen entwickeln. Parallel erkunden wir aktiv neue Möglichkeiten. Zuletzt mit nachhaltigen Materialien für den Leichtbau und Forschungen zu neuartigen Sonderfiltrationslösungen etwa zur Filtration von Mikroplastik. Für dieses Team ist im Neubau ein hochmodernes textiltechnisches Labor vorgesehen.

 

Die Entwicklung der technischen Textilien in Deutschland ist eine Erfolgsgeschichte. Mit Massenware können wir global betrachtet nur noch in Ausnahmefällen reüssieren. Wie schätzen Sie die Bedeutung technischer Textilien made in Germany für den Erfolg anderer, insbesondere hoch technologisierter Branchen ein?

Carl Mrusek: Wir sehen die Zukunft der Industrie in Europa in individuell entwickelten Hightech-Produkten. vombaur steht gerade für hochwertige, zuverlässige und langlebige Produkte und Spezialanfertigungen. Und gerade das – passgenau Produkte, statt Überschuss- und Wegwerfware – ist die Zukunft für nachhaltige Wirtschaft insgesamt.

 

Welchen Anteil hat das Projektgeschäft an Ihrer Produktion gegenüber einem Standardsortiment, und inwiefern fühlen Sie sich noch mit der Bezeichnung „Textilproduzent“ wohl?

Johannes Kauschinger: Unser Anteil an Speziallösungen liegt bei nahezu 90 Prozent. Wir entwickeln für aktuelle Projekte unserer Kunden textiltechnische Lösungen. Hierfür sind wir in engem Austausch mit den Kolleg*innen aus der Produktentwicklung unserer Kunden. Gerade bei den Composite Textiles sind vorwiegend Speziallösungen gefragt. Das kann ein Bauteil für die Raumfahrt sein – ein Raumschiff wird ja nicht von der Stange gefertigt. Wir bieten auch hochwertige Serienartikel, etwa im Bereich Industrial Textiles, wo wir rundgewebte Schläuche für Transportbänder bieten. So gesehen sind wir Textilproduzent, aber mehr als das: Wir sind dabei auch Textilentwickler.

 

Composites Germany hat im August die Ergebnisse seiner 21. Markterhebung vorgestellt. Dabei wird die aktuelle Geschäftslage sehr kritisch gesehen, das Investitionsklima trübt sich ein und Zukunftserwartungen drehen ins Negative. vombaur hat in seinem Portfolio ebenfalls hochfeste textile Verbundwerkstoffe aus Carbon, Aramid, Glas und Hybriden. Teilen Sie die Beurteilung der Wirtschaftslage, wie sie die Umfrage spiegelt?

Carl Mrusek: Wir sehen für vombaur eine durchaus positive Entwicklung voraus, da wir sehr lösungsorientiert entwickeln und unseren Kunden einen echten Mehrwert bieten. Denn gerade Zukunftstechnologien benötigen individuelle, zuverlässige und leichte Bauteile. Das reicht von Entwicklungen für das Lufttaxi bis zu Windrädern. Textilien sind ein prädestiniertes Material für die Zukunft. Die Herausforderung besteht auch darin, hier mit natürlichen Rohstoffen wie Flachs und recycelten und recycelbaren Kunststoffen und effektiven Trenntechniken nachhaltige und kreislauffähige Lösungen anzubieten.

 

Es gibt heutzutage fast kein Unternehmen, das nicht die aktuellen Buzzwords bedient wie Klimaneutralität, Kreislaufwirtschaft, Energieeffizienz und erneuerbare Energien. Was unternimmt Ihr Unternehmen in diesen Bereichen und wie definieren Sie die Bedeutung dieser Ansätze für einen wirtschaftlichen Erfolg?

Carl Mrusek: vombaur verfolgt eine umfassende Nachhaltigkeitsstrategie. Ausgehend von unserer Leitbildentwicklung arbeiten wir aktuell an einer Nachhaltigkeitserklärung. Unsere Verantwortung für die Natur wird sich sehr konkret und messbar in unserem Neubau mit Dachbegrünung und Solaranlage realisieren. In unserer Produktentwicklung fließen die hohen Nachhaltigkeitsansprüche – unsere eigenen und die unserer Kunden – schon jetzt in umwelt- und ressourcenschonende Produkte und in Produktentwicklungen für nachhaltige Projekte wie Windparks oder Filtrationsanlagen ein.

 

Stichwort Digitalisierung: Der Mittelstand, zu dem vombaur mit seinen 85 Mitarbeitenden gehört, wird oft dafür gescholten, in diesem Bereich zu zögerlich zu sein. Was würden Sie auf diesen Vorwurf antworten?

Johannes Kauschinger: Wir hören derzeit oft von der Stapelkrise. Angelehnt daran ließe sich von der Stapeltransformation sprechen. Wir, die mittelständischen Unternehmen, transformieren uns gleichzeitig in einer Reihe von unterschiedlichen Dimensionen: Digitale Transformation, Klimaneutralität, Fachkräftemarkt und Bevölkerungsentwicklung, Unabhängigkeit von den vorherrschenden Lieferketten. Wir sind veränderungsfähig und veränderungswillig. Politik und Verwaltung könnten es uns an einigen Stellen etwas leichter machen. Stichwort Verkehrs-Infrastruktur, Genehmigungszeiten, Energiepreise. Wir tun alles, was auf unserer Seite des Feldes zu ist, damit mittelständische Unternehmen die treibende Wirtschaftskraft bleiben, die sie sind.

 

Was empfinden Sie bei dem Begriff Fachkräftemangel? Beschreiten Sie auch unkonventionelle Wege, um Talente und Fachkräfte in einer so spezialisierten Branche zu finden und zu halten? Oder stellt sich das Problem nicht?

Carl Mrusek: Klar, auch wir bekommen den Fachkräftemangel zu spüren, gerade im gewerblichen Bereich. Die Entwicklung war aber abzusehen. Das Thema spielte eine gewichtige Rolle bei der Entscheidung mit unserem Schwesterunternehmen JUMBO-Textil zusammen unter das Dach der Textation Group zu ziehen. Die Nachwuchsgewinnung und -förderung lässt sich gemeinsam – zum Beispiel mit gruppenübergreifenden Kampagnen und Kooperationen – besser meistern.

 

Wenn Sie ein persönliches Schlüsselerlebnis beschreiben müssten, das Ihre Einstellung zur Textilindustrie und deren Zukunft geprägt hat, was wäre das?

Johannes Kauschinger: Ein sehr guter Freund meiner Familie hat mich darauf angesprochen, dass wir in einer Gegend mit sehr aktiver Textilindustrie leben, die gleichzeitig Probleme hat, Nachwuchskräfte zu finden. Ich besuchte zwei Betriebe zur Vorstellung und schon auf dem Betriebsrundgang in jeder der beiden Firmen war das Zusammenwirken von Menschen, Maschinen und Textil bis zum tragbaren Endprodukt beeindruckend. Dazu kam, dass ich einen Beruf mit sehr großem Bezug zum täglichen Leben erlernen konnte. Bis heute bin ich über die Breite der Einsatzmöglichkeiten von Textilien, speziell in technischen Anwendungen, fasziniert und bereue die damalige Entscheidung keinesfalls.

Carl Mrusek: Bereits in jungen Jahren kam ich mit der Textil- und Modewelt in Berührung. Ich erinnere mich noch gut daran, wie ich mit meinem Vater Rolf Mrusek das erste Mal durch die vollstufige Textil-Produktion eines Unternehmens in Nordhorn ging. Das Thema hat mich seitdem nicht mehr losgelassen. Schon vor Beginn meiner Studienzeit hatte ich mich bewusst für eine Karriere in dieser Industrie entschieden und habe es bis heute nicht bereut, im Gegenteil. Die Vielfältigkeit der in der Textation Group entwickelten Speziallösungen fasziniert mich immer wieder aufs Neue.
 

vombaur ist Spezialist für nahtlos rund- und in Form gewebte Schmaltextilien und branchenweit als Entwicklungspartner für Filtration Textiles, Composite Textiles und Industrial Textiles aus Hochleistungsfasern bekannt. Die technischen Schmaltextilien von vombaur dienen zum einen zur Filtration – u. a. in der Lebensmittel- und Chemieindustrie. Als hochleistungsfähige Verbundwerkstoffe kommen sie beispielsweise im Flugzeugbau oder in der Medizintechnik zum Einsatz. Für technische Anwendungen entwickelt vombaur speziell beschichtete Industrietextilien zur Isolierung, Verstärkung oder für den Transport in ganz unterschiedlichen industriellen Prozessen – von der Feinmechanik bis zur Bauindustrie. Das Wuppertaler Unternehmen wurde 1805 gegründet. Aktuell arbeiten 85 Beschäftigte im Unternehmen.
 

Branchen

  • Aviation & Automotive
  • Sports & Outdoor    
  • Bau- & Wasserwirtschaft
  • Sicherheit & Protection    
  • Chemie & Lebensmittel
  • Anlagenbau & Elektronik    
  • Medizin & Orthopädie

 

Heimtextil Trends 24/25 © SPOTT trends & business for Heimtextil
12.09.2023

Heimtextil Trends 24/25: New Sensitivity

Unter dem Leitthema „New Sensitivity“ steht textile Transformation im Mittelpunkt der Heimtextil Trends 24/25. Drei Ansätze zeigen Wege zu einer sensibleren Welt der Textilien auf: die pflanzenbasierte Herstellung von Textilien, die Unterstützung textiler Kreisläufe durch Technologie und die biotechnologische Verwendung natürlicher Inhaltsstoffe. Darüber hinaus kuratieren die Future Materials regenerative Materialien und Designs.
 
Nachdem im letzten Jahr bereits zirkuläre Lösungen im Fokus lagen, stellen die Heimtextil Trends 24/25 erneut transformative Textilinnovationen in den Mittelpunkt.

Unter dem Leitthema „New Sensitivity“ steht textile Transformation im Mittelpunkt der Heimtextil Trends 24/25. Drei Ansätze zeigen Wege zu einer sensibleren Welt der Textilien auf: die pflanzenbasierte Herstellung von Textilien, die Unterstützung textiler Kreisläufe durch Technologie und die biotechnologische Verwendung natürlicher Inhaltsstoffe. Darüber hinaus kuratieren die Future Materials regenerative Materialien und Designs.
 
Nachdem im letzten Jahr bereits zirkuläre Lösungen im Fokus lagen, stellen die Heimtextil Trends 24/25 erneut transformative Textilinnovationen in den Mittelpunkt.
Unter dem Titel „New Sensitivity“ stehen neben ästhetischen Aspekten Innovationen und Veränderungen in der Zusammensetzung von Textilien im Mittelpunkt. „In diesem Zusammenhang bedeutet Sensibilität, dass bei Entscheidungen oder der Entwicklung eines Produkts Auswirkungen auf die Umwelt von Anfang an berücksichtigt werden. Zu verstehen, wie natürliche Ökosysteme funktionieren, und dem Gleichgewicht den Vorrang zu geben, ist der Schlüssel,“ so Anja Bisgaard Gaede von SPOTT trends & business.

Wie lässt sich die neue Sensibilität in der Lifestyle-Branche konkret umsetzen und was bedeutet eine sensible Herangehensweise für Design und Produkte? Auch der Einsatz von Artificial General Intelligence (AGI) hat das Potenzial, innovative Lösungen in der Textilindustrie zu bieten, birgt aber auch gesellschaftliche Herausforderungen. AGI erfordert eine sensible Herangehensweise, um Komplexität zu reduzieren, Kreativität zu fördern und bisher unentdeckte Lösungen in der Textilwelt und darüber hinaus zu finden.
     
„Mit den Heimtextil Trends 24/25: New Sensitivity ermutigen wir die Textilbranche, sich der Zukunft mit Bedacht und rücksichtsvoll zu nähern. Konkret sehen wir diesen Wandel in drei verschiedenen Strömungen für eine sensiblere Welt der Textilien: biotechnisch, pflanzenbasiert und technologisch,“ so Bisgaard Gaede weiter.

Plant-based: Textilien aus Pflanzen und pflanzlichen Nebenerzeugnissen
Die Fasern von Textilien auf Pflanzenbasis stammen von etwas Gewachsenem und werden nicht synthetisch hergestellt. Der nachhaltige Vorteil von Textilien auf pflanzlicher Basis ist, dass sie natürlichen Ursprungs sind und daher eher für die Rückführung in existierende Ökosysteme wiederverwendet werden können. Sie können in zwei Aspekte unterteilt werden. Der erste ist die Herstellung von Textilien aus Pflanzenkulturen. Neue widerstandsfähige Pflanzen wie Kaktus, Hanf, Abaka (Manilahanf), Seegras und Kautschuk bieten hier neue, nachhaltige Textillösungen. Aufgrund der mechanischen Extraktion können sie trotz Klimaveränderungen wachsen und benötigen bei der Entwicklung weniger Chemikalien. Die zweite Gruppe sind Textilien, die aus pflanzlichen Nebenprodukten hergestellt werden, d. h. aus Rohstoffen wie Bananen, Oliven, Kakis und Hanf, die bei der Produktion übrigbleiben.

Technological: Technologie und technische Lösungen, die Textilien verändern
Technologie kann die Umwandlung von Textilien durch verschiedene Methoden unterstützen: Upcycling und Recycling von Textilien, Textilkonstruktion und Textildesign. Aufgrund der jahrzehntelangen Produktion sind Textilien heute Materialien, die im Überfluss vorhanden sind. Die Entwicklung von Technologien zur Wiederverwertung von Textilabfällen und zum textilen Upcycling erhöht die zirkuläre Nutzung bereits hergestellter Textilien. Darüber hinaus sind auch alte Textilkonstruktionstechniken ein Weg zu nachhaltigen Lösungen. Durch die Verwendung von Stricktechniken für Möbelbezüge wird weniger Textilabfall produziert, demgegenüber können durch die Webtechnik mit wenigen farbigen Garnen optisch mehrere Farben erzeugt werden. Textile Design Thinking befasst sich mit kritischen Themen wie dem Energieverbrauch oder der Haltbarkeit von Naturfasern und verbessert diese durch technologische Weiterentwicklung.

Bio-engineered: entwickelt zur Verbesserung der biologischen Abbaubarkeit
Bei bio-technisch hergestellten Textilien verschmelzen pflanzliche und technische Textilien. Bio-Engineering schlägt eine Brücke zwischen Natur und Technik und verändert die Art und Weise, wie Textilien hergestellt werden. Sie können in zwei Richtungen unterteilt werden: vollständig biotechnisch hergestellte und biologisch abbaubare Textilien. Bei vollständig biotechnologisch hergestellten Textilien werden von der Natur inspirierte Strategien angewandt. Anstatt die Pflanzen anzubauen und daraus Fasern zu extrahieren, werden Proteine und Kohlenhydrate aus Mais, Gras und Rohrzucker oder Bakterien eingesetzt. Die Textilien werden durch einen biomolekularen Prozess hergestellt, bei dem Filamente entstehen, die zu Garnen werden. Der nachhaltige Vorteil von biotechnologisch hergestellten Textilien besteht darin, dass sie einige der gleichen Funktionalitäten wie synthetisch hergestellte Textilien haben können. Da sie jedoch natürlichen Ursprungs sind, können sie biologisch abgebaut werden. „Biodegradable Fibres“ können herkömmlichen Textilien wie Polyester zugesetzt werden und verbessern deren Fähigkeit, sich zu in der Natur vorkommenden Materialien zurückzuverwandeln und sich somit in natürlichen Umgebungen wie Wasser oder Erdboden biologisch abzubauen. Die biologisch verbesserten Textilien werden zwar nicht vollständig, aber bis zu 93 Prozent im Vergleich zu herkömmlichen Textilien biologisch abgebaut.

Heimtextil Trends 24/25: Farben
Ein sensibler Ansatz bei den Färbemethoden kommt in einer dynamischen und gleichzeitig subtilen Farbpalette zum Ausdruck. Sie wird mit natürlichen, aus der Erde stammenden Pigmenten erzeugt, während traditionelle Färbeverfahren durch innovative Biotechnologie auf die nächste Stufe gebracht werden. In dem Bestreben, Farben zu erschaffen, die Emotionen hervorrufen und gleichzeitig Werte beim Umweltschutz respektieren, erzeugen Farbbakterien durch Pigmentwachstum Farbtöne von beeindruckendem Reichtum und großer Tiefe.
               
Zu dieser neuen Sensibilität gehört auch die Akzeptanz natürlicher Farbverläufe, da die Farben mit der Zeit verblassen oder sich in eine neue Farbrichtung verwandeln können. Die Farbtöne der Heimtextil Trends 24/25 wurden von natürlichen Farben inspiriert, die aus Avocadokernen, Algen, lebenden Bakterien, antiken Pigmenten wie Roh Sienna und biotechnisch hergestelltem Indigo und Cochenille stammen. Der hohe Schwarzanteil in den meisten Farben ermöglicht eine breite Anwendung und eine größere Vielfalt an Kombinationen. Die kräftigen, gesättigten Akzente beleben Sinne und Stimmung. Im Gegensatz dazu stehen die erdenden Neutraltöne in verschiedenen Grauabstufungen, Terra und sogar dunklem Violett, die für Ruhe und Gelassenheit sorgen.
     
Future Materials: regeneratives Design
Wie werden regenerative Textilien und Materialien definiert? Regeneratives Design hat sich dem Ziel verschrieben, ganzheitliche kreative Praktiken zu entwickeln, die die Ressourcen wiederherstellen oder erneuern, eine positive Auswirkung auf die Umwelt haben und das Gedeihen von Gemeinschaften fördern. Für die Heimtextil 2024 kuratiert die Design-Zukunftsberatung FranklinTill ein globales Schaufenster hochmoderner Textilien und Materialien, um die Prinzipien des regenerativen Designs zu veranschaulichen und bahnbrechende Designer*innen, Erzeuger*innen und Hersteller*innen zu würdigen, die an der Spitze des regenerativen Designs stehen.
Der Trend Space auf der Heimtextil in Frankfurt vom 9. bis 12. Januar 2023 präsentiert diese Lösungen auf inspirierende Weise. Zusätzlich bieten die Heimtextil Trends Besuchern in Form von Workshops, Vorträgen und weiteren interaktiven Formaten Orientierung und Einblicke in die Zukunft von Wohn- und Objekttextilien.

Quelle:

Heimtextil, Messe Frankfurt

(c) Institut auf dem Rosenberg
01.09.2023

'Blue Nomad' - Auf Flachsfasern in die Zukunft gleiten

Da die Menschheit mit dem Klimawandel und dem steigenden Meeresspiegel zu kämpfen hat, ist unsere kollektive Vorstellungskraft wichtiger denn je. Vor diesem Hintergrund war bcomp von Arbeit der Studenten des Instituts auf dem Rosenberg in St. Gallen und SAGA Space Architects fasziniert. Sie haben entwickelten eine außergewöhnliche Lösung für die ökologischen Herausforderungen, mit denen wir konfrontiert sind: das schwimmende Lebensraumprojekt "Blue Nomad".

‘Blue Nomad" ist ein solarbetriebenes Heim, das für ein komfortables Leben auf dem Meer konzipiert wurde. Es symbolisiert eine Zukunft, in der wir die sich verändernde Umwelt der Erde erforschen und uns an sie anpassen müssen. Inspiriert von den ersten polynesischen Nomadensiedlungen und ausgestattet mit Solarpaneelen zur Selbstversorgung, fördert das Habitat die Vision des Lebens und Reisens auf dem Wasser.

Da die Menschheit mit dem Klimawandel und dem steigenden Meeresspiegel zu kämpfen hat, ist unsere kollektive Vorstellungskraft wichtiger denn je. Vor diesem Hintergrund war bcomp von Arbeit der Studenten des Instituts auf dem Rosenberg in St. Gallen und SAGA Space Architects fasziniert. Sie haben entwickelten eine außergewöhnliche Lösung für die ökologischen Herausforderungen, mit denen wir konfrontiert sind: das schwimmende Lebensraumprojekt "Blue Nomad".

‘Blue Nomad" ist ein solarbetriebenes Heim, das für ein komfortables Leben auf dem Meer konzipiert wurde. Es symbolisiert eine Zukunft, in der wir die sich verändernde Umwelt der Erde erforschen und uns an sie anpassen müssen. Inspiriert von den ersten polynesischen Nomadensiedlungen und ausgestattet mit Solarpaneelen zur Selbstversorgung, fördert das Habitat die Vision des Lebens und Reisens auf dem Wasser.

bcomp begeistert besonders an dem Projekt, dass das in London und Monaco ausgestellte Modell die eigenen ampliTex™ Flachsfasern enthält. Das Institut auf dem Rosenberg und SAGA entwickeln derzeit einen Plan für den Bau eines tatsächlichen Prototyps des schwimmenden Hauses. Es könnte aus einem strukturell optimierten Gewebe aus Flachsfasern hergestellt werden und die Zukunft organischer und regenerativer Hochleistungsmaterialien aufzeigen, die herkömmliche synthetische und fossile Technologien ersetzen.

Blue Nomad" ist nicht nur ein solitärer Lebensraum, sondern ein Konzept für eine neue Art von Gemeinschaft. Als modulare Blöcke konzipiert, können diese Lebensräume größere Gemeinschaften und Meeresfarmen bilden, die es den Bewohnern ermöglichen, Ressourcen zu teilen, während sie von einer Meeresfarm zur nächsten ziehen. Es ist eine beeindruckende Vision einer Zukunft, in der die Grenzen zwischen Land und Wasser verschwimmen und Nachhaltigkeit und Gemeinschaftsbildung im Mittelpunkt der menschlichen Siedlungen stehen.

Doch diese Vision ist nicht nur eine theoretische. Geplant ist eine Jungfernfahrt des "Blue Nomad" quer durch Europa, die ausschließlich mit Solarenergie betrieben wird und die Nachhaltigkeit der Ozeane, die Klimatologie und das Nomadentum der Zukunft fördert.

Dieses Projekt erinnert daran, was wir erreichen können, wenn wir Bildung, innovatives Design und Nachhaltigkeit miteinander verbinden. Der "Blue Nomad" repräsentiert die Zukunft - eine Zukunft, in der nachhaltige Materialien eine entscheidende Rolle beim Schutz unseres Planeten spielen.

Das Projekt "Blue Nomad" wurde auf der Londoner Design-Biennale 2023 sowie der Monaco Energy Boat Challenge ausgestellt, wo es Besucher in seinen Bann zog und große Begeisterung in der Öffentlichkeit auslöste.

Quelle:

Bcomp

sportswear Stocksnap, Pixabay
30.08.2023

Eine smarte Laufhose warnt vor …

ETH-Forschende haben ein elektronisches Garn entwickelt, das Körperbewegungen sehr genau misst. Der Textilsensor kann direkt in Sport- oder Arbeitskleidung integriert werden und sagt die Müdigkeit des Trägers während körperlicher Belastung voraus.

Wer erschöpft ist, verletzt sich leichter – sowohl beim Sport als auch bei körperlicher Arbeit. ETH-Forschende um Carlo Menon, Professor für mobile Gesundheitstechnologien, haben nun einen Textilsensor entwickelt, der in Echtzeit misst, wie erschöpft Menschen während körperlicher Belastung sind. Getestet haben sie den neuen Senor an einer Laufhose. Mit einem Blick auf das Smartphone konnten die Probanden feststellen, wann sie an ihre Belastungsgrenze kommen und besser eine Pause einlegen sollten.

ETH-Forschende haben ein elektronisches Garn entwickelt, das Körperbewegungen sehr genau misst. Der Textilsensor kann direkt in Sport- oder Arbeitskleidung integriert werden und sagt die Müdigkeit des Trägers während körperlicher Belastung voraus.

Wer erschöpft ist, verletzt sich leichter – sowohl beim Sport als auch bei körperlicher Arbeit. ETH-Forschende um Carlo Menon, Professor für mobile Gesundheitstechnologien, haben nun einen Textilsensor entwickelt, der in Echtzeit misst, wie erschöpft Menschen während körperlicher Belastung sind. Getestet haben sie den neuen Senor an einer Laufhose. Mit einem Blick auf das Smartphone konnten die Probanden feststellen, wann sie an ihre Belastungsgrenze kommen und besser eine Pause einlegen sollten.

Die von der ETH Zürich zum Patent angemeldete Erfindung könnte den Weg ebnen für eine neue Generation von smarten Kleidern: Denn bei vielen auf dem Markt verfügbaren Produkten werden elektronische Bauteile wie Sensoren, Batterien oder Chips nachträglich an der Kleidung fixiert. Dies macht die Herstellung umständlich, führt zu hohen Preisen und erschwert die Pflege der Produkte.

Im Unterschied dazu wird der Dehnungssensor der ETH-Forschenden direkt in die Stofffasern elastischer und enganliegender Sport- oder Arbeitskleidung integriert, was die industrielle Produktion erleichtert und den Preis senkt. Ein weiterer Vorteil: «Durch den engen Körperkontakt des Sensors können wir Körperbewegungen sehr genau erfassen, ohne dass der Nutzer oder die Nutzerin das bemerkt», sagt Menon.

Ein außergewöhnliches Garn
Wenn Menschen müde werden, bewegen sie sich anders. So auch beim Laufen: Die Schritte werden kürzer und weniger regelmäßig. Diesen Effekt messen die ETH-Forschenden mit ihrem neuen Sensor, der aus einem speziellen Garn besteht. Möglich wird dies durch den Aufbau des Garns: Die innere Faser besteht aus einem leitenden, elastischen Gummi. Spiralförmig um diesen herum wickelten die Forschenden einen steifen Draht, der mit einer dünnen Kunststoffschicht verkleidet ist. «Die beiden Fasern wirken als Elektroden und erzeugen ein elektrisches Feld. Sie bilden gemeinsam einen Kondensator, der eine elektrische Ladung speichern kann, die wir als Kapazität bezeichnen», erklärt Tyler Cuthbert, der als Postdoc in Menons Gruppe forschte und maßgeblich an der Entwicklung beteiligt war.

Die intelligente Laufhose
Stickt man dieses Garn nun auf der Höhe des Oberschenkels auf eine elastische Laufhose wird es beim Laufen in einem gewissen Rhythmus gedehnt und wieder gelockert. Bei jeder Bewegung ändert sich der Abstand zwischen den beiden Fasern und damit auch das elektrische Feld sowie die Kapazität des Kondensators.

Unter normalen Umständen wären diese Kapazitätsschwankungen sehr klein und würden nicht ausreichen, um damit Körperbewegungen messen zu können. Doch die Eigenschaften des Garns sind alles andere als normal: «Im Unterschied zu den meisten anderen Materialien wird es dicker, wenn man daran zieht», erklärt Cuthbert. Dadurch wird das Garn sehr viel sensibler gegenüber kleinsten Bewegungen. Dehnt es sich geringfügig aus, entstehen deutlich messbare Schwankungen in der Kapazität des Sensors. Bereits subtile Veränderungen im Laufverhalten können so gemessen und ausgewertet werden.

Doch wie kann man daraus die Müdigkeit einer Person ableiten? In einem früheren Forschungsprojekt haben Cuthbert und Menon eine Reihe von Probanden beim Laufen beobachtet, während sie eine Laufhose mit einem ähnlichen Sensor trugen. Sie zeichneten auf, wie sich die elektrischen Signale des Sensors bei zunehmender Müdigkeit änderten. Aus diesem Muster haben die Forschenden dann ein Modell erstellt, das die Erschöpfung von Läufern vorhersagt und auch für den neuen Textilsensor eingesetzt werden kann. Damit das Modell auch außerhalb des Labors zuverlässige Vorhersagen macht, braucht es allerdings noch zahlreiche weitere Tests und eine Menge Bewegungsdaten.

Textilantenne für die kabellose Datenübertragung
Um die elektrischen Signale des Textilsensors ohne Kabel an ein Smartphone zu übertragen, haben ihn die Forschenden mit einer Spulenantenne aus leitendem Garn verbunden, die ebenfalls direkt auf die Laufhose gestickt wurde. «Sensor und Antenne bilden zusammen einen elektrischen Schaltkreis, der vollständig in der Kleidung integriert ist», sagt Valeria Galli, Doktorandin in Menons Gruppe.

Das elektrische Signal des Dehnungssensors führt nun dazu, dass die Antenne ein Signal in einer bestimmten Frequenz aussendet, das von einem Smartphone gelesen werden kann. Wird der Sensor während des Laufens bewegt, entsteht ein Signalmuster mit einer ständig schwankend Frequenz, die von einer App in Echtzeit aufgezeichnet und ausgewertet werden kann. Dies ist allerdings Zukunftsmusik und erfordert noch einiges an Entwicklungsarbeit.

Anwendungen im Sport und am Arbeitsplatz
Aktuell arbeiten die Forschenden daran, aus dem Prototyp ein marktreifes Produkt zu machen. Dafür bewerben sie sich um eines der begehrten Pioneer Fellowship der ETH Zürich. «Unser Ziel ist, intelligente Kleidung günstiger herzustellen und damit einer breiteren Öffentlichkeit zugänglich zu machen», sagt ETH-Professor Menon. Anwendungen sieht Menon dabei nicht nur im Sport, sondern auch am Arbeitsplatz, um ermüdungsbedingten Verletzungen vorzubeugen, oder im Bereich der Rehabilitationsmedizin.

Quelle:

ETH Zürich

Point of View: Let’s end fast fashion, Prof Minna Halme. Foto: Veera Konsti / Aalto University
18.08.2023

Standpunkt: Schluss mit Fast Fashion!

Sich auf kurzfristige Gewinne zu fokussieren, ist nicht nachhaltig. Was können wir also tun, um in die richtige Richtung zu gehen? In allen Branchen die Widerstandsfähigkeit der Effizienz vorziehen.

Sich auf kurzfristige Gewinne zu fokussieren, ist nicht nachhaltig. Was können wir also tun, um in die richtige Richtung zu gehen? In allen Branchen die Widerstandsfähigkeit der Effizienz vorziehen.

Wir kaufen billige Produkte im Wissen, dass wir sie bald ersetzen müssen. Wir werfen gebrauchte Gegenstände weg, anstatt sie zu reparieren oder wiederzuverwenden. Arbeitgeber planen in Bezug auf finanzielle Quartale, obwohl sie hoffen, längerfristig bedeutend und stabil zu bleiben. Sogar Länder geben der kurzfristigen Wirtschaftsleistung den Vorrang und stellen das Bruttoinlandsprodukt (BIP) über jeden anderen Indikator.
 
Unsere globale Besessenheit von kurzfristiger wirtschaftlicher Effizienz - und die Frage, wie man sie überwinden kann - ist ein großes Rätsel, über das Minna Halme, Professorin für Nachhaltigkeitsmanagement, die meiste Zeit ihrer Karriere nachgedacht hat. Schon als Studentin an der Wirtschaftshochschule war sie irritiert, wie sehr sich ihr Unterricht auf kurzfristige Ziele konzentrierte.

„Es ging darum, mehr zu verkaufen, die Gewinne der Aktionäre zu maximieren, ökologisch zu wachsen - aber nicht wirklich zu fragen: Warum? Was ist der Zweck von all dem?“, so Halme.
„Selbst mir als 20-Jähriger kam das irgendwie seltsam vor.“

„Was versuchen wir hier zu tun? Versuchen wir, eine bessere Wirtschaft für alle oder für die meisten Menschen zu schaffen? Wessen Leben versuchen wir zu verbessern, wenn wir mehr unterschiedlich verpackte Joghurtsorten oder Kleidung verkaufen, die schnell unmodern ist?“

Halme hat ihre Karriere der Untersuchung dieser Fragen gewidmet. Heute ist sie eine Vordenkerin im Bereich innovativer Geschäftspraktiken und wurde unter anderem als Mitglied des finnischen Expertengremiums für nachhaltige Entwicklung und des Gremiums für globale Nachhaltigkeit der Vereinten Nationen anerkannt.

Ihr oberstes Ziel? Pionierarbeit zu leisten, zu forschen und für alternative Denkweisen einzutreten, die Werte wie langfristige wirtschaftliche Nachhaltigkeit und Widerstandsfähigkeit in den Vordergrund stellen - Alternativen, von denen sie und andere Experten glauben, dass sie allen einen dauerhaften, weitreichenden Nutzen bringen würden.
 
Wie traditionelle Indikatoren versagt haben
Ein Weg, in der unsere Vorliebe für wirtschaftliche Effizienz die Art und Weise prägt, wie wir den allgemeinen Wohlstand oder Status eines Landes messen, ist das BIP. Das ist nicht die Schuld des Erfinders des modernen Konzepts des BIP, der in den 1930er Jahren ausdrücklich davor warnte, es auf diese Weise zu verwenden.

„Das BIP war nie dazu gedacht, uns etwas über das Wohlergehen der Bürger eines Landes zu sagen", sagt Halme. Vor fünfundsiebzig Jahren war es jedoch leicht, beides miteinander zu verwechseln. Viele Länder waren eher bestrebt, ihren Wohlstand unter ihren Bürgern umzuverteilen, und Bevölkerungsumfragen zeigen, dass das BIP bis in die 1970er Jahre häufig mit dem allgemeinen Wohlstand korrelierte.

Doch mit dem Aufkommen eines zunehmend rücksichtsloseren Kapitalismus der freien Marktwirtschaft wurde dies immer weniger der Fall - und die Unzulänglichkeiten des BIP wurden umso deutlicher. „Wir befinden uns in einer Situation, in der die Verteilung des Reichtums mehr und mehr zu denjenigen wandert, die bereits über Kapital verfügen. Diejenigen, die es nicht haben, befinden sich in einer rückläufigen wirtschaftlichen Position", sagt Halme. Tatsächlich besitzen die reichsten 1 % der Weltbevölkerung heute fast die Hälfte des weltweiten Vermögens.

„Einige Regierungen, wie die finnische, berücksichtigen zwar Indikatoren für den ökologischen und sozialen Fortschritt. Aber keiner wird als so wichtig für die Entscheidungsfindung angesehen wie das BIP", sagt Halme - und das BIP gilt auch als Maßstab für den Erfolg einer Regierung. Diese Einstellung versucht Halme durch ihre Arbeit als Beraterin der finnischen Regierung zu Nachhaltigkeitspraktiken sowie durch ihre eigene Forschung zu ändern.

Wo die Industrie versagt hat
Unsere oft ausschließliche Konzentration auf die Ökonomie - und insbesondere darauf, so schnell und effizient wie möglich Gewinne zu erzielen - vermittelt kein klares Bild davon, wie es allen in einer Gesellschaft geht. Schlimmer noch, es hat die Industrie ermutigt, mit einer kurzfristigen Perspektive zu handeln, die zu längerfristigen Problemen führt.
 
Fast Fashion ist ein Beispiel dafür. Gegenwärtig sind die Lieferketten für Bekleidung - wie die der meisten Waren - linear. Die Rohstoffe kommen von einem Standort und werden Schritt für Schritt verarbeitet, in der Regel in verschiedenen Produktionsstätten auf der ganzen Welt, wobei Materialien, Energie und Transportmittel verwendet werden, die „billig“ sind, weil ihre hohen Umweltkosten nicht berücksichtigt werden.

Schließlich werden sie von einem Verbraucher gekauft, der das Produkt vorübergehend trägt, bevor er es wegwirft. Um die Gewinnspannen zu erhöhen, setzt die Branche auf schnell wechselnde Trends. Eine erschreckende Menge dieser Kleidungsstücke landet auf der Mülldeponie - einige davon, bevor sie überhaupt getragen worden sind.

Wie der COVID Lockdown gezeigt haben, ist diese Art linearer Lieferketten nicht belastbar. Und sie sind auch nicht nachhaltig.

Schätzungen zufolge ist die Modebranche derzeit die zweitgrößte Umweltverschmutzungsbranche der Welt und für bis zu 10 % aller Treibhausgasemissionen verantwortlich. Forscher der Aalto-Universität haben festgestellt, dass die Branche jährlich mehr als 92 Millionen Tonnen Deponieabfälle produziert. Bis 2030 wird ein Anstieg auf 134 Millionen Tonnen erwartet.
„Die Verringerung des CO2-Fußabdrucks der Modebranche ist nicht nur gut für die Umwelt, sondern auch für die langfristigen Aussichten der Branche selbst. Mit dieser Art von falschem Effizienzdenken untergräbt man die Grundlage unserer langfristigen Widerstandsfähigkeit sowohl für die Ökologie als auch für die Gesellschaft", sagt Halme.

Um aus dieser Falle herauszukommen, sagen sie und andere Forscher, ist ein kompletter Paradigmenwechsel erforderlich. „Es ist wirklich schwierig, nur an den Rändern zu feilen", sagt sie.
Auf dem Weg zur Resilienz

Mehrere Jahre lang erforschte und studierte Halme die ökologische Effizienz und suchte nach Möglichkeiten, wie Unternehmen mehr Produkte mit weniger Umweltbelastungen herstellen könnten. Doch allmählich wurde ihr klar, dass dies nicht die Antwort ist. Obwohl die Unternehmen durch Innovationen effizientere Produkte und Technologien entwickeln konnten, stieg ihr absoluter Verbrauch an natürlichen Ressourcen weiter an.

„Ich begann zu denken: Wenn nicht Effizienz, was dann?", sagt Halme. Sie erkannte, dass die Lösung in der Resilienz liegt, d. h. in der Förderung von Möglichkeiten, wie Systeme, einschließlich der Umwelt, in der Zukunft fortbestehen und sich sogar regenerieren können, anstatt sie in der Gegenwart weiter zu schädigen.
Die Lösung ist nicht „mehr von allem“, auch nicht von „nachhaltigen“ Materialien. Es ist weniger.

„Die einzige Möglichkeit, Fast Fashion zu verbessern, ist, sie zu beenden“, schreiben Halme und ihre Mitautoren. Das bedeutet, dass Kleidung so gestaltet werden muss, dass sie lange hält, dass Geschäftsmodelle die Wiederverwendung und Reparatur erleichtern und dass dem Upcycling Vorrang eingeräumt wird. Auch die Recyclingsysteme müssen überarbeitet werden, um festzustellen, wann ein Kleidungsstück wirklich ausgedient hat - insbesondere im Hinblick auf synthetische Mischfasern, die schwer zu trennen und abzubauen sind.

Dies würde die derzeitige Konzentration auf kurzfristige Einnahmen über den Haufen werfen. Und, so Halme, dies ist ein weiteres Beispiel dafür, dass wir bessere Möglichkeiten brauchen, um den Erfolg dieser Branchen zu messen, indem wir Faktoren wie Belastbarkeit und Nachhaltigkeit berücksichtigen - und nicht nur kurzfristige Gewinne.
Und obwohl jeder Einzelne etwas bewirken kann, müssen diese Veränderungen letztlich von der Industrie ausgehen.

„Textilien sind ein gutes Beispiel, denn wenn sie schnell kaputt gehen und man keine Reparaturwerkstatt in der Nähe hat oder wenn die Stoffe von so schlechter Qualität sind, dass es keinen Sinn macht, sie zu reparieren, dann ist das für die meisten Menschen ein zu großer Aufwand“, sagt Halme. Die meisten Lösungen sollten also von der Unternehmensseite kommen. Und das Ziel sollte sein, es den Verbrauchern sowohl modisch als auch einfach zu machen, ökologisch und sozial nachhaltige Entscheidungen zu treffen.
 
Was ist erforderlich?
Die ultimative Herausforderung, sagt Lauri Saarinen, Assistenzprofessor an der Aalto der Aalto-Universität für Wirtschaftsingenieurwesen, ist die Frage, wie man zu einem nachhaltigeren Modell gelangt und gleichzeitig die Wettbewerbsfähigkeit der Unternehmen erhält. Aber er glaubt, dass es Möglichkeiten gibt.

„Eine Möglichkeit besteht darin, die Produktion lokal zu halten. Wenn wir mit der kostengünstigen Offshore-Fertigung konkurrieren, indem wir die Dinge vor Ort und in einem geschlossenen Kreislauf herstellen, dann haben wir den doppelten Vorteil, indem wir lokal Arbeitsplätze schaffen und uns in Richtung einer nachhaltigeren Lieferkette bewegen“, sagt Saarinen. Wenn beispielsweise Kleidung näher am Verbraucher produziert würde, wäre es einfacher, Kleidungsstücke zur Reparatur zurückzuschicken oder gebrauchte Artikel zurückzunehmen und weiterzuverkaufen.

Lokale Produktion ist ein weiteres Beispiel dafür, dass wir die Methode, mit der wir den gesellschaftlichen Erfolg messen, neu überdenken müssen. Schließlich scheinen Outsourcing und Offshoring zugunsten einer billigeren Produktion kurzfristig die Kosten zu senken, aber dies geschieht zu Lasten dessen, was nach Ansicht von Halme und anderen Experten wirklich wichtig ist: eine längerfristige wirtschaftliche Tragfähigkeit, Widerstandsfähigkeit und Nachhaltigkeit. Es ist nicht einfach, zu dieser Art von Denken überzugehen. Dennoch sehen Saarinen und Halme vielversprechende Signale.
 
Für Finnland verweist Halme beispielsweise auf das Start-up-Unternehmen Menddie, das es leicht und bequem macht, Kleidungsstücke zum Reparieren oder Ändern wegzuschicken. Sie hebt auch die Bekleidungs- und Lifestyle-Marke Marimekko hervor, die ihre gebrauchten Kleidungsstücke in einem Online-Secondhand-Shop weiterverkauft, sowie das Label Anna Ruohonen, ein Konzept für Maßanfertigungen und Kunden auf Abruf, bei dem keine überschüssigen Kleidungsstücke entstehen.

Genau diese Art von Projekten findet Halme interessant - und sie hofft, mit ihrer Arbeit sowohl für diese zu werben als auch Pionierarbeit zu leisten.
„Momentan haben diese Veränderungen noch nicht zu einer echten Transformation geführt“, sagt sie. Auf globaler Ebene sind wir noch weit von einem echten Wandel hin zu längerfristiger Resilienz entfernt. Aber das könne sich, wie sie betont, schnell ändern. Schließlich hat sich das in der Vergangenheit auch bereits geändert: „Man muss sich nur ansehen, was uns hierhergebracht hat.“

„Das Streben nach Wirtschaftswachstum wurde in relativ kurzer Zeit - nur über etwa sieben Jahrzehnte - zu einem so dominanten Schwerpunkt“, sagt sie. Der Wandel hin zu einer längerfristigen Resilienz ist durchaus möglich. Wissenschaftler und Entscheidungsträger müssen nur ihr Hauptziel auf langfristige Widerstandsfähigkeit umstellen. Die Kernfrage ist, ob unsere mächtigsten Wirtschaftsakteure klug genug sind, dies zu tun.
 
Im Rahmen ihrer Forschung hat Halme Projekte geleitet, die Pionierarbeit für die Art von Veränderungen leisten, die die Modeindustrie vornehmen könnte. Gemeinsam mit ihrer Aalto-Kollegin Linda Turunen hat sie beispielsweise kürzlich ein Messverfahren entwickelt, mit dem die Modeindustrie die Nachhaltigkeit eines Produkts klassifizieren könnte. Dabei wird gemessen, wie haltbar das Produkt ist, wie leicht es recycelt werden kann und ob bei der Herstellung gefährliche Chemikalien verwendet werden - was den Verbrauchern bei der Kaufentscheidung helfen könnte. Ihre Kollegen haben vor kurzem eine Ausstellung kuratiert, in der gezeigt wurde, was wir in einer nachhaltigen Zukunft tragen könnten, z. B. eine Lederalternative, die aus weggeworfenen Blumenstecklingen hergestellt wird, oder modulare Designs, mit denen ein und dasselbe Kleidungsstück mehrfach verwendet werden kann, indem z. B. ein Rock in ein Hemd verwandelt wird.

Da all dies längerfristiges Denken, Innovation und Investitionen erfordert, ist die Industrie zurückhaltend, diese Veränderungen vorzunehmen, sagt Halme. Eine Möglichkeit, die Industrie zu einem schnelleren Wandel zu bewegen, ist die Regulierung. In der Europäischen Union beispielsweise müssen Unternehmen mit mehr als 500 Mitarbeitern aufgrund einer aktualisierten Reihe von Richtlinien nun über eine Reihe von Faktoren der Unternehmensverantwortung Bericht erstatten, die von den Auswirkungen auf die Umwelt bis zur Behandlung der Mitarbeiter reichen. Diese Vorschriften werden nicht nur dazu beitragen, Verbraucher, Investoren und andere Interessengruppen über die Rolle eines Unternehmens bei globalen Herausforderungen zu informieren. Sie werden auch dazu beitragen, Investitionsrisiken zu bewerten und abzuwägen, ob ein Unternehmen die notwendigen Maßnahmen ergreift, um langfristig finanziell stabil zu sein.

Quelle:

Aalto University, Amanda Ruggeri. Übersetzung Textination

BioKnit Myzel-Gewölbe BioKnit Myzel-Gewölbe © Hub or Biotechnology in the Built Environment
11.08.2023

Gestrickte futuristische Öko-Gebäude aus Pilzbeton

Mycocrete, eine aus Pilzen hergestellte Paste, kann mit einem gestrickten Stoffgerüst kombiniert werden, um umweltfreundliche Bauten zu schaffen.
Wissenschaftler haben Mycocrete, eine Paste aus dem Wurzelgeflecht von Pilzen, Myzel genannt, als Baumaterial entwickelt. Durch das Einspritzen dieser Paste in ein gestricktes Textilkonstrukt entsteht ein Verbundwerkstoff, der stärker und vielseitiger ist als frühere Biomaterialien aus Pilzen und schließlich für den Bau von Leichtbaugebäuden mit geringer Umweltbelastung verwendet werden könnte.
 

Mycocrete, eine aus Pilzen hergestellte Paste, kann mit einem gestrickten Stoffgerüst kombiniert werden, um umweltfreundliche Bauten zu schaffen.
Wissenschaftler haben Mycocrete, eine Paste aus dem Wurzelgeflecht von Pilzen, Myzel genannt, als Baumaterial entwickelt. Durch das Einspritzen dieser Paste in ein gestricktes Textilkonstrukt entsteht ein Verbundwerkstoff, der stärker und vielseitiger ist als frühere Biomaterialien aus Pilzen und schließlich für den Bau von Leichtbaugebäuden mit geringer Umweltbelastung verwendet werden könnte.
 
Wissenschaftler, bemüht, die Umweltauswirkungen der Bauindustrie zu verringern, haben einen Weg entwickelt, Baumaterialien mit Hilfe von gestrickten Formteilen und dem Wurzelgeflecht von Pilzen wachsen zu lassen. Obwohl Forscher schon früher mit ähnlichen Verbundwerkstoffen experimentiert haben, war es aufgrund der Form- und Wachstumsbeschränkungen des organischen Materials schwierig, verschiedene Anwendungen zu entwickeln, die das Potenzial ausschöpfen. Durch die Verwendung der gestrickten Matrizen als flexibles Gerüst oder „Schalung“ schufen die Wissenschaftler einen Verbundstoff namens „Mycocrete“, der stärker und vielseitiger in Bezug auf Form und Gestalt ist und es den Wissenschaftlern ermöglicht, leichte und relativ umweltfreundliche Baumaterialien zu züchten.

„Unser Ziel ist es, das Aussehen, die Haptik und das sich Komfortgefühl von architektonischen Räumen zu verändern, indem wir Myzel in Kombination mit biobasierten Materialien wie Wolle, Sägemehl und Zellulose verwenden“, sagte Dr. Jane Scott von der Universität Newcastle, korrespondierende Autorin der Veröffentlichung in Frontiers in Bioengineering and Biotechnology. Die Forschungsarbeit wurde von einem Team aus Designern, Ingenieuren und Wissenschaftlern der Forschungsgruppe für lebende Textilien durchgeführt, die Teil des Hub for Biotechnology in the Built Environment ist, einem von Research England finanzierten Gemeinschaftsunternehmen der Universitäten Newcastle und Northumbria.

Wurzelgeflechte
Zur Herstellung von Verbundwerkstoffen mit Myzel, einem Teil des Wurzelgeflechts von Pilzen, mischen Wissenschaftler Myzelsporen mit Getreidekörnern, von denen sie sich ernähren können, und Material, auf dem sie wachsen können. Diese Mischung wird in eine Form gepackt und in eine dunkle, feuchte und warme Umgebung gebracht, damit das Myzel wachsen kann und das Substrat fest zusammenhält. Sobald es die richtige Dichte erreicht hat, aber bevor es anfängt, Fruchtkörper – also Pilze - zu produzieren, wird es ausgetrocknet. Dieser Prozess könnte ein billiger, nachhaltiger Ersatz für Schaumstoff, Holz und Plastik sein. Allerdings benötigt das Myzel zum Wachsen Sauerstoff, was die Größe und Form herkömmlicher starrer Formen einschränkt und die derzeitigen Anwendungen begrenzt.

Gestrickte Textilien bieten eine mögliche Lösung: sauerstoffdurchlässige Formen, die sich mit dem Wachstum des Myzels von flexibel zu steif verändern können. Aber Textilien können zu weich sein, und es ist schwierig, die Formen gleichmäßig zu füllen. Scott und ihre Kollegen entwarfen eine Myzelmischung und ein Produktionssystem, mit dem das Potenzial gestrickter Formen genutzt werden kann.

„Stricken ist ein unglaublich vielseitiges 3D-Fertigungssystem“, so Scott. „Es ist leicht, flexibel und formbar. Der größte Vorteil der Stricktechnologie im Vergleich zu anderen textilen Verfahren ist die Möglichkeit, 3D-Strukturen und Formen ohne Nähte und ohne Abfall zu stricken.“

Die Wissenschaftler bereiteten Proben eines herkömmlichen Myzelkomposits als Referenz vor und züchteten sie zusammen mit Proben des Mycocrete, das ebenfalls Papierpulver, Papierfaserklumpen, Wasser, Glycerin und Xanthan enthielt. Diese Paste sollte mit einer Injektionspistole in die gestrickte Schalung eingebracht werden, um die Konsistenz der Füllung zu verbessern: Die Paste musste flüssig genug für das Einbringungssystem sein, aber nicht so flüssig, dass sie ihre Form nicht behielt.

Die Schläuche für die geplante Teststruktur wurden aus Merinogarn gestrickt, sterilisiert und an einer starren Struktur befestigt, während sie mit der Paste gefüllt wurden, so dass Spannungsänderungen des Gewebes die Leistung des Mycocrete nicht beeinträchtigen würden.

Die Zukunft bauen
Nach dem Trocknen wurden die Proben Zug-, Druck- und Biegefestigkeitstests unterzogen. Die Mycocrete-Proben erwiesen sich als fester als die herkömmlichen Mycel-Verbundproben und übertrafen die ohne gestrickte Schalung gewachsenen Mycel-Verbundstoffe. Darüber hinaus sorgte das poröse Gestrick der Schalung für eine bessere Sauerstoffverfügbarkeit, und die darin gewachsenen Proben schrumpften weniger als die meisten Myzelverbundwerkstoffe, wenn sie getrocknet werden, was darauf hindeutet, dass berechenbarere und konsistentere Herstellungsergebnisse erzielt werden könnten.

Dem Team gelang es ebenfalls, einen größeren Prototyp mit der Modellbezeichnung BioKnit zu bauen - eine komplexe, freistehende Kuppel, die dank der flexiblen Strickform aus einem einzigen Stück besteht, ohne Verbindungsstellen, die sich als Schwachstellen erweisen könnten.

„Die mechanische Leistung des Mycocrete in Kombination mit einer dauerhaft gestrickten Schalung ist ein bedeutendes Resultat und ein Schritt in Richtung der Verwendung von Myzel und textilen Biohybriden im Bauwesen“, so Scott. „In dieser Arbeit haben wir bestimmte Garne, Substrate und Myzelien spezifiziert, die notwendig sind, um ein bestimmtes Ziel zu erreichen. Es gibt jedoch zahlreiche Möglichkeiten, diese Formulierung für andere Anwendungen anzupassen. Biogefertigte Architektur könnte neue Maschinentechnologie erfordern, um Textilien in den Bausektor zu bringen.“

Quelle:

Press release adapted with thanks to Frontiers in Bioengineering and Biotechnology