Textination Newsline

Zurücksetzen
6 Ergebnisse
Risiken in der Versorgungskette kostengünstig minimieren Foto: Pixabay
28.07.2020

Fraunhofer ITWM: Risiken in der Versorgungskette kostengünstig minimieren

  • Algorithmen für optimierte Supply Chains

Die Corona-Pandemie hat die Wirtschaft hart getroffen. Was lässt sich daraus lernen? Wie können sich Unternehmen künftig vor solchen Krisen möglichst gut schützen? Sicher braucht es dazu verschiedene Ansätze. Ein vielversprechendes Puzzlestück liefern neue mathematische Methoden vom Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM: Mit ihnen lässt sich berechnen, wie mit wenig Mehrkosten das Risiko für Lieferengpässe deutlich gesenkt werden kann.

  • Algorithmen für optimierte Supply Chains

Die Corona-Pandemie hat die Wirtschaft hart getroffen. Was lässt sich daraus lernen? Wie können sich Unternehmen künftig vor solchen Krisen möglichst gut schützen? Sicher braucht es dazu verschiedene Ansätze. Ein vielversprechendes Puzzlestück liefern neue mathematische Methoden vom Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM: Mit ihnen lässt sich berechnen, wie mit wenig Mehrkosten das Risiko für Lieferengpässe deutlich gesenkt werden kann.

Niemand hat damit gerechnet, schließlich lief die Versorgung der Krankenhäuser mit Atemmasken und anderen Hygieneartikeln bis dato reibungslos: Doch in der Corona-Krise kam es immer wieder zu Engpässen bei diesen Artikeln. Denn manche Versorgungsketten – auch Supply Chains genannt – die zuvor funktionierten, brachen aufgrund der notwendigen Einschränkungen im globalisierten Warenaustausch zusammen. Beispielsweise konnten chinesische Zuliefererfirmen oftmals bereits nicht mehr liefern, als hierzulande die Fabriken noch wie gewohnt produzierten – was daher auch die Herstellung von Gütern in Deutschland in Mitleidenschaft zog. Auch andere Unwägbarkeiten können internationale Zulieferer lahmlegen: Seien es Naturkatastrophen wie Tsunamis, Erdbeben, Stürme oder Hochwasser, seien es Streiks oder auch unvorhersehbare politische Veränderungen. Hängt die Produktion einer Firma an nur einem Zulieferer, um zunächst einmal Kosten zu sparen, kann das fatale Folgen bis hin zum Produktionsstillstand haben. Denn bis andere Zulieferer ihre Produktion entsprechend hochgefahren haben und die benötigten Produkte geliefert werden können, kann es durchaus eine ganze Weile dauern.
 
Versorgungsketten analysieren und absichern
Hier setzen mathematische Methoden aus dem Fraunhofer ITWM an. »Die Algorithmen analysieren, wie divers die Supply Chains in den verschiedenen Bereichen des Unternehmens aufgestellt sind, und wie groß dementsprechend das Risiko ist, sich im Ernstfall – also bei regionalen oder globalen Ausfällen – ein drastisches Lieferproblem einzuhandeln«, sagt Dr. Heiner Ackermann, stellvertretender Abteilungsleiter am Fraunhofer ITWM in Kaiserslautern. »Wie lässt sich eine mögliche Versorgungslücke klein halten, und zwar bei nur wenig erhöhten Kosten?« Das ist ähnlich wie bei einem Hauskauf: Setzt man auf möglichst geringe Zinsen, geht dafür aber das Risiko ein, eine deutlich schlechtere Anschlussfinanzierung abschließen zu müssen? Oder geht man auf Nummer sicher, zahlt etwas höhere Zinsen, hat die dennoch günstige Finanzierung dafür aber bis zum Schluss gesichert?
 
Auch für Unternehmen gilt es, zwischen Risiko und Kosten abzuwägen: Setzen die Firmen alleinig auf den kostengünstigsten Anbieter, gehen sie damit ein hohes Risiko ein. Beziehen sie einen Rohstoff dagegen von mehreren verschiedenen Anbietern, sinkt das Risiko erheblich. »Die Differenz in den Kosten ist dabei deutlich geringer als die Differenz im Risiko«, sagt Ackermann. Das heißt: Die Risiken sinken bereits bei einem moderaten Anstieg der Kosten von weniger Prozent immens – mit einem kleinen Kostenanstieg lässt sich also bereits viel Risiko umgehen. Wie das individuelle Optimum für eine Firma aussieht, lässt sich mittels der Algorithmen herausfinden. »Über diese können die Unternehmen ihre Supply Chains multikriteriell optimieren – sprich eine für sie optimale Balance zwischen Kosten und Risiken finden«, erläutert Ackermann. »Für die Algorithmen, die dahinter liegen, ist es egal, ob die Lieferausfälle durch ein Erdbeben oder einen Virus bedingt sind. Wir machen daher im Gegensatz zu bestehenden Software-Lösungen keine Annahmen, wie wahrscheinlich das Eintreten eines bestimmten Szenarios ist.« Die Unternehmer geben zunächst einmal verschiedene Parameter ein, etwa in welchem Gebiet sie einen Ausfall für wahrscheinlich halten, und wie lange dieser dauern könnte. Die Algorithmen errechnen dann für eben diesen Rohstoff verschiedene Kosten-Risiko-Werte samt den zugehörigen möglichen Lieferanten-Aufteilungen. Auch Optionen wie eine Lagerhaltung von kritischen Produkten, um kurzzeitige Lieferengpässe abfedern zu können, werden dabei berücksichtigt.
 
Rohstoffe bei Lieferengpässen ersetzen    
Eine weitere Möglichkeit, die die Algorithmen in Betracht ziehen: Lässt sich ein Rohstoff bei Lieferengpässen eventuell durch andere Materialien ersetzen? Wenn ja, kann dies von vornherein mit berücksichtigt werden. Die Methode errechnet also Kosten und Risiken für verschiedene Wege, die ein Unternehmen in punkto Zulieferer einschlagen kann. Bei der Firma Procter & Gamble ist bereits eine speziell auf die Bedürfnisse zugeschnittene Variante der Methodik im Einsatz – in Form einer Software.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Doppelgreifer-Webmaschine des Fraunhofer WKI mit dem Jacquardaufsatz © Fraunhofer WKI | Melina Ruhr. Doppelgreifer-Webmaschine des Fraunhofer WKI mit dem Jacquardaufsatz
02.06.2020

Fraunhofer WKI: Klimafreundliche Hybridfaserwerkstoffe auf Basis nachwachsender Naturfasern

Durch die am Fraunhofer WKI erzielten neuen Kombinationsmöglichkeiten von biobasierten Hybridfaserwerkstoffen erweitern sich die industriellen Einsatzmöglichkeiten für nachwachsende Rohstoffe – beispielsweise beim Fahrzeugbau, aber auch bei Gebrauchsgegenständen wie Helmen oder Skiern.

Mit der Erhöhung des Flachsfaseranteils in Hybridfaserwerkstoffen auf bis zu 50 Prozent zeigen die Wissenschaftlerinnen und Wissenschaftler, dass es möglich ist, den biogenen Anteil in Verbundwerkstoffen deutlich zu steigern. Das Besondere an den getesteten Verfahren: Die Gewebe können mit Hilfe einer Webmaschine individuell zusammengestellt werden. Auf diese Weise lassen sich in der industriellen Produktion Prozessschritte einsparen, in denen Materialien erst zusammengefügt werden müssten. Über den gesamten Produktionsprozess gesehen, würden so Energie- und CO2-Reduktionen erreicht.

Durch die am Fraunhofer WKI erzielten neuen Kombinationsmöglichkeiten von biobasierten Hybridfaserwerkstoffen erweitern sich die industriellen Einsatzmöglichkeiten für nachwachsende Rohstoffe – beispielsweise beim Fahrzeugbau, aber auch bei Gebrauchsgegenständen wie Helmen oder Skiern.

Mit der Erhöhung des Flachsfaseranteils in Hybridfaserwerkstoffen auf bis zu 50 Prozent zeigen die Wissenschaftlerinnen und Wissenschaftler, dass es möglich ist, den biogenen Anteil in Verbundwerkstoffen deutlich zu steigern. Das Besondere an den getesteten Verfahren: Die Gewebe können mit Hilfe einer Webmaschine individuell zusammengestellt werden. Auf diese Weise lassen sich in der industriellen Produktion Prozessschritte einsparen, in denen Materialien erst zusammengefügt werden müssten. Über den gesamten Produktionsprozess gesehen, würden so Energie- und CO2-Reduktionen erreicht.

Erfolgreich verwebt: Unterschiedliche Hybridgewebe
Angesichts der gestiegenen Anforderungen an den Umwelt- und Klimaschutz suchen Wissenschaft und Industrie in sämtlichen Produktionszweigen nach nachhaltigen Alternativen zu herkömmlichen Materialien. Bei Werkstoffen bietet die Verwendung von Naturfasern eine nachhaltige Lösungsmöglichkeit. Aufgrund ihrer geringen Dichte bei gleichzeitig hoher Stabilität können aus Naturfasern hoch belastbare Leichtbaumaterialien erzeugt werden, die sich gut recyceln lassen. Wissenschaftlerinnen und Wissenschaftler des Fraunhofer WKI haben sich im Projekt »ProBio« daher die Frage gestellt, wie der Anteil an Naturfasern in biobasierten Hybridfaserwerkstoffen möglichst weit gesteigert werden kann. Zum Einsatz kam dabei eine Doppelgreifer-Webmaschine mit Jacquardaufsatz, um die biobasierten Hybridfaserwerkstoffe herzustellen.

Ganz gezielt haben sich die Forschenden mit biobasierten Hybridfaserverbundwerkstoffen (Bio-HFW) beschäftigt. Bio-HFW bestehen aus einer Kombination von Fasern auf Cellulosebasis wie Flachsfasern und synthetischen Hochleistungsfasern wie Carbon- oder Glasfasern zur Verstärkung. Bio-HFW können beispielsweise im Fahrzeugbau zum Einsatz kommen. Als Neuheit haben die Forscherinnen und Forscher im Projekt »ProBio« verschiedene Fasermaterialienkombinationen, Verstärkungsfasern und auch Matrixfasern mit Hilfe der Doppelgreifer-Webmaschine ineinander verwebt. Dieses Vorgehen unterscheidet sich von Verfahren, in denen fertige Gewebe übereinandergeschichtet werden.

»Wir haben die vorteilhaften Eigenschaften der Fasermaterialien in einem Verbundwerkstoff so kombiniert, dass wir Schwachstellen einzelner Komponenten ausgleichen konnten und so teilweise auch neue Eigenschaften erzielt haben. Außerdem ist es uns gelungen, den Anteil von biobasierten Fasern auf bis zu 50 Prozent Flachsfasern zu erhöhen, die wir mit 50 Prozent Verstärkungsfasern kombiniert haben«, beschreibt Projektmitarbeiterin Jana Winkelmann das Vorgehen. Die Bio-Hybrid-Textilien aus jeweils 50 Gewichtsprozent Carbon- und Flachsgewebe werden in eine biobasierte Kunststoffmatrix eingesetzt. Der Verbundwerkstoff verfügt über eine Biegefestigkeit, die mehr als doppelt so hoch ist wie die des entsprechenden Verbundwerkstoffs aus flachsbewehrtem Epoxidharz. Diese mechanische Leistungsfähigkeit kann den Einsatzbereich von nachwachsenden Rohstoffen für technische Anwendungen signifikant erweitern.
 
Mit der Webmaschine haben die Wissenschaftlerinnen und Wissenschaftler erfolgreich innovative Leichtbau-Verbundmaterialien mit komplexen anwendungsspezifischen Gewebestrukturen und integrierten Funktionen kombiniert. Verstärkungsfasern wie Carbon- und Naturfasern sowie mehrlagige Gewebe und dreidimensionale Strukturen können in einem Arbeitsschritt miteinander verwebt werden. Das bietet für die industrielle Produktion Vorteile, denn auf diese Weise können Produktionsschritte eingespart werden, in denen Materialien erst zusammengefügt werden müssten. »Es ist uns gelungen, beispielsweise leitfähige Garne oder Drähte als Sensoren oder Leiterbahnen direkt im Webprozess einzusetzen und so Gewebe mit integrierten Funktionen herzustellen. Die Einführung von synthetischen Fasern als Schussfaden ermöglicht also die Herstellung von Bio-Hybrid-Verbundwerkstoffen mit isotropen mechanischen Eigenschaften«, erläutert Winkelmann.

Die Webtechnik macht es möglich, neue Produkte mit einem großen Anteil an biobasierten Komponenten im Pilotmaßstab zu erzeugen. Mit dem Projekt »ProBio« demonstriert das Fraunhofer WKI die vielfältigen Kombinationsmöglichkeiten von Natur- und Verstärkungsfasern und zeigt Möglichkeiten für den Einsatz im Fahrzeugbau auf, aber auch für Gebrauchsgegenstände wie zum Beispiel Helme oder Skier. Die Resultate wurden im Rahmen der 4. Internationalen Konferenz zu Naturfasern (ICNF) in Porto im Juli 2019 vorgestellt. Das Projekt »ProBio«, mit einer Laufzeit vom 1. Juli 2014 bis zum 30. Juni 2019, wurde vom Niedersächsischen Ministerium für Wissenschaft und Kultur (MWK) gefördert.

Zum Hintergrund
Nachhaltigkeit durch Nutzung nachwachsender Rohstoffe steht seit über 70 Jahren im Fokus des Fraunhofer WKI. Das Institut mit Standorten in Braunschweig, Hannover und Wolfsburg ist spezialisiert auf Verfahrenstechnik, Naturfaser-Verbundkunststoffe, Holz- und Emissionsschutz, Qualitätssicherung von Holzprodukten, Werkstoff- und Produktprüfungen, Recyclingverfahren sowie den Einsatz von organischen Baustoffen und Holz im Bau. Nahezu alle Verfahren und Werkstoffe, die aus der Forschungstätigkeit hervorgehen, werden industriell genutzt.

Quelle:

Fraunhofer-Institut für Holzforschung WKI

Schutzmasken für das Universi-tätsklinikum Augsburg (c) Fraunhofer IGCV
14.04.2020

Schutzausrüstung aus dem 3D-Drucker

  • Fraunhofer IGCV liefert Schutzausrüstung aus dem 3D-Drucker an das Universitätsklinikum Augsburg

Seit mehr als einer Woche versorgt das Institut für Materials Resource Management der Universität Augsburg das Universitätsklinikum Augsburg mit Schutzmasken aus dem 3D-Drucker. Um den enormen Bedarf an unbedingt notwendiger Schutzausrüstung für das Klinikpersonal decken zu können, wurde ein Aufruf zur Unterstützung an Kooperationspartner gesendet – Hochschule Augsburg und Fraunhofer IGCV springen ein.

  • Fraunhofer IGCV liefert Schutzausrüstung aus dem 3D-Drucker an das Universitätsklinikum Augsburg

Seit mehr als einer Woche versorgt das Institut für Materials Resource Management der Universität Augsburg das Universitätsklinikum Augsburg mit Schutzmasken aus dem 3D-Drucker. Um den enormen Bedarf an unbedingt notwendiger Schutzausrüstung für das Klinikpersonal decken zu können, wurde ein Aufruf zur Unterstützung an Kooperationspartner gesendet – Hochschule Augsburg und Fraunhofer IGCV springen ein.

Eine bestmögliche medizinische Versorgung aufrechterhalten: Im Rahmen der Corona-Pandemie ist dies nur möglich, wenn Ärzte und Klinikpersonal vor Infektionen geschützt werden. Atemmasken können verhindern, sich über Mund und Nase mit dem Virus zu infizieren. Doch auch Schutzbrillen und Gesichtsmasken sind unabdingbare Bestandteile der persönlichen Schutzausrüstung: mit ihnen lässt sich eine Infektion über die Augen abwehren. Was aber, wenn letztere aufgrund aktuell enormer Nachfragen nicht mehr lieferbar sind? Eine massive Herausforderung, der sich Ende März auch das Universitätsklinikum Augsburg stellen musste. Die Idee: Schutzmasken aus dem 3D-Drucker.

Schnelle Kommunikation im Forschungsnetzwerk: Produktion von 3D-gedruckten Teilen fährt in kürzester Zeit hoch
Kurzerhand wurde universitätsintern nach Möglichkeiten der Fertigung via 3D-Druck gesucht. Prof. Dr. Markus Sause und Prof. Dr. Kay Weidenmann des Instituts für Materials Resource Management der Universität Augsburg sagten augenblicklich zu und setzten alle Hebel in Bewegung, um die Produktion schnellstmöglich zu starten. Zur Bereitstellung möglichst vieler Schutzmasken in kürzester Zeit ging außerdem ein Aufruf an bestehende Kooperationspartner. Bei ihrem direkten Kollegen Prof. Dr. Johannes Schilp, Professor für Produktionsinformatik an der Universität Augsburg und Hauptabteilungsleiter Verarbeitungstechnik am Augsburger Fraunhofer IGCV wurden sie fündig: Max Horn, wissenschaftlicher Mitarbeiter am Fraunhofer-Institut, und auch Paul Dolezal vom FabLab (Fabrikationslabor) der Hochschule Augsburg sagten sofort ihre Hilfe zu. »Dank der großartigen Zusammenarbeit unseres Teams wurden wenige Stunden nach dem ersten Telefonat bereits die ersten Teile in unserem Labor für additive Fertigung hergestellt«, erinnert sich Max Horn. »Mit Unterstützung von der Hochschule Augsburg und dem Fraunhofer IGCV konnte die Produktionskapazität von 50 Masken pro Tag deutlich gesteigert werden«, freut sich Markus Sause.

Masken drucken mit Fused Deposition Modeling (FDM)
Als Herstellungsverfahren für den Gesichtsschutz wurde das Fused Deposition Modeling (FDM) ausgewählt. Dies bedeutet, dass die Maske entsteht, indem schmelzfähiger Kunststoff durch eine Düse gedrückt und schichtweise in einzelnen Bahnen aufgetragen wird. Neben einem umfangreichen Labor für metallbasierte additive Fertigung betreibt das Fraunhofer IGCV eine neue Laboreinheit mit verschiedenen FDM-Druckern. Aufgrund der Einfachheit des Verfahrens und seiner großen Flexibilität eignet es sich insbesondere für Prototypen und Musterbauteile. »Die gefertigten Masken sind aber keinesfalls nur Anschauungsobjekte«, ergänzt Georg Schlick, Abteilungsleiter Komponenten und Prozesse am Fraunhofer IGCV. Für die Teile verarbeitete das Team langlebige Polymere, die eine gute Beständigkeit gegen die im Klinikum verwendeten Desinfektionsmittel haben. Dadurch entstehen hochwertige Komponenten, welche sich bestens für die Mehrfachverwendung eignen.

Additive Fertigung für flexible Produktion
Inzwischen wurden einige Engpässe überwunden: Im Institut für Materials Resource Management der Universität Augsburg sattelt man für die Herstellung der Gesichtsmasken wieder auf Produktionsverfahren um, welche besser für die Herstellung großer Stückzahlen geeignet sind. »Die große Stärke der Additiven Fertigung liegt eher in der Herstellung sehr komplexer Komponenten mit geringeren Stückzahlen«, erläutert Matthias Schmitt, Gruppenleiter für Additive Fertigung am Fraunhofer IGCV. »Der 3D-Druck ermöglicht es uns aber eben auch, sehr kurzfristig zu handeln und fehlende Kapazitäten für beinahe beliebige Komponenten ganz nach Bedarf auszugleichen«, so Schmitt weiter. Durch die Flexibilität, Leistungsbereitschaft und die Kompetenzen aller Kooperationspartner konnte binnen weniger Tage eine vollständige Produktions- und Lieferkette für die Gesichtsmasken umgesetzt werden. Georg Schlick betont daher die Notwendigkeit einer guten Vernetzung und eines schnellen Austauschs zwischen den Forschungseinrichtungen. »Die enge Vernetzung innerhalb der 3D-Druck Community ermöglicht kurze Kommunikationswege und schnelles Handeln. Das kann in diesem Fall Leben retten.«

Quelle:

Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV

Das neue AddiTex-Compound kommt als Filament für den 3D-Druck aus dem Extruder. © Fraunhofer UMSICHT
12.11.2019

FRAUNHOFER UMSICHT: COMPOUNDS FÜR ADDITIVE FERTIGUNG, GEOTEXTILIEN UND WEARABLES

Ob biologisch abbaubare Geotextilien, Wearables aus thermoplastischen Elastomeren oder Funktions-Textilien aus dem 3D-Drucker – die Bandbreite der am Fraunhofer Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT entwickelten Kunststoffe ist groß.

Einblicke in diese Projekte gab es vom 16. bis 23. Oktober in Düsseldorf: Auf der K stellten Wissenschaftlerinnen und Wissenschaftler ihre Arbeit an thermisch und elektrisch leitfähigen, biologisch abbaubaren, biobasierten sowie für die additive Fertigung geeigneten Compounds vor.

Ob biologisch abbaubare Geotextilien, Wearables aus thermoplastischen Elastomeren oder Funktions-Textilien aus dem 3D-Drucker – die Bandbreite der am Fraunhofer Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT entwickelten Kunststoffe ist groß.

Einblicke in diese Projekte gab es vom 16. bis 23. Oktober in Düsseldorf: Auf der K stellten Wissenschaftlerinnen und Wissenschaftler ihre Arbeit an thermisch und elektrisch leitfähigen, biologisch abbaubaren, biobasierten sowie für die additive Fertigung geeigneten Compounds vor.

Textile Verbundwerkstoffe aus dem 3D-Drucker
Im Projekt »AddiTex« sind Kunststoffe entstanden, die mit Hilfe des 3D-Drucks schichtweise auf Textilien aufgetragen werden und diesen funktionale Eigenschaften verleihen. Eine besondere Herausforderung bei der Entwicklung war die permanente Haftung: Der aufgedruckte Kunststoff sollte sowohl eine feste Verbindung mit dem Textil eingehen als auch ausreichend flexibel sein, um Bewegungen und Drehungen mitmachen zu können.

Entwickelt wurden ein flexibles und flammgeschütztes Compound, das sich besonders für die Anwendung im Bereich des textilen Sonnen- und Schallschutzes eignet, sowie ein steifes Compound, das u. a. bei der Formverstärkung für Schutz- und Funktionsbekleidung zum Einsatz kommt.

Geotextilfilter für die technisch-biologische Ufersicherung
Geotextilfilter für die technisch-biologische Ufersicherung stehen im Zentrum des Projektes »Bioshoreline«. Dahinter verbergen sich stufenweise biologisch abbaubare Vliese, die eine naturnahe Ufergestaltung von Binnenwasserstraßen mit Pflanzen ermöglichen. Sie bestehen aus nachwachsenden Rohstoffen und sollen im Anfangszustand den Boden im Uferbereich stabilisieren, bis die Pflanzenwurzeln ausreichend gewachsen sind, und sowohl Filter- als auch Rückhaltefunktionen übernehmen. Die Alterung und der biologische Abbau der Vliese beginnen unmittelbar nach der Installation, bis die Vliese nach und nach vollständig abgebaut sind.

Aktuell werden Prototypen der Geotextilfilter geprüft. Wissenschaftlerinnen bewerten die ober- und unterirdisch gebildete Pflanzenmasse mit und ohne Geotextilfilter sowie den Einfluss des Bodentyps auf das Pflanzenwachstum und den biologischen Abbau des Filters.

Wearables aus thermoplastischen Elastomeren
Darüber hinaus werden am Fraunhofer UMSICHT neuartige, elektrisch leitfähig eingestellte und flexible Compounds entwickelt, die zu Thermoplast-basierten Bipolarplatten verarbeitet werden können. Diese Kunststoffe sind elektrisch hochleitfähig, flexibel, mechanisch stabil, gasdicht und chemisch resistent sowie – in Abhängigkeit des Füllgrades an elektrisch leitfähigen Additiven – vielfältig nutzbar. Zum Beispiel in elektrochemischen Speichern (Batterien), in Energiewandlern (Brennstoffzellen), in chemikalienresistenten Wärmeübertragern oder als Widerstandsheizelemente.

Ein weiteres mögliches Einsatzgebiet dieser Kunststoffe: Wearables. Diese tragbaren Materialien lassen sich mit den neuen Compounds nämlich einfach und günstig herstellen. Denkbar ist u. a., Kleidungsstücke wie eine Weste mit Hilfe von Widerstandsheizelementen zu formen. Der Gedanke dahinter heißt Power-to-Heat und ermöglicht die direkte Umwandlung von Energie in Wärme.

FÖRDERHINWEISE
»AddiTex« wird gefördert mit einer Zuwendung des Landes Nordrhein-Westfalen unter Einsatz von Mitteln aus dem Europäischen Fonds für regionale Entwicklung (EFRE) 2014-2020 »Investitionen in Wachstum und Beschäftigung«. Projektträger: LeitmarktAgentur.NRW • Projektträger Jülich.
Die Förderung des Vorhabens »Bioshoreline« (Förderkennzeichen: 22000815) erfolgt aus Mitteln des Bundesministeriums für Ernährung und Landwirtschaft (BMEL) aufgrund eines Beschlusses des deutschen Bundestages.

Nähere Informationen online unter: https://www.umsicht.fraunhofer.de/de/referenzen/additex.html

 

Weitere Informationen:
Fraunhofer-Institute UMSICHT K 2019
Quelle:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Drahtlose Energieübertragung für technische Textilien Bild von Gerd Altmann auf Pixabay
27.08.2019

DRAHTLOSE ENERGIEÜBERTRAGUNG FÜR TECHNISCHE TEXTILIEN

Der Trend hin zum „Internet of Everything“ ist ungebrochen. Egal ob im industriellen, medizinischen oder im alltäglichen Bereich, immer mehr elektrische Geräte werden miteinander verbunden. Diese nehmen Messwerte auf, tauschen Daten aus und reagieren nach Möglichkeit und Anwendung darauf. Auf Grund von immer kleineren Strukturen, neuer Prozessmöglichkeiten und neuer, flexibler Materialien werden solche Systeme zunehmend im textilen Bereich eingesetzt. Mittels neuer, innovativer Geräte lassen sich medizinische Messwerte direkt über ein Kleidungsstück aufnehmen, Aktoren wie EMS-Elektroden direkt ins Textil integrieren oder Funktionen wie MP3-Player, GPS-Empfänger, Sturzdetektoren, Heizstrukturen und vieles mehr einfach und intuitiv einbetten. Kommunikation und Datenaustausch finden dabei in der Regel drahtlos zum Beispiel über WLAN, Bluetooth, RFID oder in Zukunft auch über das 5G-Netz statt.

Der Trend hin zum „Internet of Everything“ ist ungebrochen. Egal ob im industriellen, medizinischen oder im alltäglichen Bereich, immer mehr elektrische Geräte werden miteinander verbunden. Diese nehmen Messwerte auf, tauschen Daten aus und reagieren nach Möglichkeit und Anwendung darauf. Auf Grund von immer kleineren Strukturen, neuer Prozessmöglichkeiten und neuer, flexibler Materialien werden solche Systeme zunehmend im textilen Bereich eingesetzt. Mittels neuer, innovativer Geräte lassen sich medizinische Messwerte direkt über ein Kleidungsstück aufnehmen, Aktoren wie EMS-Elektroden direkt ins Textil integrieren oder Funktionen wie MP3-Player, GPS-Empfänger, Sturzdetektoren, Heizstrukturen und vieles mehr einfach und intuitiv einbetten. Kommunikation und Datenaustausch finden dabei in der Regel drahtlos zum Beispiel über WLAN, Bluetooth, RFID oder in Zukunft auch über das 5G-Netz statt.

Für solche Anwendungen und Funktionen wird elektrische Energie benötigt. „Energy Harvesting“ ist trotz der Bemühungen den Energiebedarf der elektronischen Schaltungen zu minimieren für viele Anwendungen nicht ausreichend. Daher sind Energiespeicher wie Batterien oder wieder aufladbare Akkumulatoren zum Betrieb notwendig. Das Wiederaufladen hat dabei den großen Vorteil, dass kleinere, kompaktere Energiespeicher genutzt werden können, um mindestens die gleiche oder sogar eine erhöhte Lebensdauer und Gesamtlaufzeit zu erzielen. Um einen Akkumulator mit elektrischer Energie aufzuladen, gibt es zwei grundlegende Konzepte. Zum einen drahtgebundene Energieübertragung, durch Kontaktierung beispielsweise mit einem Micro-USB Kabel. Zum anderen drahtlose Energieübertragung.

Bei drahtgebundenen Lösungen können Kontakte verschleißen und gerade im textilen Bereich durch Fussel zugesetzt werden. Außerdem sind mechanische Kontakte unkomfortabel und wenig flexibel.
Besser eignen sich daher drahtlose Konzepte, die gleich mehrere Vorteile mit sich bringen. Beispielsweise kann die Elektronik inklusive Energiespeicher komplett eingekapselt werden, da keine galvanischen Kontakte notwendig sind. Dadurch wird das Textil maschinenwaschbar, da die Elektronik vor Wasser, Waschmittel aber auch Schweiß geschützt ist.

Es müssten somit keine Komponenten mehr von dem Textil entfernt werden. Ein weiterer praktischer Vorteil ist die Vereinfachung der Aufladung. Das Textil kann mit dem passenden Konzept auf Kleiderbügel aufgehängt, in Wäschekörbe gelegt oder im Idealfall einfach in die Waschmaschine gegeben werden und ohne weiteres Zutun des Anwenders aufgeladen. Somit entsteht eine unkomplizierte, charmante Art und Weise zum Betreiben smarter Textilien.

Um ein Textil drahtlos mit Energie zu versorgen gibt es mehrere Konzepte und Möglichkeiten. Die beliebteste und gleichzeitig effizienteste Methode ist die induktive Energieübertragung . In diesem Fall werden zwei Spulen induktiv miteinander gekoppelt und übertragen somit drahtlos Energie. Luft, Holz, Kunststoff, aber auch Flüssigkeiten wie Wasser oder menschliches Gewebe können über einige Zentimeter nahezu verlustfrei von dem entstandenen induktiven Magnetfeld durchdrungen werden.

Auch für die Integration der Elektronik auf das Textil gibt es verschiedene Konzepte. Am einfachsten zu entwickeln sind Konzepte, bei denen alle Schaltungsteile auf Leiterplatten hergestellt werden. Dünne Leiterplatten besitzen inzwischen Substratdicken von wenigen zehntel Millimetern. Auch flexible Möglichkeiten die z.B. Herstellung auf Silikone sind denkbar. Dabei werden sowohl unter anderem die Sensoren und der Mikrocontroller als auch die Spule zur induktiven Energieübertragung auf das Substrat gefertigt. Diese komplette Leiterplatte muss im Anschluss noch mit dem Textil verbunden werden. Möglich ist das durch Kleben, Annähen oder einen Einschub. Von der Fertigung der gesamten Schaltung auf dünnen Leiterplatten bis hin zu gesamttextilen Integration sind verschiedenste Kombinationen möglich.

Einen Schritt weiter gehen Konzepte, bei denen die Empfängerspule in das Textil integriert wird. Dabei werden zum Beispiel hochfeine Drähte oder Litzen eingewebt oder aufgestickt. Hierdurch wird das textile Material zum Substrat und zu einem funktionalisierten Textil. Im Anschluss wird der verbleibende Teil der Schaltung auf ein herkömmliches Substrat integriert und mit der Spule und dem Textil verbunden. Da die Spulen zum Teil Durchmesser von wenigen Zentimetern haben können, erhält man somit einen Gewinn an Flexibilität, weil die textile Spule beim Tragen nahezu frei verformbar ist. Bei einer gesamttextilen Integration werden schließlich auch die Bauteile auf das Textil befestigt und die Leiterbahnen werden aufgestickt oder eingewebt.

Konsequent um- und eingesetzt kann die drahtlose Energieübertragung somit dazu beitragen den Markt für smarte Textilien nachhaltig zu stärken, da das einfache und komfortable Aufladen der Textilien die Handhabung und Nutzererfahrung verbessert.

Quelle:

Fraunhofer-Institut für Elektronische Nanosysteme ENAS
Autoren: Dominik Schröder, Dr. Christian Hedayat

LKW-Planen als Stromerzeuger Bild von Peter H. auf Pixabay
20.08.2019

TEXTILE SOLARZELLEN: STROM AUS STOFF

LKW-Planen als Stromerzeuger?

LKW-Planen als Stromerzeuger?
Neuartige textile Solarzellen von Fraunhofer-Forscherinnen und -Forschern aus Dresden machen es möglich: Über sie könnten die Anhänger den benötigten Strom – etwa für Kühlaggregate – autark erzeugen. Kurzum: Textile Solarzellen erweitern die Möglichkeiten enorm, Strom aus der Sonnenstrahlung zu gewinnen. Sie stellen somit eine sinnvolle Ergänzung zu herkömmlichen Siliziumzellen dar. Solarzellen auf den Dächern sind längst Usus, ebenso wie große Solarparks. Künftig sollen jedoch auch solche Flächen zur Energieerzeugung genutzt werden, die bislang nicht dazu taugten. LKW-Planen etwa könnten die Anhänger autark mit dem Strom versorgen, den der Fahrer während der Fahrt und auf Rastplätzen verbraucht oder der auf Logistikplätzen für die LKW-Ortung benötigt wird. Zudem könnten ganze Gebäudefronten zur Stromerzeugung beitragen, indem sie nicht wie bisher verputzt, sondern mit stromerzeugenden Abspanntextilien verkleidet werden. Bei Glasfassaden könnten Abschattungstextilien wie Rollos Hunderte von Quadratmetern in Stromerzeugungsflächen umwandeln.

Glasfasergewebe als Solarzellenbasis
Möglich machen es textile, biegsame Solarzellen, die Forscherinnen und Forscher vom FraunhoferInstitut für Keramische Technologien und Systeme IKTS entwickelt haben – gemeinsam mit dem Fraunhofer-Institut für Elektronische Nanosysteme ENAS, dem Sächsischen Textilforschungsinstitut e.V. und den Firmen erfal GmbH & Co. KG, PONGS Technical Textiles GmbH, Paul Rauschert GmbH & Co. KG und GILLES PLANEN GmbH. »Über verschiedene Beschichtungsverfahren können wir Solarzellen direkt auf technischen Textilien herstellen«, erläutert Dr. Lars Rebenklau, Gruppenleiter für Systemintegration und AVT am Fraunhofer IKTS. Sprich: Die Forscher verwenden kein Glas oder Silizium wie bei herkömmlichen Solarmodulen, sondern Textilien als Substrat. »Das jedoch ist alles andere als leicht – schließlich sind die Anlagen in den textilverarbeitenden Unternehmen mit fünf bis sechs Metern Stoffbreite und Stofflängen von tausend Metern riesig groß. Dazu kommt: Die Textilien müssen während der Beschichtung Temperaturen von etwa 200 Grad Celsius überstehen«, ergänzt Dr. Jonas Sundqvist, Gruppenleiter für Dünnschichttechnologien am Fraunhofer IKTS. Auch andere Anforderungen wie Brandschutz-Vorschriften, große Stabilität und ein günstiger Preis sind für die Herstellung von Solarzellen elementar. »Wir haben uns im Konsortium daher für ein Glasfasergewebe entschieden, das all diese Anforderungen erfüllt«, sagt Rebenklau.

Bewusst auf Standardverfahren gesetzt
Eine Herausforderung stellte auch das Aufbringen der verschiedenen Schichten einer Solarzelle auf das Gewebe dar – also die Grundelektrode, die photovoltaisch wirksame Schicht und die Deckelektrode. Denn verglichen mit diesen nur ein bis zehn Mikrometer dünnen Schichten gleicht die Oberfläche eines Textils einem riesigen Gebirge. Die Forscher greifen daher zu einem Trick: Sie bringen zunächst eine Einebnungsschicht auf das Textil auf, die Berge und Täler ausgleicht. Dazu nutzen sie den Transferdruck – ein Standardverfahren der Textilbranche, das auch zum Gummieren verwendet wird. Auch alle weiteren Produktionsprozesse haben die Forschenden von Anfang an so gestaltet, dass sie sich problemlos in die Fertigungslinien der Textilindustrien einfügen lassen: So bringen sie die Elektroden aus elektrisch leitfähigem Polymer ebenso wie die photovoltaisch wirksame Schicht über das gängige Rolle-zu-Rolle-Verfahren auf. Um die Solarzelle möglichst robust werden zu lassen, laminieren die Forscherinnen und Forscher zusätzlich eine Schutzschicht auf.

Marktreife Solartextilien in etwa fünf Jahren
Den ersten Prototyp hat das Forscherteam bereits hergestellt. »Wir konnten zeigen, dass unsere textile Solarzelle an sich funktioniert«, sagt Rebenklau. »Ihre Effizienz liegt momentan bei 0,1 bis 0,3 Prozent.« In einem Nachfolgeprojekt arbeiten der Ingenieur und seine Kollegen nun daran, die Effizienz auf über fünf Prozent zu steigern – denn ab diesem Wert rechnet sich die textile Solarzelle. Zwar erreichen Siliziumzellen mit zehn bis 20 Prozent deutlich höhere Effizienzwerte. Allerdings soll die neuartige Zelle ja nicht mit den herkömmlichen konkurrieren, sondern sie sinnvoll ergänzen. Auch die Lebensdauer der textilen Solarzelle wollen die Forscherinnen und Forscher in den kommenden Monaten untersuchen und optimieren. Wenn alles funktioniert wie erhofft, könnte die textile Solarzelle in etwa fünf Jahren auf den Markt kommen. Dann wäre das ursprüngliche Ziel des Projekts PhotoTex erreicht: Neue Anregungen für den Textilstandort Deutschland zu finden und die Wettbewerbsfähigkeit dieser Industriebranche zu steigern.