Textination Newsline

Zurücksetzen
147 Ergebnisse
The Materials Market Report 2024 (c) Textile Exchange
30.09.2024

Materials Market Report 2024: Neue fossile Synthetiks dominieren

Textile Exchange veröffentlichte 2013 den ersten „Materials Market Report“ als umfassende, jährliche Publikation, die spezifische Daten und Einblicke in die globale Faser- und Rohstoffproduktion bereitstellt.
 
Der „Materials Market Report“ enthält die aktuellsten verfügbaren Daten zu den globalen Produktionsmengen von Fasern und Materialien sowie programmspezifische Mengen und zusätzliche Informationen, wie etwa die Anzahl zertifizierter Standorte. Für die Zwecke dieses Berichts werden Leder, Gummi und Daunen als nichtfaserige Rohstoffe betrachtet und daher getrennt von dem Abschnitt und den Diagrammen zu „globalen Fasern“ aufgeführt.

Textile Exchange veröffentlichte 2013 den ersten „Materials Market Report“ als umfassende, jährliche Publikation, die spezifische Daten und Einblicke in die globale Faser- und Rohstoffproduktion bereitstellt.
 
Der „Materials Market Report“ enthält die aktuellsten verfügbaren Daten zu den globalen Produktionsmengen von Fasern und Materialien sowie programmspezifische Mengen und zusätzliche Informationen, wie etwa die Anzahl zertifizierter Standorte. Für die Zwecke dieses Berichts werden Leder, Gummi und Daunen als nichtfaserige Rohstoffe betrachtet und daher getrennt von dem Abschnitt und den Diagrammen zu „globalen Fasern“ aufgeführt.

Er trägt dazu bei, die Anstrengungen der Textilindustrie zur Reduzierung der mit der Rohstoffproduktion verbundenen Emissionen im Einklang mit einem Temperaturanstieg von 1,5 Grad zu informieren. Der Bericht hebt die Dringlichkeit hervor, den Übergang zu Fasern aus nachhaltigen Quellen zu beschleunigen, die Bemühungen zu intensivieren, die Abhängigkeit von neu gewonnenen fossilen Materialien deutlich zu reduzieren, und in Strategien zu investieren, die die Wertschöpfung von der Notwendigkeit der Gewinnung neuer Materialien trennen.

Es ist jedoch wichtig zu beachten, dass die Zusammenstellung globaler Marktdaten für Fasern und Rohstoffe eine Herausforderung darstellt und die Qualität der verfügbaren Daten oft begrenzt ist. Die Erhebung von Primärdaten von Lieferanten würde den Rahmen dieses Berichts sprengen, sodass sich Textile Exchange auf Sekundärdaten von Branchenverbänden, internationalen Organisationen, Regierungsorganisationen, Normungsgremien und Forschungsinstituten stützt.

Obwohl Textile Exchange diese Informationen nach bestem Wissen und Gewissen gesammelt, analysiert und zusammengestellt und sie, wo immer möglich, gegengeprüft hat, dient der Bericht nur zu allgemeinen Orientierungs- und Informationszwecken. Datenlücken und Unstimmigkeiten sind bei globalen Marktdaten weit verbreitet, sodass häufig Modelle angewendet werden mussten.

Die weltweite Faserproduktion erreichte 2023 mit 124 Millionen Tonnen einen neuen Rekord, wie aus dem neuesten Materials Market Report hervorgeht, der die Gesamtmengen für Bekleidung, Heimtextilien, Schuhe oder andere Anwendungen untersucht.

Die Daten zeigen, dass der Marktanteil von neu hergestellten Kunststoffen auf fossiler Basis im Jahr 2023 weiter gestiegen ist, während der Anteil von Baumwolle und recycelten Fasern zurückging. Weitere wichtige Ergebnisse aus den Daten des Berichts sind:     

  • Rekordfaserproduktion: Trotz der Bemühungen der Branche hat sich die weltweite Faserproduktion seit dem Jahr 2000 mehr als verdoppelt. Die 124 Millionen Tonnen des letzten Jahres stellen einen Anstieg von 7 % gegenüber den 116 Millionen Tonnen im Jahr 2022 dar und werden voraussichtlich auf 160 Millionen Tonnen im Jahr 2030 ansteigen, wenn sich die aktuellen Trends fortsetzen.
  • Synthetikfasern dominieren weiterhin: Die Produktion von neuen, auf fossilen Brennstoffen basierenden Synthetikfasern stieg von 67 Millionen Tonnen im Jahr 2022 auf 75 Millionen Tonnen im Jahr 2023. Polyester blieb mit einem Anteil von 57 % an der gesamten Faserproduktion die weltweit meistproduzierte Faser.
  • Recycelte Kunstfasern stehen vor Herausforderungen: Obwohl die Produktion von recycelten Polyesterfasern im Jahr 2023 leicht gestiegen ist, ist der Gesamtmarktanteil von recyceltem Polyester von 13,6 % auf 12,5 % gesunken. Bei Polyamid (Nylon), der am zweithäufigsten verwendeten Kunstfaser, machten recycelte Fasern nur 2 % des gesamten Marktanteils aus. Diese Trends sind auf die niedrigeren Preise und die anhaltende Produktion von neuen Kunstfasern sowie auf die derzeitigen Einschränkungen bei den Recyclingtechnologien zurückzuführen. Weniger als 1 % des globalen Fasermarktes stammte aus recycelten Textilien aus dem Pre- und Post-Consumer-Bereich.

    Der kombinierte Anteil aller recycelten Fasern ging im Jahr 2023 leicht zurück, von etwa 7,9 % auf 7,7 %, was hauptsächlich auf eine Zunahme der Produktion von fossilem Polyester zurückzuführen ist, das zu niedrigeren Preisen als recyceltes Polyester angeboten wurde. Die Produktion von Synthetikfasern auf fossiler Basis stieg von 67 Millionen Tonnen im Jahr 2022 auf 75 Millionen Tonnen im Jahr 2023. Inzwischen stammte weniger als 1 % des globalen Fasermarktes aus recycelten Textilien, die vor und nach dem Gebrauch recycelt wurden.
  • Die Baumwollproduktion verzeichnete einen leichten Rückgang: Die weltweiten Baumwollmengen sanken leicht von 25,1 Millionen Tonnen im Jahr 2022 auf 24,4 Millionen Tonnen im Jahr 2023. Der Anteil der im Rahmen von Nachhaltigkeitsprogrammen produzierten Baumwolle blieb jedoch stabil und machte 29 % der gesamten produzierten Baumwolle aus.
  • Zertifizierte Wolle steigt: Die Daten zeigten positive Trends für Wolle, die nach Standards wie dem Responsible Wool Standard (RWS), ZQ, SustainaWOOL (GREEN und GOLD), dem Sustainable Cape Wool Standard (SCWS) und den Programmen von Climate Beneficial produziert wurde. Dieser Anteil stieg von 4,2 % im Jahr 2022 auf 4,8 % im Jahr 2023. Recycelte Wolle machte weiterhin etwa 6 % des globalen Wollmarktes aus.
  • Zertifiziertes Mohair und Kaschmir erreichten fast die Hälfte des Marktanteils: Zertifizierte Fasern wie Mohair und Kaschmir verzeichneten ein bemerkenswertes Wachstum, beide mit Marktanteilen von 47 %.

    Die gestiegene Nachfrage der Branche nach verantwortungsvollen Tierfasern durch Programme wie den Responsible Mohair Standard (RMS) und den Responsible Alpaca Standard (RAS) fällt auf, die beide zu einem besseren Tierschutz und Umweltmanagement beitragen. Dies zeigt das Potenzial von Standards dieser Art auf Betriebsebene, die Marktakzeptanz nachhaltigerer Praktiken vor Ort zu erhöhen.
  • Die Produktion chemischer Zellulosefasern stieg an: Die Gesamtproduktion von MMCF stieg von 7,4 Millionen Tonnen im Jahr 2022 auf 7,9 Millionen Tonnen im Jahr 2023, was 6 % des globalen Fasermarktes entspricht.

Der Marktbericht hebt die anhaltende Abhängigkeit von neuen, auf fossilen Rohstoffen basierenden synthetischen Materialien hervor, die die Verpflichtung der Branche zur Einhaltung ihrer Klimaziele zu untergraben droht. Er zeigt auch die derzeitigen Grenzen des Textil-zu-Textil-Recyclings auf und weist auf den dringenden Bedarf an innovativen Lösungen hin, da der größte Teil des recycelten Polyesters immer noch aus PET-Flaschen stammt.

„Wir hoffen, dass diese Daten als klarer Aufruf zum Handeln für die Branche dienen und sowohl die Erfolge als auch die kritischen Bereiche hervorheben, auf die wir uns stärker konzentrieren müssen, um die Klimaziele zu erreichen“, so Claire Bergkamp, CEO von Textile Exchange.

„Die Erschließung von Recyclingwegen für Textilien wird von entscheidender Bedeutung sein, um die Abhängigkeit von neuen synthetischen Materialien zu verringern. Ebenso wichtig ist es, diejenigen vor Ort weiterhin zu unterstützen, die den Übergang von konventionellen Systemen zu umweltfreundlicheren Materialien vorantreiben. Es ist dringender denn je, diejenigen zu unterstützen, die bereits in umweltfreundlichere Systeme investiert haben, und gleichzeitig den Übergang von konventionellen Systemen in großem Maßstab zu ermöglichen.“

Download des Materials Market Report 2024.

Weitere Informationen:
Faserproduktion Marktbericht
Quelle:

Textile Exchange

Dieses Bild aus der CoCuRA-Software zeigt, wie sie konventionelle Baumwolle, Bio-Baumwolle und andere landwirtschaftliche Felder identifiziert. Weiß eingefärbt sind alle Baumwollanbauflächen, grün solche mit Biobaumwolle. Source GOTS
17.09.2024

Bio-Baumwolle mit KI-Unterstützung per Satellit erkennen

  • Analyse von 2,7 Millionen Quadratkilometer in Indien auf Bio-Baumwolle
  • Nachweislich 97 % Genauigkeit bei der Erkennung von Baumwollfeldern, über 80 % Genauigkeit bei der Bestimmung des Biostatus
  • Ziel: Integrität und Verfügbarkeit von Bio-Baumwolle zu verbessern

Mit einem innovativen Technologieprojekt ermöglicht die Global Standard gGmH in Zusammenarbeit mit dem deutschen Tech-Start-up Marple und der European Space Agency (ESA) die Erkennung von Baumwollfeldern und ihres ökologischen Status auf Basis künstlicher Intelligenz in Kombination mit Satellitenbildern. Damit leisten die Projektpartner einen zukunftsweisenden Beitrag, den Anteil organisch angebauter Baumwolle in der weltweiten Wertschöpfungskette der Textilindustrie zu erhöhen und darüber hinaus die Integrität des Global Organic Textile Standard (GOTS) weiter zu stärken.

  • Analyse von 2,7 Millionen Quadratkilometer in Indien auf Bio-Baumwolle
  • Nachweislich 97 % Genauigkeit bei der Erkennung von Baumwollfeldern, über 80 % Genauigkeit bei der Bestimmung des Biostatus
  • Ziel: Integrität und Verfügbarkeit von Bio-Baumwolle zu verbessern

Mit einem innovativen Technologieprojekt ermöglicht die Global Standard gGmH in Zusammenarbeit mit dem deutschen Tech-Start-up Marple und der European Space Agency (ESA) die Erkennung von Baumwollfeldern und ihres ökologischen Status auf Basis künstlicher Intelligenz in Kombination mit Satellitenbildern. Damit leisten die Projektpartner einen zukunftsweisenden Beitrag, den Anteil organisch angebauter Baumwolle in der weltweiten Wertschöpfungskette der Textilindustrie zu erhöhen und darüber hinaus die Integrität des Global Organic Textile Standard (GOTS) weiter zu stärken.

Die Nachfrage nach zertifizierter Bio-Baumwolle steigt seit Jahren kontinuierlich an. Konsumenten legen zunehmend Wert auf ökologisch verträgliche, fair produzierte Textilien und eine verlässliche Rückverfolgbarkeit der Produkte. Auf der anderen Seite liegt der Anteil von Bio-Baumwolle heute bei lediglich 1 bis 2 Prozent der weltweiten Baumwollproduktion. Mit einem einzigartigen Innovationsprojekt trägt die Non-Profit-Organisation Global Standard jetzt dazu bei, die Verfügbarkeit ökologisch angebauter Baumwolle zu erhöhen und auch kleinen Produzenten einen niedrigschwelligen Zugang zu einer Bio-Zertifizierung zu ermöglichen. Gleichzeitig kann Unternehmen und Konsumenten eine hohe Verlässlichkeit und Transparenz hinsichtlich der Rohstoffherkunft gewährleistet werden.

Erkennungen und Überprüfung organischen Anbaus mit Hilfe innovativer Technologie
Global Standard und seine Projektpartner, das Tech-Start-up Marple und die European Space Agency (ESA), setzen erstmals innovative Technologien auf Basis künstlicher Intelligenz sowie Satellitenbilder der ESA zur Identifizierung, Validierung und kontinuierlichem Monitoring von Anbaufeldern ein. Herzstück des Systems ist die Software „Cotton Cultivation Remote Assessment“ (CoCuRA) von Marple. Sein Algorithmus wird mit realen Geodaten trainiert, die im Rahmen einer Vermessung landwirtschaftlicher Flächen erhoben werden. Darauf aufbauend kann das System nicht nur mit einer Genauigkeit von 97 Prozent Baumwollfelder via Satellitenbild identifizieren, sondern auch nach ihrem ökologischen Status unterscheiden. Denn Baumwollfelder, die mit Pestiziden behandelt werden, haben eine andere Beschaffenheit als Felder mit organischem Anbau. Mit Hilfe selbstlernender Technologie und Echtzeit-Satellitenbildern erkennt das System, welche Baumwollfelder nach organischen Methoden bewirtschaftet werden und damit für eine Bio-Zertifizierung nach internationalem IFOAM Standard qualifiziert sind. Dies wiederum ist eine der Grundvoraussetzungen für GOTS-zertifizierte Produkte, bei denen mindestens 70 Prozent der verwendeten Fasern aus zertifizierten Biofasern bestehen müssen und alle Verarbeitungsstufen des Textilprodukts eine Zertifizierung nach strengen ökologischen sowie sozialen Kriterien erfordern.

In einem Pilotprojekt in Indien hat das Team rund 6.000 Felder vermessen und die Geodaten in die Software importiert. In der Folge hat der CoCuRA-Algorithmus rund 2,7 Millionen Quadratkilometer Land mit Baumwollanbau identifiziert. In den kommenden Jahren soll das Projekt skaliert und auf weitere Länder ausgeweitet werden.  

Global Standard bringt Produzenten und Textilunternehmen zusammen   
Für Unternehmen der Textilbranche bedeutet das Projekt einen unkomplizierten, verlässlichen und kosteneffizienten Zugang zu bio-zertifizierten Rohstoffen – und damit einen wichtigen Schritt auf dem Weg zur Zertifizierung ihrer Produkte mit dem GOTS-Siegel. Auch für Baumwollbauern bringt die KI-gestützte Klassifizierung etliche Vorteile mit sich, wie einen langfristigen Anreiz, ihren Anbau nach ökologischen Standards umzugestalten oder einen niedrigschwelligen Zugang zu einer Bio-Zertifizierung ihrer Rohstoffe und einer attraktiven internationalen Kundenzielgruppe. Denn viele, insbesondere kleine Anbaubetriebe, arbeiten von jeher nach traditionellen Methoden, die den Standard einer Bio-Zertifizierung erfüllen.

Strukturell bedingt sind sie jedoch oftmals nicht zertifiziert, so dass ihre Ware nicht als BioBaumwolle anerkannt wird. Die Klassifizierung nach der neuen, satellitengestützten Methode kann dies ändern und kleinen Bauern oder Kollektiven eine attraktive Perspektiven bieten. „Indem wir Produzentinnen und Produzenten ökologisch zertifizierter Rohstoffe und verantwortungsvolle Unternehmen der Textilbranche zusammenbringen, tragen wir in hohem Maße dazu bei, den ökologischen Standard der Textilindustrie langfristig zu erhöhen. Dadurch verbessern wir für alle Menschen den Zugang zu nachhaltigen Produkten und kommen unserem Ziel, höchste soziale und ökologische Standards in textlichen Wertschöpfungsketten zu schaffen, einen wichtigen Schritt näher“, erläutert Claudia Kersten, Managing Director von Global Standard.

Mit innovativer Technologie die Zukunft gestalten
Gleichzeitig trägt das System effektiv dazu bei, Missbrauch und Betrug im Wertschöpfungsprozess der Textilindustrie vorzubeugen und die Transparenz des Global Standards weiter zu verbessern. Darüber hinaus ist die GOTS-Zertifizierung ein wirksames Instrument, das Unternehmen dabei hilft, gesetzliche Anforderungen weltweit zu erfüllen. „Die Zukunft gehört intelligenten Technologien. Und so müssen auch wir innovative und skalierbare Lösungen einsetzen, um auf kosteneffiziente Weise die flächendeckende Etablierung hoher Standards in der Textilindustrie zu erzielen und das Vertrauen der Industrie und der Konsumenten zu sichern“, betont Organic Production Specialist Jeffrey Thimm.

Quelle:

GOTS

Texcare Messe Frankfurt (c) Messe Frankfurt
06.09.2024

Kreislaufwirtschaft in der Textilpflege-Branche längst etabliert

Der professionelle Mietservice für Wäsche und Berufsbekleidung ist ein Paradebeispiel für zirkuläres, nachhaltiges Wirtschaften: Er setzt langlebige Textilien ein, die mindere Qualitäten oder Einmalprodukte ersetzen (reduce), optimiert deren Nutzungsdauer durch eine fachgerechte Pflege, die auch Reparaturen einschließt (reuse), und entwickelt Lösungen, um sie, einmal abgenutzt, wieder neuen Zwecken zuzuführen (recycle).

Der professionelle Mietservice für Wäsche und Berufsbekleidung ist ein Paradebeispiel für zirkuläres, nachhaltiges Wirtschaften: Er setzt langlebige Textilien ein, die mindere Qualitäten oder Einmalprodukte ersetzen (reduce), optimiert deren Nutzungsdauer durch eine fachgerechte Pflege, die auch Reparaturen einschließt (reuse), und entwickelt Lösungen, um sie, einmal abgenutzt, wieder neuen Zwecken zuzuführen (recycle).

Mit dem „Green Deal“ hat die Europäische Kommission unter anderem die Transformation der Bekleidungsindustrie von einem Geschäftsmodell des kurzlebigen Verbrauchs zu einem nachhaltigeren, kreislauforientierten System eingeleitet. Bis zum Jahr 2030 soll Fast-Fashion vermehrt durch Textilerzeugnisse abgelöst werden, die einen längeren Lebenszyklus haben und dadurch zur Verminderung von Umweltbelastungen beitragen. Um dieses Ziel zu erfüllen, sollen Textilien eine bessere Haltbarkeit, Wiederverwendbarkeit, Reparierbarkeit, Faser-zu-Faser-Recyclingfähigkeit und einen höheren Anteil an recycelten Fasern aufweisen. Für den Textilservice sind die Zirkularitätsvorgaben aus Brüssel längst gelebte Realität, denn die Vermietung von professionell genutzter Berufs- und Schutzkleidung, Hotel- und Krankenhauswäsche, Wischbezügen u.a. setzt ebendiese Funktionalitäten voraus: Die Qualitäten müssen langlebig, waschbar – also wiederverwendbar – und einfach zu reparieren sein. Dank dieser Eigenschaften kann Mietwäsche lange im Service-Kreislauf verbleiben und hat sich als nachhaltige Alternative zum Kauf etabliert.

Wäsche im Kreislauf
Der textile Mietservice bietet verschiedene Systeme, die auf die Bedürfnisse der Kundengruppen zugeschnitten sind. Berufs- und Schutzkleidung wird von Mietwäschereien in einem umfassenden Größenspiegel bevorratet, so dass die Beschäftigten eines Kunden ein passendes Outfit erhalten. Dieses ist gekennzeichnet und wird dem entsprechenden Träger zur Verfügung gestellt. Sollte er aus dem Kundenbetrieb ausscheiden, wird die Ware zurückgenommen und wird – sofern sie in einem einwandfreien Zustand ist – als Ersatzkleidung weitergenutzt. Bei Arbeitskleidung im Gesundheitswesen, aber auch bei Bett-, Tisch- und Frottierwäsche ist hingegen eine Poollösung üblich. Ein Wäschepool umfasst gleichartige Textilien, die ohne individuelle Kunden- und Trägerzuordnung für eine Lieferung entnommen werden. Dadurch wird die eingesetzte Textilmenge deutlich verringert.

Zu einer Lebensverlängerung von Textilien trägt auch ein zweiter großer Bereich der gewerblichen Textilpflege bei: die lokale Textilreinigung. In den Betrieben werden unterschiedlichste Waren im Auftrag von privaten und gewerblichen Kunden sachgerecht aufbereitet. Edle Ober- und Unterbekleidung, hochwertige Heimtextilien, empfindliche Daunenjacken oder stark verschmutzte Arbeitskleidung werden wieder sauber, frisch und einsetzbar. Und sollten sich Flecken auch nach der Detachur als besonders hartnäckig erweisen, kann ein Fachbetrieb die Ware umfärben und dadurch deren Wiederverwertbarkeit sicherstellen.

Textilservice bietet Recyclingvorteile
Zusätzlich zu den beiden wesentlichen Forderungen „reuse“ und „repair“ setzt sich die Branche auch intensiv mit dem in der EU-Textilstrategie geforderten Recycling von Alttextilien auseinander. Verschiedene Hersteller von Berufskleidung haben eigene Rücknahmemodelle entwickelt, bei denen Kunden beim Kauf von Neuware die ausrangierten Stücke zurückgeben können. Diese werden dann bei Kooperationspartnern wieder- oder weiterverwertet. Auch große Unternehmen, darunter die Telekom und Ikea, haben ein zentrales Rücknahme- und Recyclingsystem für ausgediente Mitarbeiterkleidung eingeführt; das Möbelhaus hat daraus eine eigene Heimtextil-Linie kreiert. Die Umsetzung eines entsprechenden Systems lässt sich jedoch am einfachsten im Mietservice realisieren, da die Ware stets zum Fachbetrieb zurückkehrt und dort auch aussortiert wird. So summiert sich ausgediente Wäsche an einem Ort zu großen Volumen gleichartiger, gewaschener Alttextilien auf, was die Abhollogistik und den Recyclingprozess erheblich vereinfacht. Aufgrund dieser vorteilhaften Rahmenbedingungen hat sich bereits die erste Initiative gegründet, bei der mehrere Textilservice-Unternehmen ihre ausrangierte Hotelwäsche bündeln und sie dem industriellen Baumwolle-zu-Zellstoff-Recycling zuführen. Ob Einzel- oder Gemeinschaftsaktionen, sie zeugen von dem Engagement der Branche, Lösungen für „Rest-Stoffe“ zu entwickeln.

Textilupcycling für Designerstücke
Die Lösungen für Alttextilien sind vielfältiger als nur das reine Recycling. So bietet beispielsweise die Firma Fristads aus Schweden einen eigenen Reparaturservice für seine Berufskleidung an. Die britische Kaufhauskette John Lewis geht einen Schritt weiter. In einem Feldversuch können Kunden ihre Kleidung in ausgewählten Läden zum Reinigen und Reparieren abgeben, die Aufbereitung erfolgt durch die zur Timpson Group gehörende Wäscherei- und Reinigungskette Johnsons. Auch Designer haben die Chancen ausgemusterter Arbeitskleidung und Objekttextilien für ein zweites Leben (second life) erkannt. Sie bringen aufwendige Verzierungen auf Kollektionsteile auf oder zerlegen sie und setzen sie neu zusammen. Die kreativ aufgewertete Ware bringen sie dann als Designer-Stücke in den Markt zurück. Auch für großformatige Objekttextilien gibt es Verwertungslösungen: Sie werden zu Taschen oder Kosmetikaccessoires umkonfektioniert oder nach einem Umfärbeprozess zu Schürzen-Kleinserien verarbeitet. So vielfältig solche Konzepte sind, so gering ist jedoch ihr Effekt auf die Verringerung der Textilabfälle. Einzig das etablierte Second-Hand-Modell bringt größere Mengen in den Gebrauchskreislauf zurück.

Pro und Contra von Recyclingmaterialien
Während sich die Textilpflege-Branche in fast allen Punkten geschlossen hinter die Forderungen der EU-Textilstrategie stellt und sich mit Lösungen einbringt, ist sie sich bei einem gesteigerten Recyclingfaseranteil in ihren Produkten uneinig. Zwar gibt es bereits zahlreiche Berufskleidungskollektionen und Hotelwäsche-Sortimente, in denen die Vorgabe aus Brüssel erfüllt wird. In der Praxis bleibt manche Qualität jedoch den Beweis der Langlebigkeit schuldig, denn die Faserqualität leidet unter jedem Recyclingverfahren. Zugunsten der Haltbarkeit in der Industriewäsche vertraut daher so mancher Hersteller von gewerblich genutzten Textilien ausschließlich auf native, fabrikneue Fasermaterialien. Auf der Texcare International findet die Branche das passende Umfeld, diesen Zielkonflikt ausführlich zu diskutieren.

Quelle:

Messe Frankfurt

Verkleidungsbauteile: Hanf statt Glasfasern (c) Fraunhofer IWU
23.08.2024

Verkleidungsbauteile: Hanf statt Glasfasern

Als Sheet Moulding Compounds (SMCs) werden langfaserverstärkte Halbzeuge bezeichnet, mit denen sich im Fließpressverfahren komplexe Formteile mit hoher Oberflächenqualität herstellen lassen. Das Fraunhofer IWU Zittau und die Hochschule Zittau/Görlitz erforschen biologische Alternativen für Glasfasern in Verbundwerkstoffen. Das Ziel sind wirtschaftliche Herstellungsverfahren, damit schon bald der Umstieg auf weniger umweltbelastende biogene Reststoffe zur Faserverstärkung gelingt.

Die Einsatzmöglichkeiten für SMC-Bauteile sind vielfältig. Sie dienen als Innenverkleidungen in Zügen und Bahnen, Außenverkleidungen für LKW und Landmaschinen oder schützen elektrische Verteilerkästen und Schaltanlagen.

Als Sheet Moulding Compounds (SMCs) werden langfaserverstärkte Halbzeuge bezeichnet, mit denen sich im Fließpressverfahren komplexe Formteile mit hoher Oberflächenqualität herstellen lassen. Das Fraunhofer IWU Zittau und die Hochschule Zittau/Görlitz erforschen biologische Alternativen für Glasfasern in Verbundwerkstoffen. Das Ziel sind wirtschaftliche Herstellungsverfahren, damit schon bald der Umstieg auf weniger umweltbelastende biogene Reststoffe zur Faserverstärkung gelingt.

Die Einsatzmöglichkeiten für SMC-Bauteile sind vielfältig. Sie dienen als Innenverkleidungen in Zügen und Bahnen, Außenverkleidungen für LKW und Landmaschinen oder schützen elektrische Verteilerkästen und Schaltanlagen.

Dr. Rafael Cordeiro ist wissenschaftlicher Mitarbeiter am Fraunhofer-Kunststoffzentrum Oberlausitz und im LaNDER³-Projekt der Hochschule Zittau/Görlitz. Er arbeitet insbesondere an Zuginnenverkleidungen, bei denen die Glasfaser durch Naturfasern in Kombination mit Harz ersetzt wird. Als Naturfaser dient Hanf – genauer die gröberen Fasern, die als Nebenprodukt bei der Textilherstellung mit Hanf anfallen. Der Gewichtsanteil der Naturfaser im neu entwickelten SMC beträgt etwa 15 Prozent; durch den geplanten Einsatz von biobasiertem Harz als Matrix, also der Komponente, in der die Fasern eingebettet sind, steigt der »natürliche« Anteil künftig auf bis zu 38 Prozent. Hinzu kommen 55 Prozent Mineralstoffe wie Calciumcarbonat (bekannt als Kalkstein bzw. Kreide) oder Aluminiumhydroxidhydrat, das in der Natur als Bauxit vorkommt. Die verbleibenden 7 Prozent sind überwiegend petrochemische Zusatzstoffe, für die es derzeit noch keinen biobasierten Ersatz gibt. Nachfolgend wichtige Fakten zu Naturfaser-SMCs.

Herausforderungen für die Produktion
Eine Herausforderung für die Produktion ist, dass insbesondere Naturfasern Feuchtigkeit binden und in Ländern mit hoher Luftfeuchtigkeit eine vorherige Trocknung erforderlich sein kann, da sonst Blasenbildung auftreten kann. Die Blasenbildung hängt auch von der Imprägnierung ab.
Dr. Cordeiro: »Das Naturfaser-SMC ist so entwickelt, dass für die Produktion größerer Stückzahlen nur sehr geringe zusätzliche Anlageninvestitionen und nur minimale Prozessparameteränderungen erforderlich sind.«

Energieaufwand bei der Herstellung
Bei der Herstellung von Halbzeugen und Bauteilen durch Fließpressen gibt es hinsichtlich der Prozesse und der benötigten Energie keine signifikanten Unterschiede zwischen Naturfaser- und Glasfaser-SMCs. Die Halbzeugherstellung erfolgt bei Raumtemperatur, weshalb der Energiebedarf der Anlage relativ gering ausfällt. Die Umformung von Bauteilen findet in einem Heißpressprozess in hydraulischen Pressen statt, bei Temperaturen zwischen 110 °C und 150 °C. Dieses Temperaturfenster liegt unter dem von thermoplastischen Bauteilen und erfordert keine Kühlungs- bzw. Heizzyklen der Werkzeuge, mit entsprechend positiven Auswirkungen auf den Energiebedarf.

Auswirkungen auf Mensch und Umwelt
Wie bei allen Produkten aus Kunststoff besteht auch hier die Möglichkeit der Bildung von Mikroplastik durch Abrieb. Die am Fraunhofer IWU in Zittau entwickelten Naturfaser-SMCs sind jedoch für die genannten Anwendungen vorgesehen, bei denen es zu keinem intensiven Abrieb kommt. Die Substitution von Glasfasern durch Hanffasern führt zu einer erheblichen Reduzierung von Haut- und Atemwegsreizungen bei Mitarbeitenden im Bereich der Material- und Produktherstellung sowie beim Umgang mit beschädigten Teilen oder bei der Entsorgung. Darüber hinaus resultieren aus der Herstellung von Hanffasern deutlich geringere CO2-Emissionen als bei Glasfasern, was die Umweltauswirkungen erheblich reduziert.

Haltbarkeit
Die typische Lebensdauer von Naturfaser-SMCs liegt bei bis zu 30 Jahren, abhängig davon, ob das Material für Innen- oder Außenanwendungen genutzt wird. Durch eine gezielte Einstellung des Matrix-Harzes lässt sich beispielsweise die Witterungsbeständigkeit erhöhen.

Biologische Abbaubarkeit, Recyclingfähigkeit
Ähnlich konventionellen SMCs können auch Naturfaser-SMCs nicht recycelt werden. Letztere sind zwar nicht als Ganzes biologisch abbaubar, allerdings laufen vielversprechende Versuche, um die Naturfaser von der Matrix und dem Füllstoff zu trennen, damit der Naturfaser-Anteil kompostiert und der Füllstoff wiederverwendet werden kann. Die Fasern sind nach der Trennung so klein, dass sie nicht mehr in SMC-Anwendungen weiterverwendet werden können. Zur technologischen Wiederverwendung der gewonnenen Kurzfasern besteht weiterer Forschungsbedarf.

Dr. Rafael Cordeiro: »Die Nachhaltigkeitsbilanz von Naturfaser-SMCs ist noch nicht perfekt. Aber sie ist schon heute wesentlich besser als bei glasfaserverstärkten Verbundmaterialien. Auch die Materialkosten stimmen. Somit sind die von uns entwickelten Alternativen zu klassischen Glasfaser-SMCs definitiv marktfähig. Die Herstellung nachhaltigerer SMC- Bauteile ist möglich.«

Quelle:

Die Angaben zu Naturfaser-SMCs basieren auf einem Interview von Tina-Seline Göttinger mit Dr. Rafael Cordeiro im Rahmen einer Bachelorarbeit
Fraunhofer IWU

Bildrechte: MIT News; iStock
12.08.2024

Ruhige Räume dank schallschluckender Seide

Forscher haben ein hauchdünnes Gewebe entwickelt, um einen leichten, kompakten und effizienten Weg zur Verringerung der Geräuschübertragung in einem großen Raum zu schaffen.

Wir leben in einer sehr lauten Welt. Vom Verkehrslärm vor dem Fenster über den dröhnenden Fernseher des Nachbarn bis hin zu den Geräuschen aus dem Arbeitszimmer eines Kollegen - unerwünschter Lärm ist nach wie vor ein gewaltiges Problem.

Um den Lärm zu unterdrücken, hat ein interdisziplinäres Team von Forschern des MIT und anderer Institute ein schalldämpfendes Seidengewebe entwickelt, das zur Schaffung ruhiger Räume eingesetzt werden kann.

Der Stoff, der kaum dicker als ein menschliches Haar ist, enthält eine spezielle Faser, die vibriert, wenn eine Spannung angelegt wird. Die Forscher nutzten diese Schwingungen, um den Schall auf zwei verschiedene Arten zu unterdrücken.

Forscher haben ein hauchdünnes Gewebe entwickelt, um einen leichten, kompakten und effizienten Weg zur Verringerung der Geräuschübertragung in einem großen Raum zu schaffen.

Wir leben in einer sehr lauten Welt. Vom Verkehrslärm vor dem Fenster über den dröhnenden Fernseher des Nachbarn bis hin zu den Geräuschen aus dem Arbeitszimmer eines Kollegen - unerwünschter Lärm ist nach wie vor ein gewaltiges Problem.

Um den Lärm zu unterdrücken, hat ein interdisziplinäres Team von Forschern des MIT und anderer Institute ein schalldämpfendes Seidengewebe entwickelt, das zur Schaffung ruhiger Räume eingesetzt werden kann.

Der Stoff, der kaum dicker als ein menschliches Haar ist, enthält eine spezielle Faser, die vibriert, wenn eine Spannung angelegt wird. Die Forscher nutzten diese Schwingungen, um den Schall auf zwei verschiedene Arten zu unterdrücken.

Bei der ersten Technik erzeugt der vibrierende Stoff Schallwellen, die unerwünschte Geräusche überlagern und auslöschen, ähnlich wie bei Kopfhörern mit Geräuschunterdrückung, die in einem kleinen Raum wie den Ohren gut funktionieren, aber nicht in großen Räumen wie Räumen oder Flugzeugen.

Bei der anderen, überraschenderen Technik wird der Stoff stillgehalten, um Vibrationen zu unterdrücken, die für die Übertragung von Schall entscheidend sind. Auf diese Weise wird verhindert, dass der Lärm durch den Stoff übertragen wird, und die Lautstärke dahinter wird gedämpft. Dieser zweite Ansatz ermöglicht die Lärmreduzierung in viel größeren Bereichen wie Zimmern oder Autos.

Durch die Verwendung gängiger Materialien wie Seide, Segeltuch und Musselin haben die Forscher schalldämpfende Stoffe geschaffen, die sich in realen Räumen praktisch einsetzen lassen. Man könnte ein solches Gewebe zum Beispiel für Trennwände in offenen Arbeitsräumen oder für dünne Stoffwände verwenden, die den Schall nicht durchlassen.

Der Stoff kann Geräusche unterdrücken, indem er Schallwellen erzeugt, die mit unerwünschten Geräuschen interferieren und diese auslöschen (siehe Abbildung C), oder indem er stillgehalten wird, um Vibrationen zu unterdrücken, die für die Übertragung von Geräuschen entscheidend sind (siehe Abbildung D).

„Lärm ist viel einfacher zu erzeugen als Ruhe. Um Lärm fernzuhalten, verwenden wir viel Platz auf dicke Wände. Die Arbeit von Grace bietet einen neuen Mechanismus, um mit einer dünnen Stoffbahn ruhige Räume zu schaffen“, so Yoel Fink, Professor in den Fachbereichen Materialwissenschaften und Ingenieurwesen sowie Elektrotechnik und Informatik, leitender Forscher im Research Laboratory of Electronics und leitender Autor eines Artikels über den Stoff.

Seidige Stille
Die schalldämpfende Seide baut auf den früheren Arbeiten der Gruppe zur Herstellung von Stoffmikrofonen auf.

Bei dieser Forschungsarbeit wurde ein einzelner Strang piezoelektrischer Fasern in ein Gewebe eingenäht. Piezoelektrische Materialien erzeugen ein elektrisches Signal, wenn sie zusammengedrückt oder gebogen werden. Wenn ein Geräusch in der Nähe den Stoff in Schwingung versetzt, wandelt die piezoelektrische Faser diese Schwingungen in ein elektrisches Signal um, das den Ton auffangen kann.

In der neuen Arbeit haben die Forscher diese Idee umgedreht und einen Lautsprecher aus Stoff entwickelt, der Schallwellen auslöschen kann.

„Wir können zwar mit Stoffen Schall erzeugen, aber es gibt bereits so viel Lärm in unserer Welt. Wir dachten, dass die Erzeugung von Stille noch wertvoller sein könnte“, sagt Yang.

Durch Anlegen eines elektrischen Signals an die piezoelektrische Faser wird diese in Schwingung versetzt, wodurch Schall erzeugt wird. Die Forscher demonstrierten dies, indem sie Bachs „Air“ mit einem 130 Mikrometer großen Seidenblatt spielten, das auf einem kreisförmigen Rahmen befestigt war.

Um eine direkte Schallunterdrückung zu ermöglichen, verwenden die Forscher einen Lautsprecher aus Seidengewebe, der Schallwellen aussendet, die unerwünschte Schallwellen zerstörerisch überlagern. Sie steuern die Schwingungen der piezoelektrischen Faser so, dass die vom Gewebe abgestrahlten Schallwellen den unerwünschten Schallwellen, die auf das Gewebe treffen, entgegengesetzt sind, was den Lärm ausblenden kann.

Diese Technik ist jedoch nur in einem kleinen Bereich wirksam. Die Forscher bauten also auf dieser Idee auf und entwickelten eine Technik, die die Schwingungen des Gewebes nutzt, um Geräusche in viel größeren Räumen zu unterdrücken, z. B. in einem Schlafzimmer.

Nehmen wir an, Ihre Nachbarn spielen mitten in der Nacht Tischfußball. Sie hören Geräusche in Ihrem Schlafzimmer, weil die Geräusche in deren Wohnung Ihre gemeinsame Wand in Schwingung versetzen, was zu Schallwellen auf Ihrer Seite führt.

Um diese Geräusche zu unterdrücken, könnten die Forscher den Seidenstoff auf Ihrer Seite der gemeinsamen Wand anbringen und die Schwingungen in der Faser so steuern, dass der Stoff ruhig bleibt. Diese vibrationsbedingte Unterdrückung verhindert, dass der Schall durch das Gewebe übertragen wird.

„Wenn wir diese Vibrationen kontrollieren und verhindern können, können wir auch den entstandenen Lärm stoppen“, sagt Yang.

Ein Spiegel für Sound
Überraschenderweise stellten die Forscher fest, dass das Festhalten des Gewebes dazu führt, dass der Schall vom Gewebe reflektiert wird. Das Ergebnis ist ein dünnes Stück Seide, das den Schall wie ein Spiegel das Licht reflektiert.

Ihre Experimente zeigten auch, dass sowohl die mechanischen Eigenschaften eines Stoffes als auch die Größe seiner Poren die Effizienz der Schallerzeugung beeinflussen. Seide und Musselin haben zwar ähnliche mechanische Eigenschaften, aber die kleinere Porengröße von Seide macht sie zu einem besseren Gewebe-Lautsprecher.

Die effektive Porengröße hängt aber ebenso von der Frequenz der Schallwellen ab. Wenn die Frequenz niedrig genug ist, kann auch ein Gewebe mit relativ großen Poren effektiv funktionieren, sagt Yang.

Als sie das Seidengewebe im direkten Unterdrückungsmodus testeten, stellten die Forscher fest, dass es die Lautstärke von Geräuschen bis zu 65 Dezibel (etwa so laut wie ein enthusiastisches menschliches Gespräch) deutlich reduzieren konnte. Im vibrationsvermittelten Unterdrückungsmodus konnte der Stoff die Schallübertragung um bis zu 75 Prozent reduzieren.

Diese Ergebnisse waren nur dank einer starken Gruppe von Mitarbeitern möglich, sagt Fink. Studenten an der Rhode Island School of Design halfen den Forschern, die Details der Gewebekonstruktion zu verstehen; Wissenschaftler an der University of Wisconsin in Madison führten Simulationen durch; Forscher an der Case Western Reserve University charakterisierten die Materialien; und die Chemieingenieure der Smith Group am MIT nutzten ihr Fachwissen über die Trennung von Gasmembranen, um den Luftstrom durch das Gewebe zu messen.

Künftig wollen die Forscher prüfen, ob ihr Gewebe auch zum Blockieren von Geräuschen mit mehreren Frequenzen eingesetzt werden kann. Dies würde wahrscheinlich eine komplexe Signalverarbeitung und zusätzliche Elektronik erfordern.

Außerdem wollen sie die Gewebekonstruktion weiter untersuchen, um herauszufinden, wie sich die Leistung verbessern ließe, wenn man beispielsweise die Anzahl der piezoelektrischen Fasern, die Richtung, in der sie vernäht sind, oder die angelegten Spannungen verändert.

„Es gibt viele Stellschrauben, an denen wir drehen können, um dieses schalldämpfende Gewebe wirklich effektiv zu machen. Wir wollen die Menschen dazu bringen, über die Kontrolle von Strukturschwingungen zur Schalldämpfung nachzudenken. Dies ist erst der Anfang“, sagt Yang.

Diese Arbeit wird zum Teil von der National Science Foundation (NSF), dem Army Research Office (ARO), der Defense Threat Reduction Agency (DTRA) und der Wisconsin Alumni Research Foundation finanziert.

Quelle:

Adam Zewe | MIT News
Übersetzung Textination

Neste liefert erneuerbare Neste RE, einen Rohstoff für Polymere und Chemikalien aus biobasierten Materialien. Quelle: Neste
06.08.2024

Erste Polyester-Lieferkette aus nachhaltigen Rohstoffen

Ein Konsortium von sieben Unternehmen aus fünf Ländern hat gemeinsam eine Lieferkette für nachhaltigere Polyesterfasern aufgebaut. Anstelle von fossilen Materialien werden bei der Herstellung von Polyesterfasern für die Marke The North Face in Japan erneuerbare und biobasierte Materialien sowie Kohlenstoffabscheidung und -verwertung (CCU ) eingesetzt. Die Konsortialpartner sind Goldwin als Projekteigner, Mitsubishi Corporation, Chiyoda Corporation (alle drei aus Japan), SK geo centric (Südkorea), Indorama Ventures (Thailand), India Glycols (Indien) und Neste.

Neste wird das erneuerbare Neste RE™ als einen der erforderlichen Bestandteile für die Polyesterproduktion bereitstellen. Die im Rahmen des Projekts hergestellte Polyesterfaser soll im Juli 2024 von Goldwin für einen Teil der Produkte von The North Face, einschließlich Sportuniformen, verwendet werden. Danach wird die Einführung weiterer Goldwin-Produkte und -Marken in Betracht gezogen.

Ein Konsortium von sieben Unternehmen aus fünf Ländern hat gemeinsam eine Lieferkette für nachhaltigere Polyesterfasern aufgebaut. Anstelle von fossilen Materialien werden bei der Herstellung von Polyesterfasern für die Marke The North Face in Japan erneuerbare und biobasierte Materialien sowie Kohlenstoffabscheidung und -verwertung (CCU ) eingesetzt. Die Konsortialpartner sind Goldwin als Projekteigner, Mitsubishi Corporation, Chiyoda Corporation (alle drei aus Japan), SK geo centric (Südkorea), Indorama Ventures (Thailand), India Glycols (Indien) und Neste.

Neste wird das erneuerbare Neste RE™ als einen der erforderlichen Bestandteile für die Polyesterproduktion bereitstellen. Die im Rahmen des Projekts hergestellte Polyesterfaser soll im Juli 2024 von Goldwin für einen Teil der Produkte von The North Face, einschließlich Sportuniformen, verwendet werden. Danach wird die Einführung weiterer Goldwin-Produkte und -Marken in Betracht gezogen.

Die sieben Unternehmen wenden einen Massenbilanzierungsansatz an, um eine glaubwürdige Rückverfolgbarkeit der Materialströme in der gesamten Lieferkette zu gewährleisten, und werden gemeinsam die Defossilisierung von Materialien weiter vorantreiben, um zu einer nachhaltigeren Gesellschaft beizutragen.

Neste (NESTE, Nasdaq Helsinki) nutzt Wissenschaft und innovative Technologien, um Abfälle und andere Ressourcen in erneuerbare Kraftstoffe und Kreislaufrohstoffe umzuwandeln. Das Unternehmen schafft Lösungen zur Bekämpfung des Klimawandels und zur Beschleunigung des Übergangs zu einer Kreislaufwirtschaft. Als weltweit führender Hersteller von nachhaltigem Flugbenzin (SAF) und erneuerbarem Diesel und als Vorreiter bei der Entwicklung erneuerbarer und kreislauffähiger Rohstofflösungen für Polymere und Chemikalien will das Unternehmen seinen Kunden helfen, ihre Treibhausgasemissionen bis 2030 um mindestens 20 Millionen Tonnen jährlich zu reduzieren.

Das Unternehmen hat sich zum Ziel gesetzt, die Ölraffinerie Porvoo in Finnland zur nachhaltigsten Raffinerie in Europa zu machen. Neste hat sich verpflichtet, bis 2035 eine kohlenstoffneutrale Produktion zu erreichen, und wird die Kohlenstoffemissionen der verkauften Produkte bis 2040 um 50 % senken. Neste hat außerdem hohe Standards für die biologische Vielfalt, die Menschenrechte und die Lieferkette gesetzt. Das Unternehmen wurde immer wieder in die CDP- und die Global 100-Liste der nachhaltigsten Unternehmen der Welt aufgenommen. Im Jahr 2023 belief sich der Umsatz von Neste auf 22,9 Mrd. EUR.

Weitere Informationen:
Polyesterfasern Nachhaltigkeit CO2
Quelle:

Neste

Atacama Wüste Foto: Fernando Rodrigues, Unsplash
23.07.2024

Reduktion der Umwelt- und Gesundheitsauswirkungen des weltweiten Handels mit Second-Hand-Kleidung

Der Aufschwung von Fast-Fashion, der durch einen raschen Kollektionswechsel gekennzeichnet ist, hat in den letzten vier Jahrzehnten zu einer Versiebenfachung des weltweiten Handels mit gebrauchter Kleidung geführt. Mehr als 80 % aller gekauften Kleidungsstücke weltweit (62 % in der EU) werden als Hausmüll entsorgt, der verbrannt oder deponiert wird, was eine massive Verschwendung von Ressourcen darstellt und schwerwiegende Auswirkungen auf Umwelt und Gesundheit hat.

Ein kürzlich von der UNECE und der Wirtschaftskommission der Vereinten Nationen für Lateinamerika und die Karibik (ECLAC) veröffentlichter Bericht präsentiert eine eingehende Analyse des Handels mit Altkleidern zwischen Europa und Chile und gibt der Industrie sowie den Export- und Importländern politische Empfehlungen, um die Lage zu verbessern.

Der Aufschwung von Fast-Fashion, der durch einen raschen Kollektionswechsel gekennzeichnet ist, hat in den letzten vier Jahrzehnten zu einer Versiebenfachung des weltweiten Handels mit gebrauchter Kleidung geführt. Mehr als 80 % aller gekauften Kleidungsstücke weltweit (62 % in der EU) werden als Hausmüll entsorgt, der verbrannt oder deponiert wird, was eine massive Verschwendung von Ressourcen darstellt und schwerwiegende Auswirkungen auf Umwelt und Gesundheit hat.

Ein kürzlich von der UNECE und der Wirtschaftskommission der Vereinten Nationen für Lateinamerika und die Karibik (ECLAC) veröffentlichter Bericht präsentiert eine eingehende Analyse des Handels mit Altkleidern zwischen Europa und Chile und gibt der Industrie sowie den Export- und Importländern politische Empfehlungen, um die Lage zu verbessern.

Nach Angaben von UN Comtrade waren im Jahr 2021 die Europäische Union (30 %), China (16 %) und die Vereinigten Staaten (15 %) die führenden Exporteure von Altkleidern, während Asien (28 %, vor allem Pakistan), Afrika (19 %, insbesondere Ghana und Kenia) und Lateinamerika (16 %, vor allem Chile und Guatemala) die führenden Importeure waren.

Erleichtert wurde dies durch das Aufkommen kostengünstiger Kunstfasern und die Liberalisierung des Handels, die die Verlagerung der Produktion in Länder mit niedrigen Löhnen ermöglichte. Ein großer Teil der Kleidung wird aus schwer zu trennenden Mischfasern hergestellt, so dass es vor allem in den Industrieländern kaum Möglichkeiten zur wirtschaftlichen Wiederverwendung und zum Recycling gibt.

„Wann ist es normal geworden, Kleidung wegzuwerfen?“, fragt Lily Cole, Klimaaktivistin und Beraterin der UNECE. „Während die Welt, vor allem der globale Norden, unaufhörlich Mode produziert und konsumiert, sind eine Handvoll Länder, vor allem im globalen Süden, zu Friedhöfen für die ungeliebte Kleidung der Welt geworden. Bei meinem Besuch in der Atacama-Wüste wurde ich auf die Textilberge und die sich verändernden kulturellen, wirtschaftlichen und politischen Landschaften aufmerksam, die sie hervorgebracht haben. Das Bewusstsein der Verbraucher ist sehr hilfreich, doch letztlich brauchen wir politische Maßnahmen, um systemische Trends einzudämmen, weshalb dieser Bericht und seine Empfehlungen so wichtig sind.“

Europa: Sortier- und Recyclingkapazitäten hinken hinterher
In Europa werden nur 15-20 % der entsorgten Textilien gesammelt, in der Regel über Container, Haussammlungen und Spenden. Etwa die Hälfte der gesammelten Textilien wird downgecycelt und z. B. als Isoliermaterial, Füllmaterial und industrielle Einwegtücher verwendet. Nur 1 % wird zu höherwertigen Produkten wie neuer Kleidung recycelt, während der Rest in Entwicklungsländer exportiert wird.
 
Von den 55 Prozent der gesammelten Kleidungsstücke, die wiederverwendbar sind, haben nur 5 Prozent einen Wert auf den Secondhand-Märkten in der EU, während 50 Prozent einen Wert auf den Exportmärkten haben.

So hat die Europäische Union ihre Altkleiderexporte in den letzten zwei Jahrzehnten verdreifacht, von 550.000 auf 1,7 Millionen Tonnen. Auf Europa, einschließlich des Vereinigten Königreichs, entfällt inzwischen mehr als ein Drittel der weltweiten Altkleiderexporte, und dieser Anteil könnte weiter steigen, da die Sammelquoten voraussichtlich steigen werden.  

Ein designorientierter Ansatz der Kreislaufwirtschaft für Kleidung steckt noch in den Kinderschuhen. Der EU-Aktionsplan für die Kreislaufwirtschaft (CEAP) wurde 2020 verabschiedet, die EU-Strategie für nachhaltige und zirkuläre Textilien 2022 und die EU-Ökodesign-Verordnung für nachhaltige Produkte 2023. Diese Maßnahmen müssen jedoch noch Früchte in Form von groß angelegten vorgelagerten Lösungen für die Probleme mit Textilabfällen tragen.

„Der Weltmarkt für Altkleider wächst ständig, und mit ihm auch seine negativen Auswirkungen. Die Textilindustrie trägt eine große Verantwortung für die Einführung nachhaltigerer Praktiken, und Exporteure und Importeure müssen entsprechende politische Entscheidungen treffen, um Rückverfolgbarkeit, Kreislaufwirtschaft und Nachhaltigkeit zu fördern.

Die politischen Empfehlungen und Normen von UN/CEFACT werden diesen Übergang unterstützen. Und natürlich müssen wir alle als Verbraucher eine Rolle spielen, um nachhaltige Entscheidungen zu treffen“, betonte UNECE Executive Secretary Tatiana Molcean.
 
Der Fall Chile: Berge von Altkleidern, die man vom Mond aus erkennen kann  
Die meisten lateinamerikanischen Länder (darunter Argentinien, Brasilien, Kolumbien, Mexiko und Peru) haben Einfuhrverbote für Kleidung erlassen, um ihre nationale Textil- und Modeindustrie zu schützen und die Bedrohung durch Bekleidungsdeponien zu vermeiden.

Im Gegensatz dazu erhebt Chile keine Zölle und wendet keine mengenmäßigen Einfuhrbeschränkungen an, sondern verlangt lediglich, dass die Sendungen desinfiziert werden (durch Begasung). Chile ist damit zu einem der zehn größten Importeure der Welt und zum Spitzenreiter in Lateinamerika aufgestiegen und hat im Jahr 2021 126.000 Tonnen Textilien eingeführt. 40 % davon gelangen über den nördlichen Hafen von Iquique in das Land, wo sie manuell, hauptsächlich von Frauen, sortiert und in erste, zweite und dritte Qualität unterteilt werden.

75 % aller importierten Altkleider wurden als nicht wiederverwendbar eingestuft. 30.000 Tonnen davon bedecken heute 30 Hektar der Atacama-Wüste, verursachen Umweltverschmutzung und gefährden die Gesundheit der dortigen Bevölkerung. Gleichzeitig bietet der Handel mit Altkleidern auch Arbeitsplätze und formelle und informelle Einkommen für die einheimische und die zugewanderte Bevölkerung in den etablierten Geschäften und auf den Freiluftmärkten im ganzen Land, was bei der Neufestlegung der öffentlichen Politik berücksichtigt werden muss.

„Um die ökologischen und sozialen Probleme des Handels mit gebrauchten Textilien anzugehen, müssen die EU und Chile zusammenarbeiten, um solide rechtliche Rahmenbedingungen zu schaffen. Eine Partnerschaft zwischen der Europäischen Union und Chile könnte wegweisend sein für innovative Ansätze zur Regulierung und Verringerung der Auswirkungen des Handels mit gebrauchten Textilien, u. a. durch die Festlegung globaler Standards für den Handel mit gebrauchten Textilien, wobei der Schwerpunkt auf Nachhaltigkeit und sozialer Verantwortung liegt“. betont der Generalsekretär der UNECLAC, José Manuel Salazar-Xirinachs.

Vielfältige Empfehlungen
Der Bericht enthält eine Reihe von Empfehlungen an die Textilindustrie, Exporteure und Importeure.   

An die Ausfuhrländer

  • Die Kreislaufwirtschaft in den Mittelpunkt des Bekleidungsdesigns stellen, mit verbindlichen Vorgaben für die Faserzusammensetzung, die Qualität, Haltbarkeit, Reparierbarkeit und Recyclingfähigkeit verbessern  
  • Einführung eines Systems der erweiterten Herstellerverantwortung (EPR), das die Hersteller für die von ihnen hergestellten Produkte verantwortlich macht  
  • Entwicklung weiterer Sortier- und Recyclinganlagen durch finanzielle Anreize  
  • Entwicklung von EU-Mindestkriterien für die Ausfuhr von Altkleidern durch die Verwendung von digitalen Produktpässen (DPP)  
  • Durchführung von Sensibilisierungskampagnen, um die Verbraucher zu ermutigen, ihre Kleidung bewusster auszuwählen

Für die Einfuhrländer – das Beispiel Chile

  • Verbesserung der Zollverfahren und Verwaltungsmaßnahmen im Hafen von Iquique, um die digitale Rückverfolgbarkeit der Altkleider- und Textilströme auf der Grundlage des UN/CEFACT-Rückverfolgbarkeitsstandards zu gewährleisten   
  • Einführung einer Strategie für die Kreislaufwirtschaft im Textilbereich   
  • Bildung öffentlich-privater Allianzen für Recyclingprojekte durch Steuererweiterungsprogramme und Fonds zur Förderung von Unternehmertum, Innovation und Schaffung von Arbeitsplätzen für benachteiligte Gruppen, insbesondere in der Region Tarapacá  
  • Verbesserung des Rechtsrahmens für die Abfallwirtschaft   
  • Umsetzung eines regionalen Plans zur Kontrolle fester Abfälle, der Inspektionen von Mülldeponien, Clean Points und Deponien vorsieht, um die Durchsetzungskapazität der regionalen Gesundheitsbehörden zu erhöhen  
  • Beschleunigung der Verabschiedung des chilenischen Gesetzentwurfs über die Umweltqualität von Böden.

Der Bericht empfiehlt außerdem, internationale Handelsabkommen wie das Interims-Handelsabkommen zwischen der EU und Chile aus dem Jahr 2023, das ein Kapitel über Handel und nachhaltige Entwicklung enthält, zu ändern, um die bilaterale Zusammenarbeit zu intensivieren, und es als Vorlage für weitere bilaterale Handelsabkommen zwischen der EU und anderen Ländern zu nutzen.   

Zum Download der Executive Summary

Weitere Informationen:
Secondhand Textilabfällen Chile Atacama UN
Quelle:

United Nations Economic Commission for Europe
(Wirtschaftskommission der Vereinten Nationen für Europa)
Übersetzung: Textination

Brotreste + Pilze = Garn (c) Fotos von Kanishka Wijayarathna (Brotabfälle), Erik Norving (Prototypen), Andreas Nordin ( Forschende) und Sofie Svensson (Mikroskop).
17.07.2024

Brotreste + Pilze = Garn

Die Gewinnung neuer Materialien aus Pilzen ist ein zunehmend interessanter Forschungsbereich. In einem Forschungsprojekt an der Swedish School of Textiles der Universität Borås hat das Nassspinnen von pilzlichem Zellwandmaterial vielversprechende Ergebnisse gezeigt. Im Rahmen des Projekts wurden Pilze auf Brotresten gezüchtet, um Textilfasern mit Potenzial für den Bereich der Medizintechnik herzustellen.

Das Projekt von Sofie Svensson zielt unter anderem auf die globalen Nachhaltigkeitsziele der Vereinten Nationen 9 (nachhaltige Industrie, Innovation und Infrastruktur) und 12 (nachhaltiger Konsum und nachhaltige Produktion) ab, indem es ressourcen- und kosteneffiziente Methoden mit geringeren Auswirkungen auf Mensch und Umwelt einsetzt.

Sofie Svensson, die vor kurzem ihre Dissertation im Fachgebiet der Ressourcenrückgewinnung verteidigt hat, erklärte:

Die Gewinnung neuer Materialien aus Pilzen ist ein zunehmend interessanter Forschungsbereich. In einem Forschungsprojekt an der Swedish School of Textiles der Universität Borås hat das Nassspinnen von pilzlichem Zellwandmaterial vielversprechende Ergebnisse gezeigt. Im Rahmen des Projekts wurden Pilze auf Brotresten gezüchtet, um Textilfasern mit Potenzial für den Bereich der Medizintechnik herzustellen.

Das Projekt von Sofie Svensson zielt unter anderem auf die globalen Nachhaltigkeitsziele der Vereinten Nationen 9 (nachhaltige Industrie, Innovation und Infrastruktur) und 12 (nachhaltiger Konsum und nachhaltige Produktion) ab, indem es ressourcen- und kosteneffiziente Methoden mit geringeren Auswirkungen auf Mensch und Umwelt einsetzt.

Sofie Svensson, die vor kurzem ihre Dissertation im Fachgebiet der Ressourcenrückgewinnung verteidigt hat, erklärte:

„In meinem Forschungsprojekt geht es um die Entwicklung von Fasern, die aus Fadenpilzen für textile Anwendungen gesponnen werden. Die Pilze wurden auf Brotabfällen aus Lebensmittelläden gezüchtet. Abfälle, die andernfalls erhebliche Auswirkungen auf die Umwelt hätten, wenn sie weggeworfen würden.

Die Neuartigkeit des Projekts liegt in der eingesetzten Methode - dem Nassspinnen von Zellwandmaterial.

„Nassspinnen ist ein Verfahren, mit dem Fasern (Filamente) aus Materialien wie Zellulose gesponnen werden. In diesem Projekt wurde Zellwandmaterial aus fadenförmigen Pilzen verwendet, um Fasern durch Nassspinnen herzustellen. Das Zellwandmaterial der Pilze enthält verschiedene Polymere, hauptsächlich Polysaccharide wie Chitin, Chitosan und Glucan. Die Herausforderung bestand darin, das Material zu spinnen. Es dauerte zunächst einige Zeit, bis wir die richtigen Bedingungen gefunden hatten“, erläuterte Sofie Svensson.

Antibakterielle Eigenschaften
Pilzfäden wurden in Bioreaktoren kultiviert, um Pilzbiomasse zu erzeugen. Anschließend wurde Zellwandmaterial aus der Pilzbiomasse isoliert und zum Spinnen eines Fadens verwendet, der auf seine Eignung für medizinische Anwendungen getestet wurde.

„Tests der Fasern zeigten eine Kompatibilität mit Hautzellen und wiesen auch auf eine antibakterielle Wirkung hin“, sagte Sofie Svensson und fügte hinzu: „Bei der Methode, mit der wir gearbeitet haben, haben wir uns auf die Verwendung milderer Verfahren und Chemikalien konzentriert. Die Verwendung gefährlicher und giftiger Chemikalien ist derzeit eine Herausforderung in der Textilindustrie, und die Entwicklung nachhaltiger Materialien ist wichtig, um die Umweltbelastung zu verringern.“

Welche Bedeutung haben die Ergebnisse?
„Neue Materialien aus Pilzen sind ein aufstrebendes Forschungsgebiet. Hoffentlich kann diese Forschung zur Entwicklung neuer nachhaltiger Materialien aus Pilzen beitragen“, so Sofie Svensson.

Das Interesse der Community war während des Projekts sehr groß, und viele standen der Entwicklung dieser Art von Materialien positiv gegenüber.

Wann werden wir Produkte sehen, die aus diesen Fasern hergestellt werden?
„Diese spezielle Methode befindet sich im Labor-Maßstab und noch in der Forschungsphase“, erklärte sie.

Das Promotionsprojekt wurde im Rahmen des größeren Forschungsprojekts Sustainable Fungal Textiles durchgeführt: Ein neuartiger Ansatz für die Wiederverwendung von Lebensmittelabfällen.

Was ist der nächste Schritt in der Forschung über Pilzfasern?
„Künftige Studien könnten sich auf die Optimierung des Nassspinnverfahrens konzentrieren, um eine kontinuierliche Produktion von Pilzfasern zu erreichen. Außerdem könnte man die Kultivierung von Pilzen auf anderen Arten von Lebensmittelabfällen testen.“

Wie haben Sie Ihre Zeit als Doktorand im Bereich Ressourcenrückgewinnung erlebt?
„Es war eine intensive Zeit als Doktorandin, in der ich wirklich herausgefordert wurde und mich sehr weiterentwickelt habe.“

Was ist Ihr nächster Schritt?
„Ich werde eine Weile in Elternzeit gehen, bevor ich den nächsten Schritt mache, über den noch nicht entschieden wurde.“

Sofie Svensson verteidigte ihre Dissertation am 14. Juni 2024 im Swedish Centre for Resource Recovery der Universität Borås.

Development of Filaments Using Cell Wall Material of Filamentous Fungi Grown on Bread Waste for Application in Medical Textiles

Zweitgutachter: Han Hösten, Professor, Utrecht University
Betreuender Professor: Akram Zamani, Associate Professor, University of Borås
Mitbetreuer: Minna Hakkarainen, Professor, KTH; Lena Berglin, Associate Professor, University of Borås

Weitere Informationen:
University of Borås Sweden Garne Nassspinnen
Quelle:

University of Borås, Solveig Klug

Empa-Forscherin Edith Perret entwickelt spezielle Fasern, die Medikamente gezielt abgeben können. Foto EMPA
01.07.2024

Medizinische Fasern mit "inneren Werten"

Sollen Medikamente lokal – und vor allem über längere Zeit kontrolliert – abgegeben werden, stoßen medizinische Produkte wie Salben oder Spritzen an ihre Grenzen. Empa-Forschende entwickeln daher Polymerfasern, die Wirkstoffe langfristig präzise abgeben können. Diese „Flüssigkernfasern“ enthalten Medikamente in ihrem Inneren und lassen sich zu medizinischen Textilien verarbeiten.

Sollen Medikamente lokal – und vor allem über längere Zeit kontrolliert – abgegeben werden, stoßen medizinische Produkte wie Salben oder Spritzen an ihre Grenzen. Empa-Forschende entwickeln daher Polymerfasern, die Wirkstoffe langfristig präzise abgeben können. Diese „Flüssigkernfasern“ enthalten Medikamente in ihrem Inneren und lassen sich zu medizinischen Textilien verarbeiten.

Wird eine Wunde oder Entzündung direkt am Ort der Entstehung behandelt, hat dies klare Vorteile: Der Wirkstoff ist sofort am Ziel, und negative Nebenwirkungen auf unbeteiligte Körperteile entfallen. Gängige lokale Verabreichungsmethoden kommen jedoch an ihre Grenzen, wenn es darum geht, Wirkstoffe über längere Zeit präzise zu dosieren. Sobald eine Salbe die Tube verlässt oder die Injektionsflüssigkeit aus der Spritze strömt, ist die Steuerung der Wirkstoffmenge kaum mehr möglich. Edith Perret aus dem Empa-Labor „Advanced Fibers“ in St. Gallen entwickelt daher medizinische Fasern mit ganz besonderen „inneren Werten“: Die Polymerfasern umschließen einen flüssigen Kern mit medizinischen Wirkstoffen. Das Ziel: medizinische Produkte mit besonderen Fähigkeiten, z.B. chirurgisches Nahtmaterial, Wundverbände und Textilimplantate, die Schmerzmittel, Antibiotika oder Insulin präzise über einen längeren Zeitraum verabreichen können. Angestrebt ist zudem eine individuelle Dosierbarkeit im Sinne einer personalisierten Medizin.

Bioverträglich und maßgeschneidert
Ein entscheidender Faktor, der eine herkömmliche Textilfaser zu einem Medizinprodukt macht, ist das Material des Fasermantels. Das Team wählte hierfür Polycaprolacton (PCL), ein bioverträgliches und bioabbaubares Polymer, das bereits erfolgreich im medizinischen Bereich eingesetzt wird. Der Fasermantel umschließt das kostbare Gut, etwa ein Schmerzmittel oder ein antibakteriell wirksames Medikament, und gibt es mit der Zeit an die Umgebung ab. Auf einer eigens konstruierten Pilotanlage erzeugten die Forschenden mittels Schmelzspinnen PCL-Fasern mit einem durchgehenden Kern aus Flüssigkeit. In ersten Laborversuchen entstanden so stabile und gleichzeitig flexible Flüssigkernfasern. Dass dieses Verfahren aber nicht nur im Labor, sondern auch im industriellen Maßstab funktioniert, hatte das Team für technische Fasern bereits zuvor gemeinsam mit einem Schweizer Industriepartner erfolgreich zeigen können.

Nach welchen Parametern die medizinischen Fasern ein eingeschlossenes Mittel freisetzen, wurde zunächst mit fluoreszierenden Modellsubstanzen und schließlich mit verschiedenen Medikamenten untersucht. „Kleine Moleküle wie das Schmerzmittel Ibuprofen bewegen sich nach und nach durch die Struktur des Außenmantels“, so Edith Perret. Größere Moleküle werden hingegen an den Enden der Fasern abgegeben.

Präzise steuerbar und langfristig wirksam
„Dank einer Vielzahl verschiedener Parameter lassen sich die Eigenschaften der medizinischen Fasern präzise steuern“, erklärt die Empa-Forscherin. Nach umfassenden Analysen mittels Fluoreszenzspektroskopie, Röntgentechnologie und Elektronenmikroskopie konnten die Forschenden beispielsweise den Einfluss von Manteldicke oder Kristallstruktur des Mantelmaterials auf die Abgaberate von Medikamenten aus den Flüssigkernfasern nachweisen.

Je nach Wirkstoff kann zudem das Herstellungsverfahren angepasst werden: Wirkstoffe, die unempfindlich gegenüber den hohen Temperaturen beim Schmelzspinnen sind, können direkt in einem kontinuierlichen Vorgang in den Kern der Fasern integriert werden. Für Temperatur-empfindliche Medikamente konnte das Team das Verfahren hingegen so optimieren, dass zunächst ein Platzhalter den Flüssigkern ausfüllt, der nach dem Schmelzspinnen durch den sensitiven Wirkstoff ausgetauscht wird.

Zu den Vorteilen der Flüssigkernfasern gehört auch die Möglichkeit, den Wirkstoff aus einem Reservoir über einen längeren Zeitraum freizusetzen. Damit ergeben sich vielfältige Anwendungsmöglichkeiten. Mit Durchmessern von 50 bis 200 Mikrometern sind die Fasern beispielsweise groß genug, um sie zu robusten Textilien zu weben oder zu stricken. Die medizinischen Fasern könnten aber auch ins Körperinnere geführt werden und dort Hormone wie Insulin abgeben, so Perret. Ein weiterer Vorteil: Fasern, die ihr Medikament freigesetzt haben, können erneut befüllt werden. Die Palette der Wirkstoffe, die mittels Flüssigkernfasern einfach, bequem und präzise verabreicht werden könnten, ist groß. Neben Schmerzmitteln sind entzündungshemmende Medikamente, Antibiotika oder sogar Lifestyle-Präparate denkbar.

In einem nächsten Schritt wollen die Forschenden chirurgisches Nahtmaterial mit antimikrobiellen Eigenschaften ausstatten. Mit dem neuen Verfahren sollen verschiedene Flüssigkernmaterialen mit medizinischen Wirkstoffen befüllt werden, um Gewebe bei einer Operation so zu vernähen, dass Wundkeime keine Chance haben, eine Infektion auszulösen. Empa-Forscherin Perret ist darüber hinaus überzeugt, dass eine künftige Zusammenarbeit mit klinischen Partnern die Basis für weitere innovative klinische Anwendungen ist.

Klinische Partnerschaften angestrebt
Eine neue Technologie vorantreiben? Innovative Anwendungsmöglichkeiten identifizieren? Empa-Forscherin Edith Perret setzt auf interessierte Medizinerinnen und Mediziner aus der Klinik, die das Potenzial von „Drug Delivery“ per Flüssigkernfaser erkennen und in diesem Bereich aktiv werden wollen.

Quelle:

Dr. Andrea Six, EMPA

Biofasern aus Gelatine in einem Regenbogen von Farben. © Utility Research Lab
25.06.2024

Lösliche Textilien aus Gelatine

Das ist die Mode der Zukunft: ein T-Shirt, das man ein paar Mal tragen kann und dann, wenn es einem langweilig wird, auflöst und recycelt, um daraus ein neues Shirt zu machen.

Forscher des ATLAS-Instituts an der CU Boulder sind diesem Ziel nun einen Schritt näher gekommen. In einer neuen Studie hat das Team aus Ingenieuren und Designern eine DIY-Maschine entwickelt, die Textilfasern aus Materialien wie nachhaltig hergestellter Gelatine spinnt. Die „Biofasern“ der Forschergruppe fühlen sich ein wenig wie Flachsfasern an und lösen sich in heißem Wasser innerhalb von Minuten bis zu einer Stunde auf.

Das Team unter der Leitung von Eldy Lázaro Vásquez, einer Doktorandin des ATLAS-Instituts, präsentierte seine Ergebnisse im Mai auf der CHI Conference on Human Factors in Computing Systems in Honolulu.

Das ist die Mode der Zukunft: ein T-Shirt, das man ein paar Mal tragen kann und dann, wenn es einem langweilig wird, auflöst und recycelt, um daraus ein neues Shirt zu machen.

Forscher des ATLAS-Instituts an der CU Boulder sind diesem Ziel nun einen Schritt näher gekommen. In einer neuen Studie hat das Team aus Ingenieuren und Designern eine DIY-Maschine entwickelt, die Textilfasern aus Materialien wie nachhaltig hergestellter Gelatine spinnt. Die „Biofasern“ der Forschergruppe fühlen sich ein wenig wie Flachsfasern an und lösen sich in heißem Wasser innerhalb von Minuten bis zu einer Stunde auf.

Das Team unter der Leitung von Eldy Lázaro Vásquez, einer Doktorandin des ATLAS-Instituts, präsentierte seine Ergebnisse im Mai auf der CHI Conference on Human Factors in Computing Systems in Honolulu.

„Wenn man diese Textilien nicht mehr braucht, kann man sie auflösen und die Gelatine recyceln, um neue Fasern herzustellen“, so Michael Rivera, Mitautor der neuen Forschungsarbeit und Assistenzprofessor am ATLAS-Institut und der Fakultät für Informatik.

Die Studie befasst sich mit einem weltweit wachsenden Problem: Allein 2018 haben die Menschen in den Vereinigten Staaten mehr als 11 Millionen Tonnen Textilien auf Mülldeponien entsorgt, so die Environmental Protection Agency - fast 8 % aller in diesem Jahr produzierten festen Siedlungsabfälle.

Für die Mode haben die Forschenden einen anderen Weg vor Augen.

Ihre Maschine ist klein genug, um auf einen Schreibtisch zu passen, und kostete nur 560 Dollar. Lázaro Vásquez hofft, dass das Gerät Designern auf der ganzen Welt helfen wird, mit der Herstellung ihrer eigenen Biofasern zu experimentieren.

„Man könnte Fasern mit der gewünschten Festigkeit und Elastizität sowie der gewünschten Farbe herstellen“, sagte sie. „Mit dieser Art von Prototyping-Maschine kann jeder Fasern herstellen. Man braucht nicht die großen Maschinen, die es nur in den Chemiefachbereichen der Universitäten gibt.“

Gesponnene Fäden
Die Studie kommt zu einem Zeitpunkt, an dem Modefans, Robotiker und andere einen Trend namens „intelligente Textilien“ aufgreifen. Das Trucker Jacket von Levi's mit Jacquard von Google zum Beispiel sieht aus wie eine Jeansjacke, enthält aber Sensoren, die mit dem Smartphone verbunden werden können.

Aber solche Kleidung der Zukunft hat auch eine Kehrseite, so Rivera:

„Diese Jacke ist nicht wirklich recycelbar. Es ist schwierig, den Jeansstoff von den Kupferfäden und der Elektronik zu trennen.“

Um sich eine neue Methode zur Herstellung von Kleidung vorzustellen, begann das Team mit Gelatine. Dieses elastische Protein kommt in den Knochen vieler Tiere vor, darunter auch in Schweinen und Kühen. Jedes Jahr werfen die Fleischproduzenten große Mengen an Gelatine weg, die den Anforderungen für Kosmetika oder Lebensmittel wie Götterspeise nicht genügen. (Lázaro Vásquez kaufte ihre eigene Gelatine, die in Pulverform vorliegt, in einer örtlichen Metzgerei).

Sie und ihre Kollegen beschlossen, diese Abfälle in tragbare Schmuckstücke zu verwandeln.

Die Maschine der Gruppe verwendet eine Plastikspritze, um Tröpfchen einer flüssigen Gelatinemischung zu erhitzen und herauszupressen. Zwei Walzensätze in der Maschine ziehen dann an der Gelatine und dehnen sie zu langen, dünnen Fasern aus - nicht unähnlich einer Spinne, die ein Netz aus Seide spinnt. Dabei durchlaufen die Fasern auch Flüssigkeitsbäder, in denen die Forscher biobasierte Farbstoffe oder andere Zusatzstoffe in das Material einbringen können. Die Zugabe von ein wenig Genipin, einem Fruchtextrakt, macht die Fasern beispielsweise stärker.

Zu den weiteren Co-Autoren der Studie gehören Mirela Alistar und Laura Devendorf, beide Assistenzprofessoren bei ATLAS.

Blindgänger auflösen
Lázaro Vásquez sagte, dass Designer mit dieser Art von Textilien alles machen können, was sie sich vorstellen können.

Zur Erprobung des Konzepts stellten die Forscher kleine Texilsensoren aus Gelatinefasern, Baumwolle und leitfähigen Garnen her, die dem Aufbau einer Jacquard-Jacke ähneln. Dann tauchte das Team diese Aufnäher in warmes Wasser. Die Gelatine löste sich auf und gab die Fäden frei, so dass sie leicht recycelt und wiederverwendet werden konnten.

Die Designer könnten die Chemie der Fasern optimieren, um sie etwas widerstandsfähiger zu machen, sagte Lázaro Vásquez - man möchte ja nicht, dass die Jacke im Regen verschwindet. Sie könnten auch damit spielen, ähnliche Fasern aus anderen natürlichen Bestandteilen zu spinnen. Zu diesen Materialien gehören Chitin, ein Bestandteil von Krabbenschalen, oder Agar-Agar, das aus Algen gewonnen wird.

„Wir versuchen, über den gesamten Lebenszyklus unserer Textilien nachzudenken“, so Lázaro Vásquez. „Das beginnt damit, woher das Material kommt. Können wir es aus etwas gewinnen, das normalerweise im Abfall landet?“

Weitere Informationen:
Gelatine Biofasern DIY
Quelle:

University of Colorado Boulder | Daniel Strain
Übersetzung Textination

Der Ekelfaktor verhindert nachhaltige Waschgewohnheiten Foto: Chalmers University of Technology | Mia Halleröd Palmgren
17.06.2024

Der Ekelfaktor verhindert nachhaltige Waschgewohnheiten

Die meisten Menschen neigen heute zu umweltfreundlichen Lebensentscheidungen, aber nicht auf Kosten der Sauberkeit. Wenn es um unsere Waschgewohnheiten geht, überwiegt oft die Angst, als schmutzig wahrgenommen zu werden, gegenüber dem Wunsch, umweltfreundlich zu handeln. Und je mehr wir dazu neigen, uns zu ekeln, desto mehr waschen wir unsere Kleidung. Dies zeigt eine neue Studie der Chalmers University of Technology in Schweden, in der die treibenden Kräfte hinter unserem Waschverhalten untersucht werden und die neue Möglichkeiten aufzeigt, wie die Umweltbelastung durch den Menschen verringert werden kann.

Die meisten Menschen neigen heute zu umweltfreundlichen Lebensentscheidungen, aber nicht auf Kosten der Sauberkeit. Wenn es um unsere Waschgewohnheiten geht, überwiegt oft die Angst, als schmutzig wahrgenommen zu werden, gegenüber dem Wunsch, umweltfreundlich zu handeln. Und je mehr wir dazu neigen, uns zu ekeln, desto mehr waschen wir unsere Kleidung. Dies zeigt eine neue Studie der Chalmers University of Technology in Schweden, in der die treibenden Kräfte hinter unserem Waschverhalten untersucht werden und die neue Möglichkeiten aufzeigt, wie die Umweltbelastung durch den Menschen verringert werden kann.

Wir waschen unsere Kleidung heute häufiger als je zuvor, und die beim Waschen entstehenden Emissionen waren noch nie so hoch. Einige der Gründe dafür sind, dass wir jedes Kleidungsstück weniger oft benutzen, bevor wir es in die Wäschetonne werfen, dass der technische Fortschritt das Waschen einfacher und billiger gemacht hat und der Zugang zu Waschmaschinen verbessert wurde. Von den weltweiten Emissionen von Mikroplastik stammen 16-35 Prozent aus dem Waschen von Kunstfasern. Darüber hinaus tragen Waschmittel zur Nährstoffanreicherung in Ökosystemen bei, und auch der Energie- und Wasserverbrauch beim Waschen wirkt sich auf die Umwelt aus.

„Auch wenn die Maschinen energieeffizienter geworden sind, hat die Häufigkeit des Waschens die größten Auswirkungen auf das Klima - und wir haben noch nie so viel gewaschen wie heute. Gleichzeitig scheinen die meisten von uns kein Interesse daran zu haben, ihr Waschverhalten zu ändern, um die Auswirkungen auf das Klima zu verringern“, sagt Erik Klint, Doktorand in der Abteilung für Umweltsystemanalyse bei Chalmers.

Er hat eine kürzlich veröffentlichte Forschungsstudie geleitet, die einen neuen, unerforschten Ansatz für unsere Waschgewohnheiten wählt: die Untersuchung der zugrundeliegenden Prozesse für übertriebenes Waschen aus einer psychologischen Perspektive. Die Studie konzentriert sich auf zwei treibende Kräfte, die das Waschverhalten beeinflussen: (1) Umweltidentität - wie stark wir uns mit der Gruppe der umweltbewussten Menschen identifizieren, und (2) wie stark wir zu Ekelgefühlen neigen. Zwei eindeutig gegensätzliche Triebkräfte, wie die Studie zeigt.

„Wir Menschen sind ständig mit verschiedenen Zielkonflikten konfrontiert. In diesem Fall gibt es einen Konflikt zwischen dem Wunsch, seine Wäsche zu reduzieren, um die Umwelt zu schonen, und der Angst, als ekliger Mensch mit unreiner Kleidung wahrgenommen zu werden. Ekel ist eine starke psychologische und soziale Triebkraft. Die Studie zeigt, dass wir umso mehr waschen, je höher unser Ekelgefühl ist, unabhängig davon, ob wir unsere Umweltidentität hoch einschätzen. Das Gefühl des Ekels siegt einfach über das Umweltbewusstsein“, sagt er.

Ekel ist eine evolutionär bedingte Emotion
Die Tatsache, dass Ekel unser Verhalten so stark steuert, hat mehrere Gründe. Erik Klint beschreibt Ekel als eine evolutionär bedingte Emotion, die im Wesentlichen als Schutz vor Infektionen oder gefährlichen Substanzen fungiert. Darüber hinaus ist das Ekelgefühl eng mit dem Schamgefühl verwandt und kann daher auch in sozialen Bereichen zum Tragen kommen.

„Wir Menschen wollen nichts tun, was unsere Position in der Gruppe in Frage stellen könnte - zum Beispiel mit einer Person in Verbindung gebracht werden, die sich nicht um ihre Hygiene kümmert“, sagt er.

Das hat Auswirkungen auf unser Waschverhalten.

„Hier wird eine evolutionär verwurzelte Triebkraft einem moralischen Standpunkt gegenübergestellt, und in den meisten Fällen reagiert man wahrscheinlich auf diese evolutionär bedingte Emotion“, so Klint.

„Waschkampagnen setzen an der falschen Stelle an“
Laut Erik Klint macht die Studie deutlich, dass die heutigen Kampagnen und Botschaften, die die Menschen zu umweltfreundlichem Verhalten bewegen sollen, den falschen Ansatzpunkt haben, da sie oft die psychologischen Aspekte hinter dem Verhalten der Menschen nicht berücksichtigen.

„Es spielt keine Rolle, wie vernünftig und forschungsbasiert die Argumente sind, wenn sie den unterschiedlichen Triebkräften der Menschen zuwiderlaufen, wie dem Wunsch, sich einer Gruppe zugehörig zu fühlen, dann werden sie nicht funktionieren“, sagt er.

Die Fragen „Wie bringen wir die Menschen dazu, weniger zu waschen?“ und „Wie können wir dies auf umweltfreundlichere Weise tun?“ sind völlig unangebracht, meint Erik Klint, der darauf hinweist, dass der Schwerpunkt vielmehr auf dem indirekten Verhalten liegen sollte, das zum eigentlichen Waschen führt. Es mag zwar subtil sein, aber er schlägt vor, dass die bessere Frage lautet: „Wie können wir die Menschen dazu bringen, weniger Wäsche zu erzeugen, insbesondere Wäsche, die in einer Waschmaschine gereinigt werden muss?“

„Man wäscht, weil der Wäschekorb voll, der Lieblingspulli schmutzig oder in der Gemeinschaftswäscherei ein Zeitfenster frei ist. Daher muss der Schwerpunkt auf dem liegen, was passiert, bevor wir die Waschmaschine in Gang setzen, d. h. auf den zugrundeliegenden Verhaltensweisen, die einen Waschdrang auslösen. Zum Beispiel, wie viel Wäsche wir erzeugen, wie wir die Wäsche in der Maschine sortieren oder wann wir denken, dass die Waschmaschine voll ist“, sagt er.

Einer der wichtigsten Vorschläge der Studie besteht darin, Menschen zu ermutigen, Kleidung häufiger zu benutzen, bevor sie im Wäschekorb landet.

„Es kann darum gehen, übermäßiges Waschen zu bekämpfen, mit Botschaften wie 'die meisten Leute benutzen ihr T-Shirt mehr als einmal'. Aber auch die Nutzung der Waschmaschine durch andere Maßnahmen zu ersetzen, wie z. B. das Lüften der Kleidungsstücke, das Abbürsten von Schmutz oder das Entfernen einzelner Flecken per Hand. Eine Möglichkeit wäre es, die wirtschaftlichen Argumente hervorzuheben, denn die Kleidung nutzt sich ab, wenn sie durch die Maschine läuft“, sagt er.

In der Absicht, die Umweltauswirkungen des Waschens zu verringern
Gregory Peters, Professor für quantitative Nachhaltigkeitsbewertung an der Chalmers University und Mitverfasser der Studie, betont, dass diese eine einzigartige Kombination aus Verhaltens- und Naturwissenschaften darstellt.

„Diese Studie ist Teil einer umfassenderen Arbeit, die über den üblichen Forschungsrahmen für Ökobilanzen - Lebenszyklusanalysen - hinausgeht und es ermöglicht, ein ganzheitlicheres Verständnis dafür zu entwickeln, wie wir waschen und was unser Waschverhalten bestimmt. Das unmittelbare Ergebnis, das wir uns erhoffen, ist ein Beitrag zur Verringerung der Umweltbelastung durch das Waschen, aber es ist möglich, dass die Forschung auf andere Bereiche verallgemeinert werden kann, in denen Verhalten und Technologie zusammenspielen", sagt er.

Mehr über Waschgewohnheiten und Klimafolgen

  • Die Menge der von europäischen Verbrauchern gewaschenen Wäsche hat erheblich zugenommen. Im Jahr 2015 wusch der Durchschnittseuropäer vier Maschinenladungen pro Woche. Das sind zwar 0,7 Wäscheladungen weniger als im Jahr 2000, aber immer noch ein starker Anstieg, da die Waschkapazität der Maschinen im gleichen Zeitraum stark zugenommen hat. Im Jahr 2015 verfügten 64 Prozent aller Waschmaschinen über ein Fassungsvermögen von mehr als sechs Kilogramm, verglichen mit 2 Prozent im Jahr 2004. Gleichzeitig geben die meisten Verbraucher an, dass sie das Fassungsvermögen der Maschine voll ausnutzen.
  • Im Jahr 2010 hatten schätzungsweise 30 Prozent der Haushalte weltweit Zugang zu einer Waschmaschine. Im Jahr 2024, so eine Studie über die Hälfte der Weltbevölkerung, die in 18 Ländern in verschiedenen Teilen der Welt lebt, haben 80 Prozent der Haushalte Zugang zu einer Waschmaschine. Quellen: Statista (2024), Pakula und Stamminger (2010)
  • 16-35 Prozent der weltweiten Emissionen von Mikroplastik stammen aus dem Waschen von Kunstfasern. Das Waschen synthetischer Produkte führt dazu, dass sich jedes Jahr mehr als eine halbe Million Tonnen Mikroplastik auf dem Meeresboden ansammeln. Eine einzige Wäsche von Polyesterkleidung kann 700.000 Mikroplastikfasern freisetzen, die dann in die Nahrungskette gelangen können.
Quelle:

Chalmers | Mia Halleröd Palmgren

Foto: Damir Omerovic, Unsplash
12.06.2024

Nutzpflanzen zur Verringerung der Umweltbelastung durch Synthetik

Von Risotto bis zu Soßen sind Pilze seit langem ein Grundnahrungsmittel in der Küche. Jetzt zeigen Pilze das Potenzial, mehr als nur Geschmack zu bieten - als nachhaltiges, biegsames Material für die Modeindustrie.

Forscher nutzen die netzartige Struktur des Wurzelsystems des Pilzes - das Myzel - als Alternative zu synthetischen Fasern für Kleidung und andere Produkte wie Autositze.

„Es ist definitiv ein Umdenken im Herstellungsprozess“, sagt Annalisa Moro, EU-Projektleiterin beim italienischen Unternehmen Mogu, das aus dem Myzel Produkte für die Inneneinrichtung herstellt. „Man arbeitet wirklich mit der Natur zusammen, um etwas zu züchten, anstatt es zu erschaffen, und das ist irgendwie futuristisch.“

Mogu, 50 Kilometer nordwestlich von Mailand gelegen, leitet eine Forschungsinitiative zur Entwicklung von Vliesstoffen aus Mycelfasern für die Textilindustrie.

Von Risotto bis zu Soßen sind Pilze seit langem ein Grundnahrungsmittel in der Küche. Jetzt zeigen Pilze das Potenzial, mehr als nur Geschmack zu bieten - als nachhaltiges, biegsames Material für die Modeindustrie.

Forscher nutzen die netzartige Struktur des Wurzelsystems des Pilzes - das Myzel - als Alternative zu synthetischen Fasern für Kleidung und andere Produkte wie Autositze.

„Es ist definitiv ein Umdenken im Herstellungsprozess“, sagt Annalisa Moro, EU-Projektleiterin beim italienischen Unternehmen Mogu, das aus dem Myzel Produkte für die Inneneinrichtung herstellt. „Man arbeitet wirklich mit der Natur zusammen, um etwas zu züchten, anstatt es zu erschaffen, und das ist irgendwie futuristisch.“

Mogu, 50 Kilometer nordwestlich von Mailand gelegen, leitet eine Forschungsinitiative zur Entwicklung von Vliesstoffen aus Mycelfasern für die Textilindustrie.

Das Projekt mit dem Namen MY-FI hat eine Laufzeit von vier Jahren bis Oktober 2024 und bringt Unternehmen, Forschungsinstitute, Industrieorganisationen und akademische Einrichtungen aus ganz Europa zusammen..

MY-FI zeigt, wie die EU auf eine nachhaltigere Produktion und einen nachhaltigeren Verbrauch in der Textil- und Bekleidungsindustrie drängt, die in Europa rund 1,3 Millionen Menschen beschäftigt und einen Jahresumsatz von 167 Milliarden Euro erzielt.

Die EU bezieht den Großteil ihrer Textilien aus dem Ausland, produziert sie aber in Ländern wie Frankreich, Deutschland, Italien und Spanien. Auf Italien entfallen mehr als 40 % der EU-Bekleidungsproduktion.

Filigran und langlebig
Das empfindliche Material wird durch die Zugabe von biobasierten Chemikalien, die die Fasern miteinander verbinden, stärker und haltbarer gemacht.

Seine ökologische Herkunft steht im Gegensatz zu den meisten synthetischen Fasern wie Nylon und Polyester, die aus fossilen Brennstoffen wie Kohle und Öl gewonnen werden.

Das bedeutet, dass die Produktion von Kunstfasern zu den Treibhausgasemissionen beiträgt, die den Klimawandel beschleunigen. Darüber hinaus setzen diese Materialien beim Waschen Mikroplastik frei, das häufig in die Umwelt gelangt und Flüsse, Meere und Ozeane verschmutzt.

Das MY-FI-Myzel benötigt nur sehr wenig Erde, Wasser oder Chemikalien und ist damit sogar umweltfreundlicher als Naturfasern wie Baumwolle.

Kleiderprobe
Für die Modeindustrie sind die weichen, wasserabweisenden Eigenschaften des Myzels ebenso attraktiv wie seine Umweltfreundlichkeit.

Fragen Sie einfach Mariagrazia Sanua, Nachhaltigkeits- und Zertifizierungsmanagerin bei Dyloan Bond Factory, einem italienischen Modedesigner und -hersteller, der zu MY-FI gehört.

Das Unternehmen hat das auf Myzel basierende Material in schwarzer und brauner Farbe und mit gewachstem Finish verwendet, um einen Prototyp eines Kleides, eine Kombination aus Oberteil und Midirock, Taschen und kleine Lederaccessoires herzustellen.

Laserschneiden und Siebdruck wurden eingesetzt, um das Materialverhalten zu bewerten. Die Herausforderung bestand darin, sich auf die Stoffbahnen - Quadrate aus dem Myzelmaterial anstelle von herkömmlichen Textilrollen wie Baumwolle, Leinen und Polyester - sowie auf Eigenschaften wie Zugfestigkeit und Nahtdichtigkeit einzustellen.

„Wir mussten das Paradigma komplett ändern und Prozesse und Kleidungsstücke auf der Grundlage des Materials entwerfen“, so Sanua.

Das Unternehmen hofft, den Verbrauchern mit dem Myzelmaterial eine Reihe von Produkten anbieten zu können, die eine Alternative zu Tierleder darstellen.

Leder-ungebunden
Volkswagen, der zweitgrößte Automobilhersteller der Welt, setzt auf Mycel-Technologien, um seinen ökologischen Fußabdruck zu verkleinern und von Leder für die Innenausstattung von Fahrzeugen wegzukommen.

Die Kunden wünschen sich zunehmend tierfreie Materialien für den Innenraum, von Sitzbezügen und Türverkleidungen bis hin zu Armaturenbrettern und Lenkrädern. Ein nachhaltiger Ersatz für Leder ist daher eine spannende Perspektive, so Dr. Martina Gottschling, Wissenschaftlerin bei Volkswagen Group Innovation.

„Ein schnell wachsendes biologisches Material, das ohne Tierversuche und mit geringem Aufwand hergestellt werden kann und zudem keine erdölbasierten Ressourcen benötigt, ist ein Wendepunkt bei den Innenraummaterialien“, sagte sie.

Das Myzelmaterial ist außerdem leichter als Leder, ein weiterer Pluspunkt für die Reduzierung des CO2-Fußabdrucks von VW.

Die Beteiligung des Unternehmens an MY-FI treibt die Projektforscher an der Universität Utrecht in den Niederlanden und am I-TECH Lyon in Frankreich dazu an, die Haltbarkeit des Myzelgewebes zu verbessern. Um vom Prototyp zur Produktionslinie zu gelangen, muss das Gewebe die von VW festgelegten Qualitätsanforderungen erfüllen, damit das Material ein Fahrzeugleben lang hält.

Gottschling ist überzeugt, dass diese Herausforderung im kommenden Jahrzehnt bewältigt werden kann. „Wir sehen das Material schon jetzt als eines der hochwertigen Materialien für Innenraumanwendungen, die in Zukunft möglich sein werden“, sagte sie.

Wenn das Leben einem Tomaten schenkt
Pilze sind nicht das einzige Lebensmittel, das das Potenzial hat, eine Revolution in Sachen nachhaltiges Garn auszulösen. Laut Dr. Ozgur Atalay und Dr. Alper Gurarslan von der Technischen Universität Istanbul in der Türkei haben auch Tomatenstängel ein verborgenes Talent.

Als sie sahen, dass Tomatenstängel nach der Ernte auf den Feldern verwelkten, begannen Atalay und Gurarslan zu untersuchen, ob sich die Stängel in nachhaltige Fasern verwandeln ließen.

Tests bewiesen, dass sich die landwirtschaftlichen Abfälle tatsächlich in Garn verwandeln lassen. Doch Atalay und Gurarslan waren entschlossen, noch einen Schritt weiter zu gehen. Sie wollten aus Tomatenstängeln eine Garnart für Kleidungsstücke herstellen, die Herzschlag, Atemfrequenz und Gelenkbewegungen überwachen.

Die beiden Forscher leiten ein Projekt zur Herstellung dieser Art von elektrisch leitfähiger Kleidung aus - erstmals - nachhaltigen Materialien.

Das Projekt mit dem Namen SMARTWASTE hat eine Laufzeit von vier Jahren bis Ende 2026 und umfasst auch Hochschul- und Forschungseinrichtungen aus Deutschland, Italien, den Niederlanden und Polen.

„Das Schöne an diesem Projekt ist, dass wir mit Abfällen beginnen“, so Atalay. „Wir nehmen landwirtschaftliche Abfälle und stellen nicht nur normale Textilien her, sondern etwas viel Wertvolleres“.

Kostenvoranschläge werden zwar erst im weiteren Verlauf des Projekts erstellt, wenn die Designpartner an der Entwicklung konkreter Produkte arbeiten, aber er wies darauf hin, dass intelligente Kleidung um einiges teurer sein wird als herkömmliche.

Ein intelligentes Textilhemd könnte laut Atalay bis zu 1.000 € kosten.

Das spezielle Material, die begrenzten Produktionsmengen und die Forschungs- und Entwicklungsarbeiten, die erforderlich sind, um tragbare Technologien zu entwickeln, die haltbar, waschbar und bequem sind, tragen alle zu diesem Preis bei.

Fortschritte in der Technologie sollten letztendlich zu niedrigeren Produktionskosten und Verbraucherpreisen führen.

Die Saat der Erfolgspappel
Die türkische Landschaft war auch die Inspiration für einen zweiten Teil des Projekts. Die in der Türkei reichlich vorhandenen Pappelbäume und insbesondere ihre weißen, flauschigen, baumwollähnlichen Samen veranlassten Gurarslan zu untersuchen, ob sie eine nachhaltige Textilquelle darstellen könnten.

Ihre Fasern wurden zwar als zu kurz für die Herstellung von Garnen abgetan, aber die Samen haben drei besondere Eigenschaften, die für die Textilindustrie interessant sind: eine hohle, röhrenartige Struktur, die Wärme speichern kann, um thermische Eigenschaften zu erzielen, eine antibakterielle Eigenschaft und Wasserbeständigkeit.

Das Netzwerk von SMARTWASTE-Experten hat die Samen mit recyceltem Polyester gemischt, um einen Vliesstoff herzustellen, den das Team zu Textilprodukten mit verbesserten thermischen Eigenschaften verarbeiten will.

Die Forscher hoffen, dass dies erst der Anfang einer weitreichenden Umgestaltung von Textilien ist.

„Unser Ziel ist es, die nächste Generation von Forschern und Innovatoren im Bereich nachhaltiger Textilien auszubilden“, so Atalay.

Auf die Haut gedruckte Sensoren aus „elektronischer Spinnenseide“ (c) Huang Lab, Cambridge
27.05.2024

Auf die Haut gedruckte Sensoren aus „elektronischer Spinnenseide“

Forscher haben eine Methode entwickelt, um anpassungsfähige und umweltfreundliche Sensoren herzustellen, die direkt und unsichtbar auf eine Vielzahl von biologischen Oberflächen gedruckt werden können, sei es ein Finger oder ein Blütenblatt.

Die von Forschern der Universität Cambridge entwickelte Methode ist von der Spinnenseide inspiriert, die sich an eine Reihe von Oberflächen anpassen und an ihnen haften kann. In diese „Spinnenseide“ ist auch Bioelektronik integriert, so dass das „Netz“ mit verschiedenen sensorischen Fähigkeiten ausgestattet werden kann.

Forscher haben eine Methode entwickelt, um anpassungsfähige und umweltfreundliche Sensoren herzustellen, die direkt und unsichtbar auf eine Vielzahl von biologischen Oberflächen gedruckt werden können, sei es ein Finger oder ein Blütenblatt.

Die von Forschern der Universität Cambridge entwickelte Methode ist von der Spinnenseide inspiriert, die sich an eine Reihe von Oberflächen anpassen und an ihnen haften kann. In diese „Spinnenseide“ ist auch Bioelektronik integriert, so dass das „Netz“ mit verschiedenen sensorischen Fähigkeiten ausgestattet werden kann.

Die Fasern, die mindestens 50-mal kleiner als ein menschliches Haar sind, sind so leicht, dass die Forscher sie direkt auf den flauschigen Samenkopf eines Löwenzahns drucken konnten, ohne dass dessen Struktur zusammenfiel. Auf die menschliche Haut gedruckt, passen sich die Fasersensoren der Haut an und legen die Schweißporen frei, so dass der Träger ihre Anwesenheit nicht bemerkt. Tests der auf einen menschlichen Finger gedruckten Fasern legen nahe, dass sie zur kontinuierlichen Überwachung von Körperfunktionen eingesetzt werden könnten.

Diese abfall- und emissionsarme Methode im Bereich Augmented Living könnte in verschiedenen Bereichen eingesetzt werden, von der Gesundheitsfürsorge und der virtuellen Realität bis hin zu elektronischen Textilien und der Umweltüberwachung. Die Ergebnisse werden in der Zeitschrift „Nature Electronics“ veröffentlicht.

Obwohl menschliche Haut außerordentlich sensible ist, könnte ihre Erweiterung durch elektronische Sensoren die Art und Weise, wie wir mit der Welt um uns herum interagieren, grundlegend verändern. Direkt auf die Haut gedruckte Sensoren könnten so zur kontinuierlichen Gesundheitsüberwachung oder zum Verständnis von Hautempfindungen eingesetzt werden oder den Realitätssinn bei Spielen oder Virtual-Reality-Anwendungen verbessern.

Zwar sind tragbare Technologien mit eingebetteten Sensoren, wie z. B. Smartwatches, weit verbreitet, doch können diese Geräte unbequem und lästig sein und die Eigenwahrnehmung der Haut beeinträchtigen.

Im letzten Jahr haben einige derselben Wissenschaftler nachgewiesen, dass die in intelligenten Textilien verwendeten Fasern, wenn sie mit dehnbaren Materialien beschichtet werden, mit herkömmlichen Webverfahren kompatibel sein können. Mit dieser Technik stellten sie ein gewebtes 46-Zoll- Demo-Display her.

„Wenn man etwas auf einer biologischen Oberfläche wie der Haut oder einem Blatt genau erfassen will, ist die Schnittstelle zwischen dem Gerät und der Oberfläche von entscheidender Bedeutung“, sagte Professor Yan Yan Shery Huang vom Cambridge Department of Engineering, die die Forschung leitete. „Wir wollen außerdem eine Bioelektronik, die für den Anwender völlig unauffällig ist, so dass sie in keiner Weise seine Interaktion mit der Welt beeinträchtigt, und wir wollen, dass sie nachhaltig ist und wenig Abfall verursacht.“

Es gibt verschiedene Methoden zur Herstellung von tragbaren Sensoren, die jedoch alle ihre Nachteile haben. Flexible Elektronik wird zum Beispiel normalerweise auf Kunststofffolien gedruckt, die weder Gase noch Feuchtigkeit durchlassen - es wäre also so, als würde man seine Haut in Frischhaltefolie einwickeln. Andere Forscher haben vor kurzem flexible Elektronik entwickelt, die gasdurchlässig ist, wie künstliche Haut, aber diese beeinträchtigt immer noch das normale Empfinden und ist auf energie- und abfallintensive Herstellungsverfahren angewiesen.

Der 3D-Druck ist ein weiterer potenzieller Weg für die Bioelektronik, denn er ist weniger abfallintensiv als andere Produktionsmethoden, führt aber zu massiveren Geräten, die das normale Verhalten beeinträchtigen können. Das Spinnen elektronischer Fasern resultiert in Komponenten, die für den Benutzer nicht wahrnehmbar sind, die gleichzeitig nicht sehr empfindlich oder kompliziert sind oder sich nur schwer auf das betreffende Objekt übertragen lassen.

Nun hat das von Cambridge geführte Team eine neue Methode zur Herstellung von Hochleistungs-Bioelektronik entwickelt, die an eine Vielzahl von biologischen Oberflächen angepasst werden kann, von der Fingerspitze bis zum flauschigen Samenkopf einer Pusteblume, indem sie direkt auf die Oberfläche gedruckt wird. Inspiriert wurde die Technik teilweise von Spinnen, die mit minimalem Materialeinsatz ausgeklügelte und starke, an ihre Umgebung angepasste Netzstrukturen schaffen.

Die Forscher sponnen ihre bioelektronische „Spinnenseide“ aus PEDOT:PSS (einem biokompatiblen leitenden Polymer), Hyaluronsäure und Polyethylenoxid. Die Hochleistungsfasern wurden aus einer wässrigen Lösung bei Raumtemperatur hergestellt, was es den Forschern ermöglichte, die „Spinnbarkeit“ der Fasern zu kontrollieren. Die Forscher entwickelten dann ein Orbitalspinnverfahren, mit dem sich die Fasern an lebende Oberflächen anpassen können, sogar bis hin zu Mikrostrukturen wie Fingerabdrücken. Tests der bioelektronischen Fasern auf Oberflächen wie menschlichen Fingern und Löwenzahnsamen zeigten, dass sie hochwertige Sensorleistungen erbringen und für den Träger nicht wahrnehmbar sind.

„Unser Spinnverfahren ermöglicht es den bioelektronischen Fasern, der Anatomie verschiedener Formen zu folgen, sowohl im Mikro- als auch im Makromaßstab, ohne dass eine Bilderkennung erforderlich ist“, so Andy Wang, der Erstautor der Arbeit. „Das eröffnet einen völlig neuen Blickwinkel auf die Herstellung nachhaltiger Elektronik und Sensoren. Es ist ein deutlich einfacherer Weg, großflächige Sensoren herzustellen.“

Die meisten hochauflösenden Sensoren werden in einem industriellen Reinraum hergestellt und erfordern den Einsatz giftiger Chemikalien in einem mehrstufigen und energieaufwändigen Herstellungsprozess. Die in Cambridge entwickelten Sensoren können überall hergestellt werden und verbrauchen nur einen Bruchteil der Energie, die herkömmliche Sensoren benötigen.

Die reparaturfähigen bioelektronischen Fasern, die reparabel sind, können, wenn sie das Ende ihrer Lebensdauer erreicht haben, einfach abgewaschen werden und erzeugen weniger als ein einziges Milligramm Abfall: zum Vergleich: Bei einer einzigen Ladung Wäsche fallen zwischen 600 und 1500 Milligramm Faserabfälle an.

„Mit unserer einfachen Fertigungstechnik können wir die Sensoren fast überall anbringen und bei Bedarf reparieren, ohne eine große Druckmaschine oder eine zentrale Fertigungsanlage zu benötigen“, so Huang. „Diese Sensoren können auf Abruf hergestellt werden, genau dort, wo sie gebraucht werden, und erzeugen nur minimale Abfälle und Emissionen.“

Die Forschung wurde zum Teil vom Europäischen Forschungsrat, von Wellcome, der Royal Society und dem Biotechnology and Biological Sciences Research Council (BBSRC), einem Teil des UK Research and Innovation (UKRI), unterstützt.

Quelle:

Sarah Collins, University of Cambridge

Foto: 政徳 吉田, Pixabay
03.05.2024

Fahrzeugunterböden aus Naturfasern und Recycling-Kunststoffen

Gemeinsam mit Industriepartnern haben Forschende des Fraunhofer WKI einen Fahrzeugunterboden aus Naturfasern und recycelten Kunststoffen für den Automobilbau entwickelt. Der Fokus des Fraunhofer Instituts lag auf der Materialentwicklung für den Spritzguss sowie auf der Hydrophobierung von Flachs- und Hanffasern für naturfaserverstärkte Mischfaservliese.

Das Bauteil erfüllt die hohen technischen Anforderungen im Unterbodenbereich und könnte zukünftig herkömmliche Leichtbau-Fahrzeugunterböden ersetzen. Mit dieser Entwicklung wird die Klima- und Umweltbilanz über den gesamten Produktlebenszyklus optimiert.

Gemeinsam mit Industriepartnern haben Forschende des Fraunhofer WKI einen Fahrzeugunterboden aus Naturfasern und recycelten Kunststoffen für den Automobilbau entwickelt. Der Fokus des Fraunhofer Instituts lag auf der Materialentwicklung für den Spritzguss sowie auf der Hydrophobierung von Flachs- und Hanffasern für naturfaserverstärkte Mischfaservliese.

Das Bauteil erfüllt die hohen technischen Anforderungen im Unterbodenbereich und könnte zukünftig herkömmliche Leichtbau-Fahrzeugunterböden ersetzen. Mit dieser Entwicklung wird die Klima- und Umweltbilanz über den gesamten Produktlebenszyklus optimiert.

Den Projektpartnern Fraunhofer WKI, Thüringisches Institut für Textil- und Kunststofftechnik (TITK), Röchling Automotive SE & Co. KG, BBP Kunststoffwerk Marbach Baier GmbH und Audi AG ist es gelungen, ein nachhaltiges Gesamtkonzept für Fahrzeugunterböden zu entwickeln. Damit haben die Forschenden eine anspruchsvolle Bauteilgruppe mit hohem Kunststoffanteil für den Einsatz von Naturmaterialien erschlossen. Bisher wurden naturfaserverstärkte Kunststoffe im Automobil hauptsächlich für Verkleidungsteile ohne nennenswerte mechanische Aufgaben eingesetzt. Strukturelle Bauteile wie Fahrzeugunterböden sind enormen Belastungen ausgesetzt und stellen hohe Anforderungen an das Biege- und Crashverhalten des Materials. In modernen Leichtbau-Fahrzeugkonzepten kommen daher Hochleistungswerkstoffe aus glasfaserverstärkten Kunststoffen zum Einsatz.

Das Projektteam konnte die Glasfasern durch Naturmaterialien wie Flachs-, Hanf- und Cellulosefasern ersetzen und Unterbodenbauteile mit einem Naturfaseranteil von bis zu 45 Prozent realisieren. Im Bereich der Polymere wurde vollständig auf Polypropylen-Neuware verzichtet und ausschließlich Rezyklate eingesetzt. Alle mit dieser Materialumstellung verbundenen Herausforderungen, sowohl die geringeren mechanischen Ausgangseigenschaften der Werkstoffe als auch die zeitlich eingeschränkten Verarbeitungsfenster, konnten durch geschickte Compoundkombinationen gelöst werden.

Am Fraunhofer WKI wurden Materialien für den Spritzguss entwickelt. »Naturfaser-Spritz-guss-Compounds sind bisher vor allem durch Festigkeits- und Steifigkeitssteigerungen gegenüber unverstärkten Polymeren bekannt. Bei der Entwicklung im Fahrzeugunterboden ist es darüber hinaus gelungen, durch eine innovative Kombination von ausgewählten Post-Consumer-Rezyklaten (PCR) als Matrix und Naturfasern unterschiedlicher Reinheitsgrade die hohen Anforderungen an die Kaltschlagzähigkeit zu erfüllen, ohne dabei die geforderte Steifigkeit und Festigkeit einzubüßen«, erklärt Moritz Micke-Camuz, Projektleiter am Fraunhofer WKI.

Im Rahmen der Entwicklung wurden am TITK und bei Röchling erstmals Faserverbundbauteile aus naturfaserverstärktem Mischfaservlies (Lightweight-Reinforced-Thermoplastic, LWRT) realisiert. Das entwickelte Produkt erfüllt nicht nur die mechanischen Anforderungen. Es widersteht auch den Herausforderungen, die durch die feuchte Einsatzumgebung hervorgerufen werden. Zur Hydrophobierung von Flachs- und Hanffasern für LWRT-Bauteile wurde am Fraunhofer WKI ein kontinuierliches Furfurylierungsverfahren entwickelt. Durch die Furfurylierung kann die Feuchtigkeitsaufnahme um bis zu 35 Prozent reduziert werden, ohne die Biegefestigkeit der späteren Bauteile zu beeinträchtigen. Das furfurylierte Fasermaterial lässt sich zudem problemlos auf einer Vliesanlage weiterverarbeiten

Die gefertigten Prototypenbauteile wurden anschließend sowohl auf Komponentenebene als auch im Fahrversuch intensiv getestet. Dazu dienten unter anderem die Fahrzeuge der neuen »Premium Platform Electric« (PPE) des VW-Konzerns. Im Rahmen der Serienerprobung konnten bereits Langzeiterfahrungen gesammelt werden. Das erfreuliche Ergebnis dieser Tests: Die neu entwickelten Bioverbundwerkstoffe erfüllen alle Standardanforderungen an Unterbodenbauteile und erweisen sich als serientauglich. Weder der Einsatz von Naturfasern noch von (Post-Consumer-)Rezyklaten führt zu einer signifikanten Beeinträchtigung der Eigenschaften.

Ein wesentlicher Vorteil der Innovation liegt auch in der deutlich verbesserten CO2-Bilanz: Im Vergleich zur Serie können 10,5 Kilogramm Neuware (PP/Glasfaser) durch 4,2 Kilogramm Naturfasern und 6,3 Kilogramm Post-Consumer-Rezyklat ersetzt werden. Dadurch konnten die CO2-Emissionen während der Produktion, der Nutzung und des Produktlebens um bis zu 40 Prozent reduziert werden.

Im Rahmen des Entwicklungsprojektes wurde ein innovatives, ganzheitliches Gesamtkonzept für Fahrzeugunterböden inklusive Recycling mit kaskadischer Wiederverwendung der Komponenten entwickelt. Aus technischer Sicht können Fahrzeugunterböden zukünftig vollständig aus dem neuen, hochleistungsfähigen Bio-Leichtbau-Material hergestellt werden.

Das Projekt wurde durch das Bundesministerium für Wirtschaft und Klimaschutz (BMWK) über den Projektträger TÜV Rheinland gefördert.

 

Quelle:

Fraunhofer-Institut für Holzforschung, Wilhelm-Klauditz-Institut WKI

(c) MIT Self Assembly Lab
29.04.2024

Das 4D-Strickkleid - die Zukunft der Mode?

Das vom Self-Assembly Lab entwickelte 4D Strickkleid nutzt mehrere Technologien, um ein individuelles Design und eine maßgeschneiderte Passform zu schaffen und dabei gleichzeitig den Anforderungen an Nachhaltigkeit Rechnung zu tragen.

Bis vor kurzem war eine Maßanfertigung - also Kleidung, die nach den individuellen Wünschen des Kunden angefertigt wurde - die einzige Möglichkeit, Kleidungsstücke zu tragen, die perfekt auf den eigenen Körperbau abgestimmt waren. Für die meisten Menschen sind die Kosten einer Maßanfertigung nicht zu bezahlen. Doch die Erfindung aktiver Fasern und innovativer Strickverfahren verändert die Textilindustrie.

Das vom Self-Assembly Lab entwickelte 4D Strickkleid nutzt mehrere Technologien, um ein individuelles Design und eine maßgeschneiderte Passform zu schaffen und dabei gleichzeitig den Anforderungen an Nachhaltigkeit Rechnung zu tragen.

Bis vor kurzem war eine Maßanfertigung - also Kleidung, die nach den individuellen Wünschen des Kunden angefertigt wurde - die einzige Möglichkeit, Kleidungsstücke zu tragen, die perfekt auf den eigenen Körperbau abgestimmt waren. Für die meisten Menschen sind die Kosten einer Maßanfertigung nicht zu bezahlen. Doch die Erfindung aktiver Fasern und innovativer Strickverfahren verändert die Textilindustrie.

„Wir alle tragen Kleidung und Schuhe“, sagt Sasha MicKinlay, M.A., die kürzlich ihren Abschluss am MIT Department of Architecture gemacht hat. „Das ist ein menschliches Bedürfnis. Aber es gibt auch das menschliche Bedürfnis, sich auszudrücken. Mir gefällt die Idee, Kleidung auf nachhaltige Art und Weise zu personalisieren. Dieses Kleid verspricht sowohl für den Verbraucher als auch für den Hersteller nachhaltiger zu sein als herkömmliche Mode.“

McKinlay ist Textildesignerin und Forscherin am Self-Assembly Lab und hat zusammen mit Ministry of Supply, einem auf Hightech-Bekleidung spezialisierten Modeunternehmen, das 4D Strickkleid entworfen. Das Kleid kombiniert mehrere Technologien, um eine individuelle Passform und einen individuellen Stil zu schaffen. Wärmeaktivierte Garne, computergestütztes Stricken und robotergesteuerte Aktivierung um jedes Kleidungsstück herum sorgen für die modellierte Passform. Ein Team bei Ministry of Supply traf die Entscheidungen über die verwendeten stabilen Garne, die Farbe, die Originalgröße und das Gesamtdesign.

„Jeder Körper ist anders“, sagt Skylar Tibbits, außerordentliche Professorin an der Fakultät für Architektur und Gründerin des Self-Assembly Lab. „Selbst wenn man die gleiche Größe wie eine andere Person trägt, ist man nicht wirklich gleich“.

Aktive Textilien
Die Studenten des Self-Assembly Lab arbeiten seit mehreren Jahren mit dynamischen Textilien. Die von ihnen hergestellten Garne können ihre Form, ihre Eigenschaften, ihre Isolierung oder ihre Atmungsaktivität verändern. Zu den bisherigen Anwendungen für maßgeschneiderte Kleidungsstücke gehören die Herstellung von Pullovern und Gesichtsmasken. Laut Tibbits ist das 4D-Strickkleid ein Höhepunkt all dessen, was die Studenten bei der Arbeit mit aktiven Textilien gelernt haben.

McKinlay half bei der Herstellung der aktiven Garne, entwarf das Konzeptdesign, entwickelte die Stricktechnik und programmierte die industrielle Strickmaschine des Labors. Sobald das Design des Kleidungsstücks in der Maschine programmiert ist, kann sie schnell mehrere Kleider herstellen. Durch die Platzierung der aktiven Garne im Design kann das Kleid eine Vielzahl von Stilen annehmen, wie z. B. Biesen, Falten, eine Empire-Taille oder eine eng anliegende Taille.

„Das Styling ist wichtig“, sagt McKinlay. „Die meisten Leute konzentrieren sich auf die Größe, aber ich denke, das Styling ist das, was die Kleidung auszeichnet. Wir alle entwickeln uns als Menschen weiter, und ich glaube, dass sich auch unser Stil weiterentwickelt. Nach der Passform konzentrieren sich die Menschen auf den persönlichen Stil.

Danny Griffin, Magisterabschluss und derzeit Doktorand in Architekturdesign, hat keinen Hintergrund in der Bekleidungs- oder Modeindustrie. Tibbits bat Griffin, dem Team beizutreten, da er Erfahrung mit Robotikprojekten im Bauwesen hat. Griffin übersetzte den Wärmeaktivierungsprozess in ein programmierbares Roboterverfahren, das die Anwendung präzise steuern konnte.

„Wenn wir Hitze anwenden, verkürzen sich die Fasern, so dass sich das Textil in einem bestimmten Bereich zusammenzieht, wodurch die Form gestrafft wird, als würden wir das Kleidungsstück zuschneiden“, sagt Griffin. „Wir haben viel ausprobiert, um herauszufinden, wie wir den Roboter und die Heißluftpistole ausrichten müssen. Die Hitze muss genau an den richtigen Stellen angesetzt werden, um die Fasern auf jedem Kleidungsstück zu aktivieren. Eine weitere Herausforderung war die Einstellung der Temperatur und des Zeitplans für die Wärmezufuhr.“

„Wir konnten keine handelsübliche Heißluftpistole verwenden, die wie ein tragbarer Haartrockner aussieht, sie ist zu groß“, sagt Griffin. „Wir brauchten ein kompakteres Design. Als wir das herausgefunden hatten, hat es viel Spaß gemacht, das Drehbuch zu schreiben, dem der Roboter folgen sollte.“

Ein Kleid kann zunächst ein bestimmtes Design haben - zum Beispiel Biesen über der Brust - und monatelang getragen werden, bevor es durch erneute Wärmeanwendung verändert wird. Durch anschließende Wärmeanwendungen kann das Kleid weiter angepasst werden.

Mehr als Passform und Fashion
Die effiziente Herstellung von Kleidungsstücken ist laut Gihan Amarasiriwardena, dem Mitbegründer und Präsidenten von Ministry of Supply, eine „große Herausforderung“ in der Modeindustrie.

„Oft muss man raten, was in einer Saison angesagt ist“, sagt er. „Manchmal läuft der Stil nicht gut, oder manche Größen werden nicht verkauft. Sie werden dann stark heruntergesetzt oder landen schließlich auf einer Mülldeponie.“

„Fast Fashion“ ist ein Begriff, der Kleidung beschreibt, die preiswert, trendy und für den Verbraucher leicht zu entsorgen ist. Sie wird schnell entworfen und produziert, um mit den aktuellen Trends Schritt zu halten. Das 4D-Strickkleid, so Tibbits, ist das Gegenteil von Fast Fashion. Im Gegensatz zum traditionellen „Cut-and-Sew“-Verfahren in der Modeindustrie wird das 4D Strickkleid komplett in einem Stück hergestellt, wodurch praktisch kein Abfall anfällt.

„Vom globalen Standpunkt aus betrachtet, gibt es keine tonnenweise überschüssigen Lagerbestände, da das Kleid auf Ihre Größe zugeschnitten ist“, sagt Tibbits.

McKinlay hofft, dass durch den Einsatz dieser neuen Technologie die Lagerbestände, die Einzelhändler normalerweise am Ende jeder Saison haben, reduziert werden können.

„Das Kleid könnte maßgeschneidert werden, um sich an diese Veränderungen von Stil und Geschmack anzupassen“, sagt sie. „Es könnte auch einige der Größenvariationen auffangen, die Einzelhändler auf Lager haben müssen. Anstelle von extrakleinen, kleinen, mittleren, großen und extragroßen Größen könnten die Einzelhändler ein Kleid für die kleineren Größen und eines für die größeren Größen anbieten. Das sind natürlich genau die gleichen Nachhaltigkeitspunkte, die auch dem Verbraucher zugute kommen würden.

Das Self-Assembly Lab arbeitet bereits seit mehreren Jahren mit Ministry of Supply an Projekten zu aktiven Textilien zusammen. Ende letzten Jahres stellte das Team das 4D-Strickkleid im Flagship-Store des Unternehmens in Boston vor, wobei ein Roboterarm vor den Augen der Kundinnen ein Kleid umarbeitete. Für Amarasiriwardena war dies eine Gelegenheit, das Interesse an dem Kleid zu testen und Feedback von Kunden zu erhalten, die es anprobieren wollten.

„Wenn die Nachfrage da ist, können wir so etwas schnell herstellen“, sagt Amarasiriwardena, im Gegensatz zum üblichen Design- und Herstellungsprozess, der Jahre dauern kann.

Griffin und McKinlay waren bei der Vorführung anwesend und mit den Ergebnissen zufrieden. Für Griffin gibt es nach der Überwindung „technischer Hindernisse“ viele verschiedene Möglichkeiten für das Projekt.

„Diese Erfahrung macht mir Lust auf mehr“, sagt er.

Auch McKinlay würde gerne an weiteren Modellen arbeiten.

„Ich hoffe, dass dieses Forschungsprojekt den Menschen hilft, ihre Beziehung zu Kleidung zu überdenken oder neu zu bewerten“, sagt McKinlay. „Wenn man heute ein Kleidungsstück kauft, hat es nur einen ‚Look‘. Aber wie aufregend wäre es, ein einziges Kleidungsstück zu kaufen und es neu zu erfinden, um es zu verändern und weiterzuentwickeln, wenn man sich verändert oder wenn sich die Jahreszeiten oder Stile ändern? Ich hoffe, dass die Leute genau das mitnehmen werden.

Quelle:

Maria Iacobo | Olivia Mintz | School of Architecture and Planning, MIT Department of Architecture
Übersetzung: Textination

Wasserabweisende Fasern ohne PFAS Bild: Empa
22.04.2024

Wasserabweisende Fasern ohne PFAS

Regenjacken, Badehosen oder Polsterstoffe: Textilien mit wasserabweisenden Eigenschaften benötigen eine chemische Imprägnierung. Fluor-haltige PFAS-Chemikalien sind zwar wirkungsvoll, schaden aber der Gesundheit und reichern sich in der Umwelt an. Empa-Forschende entwickeln nun ein Verfahren mit alternativen Substanzen, mit dem sich umweltfreundliche wasserabweisende Textilfasern erzeugen lassen. Erste Analysen zeigen: Die „guten“ Fasern weisen Wasser stärker ab und trocknen schneller als die der herkömmlichen Produkte.

Regenjacken, Badehosen oder Polsterstoffe: Textilien mit wasserabweisenden Eigenschaften benötigen eine chemische Imprägnierung. Fluor-haltige PFAS-Chemikalien sind zwar wirkungsvoll, schaden aber der Gesundheit und reichern sich in der Umwelt an. Empa-Forschende entwickeln nun ein Verfahren mit alternativen Substanzen, mit dem sich umweltfreundliche wasserabweisende Textilfasern erzeugen lassen. Erste Analysen zeigen: Die „guten“ Fasern weisen Wasser stärker ab und trocknen schneller als die der herkömmlichen Produkte.

Soll eine Badehose nach dem Schwimmen ihre Form behalten und schnell trocknen, muss sie zwei Eigenschaften kombinieren: Sie muss elastisch sein und darf sich nicht mit Wasser vollsaugen. Eine derartige wasserabweisende Wirkung lässt sich in der Textilindustrie durch das Behandeln der Textilien mit Chemikalien erreichen, die das elastische Kleidungsstück mit sogenannten hydrophoben Eigenschaften ausstatten. In den 1970er-Jahren begann man, hierfür neuartige synthetische Fluorverbindungen zu verwenden – Verbindungen, die bedenkenlos unzählige Anwendungsmöglichkeiten zu bieten schienen, sich später aber als höchst problematisch herausstellten. Denn diese Fluor-Kohlenstoff-Verbindungen, kurz PFAS, reichern sich in der Umwelt an und schaden der Gesundheit. Empa-Forschende entwickeln daher gemeinsam mit Schweizer Textilunternehmen alternative umweltfreundliche Verfahren, mit denen sämtliche Fasern wasserabweisend ausgerüstet werden können. Dirk Hegemann vom „Advanced Fibers“-Labor der Empa in St. Gallen erläutert das von der Innosuisse geförderte Projekt: „Wir setzen sogenannte hochvernetzte Siloxane ein, die Silikon-ähnliche Schichten erzeugen und – anders als Fluor-haltige PFAS – unbedenklich sind.“

Die Plasma-Beschichtungsanlagen der Empa reichen von handlichen Tischmodellen bis hin zu raumfüllenden Geräten. Für die Faserbeschichtung werden die Siloxane in einem reaktiven Gas zerstäubt und aktiviert. Auf diese Weise behalten sie ihre funktionalen Eigenschaften und umschliessen die Textilfasern mit einer nur 30-Nanometer-feinen wasserabweisenden Hülle. Derart beschichtete Fäden lassen sich danach zu wasserabweisenden Textilien jeglicher Art verarbeiten, etwa zu Kleidungsstücken oder technischen Textilien wie Polsterstoffe.

Der Vorteil gegenüber herkömmlichen nasschemischen Verfahren: Selbst bei komplex strukturierten Textilien ist die lückenlose Verteilung der hydrophoben Substanzen bis in alle Windungen der verschlungenen Fasern gewährleistet. Dies ist zentral, denn schon eine winzige benetzbare Stelle würde genügen, damit Wasser in die Tiefe einer Badehose eindringt und so das schnelle Trocknen des Kleidungsstücks verhindert. „Es ist uns sogar gelungen, selbst anspruchsvollere, elastische Fasern mit dem neuen Verfahren dauerhaft zu imprägnieren, was bisher nicht möglich war“, so Empa-Forscher Hegemann.

Großes Interesse der Industrie
In ersten Laboranalysen schneiden Textilien aus den neuen Fasern mit umweltfreundlicher Beschichtung bereits leicht besser ab als herkömmliche PFAS-beschichtete Stoffe: Sie saugen weniger Wasser auf und trocknen schneller. So richtig ins Gewicht fallen die wundersamen Eigenschaften der Fluor-freien Beschichtung aber erst nach mehrmaligem Waschen der Textilien: Während die herkömmliche PFAS-Imprägnierung bei dehnbaren Textilien bereits deutlich leidet, bleibt die Fluor-freie Faser auf hohem Niveau. Damit ist sie trotz Beanspruchung doppelt so wasserabweisend und trocknet deutlich effizienter.

Hegemann und sein Team sind nun daran, das Fluor-freie Laborverfahren zu leistungsfähigen und wirtschaftlich tragfähigen industriellen Prozessen zu skalieren. „Die Industrie ist sehr interessiert, nachhaltige Alternativen zu PFAS zu finden“, sagt Hegemann. Die Schweizer Textilunternehmen Lothos KLG, beag Bäumlin & Ernst AG und AG Cilander sind daher bereits mit an Bord, wenn es darum geht, umweltfreundliche Fluor-freie Textilien zu entwickeln. „Eine gelungene Zusammenarbeit, die Materialien, Fasertechnologie und Plasmabeschichtung kombiniert und zu einer innovativen, nachhaltigen und effektiven Lösung führt“, sagt etwa Dominik Pregger von Lothos. Bernd Schäfer, CEO von beag, fügt an: „Die Technologie ist umweltfreundlich und verfügt gleichzeitig über ein interessantes wirtschaftliches Potenzial.“

Weitere Informationen:
Empa PFAS Plasma Fasern
Quelle:

Dr. Andrea Six, EMPA

Textilabfall Ki generiertes Bild: Pete Linforth, Pixabay
02.04.2024

Die Zukunft zirkulärer Textilien: „New Cotton“-Projekt abgeschlossen

Als Weltpremiere für die Modeindustrie hatten sich im Oktober 2020 zwölf Pionierunternehmen zusammengefunden, um neue Wege zu beschreiten und ein Kreislaufmodell für die kommerzielle Bekleidungsproduktion zu entwickeln. Mehr als drei Jahre lang wurden Textilabfälle gesammelt und sortiert und mithilfe der Technologie zur Wiederherstellung von Textilfasern der Infinited Fiber Company zu einer neuen, künstlichen Zellulosefaser recycelt, die aussieht und sich anfühlt wie Baumwolle - eine „neue Baumwolle“.

Als Weltpremiere für die Modeindustrie hatten sich im Oktober 2020 zwölf Pionierunternehmen zusammengefunden, um neue Wege zu beschreiten und ein Kreislaufmodell für die kommerzielle Bekleidungsproduktion zu entwickeln. Mehr als drei Jahre lang wurden Textilabfälle gesammelt und sortiert und mithilfe der Technologie zur Wiederherstellung von Textilfasern der Infinited Fiber Company zu einer neuen, künstlichen Zellulosefaser recycelt, die aussieht und sich anfühlt wie Baumwolle - eine „neue Baumwolle“.

Das zukunftsweisende New Cotton Project startete im Oktober 2020 mit dem Ziel, eine zirkuläre Wertschöpfungskette für die kommerzielle Bekleidungsproduktion aufzuzeigen. Während des gesamten Projekts arbeitete das Konsortium daran, Alttextilien zu sammeln und zu sortieren, die mithilfe der innovativen Infinited Fiber-Technologie zu einer neuen zellulosehaltigen Chemiefaser namens Infinna™ recycelt werden konnten, die genauso aussieht und sich anfühlt wie neue Baumwolle. Die Fasern wurden zu Garnen gesponnen und zu verschiedenen Geweben verarbeitet, die von adidas und H&M entworfen, produziert und verkauft wurden. Der adidas by Stella McCartney-Trainingsanzug sowie eine bedruckte Jacke und Jeans von H&M sind damit die ersten Produkte, die von einem kreislauforientierten Konsortium dieser Größenordnung hergestellt wurden und damit einen innovativen und kreislauforientierten Ansatz für die Modeindustrie aufzeigt.
 
Da das Projekt im März 2024 abgeschlossen wurde, stellt das Konsortium acht Schlüsselfaktoren in den Fokus, die es als grundlegend für die erfolgreiche Skalierung des Faser-zu-Faser-Recyclings erachtet.

Die breite Einführung zirkulärer Wertschöpfungsketten ist entscheidend für den Erfolg
Die Kreislaufwirtschaft im Textilbereich erfordert neue Formen der Zusammenarbeit und des offenen Wissensaustauschs zwischen verschiedenen Akteuren in Kreislaufökosystemen. Diese Ökosysteme müssen Akteure einbeziehen, die über die traditionellen Lieferketten hinausgehen und bisher voneinander getrennte Industrien und Sektoren wie die Textil- und Modebranche, die Abfallsammlung und -sortierung und die Recyclingindustrie sowie digitale Technologien, Forschungsorganisationen und politische Entscheidungsträger einbeziehen. Damit das Ökosystem effektiv funktionieren kann, müssen die verschiedenen Akteure an der Abstimmung von Prioritäten, Zielen und Arbeitsmethoden beteiligt sein und die Bedürfnisse, Anforderungen und technisch-wirtschaftlichen Möglichkeiten der anderen kennenlernen. Aus einer breiteren Perspektive betrachtet, ist auch ein grundlegenderer Wandel in den Denkweisen und Geschäftsmodellen im Hinblick auf einen systemischen Übergang zur Kreislaufwirtschaft erforderlich, z. B. die Abkehr von den linearen Geschäftsmodellen der Fast Fashion. Neben dem offenen Wissensaustausch innerhalb solcher Ökosysteme ist es ebenfalls wichtig, gelernte Lektionen und Erkenntnisse öffentlich zu machen, um andere Marktteilnehmer bei der Umstellung auf die Kreislaufwirtschaft zu unterstützen und zu inspirieren.
     
Kreislaufwirtschaft beginnt mit dem Designprozess
Bei der Entwicklung neuer Styles ist es wichtig, von Anfang an ein End-of-Life-Szenario im Auge zu behalten. Denn davon hängt ab, welche Verzierungen, Drucke und Accessoires verwendet werden können. Wenn Designer es dem Recyclingprozess so einfach wie möglich machen, ist die Chance größer, dass die Kleidung tatsächlich wieder als Rohstoff verwendet wird. Darüber hinaus ist es wichtig, Geschäftsmodelle zu entwickeln, die es ermöglichen, Produkte so lange wie möglich zu nutzen, einschließlich Reparatur-, Miet-, Wiederverkaufs- und Sharing-Dienste.

Aufbau und Ausbau von Sortier- und Recyclinginfrastrukturen sind entscheidend
Um die kreislauforientierte Bekleidungsproduktion auszubauen, bedarf es technologischer Innovationen und der Entwicklung von Infrastrukturen für die Sammlung und Sortierung von Alttextilien sowie für die mechanische Vorverarbeitung des Ausgangsmaterials. Derzeit erfolgt ein Großteil der Textilsortierung manuell, und die verfügbaren optischen Sortier- und Identifizierungstechnologien sind nicht in der Lage, Kleidungsschichten und komplexe Fasermischungen zu erkennen oder Abweichungen in der Qualität des Ausgangsmaterials für das Faser-zu-Faser-Recycling festzustellen. Die Vorbehandlung des Ausgangsmaterials ist ein entscheidender Schritt im Textil-zu-Textil-Recycling, der jedoch außerhalb derjenigen, die ihn tatsächlich ausführen, nicht gut verstanden wird. Dies erfordert eine Zusammenarbeit über die gesamte Wertschöpfungskette hinweg, und es bedarf eingehender Kenntnisse und Fähigkeiten, um dies richtig zu tun. Dies ist ein Bereich, der mehr Aufmerksamkeit und stärkere wirtschaftliche Anreize braucht, wenn das Textil-zu-Textil-Recycling ausgebaut wird.

Die Verbesserung von Qualität und Datenlage ist entscheidend
Es besteht immer noch ein erheblicher Mangel an verfügbaren Daten, die den Übergang zu einer Kreislauftextilindustrie unterstützen. Dies bremst die Entwicklung von Systemlösungen und wirtschaftlichen Anreizen für den Textilkreislauf. So werden beispielsweise die Mengen der auf den Markt gebrachten Textilien oft als Ersatz für die Mengen an Post-Consumer-Textilien herangezogen, aber die verfügbaren Daten sind mindestens zwei Jahre alt und oft unvollständig. Auch auf nationaler Ebene kann es unterschiedliche Zahlen zu Textilabfällen geben, die aufgrund unterschiedlicher Methoden oder Datenjahre nicht übereinstimmen. Dies zeigt sich in den Berichten der niederländischen Massenbilanzstudie 2018 und des Überwachungsberichts zur Kreislaufwirtschaftspolitik für Textilien 2020, wo es einen Unterschied von 20 % zwischen den auf den Markt gebrachten Zahlen und den gemessenen Mengen an separat gesammelten und im gemischten Restmüll enthaltenen Post-Consumer-Textilien gibt. Abgesehen von einigen guten Studien wie Sorting for Circularity Europe und der jüngsten Charakterisierungsstudie von ReFashion gibt es auch fast keine zuverlässigen Informationen über die Faserzusammensetzung im Post-Consumer-Textilstrom. Textil-zu-Textil-Recycler würden von einer besseren Verfügbarkeit zuverlässigerer Daten profitieren. Die politische Überwachung von Systemen der erweiterten Herstellerverantwortung sollte sich darauf konzentrieren, die Anforderungen an die Berichterstattung in ganz Europa von der Sammlung von Post-Consumer-Textilien bis zu ihrem endgültigen Endpunkt zu standardisieren und Anreize für die Digitalisierung zu schaffen, damit die Berichterstattung automatisiert werden kann und hochwertige Textildaten nahezu in Echtzeit zur Verfügung stehen.

Die Notwendigkeit einer kontinuierlichen Forschung und Entwicklung über die gesamte Wertschöpfungskette hinweg
Insgesamt deuten die Ergebnisse des New Cotton Project darauf hin, dass Stoffe, die Infinna™-Fasern enthalten, eine nachhaltigere Alternative zu herkömmlichen Baumwoll- und Viskosegeweben darstellen, wobei sie ähnliche Leistungsmerkmale und ästhetische Qualitäten aufweisen. Dies könnte erhebliche Auswirkungen auf die Textilindustrie im Hinblick auf Nachhaltigkeit und umweltfreundlichere Produktionsverfahren haben. Das Projekt hat jedoch auch gezeigt, dass die Skalierung des Faser-zu-Faser-Recyclings weiterhin kontinuierliche Forschung und Entwicklung in der gesamten Wertschöpfungskette erfordert. So ist beispielsweise der Bedarf an Forschung und Entwicklung im Bereich der Sortiersysteme von entscheidender Bedeutung. Im Rahmen des chemischen Recyclings ist es ebenfalls erforderlich, eine hohe Rückgewinnungsrate und den Kreislauf der verwendeten Chemikalien sicherzustellen, um die Umweltauswirkungen des Prozesses zu begrenzen. Bei den Herstellungsprozessen wurde überdies hervorgehoben, dass eine kontinuierliche Innovation bei der Verarbeitungsmethode von Vorteil ist und dass Technologien und Marken eng mit den Herstellern zusammenarbeiten müssen, um die weitere Entwicklung in diesem Bereich zu unterstützen.

Über weniger umweltbelastende Fasern hinaus denken
Die von Dritten geprüfte Ökobilanz der Wertschöpfungskette des New Cotton Project zeigt, dass die Cellulosecarbamatfaser, insbesondere wenn sie mit einer erneuerbaren Stromquelle hergestellt wird, im Vergleich zu herkömmlicher Baumwolle und Viskose potenziell geringere Umweltauswirkungen aufweist. Es ist jedoch zu beachten, dass dieser Vergleich auf der Grundlage von durchschnittlichen globalen Datensätzen von Ecoinvent für Baumwoll- und Viskosefasern durchgeführt wurde und dass die Umweltleistung der auf dem Markt erhältlichen Primärfasern unterschiedlich ist. Die Analyse verdeutlicht jedoch auch, wie wichtig der Rest der Zuliefererkette für die Verringerung der Umweltauswirkungen ist. Die Ergebnisse zeigen, dass selbst bei einer Verringerung der Umweltauswirkungen durch die Verwendung von Recyclingfasern in anderen Phasen des Lebenszyklus noch einiges zu tun ist. So sind zum Beispiel die Qualität der Kleidungsstücke und ihre Nutzung während ihrer gesamten Lebensdauer entscheidend für die Verringerung der Umweltauswirkungen pro Kleidungsstück.
          
Einbeziehung der Verbraucher
Die EU hat die Kultur als eines der Haupthindernisse für die Einführung der Kreislaufwirtschaft in Europa identifiziert. Eine quantitative Verbraucherbefragung von adidas, die während des Projekts in drei wichtigen Märkten durchgeführt wurde, ergab, dass es immer noch Verwirrung über die Kreislaufwirtschaft bei Textilien gibt, was die Bedeutung einer effektiven Kommunikation mit den Verbrauchern und von Aktivitäten zur Einbindung der Öffentlichkeit verdeutlicht hat.
     
Einheitliche Rechtsvorschriften
Die Gesetzgebung ist ein wirksames Instrument, um die Einführung nachhaltigerer und kreislauforientierter Praktiken in der Textilindustrie voranzutreiben. Da allein in der EU mehrere neue Gesetzesvorhaben anstehen, ist ein kohärenter und harmonisierter Ansatz für die erfolgreiche Umsetzung der Politik in der Textilindustrie unerlässlich. Die Betrachtung des Zusammenhangs zwischen unterschiedlichen Rechtsvorschriften wie der erweiterten Herstellerverantwortung und der Verordnung über das Ökodesign für nachhaltige Produkte sowie der entsprechenden Umsetzungsfristen wird den Akteuren in der gesamten Wertschöpfungskette helfen, sich effektiv auf die Annahme dieser neuen Vorschriften vorzubereiten.

Die hohe und ständig wachsende Nachfrage nach recycelten Materialien setzt voraus, dass alle denkbaren End-of-Use-Textilien gesammelt und sortiert werden müssen. Um die Nachfrage zu befriedigen, werden sowohl mechanische als auch chemische Recyclinglösungen benötigt. Außerdem sollten wir beide Wege, den geschlossenen Kreislauf (Faser-zu-Faser) und den offenen Kreislauf (Faser zu anderen Sektoren), effektiv umsetzen. Der Export von minderwertigen wiederverwendbaren Textilien in Länder außerhalb der EU muss dringend überdacht werden. Es wäre vorteilhafter, sie in Europa wiederzuverwenden oder, wenn sie das Ende ihrer Lebensdauer erreicht haben, diese Textilien im europäischen Binnenmarkt zu recyceln, anstatt sie in Länder zu exportieren, in denen die Nachfrage oft nicht gesichert und die Abfallwirtschaft unzureichend ist.

Insgesamt verdeutlichen die Erkenntnisse die Notwendigkeit eines ganzheitlichen Ansatzes und eines grundlegenden Umdenkens in den Arbeitsweisen der Textilindustrie. Eine vertiefte Zusammenarbeit und ein Wissensaustausch sind von zentraler Bedeutung für die Entwicklung effektiver Kreislauf-Wertschöpfungsketten, die dazu beitragen, die Skalierung innovativer Recyclingtechnologien zu unterstützen und die Verfügbarkeit von Recyclingfasern auf dem Markt zu erhöhen. Die Weiterentwicklung und Skalierung des Sammelns und Sortierens sowie die Behebung der erheblichen Lücken bei der Verfügbarkeit von qualitativ hochwertigen Daten über die Textilströme sollten dringend Vorrang haben. Das New-Cotton-Projekt hat auch gezeigt, dass Recycling-Fasern wie Infinna™ eine nachhaltigere Alternative zu einigen anderen traditionellen Fasern darstellen, gleichzeitig aber auch verdeutlicht, wie wichtig es ist, die Wertschöpfungskette als Ganzes zu betrachten, um die Umweltauswirkungen zu verringern. Kontinuierliche Forschung und Entwicklung über die gesamte Wertschöpfungskette hinweg ist ebenfalls von entscheidender Bedeutung, um sicherzustellen, dass wir in Zukunft recycelte Textilien in großem Maßstab anbieten können.

Das New Cotton Project wurde mit Mitteln aus dem Forschungs- und Innovationsprogramm Horizont 2020 der Europäischen Union unter der Finanzhilfevereinbarung Nr. 101000559 gefördert.

Quelle:

Fashion for Good

Foto: Udo Jandrey
22.03.2024

Neues Modell für nachhaltige Strukturen aus textilbewehrtem Beton

Durch die Verstärkung von Beton mit Textilgeweben anstelle von Stahl ist es möglich, weniger Material zu verwenden und schlanke, leichte Strukturen mit deutlich geringeren Umweltbelastungen zu schaffen. Die Technologie zur Verwendung von Carbonfasertextilien existiert bereits, aber es war jedoch eine Herausforderung, eine Grundlage für zuverlässige Berechnungen für komplexe und gewölbte Strukturen zu schaffen. Forscher der Chalmers University of Technology in Schweden stellen nun eine Methode vor, die es erleichtert, Berechnungen zu skalieren und so den Bau von umweltfreundlicheren Brücken, Tunneln und Gebäuden zu ermöglichen.

Durch die Verstärkung von Beton mit Textilgeweben anstelle von Stahl ist es möglich, weniger Material zu verwenden und schlanke, leichte Strukturen mit deutlich geringeren Umweltbelastungen zu schaffen. Die Technologie zur Verwendung von Carbonfasertextilien existiert bereits, aber es war jedoch eine Herausforderung, eine Grundlage für zuverlässige Berechnungen für komplexe und gewölbte Strukturen zu schaffen. Forscher der Chalmers University of Technology in Schweden stellen nun eine Methode vor, die es erleichtert, Berechnungen zu skalieren und so den Bau von umweltfreundlicheren Brücken, Tunneln und Gebäuden zu ermöglichen.

„Ein Großteil des Betons, den wir heute verwenden, hat die Funktion einer Schutzschicht, die verhindert, dass die Stahlbewehrung korrodiert. Wenn wir stattdessen Textilbewehrung einsetzen, können wir den Zementverbrauch senken und so weniger Beton verbauen - und damit die Auswirkungen auf das Klima verringern“, sagt Karin Lundgren, Professorin für Betonkonstruktionen an der Fakultät für Architektur und Bauingenieurwesen in Chalmers.

Zement ist ein Bindemittel für Beton und seine Herstellung aus Kalkstein hat große Auswirkungen auf das Klima. Eines der Probleme besteht darin, dass bei der Herstellung große Mengen an Kohlendioxid freigesetzt werden, die im Kalkstein gebunden sind. Jedes Jahr werden weltweit etwa 4,5 Milliarden Tonnen Zement hergestellt, und die Zementindustrie ist für rund 8 Prozent der weltweiten Kohlendioxidemissionen verantwortlich. Es wird daher intensiv an alternativen Methoden und Materialien für Betonkonstruktionen geforscht.

Geringerer Kohlenstoff-Fußabdruck durch dünnere Konstruktionen und alternative Bindemittel
Durch die Verwendung alternativer Bindemittel anstelle von Zement, z. B. Ton oder Vulkanasche, lassen sich die Kohlendioxidemissionen weiter verringern. Bislang ist jedoch unklar, wie gut solche neuen Bindemittel die Stahlbewehrung langfristig schützen können.

„Man könnte das Problem des Korrosionsschutzes umgehen, indem man anstelle von Stahl Kohlenstofffasern als Verstärkungsmaterial verwendet, da diese nicht auf dieselbe Weise geschützt werden müssen. Außerdem kann man noch mehr erreichen, indem man dünne Schalenstrukturen mit geringerer Klimabelastung optimiert“, so Karin Lundgren.

In einer kürzlich in der Fachzeitschrift Construction and Building Materials veröffentlichten Studie beschreiben Karin Lundgren und ihre Kollegen eine neue Modellmethode, die sich bei Analysen zur Beschreibung der Wechselwirkung zwischen Textilbewehrung und Beton als zuverlässig erwiesen hat.

„Wir haben eine Methode entwickelt, die die Berechnung komplexer Strukturen erleichtert und die Notwendigkeit von Tragfähigkeitsprüfungen verringert“, erläutert Karin Lundgren.

Ein Bereich, in dem die textile Bewehrungstechnologie die Umweltauswirkungen erheblich reduzieren könnte, ist die Konstruktion von Geschossdecken. Da der größte Teil der Klimabelastung eines Gebäudes während der Produktion von den Deckenkonstruktionen ausgeht, ist dies eine effektive Möglichkeit, nachhaltiger zu bauen. Eine frühere Forschungsstudie der Universität Cambridge zeigt, dass Textilverstärkungen die Kohlendioxidemissionen im Vergleich zu herkömmlichen Massivdecken um bis zu 65 Prozent reduzieren können.

Ein Methode zur Vereinfachung der Kalkulation
Ein textiles Bewehrungsnetz besteht aus Garnen, wobei jedes Garn aus Tausenden von dünnen Filamenten (langen Endlosfasern) besteht. Die Bewehrungsmatte wird in Beton gegossen, und wenn der textilbewehrte Beton belastet wird, gleiten die Filamente sowohl gegen den Beton als auch gegeneinander im Inneren des Garns. Ein Textilgarn in Beton verhält sich nicht wie eine Einheit, was für das Verständnis der Tragfähigkeit des Verbundmaterials wichtig ist. Die von den Chalmers-Forschern entwickelte Modellierungstechnik beschreibt diese Effekte.

„Man könnte es so beschreiben, dass das Garn aus einem inneren und einem äußeren Kern besteht, die bei Belastung des Betons in unterschiedlichem Maße beeinflusst werden. Wir haben eine Test- und Berechnungsmethode entwickelt, die diese Wechselwirkung beschreibt. In Experimenten konnten wir zeigen, dass unsere Berechnungsmethode auch für komplexe Strukturen zuverlässig genug ist“, sagt Karin Lundgren.

Gemeinsam mit Kollegen wird die Arbeit nun fortgesetzt, um Optimierungsmethoden für größere Strukturen zu entwickeln.

„Angesichts der Tatsache, dass das Umweltprogramm der Vereinten Nationen (UNEP) davon ausgeht, dass sich die Gesamtbodenfläche in der Welt in den nächsten 40 Jahren aufgrund des zunehmenden Wohlstands und des Bevölkerungswachstums verdoppeln wird, müssen wir alles tun, um so ressourceneffizient wie möglich zu bauen, um der Herausforderung des Klimawandels zu begegnen“, sagt Karin Lundgren.

Quelle:

Chalmers | Mia Halleröd Palmgren

Empa-Forscher Simon Annaheim arbeitet an einer Matratze für Neugeborene. Bild: Empa
11.03.2024

Medizin-Textilien und Sensoren: Smarter Schutz für zarte Haut

Hautverletzungen durch anhaltenden Druck entstehen häufig bei Menschen, die ihre Position nicht selbstständig verändern können – etwa erkrankte Neugeborene im Spital oder ältere Menschen. Empa-Forschende bringen jetzt dank erfolgreicher Partnerschaften mit Industrie und Forschung zwei smarte Lösungen für das Wundliegen auf den Weg.

Lastet längere Zeit zu viel Druck auf unserer Haut, nimmt sie Schaden. Zu den Bevölkerungsgruppen, die einem hohen Risiko für derartige Druckverletzungen ausgesetzt sind, gehören beispielsweise Menschen im Rollstuhl, Neugeborene auf der Intensivstation oder Betagte. Die Folgen sind Wunden, Infektionen und Schmerzen.

Hautverletzungen durch anhaltenden Druck entstehen häufig bei Menschen, die ihre Position nicht selbstständig verändern können – etwa erkrankte Neugeborene im Spital oder ältere Menschen. Empa-Forschende bringen jetzt dank erfolgreicher Partnerschaften mit Industrie und Forschung zwei smarte Lösungen für das Wundliegen auf den Weg.

Lastet längere Zeit zu viel Druck auf unserer Haut, nimmt sie Schaden. Zu den Bevölkerungsgruppen, die einem hohen Risiko für derartige Druckverletzungen ausgesetzt sind, gehören beispielsweise Menschen im Rollstuhl, Neugeborene auf der Intensivstation oder Betagte. Die Folgen sind Wunden, Infektionen und Schmerzen.

Die Behandlung ist aufwändig und teuer: Jährlich entstehen Gesundheitskosten von rund 300 Millionen Schweizer Franken. "Darüber hinaus können bestehende Erkrankungen durch derartige Druckverletzungen verschlimmert werden", sagt Empa-Forscher Simon Annaheim vom "Biomimetic Membranes and Textiles"-Labor in St. Gallen. Nachhaltiger wäre es, so Annaheim, den Gewebeschäden vorzubeugen, um sie gar nicht erst entstehen zu lassen. Zwei aktuelle Forschungsprojekte unter Beteiligung der Empa bringen nun entsprechende Lösungen voran: Entwickelt wird hierbei eine Druck-ausgleichende Matratze für Neugeborene auf der Intensivstation und ein textiles Sensorsystem für querschnittsgelähmte Personen und bettlägerige Menschen.

Optimal gebettet am Start des Lebens
Dabei sind die Ansprüche der Haut je nach Alter völlig unterschiedlich: Bei Erwachsenen stehen die Reibung der Haut auf der Liegefläche, physikalische Scherkräfte im Gewebe und eine fehlende Atmungsaktivität von Textilien als Risikofaktoren im Vordergrund. Die Haut von Neugeborenen, die intensivmedizinisch behandelt werden, ist dagegen per se äusserst empfindlich, jeder Flüssigkeits- und Wärmeverlust über die Haut kann zum Problem werden. "Während diese besonders verletzlichen Babys gesundgepflegt werden, sollte die Liegesituation keine zusätzlichen Komplikationen hervorrufen", so Empa-Forscher Annaheim. Dass herkömmliche Matratzen die Lösung für Neugeborene mit ganz unterschiedlichem Gewicht und verschiedenen Erkrankungen sein können, glaubt er nicht. Das Team um Annaheim sucht daher mit Forschenden der ETH Zürich, der Zürcher Hochschule für Angewandte Wissenschaften (ZHAW) und des Universitäts-Kinderspital Zürich nach einer optimalen Liegefläche für die zarte Kinderhaut. Diese Matratze müsste sich individuell an den Körper anpassen können, um Kindern bei einem schwierigen Start ins Leben helfen zu können.

Hierzu ermittelten die Forschenden zunächst die Druckverhältnisse an den verschiedenen Körperregionen von Neugeborenen. "Unsere Drucksensoren haben gezeigt, dass Kopf, Schultern und untere Wirbelsäule die Zonen mit dem grössten Risiko für Druckstellen sind", sagt Annaheim. Diese Ergebnisse flossen in die Entwicklung einer luftgefüllten Matratze der besonderen Art ein: Ihre drei Kammern können mit Hilfe von Drucksensoren und einem Mikroprozessor über eine elektronische Pumpe präzise so befüllt werden, dass der Druck an den jeweiligen Stellen minimiert wird. Eine an der Empa entwickeltes Infrarot-Laser-Verfahren erlaubte es dabei die Matratze aus einer flexiblen, mehrschichtigen und hautschonenden Polymermembran ohne störende Kanten zu erzeugen.

Nach einem mehrstufigen Entwicklungsprozess im Labor durften erste kleine Patientinnen und Patienten auf dem Prototyp der Matratze liegen. Der Effekt machte sich sofort bemerkbar, als die Forschenden die Matratze je nach den individuellen Bedürfnissen der Babys unterschiedlich stark mit Luft füllten: Gegenüber einer herkömmlichen Schaumstoffmatratze reduzierte der Prototyp den Druck auf die gefährdeten Körperstellen um bis zu 40 Prozent.

Nach dieser erfolgreichen Pilotstudie wird der Prototyp in den Empa-Labors nun weiter optimiert. Demnächst starten Simon Annaheim und Doktorand Tino Jucker eine grösser angelegte Studie mit der neuen Matratze mit der Abteilung für Intensivmedizin & Neonatologie am Kinderspital Zürich.

Intelligente Sensoren beugen vor
In einem weiteren Projekt arbeiten Empa-Forschende daran, den sogenannten Dekubitus-Gewebeschäden bei Erwachsenen vorzubeugen. Hierbei werden die Risikofaktoren Druckbelastung und Durchblutungsstörung in hilfreiche Warnsignale umgewandelt.

Liegt man längere Zeit in der gleichen Position, führen Druck und Durchblutungsstörungen zu einer Unterversorgung des Gewebes mit Sauerstoff. Während der Sauerstoffmangel bei gesunden Menschen einen Reflex ausgelöst, sich zu bewegen, kann dieser neurologische Feedback-Loop etwa bei Menschen mit Querschnittslähmung oder bei Koma-Patienten gestört sein. Hier können smarte Sensoren helfen, frühzeitig vor dem Risiko eines Gewebeschadens zu warnen.

Im Projekt "ProTex" hat ein Team aus Forschenden der Empa, der Universität Bern, der Fachhochschule OST und der Bischoff Textil AG in St. Gallen ein Sensorsystem aus smarten Textilien mit zugehöriger Datenanalyse in Echtzeit entwickelt. "Die hautverträglichen textilen Sensoren enthalten zwei verschiedene funktionelle Polymerfasern», sagt Empa-Forscher Luciano Boesel vom "Biomimetic Membranes and Textiles"-Labor in St. Gallen. Neben Druck-sensitiven Fasern integrierten die Forschenden lichtleitende Polymerfasern (POFs), die der Sauerstoffmessung dienen. "Sobald der Sauerstoffgehalt in der Haut abfällt, signalisiert das hochempfindliche Sensorsystem ein steigendes Risiko für Gewebeschäden", erklärt Boesel. Die Daten werden dann direkt an den Patienten oder das Pflegepersonal übermittelt. So könne etwa eine liegende Person rechtzeitig umgelagert werden, bevor das Gewebe Schaden nimmt.

Patentierte Technologie
Die Technologie dahinter beinhaltet auch ein an der Empa entwickeltes neuartiges Mikrofluidik-Nassspinnverfahren für die Herstellung von POFs. Es erlaubt eine präzise Steuerung der Polymerkomponenten im Mikrometerbereich und eine sanftere, umweltfreundlichere Verarbeitung der Fasern. Das Mikrofluidik-Verfahren ist eines von drei Patenten, die bisher aus dem "ProTex"-Projekt hervorgegangen sind.

Ein weiteres Produkt ist ein atmungsaktiver Textilsensor, der direkt auf der Haut getragen wird. Das 2023 aus dem Projekt entstandene Spin-off "Sensawear" in Bern treibt derzeit die Markteinführung voran. Darüber hinaus ist Empa-Forscher Boesel überzeugt: "Die Erkenntnisse und Technologien aus "ProTex" werden künftig weitere Anwendungen im Bereich der tragbaren Sensorik und der smarten Kleidung ermöglichen."

Quelle:

Dr. Andrea Six, Empa

(c) RMIT University
26.02.2024

Abkühlung durch Nanodiamanten

Forschende der RMIT University nutzen Nanodiamanten, um smarte Textilien zu entwickeln, die Menschen schneller abkühlen können.

Die Studie ergab, dass Stoffe aus Baumwolle, die mit Nanodiamanten beschichtet sind, im Vergleich zu unbehandelter Baumwolle während des Abkühlungsprozesses um 2-3 Grad Celsius kühler sind. Die Nanodiamanten ziehen die Körperwärme an und geben sie an den Stoff ab - ein Ergebnis der enormen Wärmeleitfähigkeit der Nanodiamanten.

Dr. Shadi Houshyar, Projektleiterin und Dozentin, sagte in der Zeitschrift Polymers for Advanced Technologies, dass es eine große Chance gebe, diese Erkenntnisse zu nutzen, um neue Textilien für Sportbekleidung und sogar für persönliche Schutzkleidung zu entwickeln, wie z. B. Unterzieher, die Feuerwehrleute kühl halten.

Die Studie ergab auch, dass Nanodiamanten den UV-Schutz von Baumwolle erhöhen, was sie ideal für Sommerkleidung im Freien macht.

Forschende der RMIT University nutzen Nanodiamanten, um smarte Textilien zu entwickeln, die Menschen schneller abkühlen können.

Die Studie ergab, dass Stoffe aus Baumwolle, die mit Nanodiamanten beschichtet sind, im Vergleich zu unbehandelter Baumwolle während des Abkühlungsprozesses um 2-3 Grad Celsius kühler sind. Die Nanodiamanten ziehen die Körperwärme an und geben sie an den Stoff ab - ein Ergebnis der enormen Wärmeleitfähigkeit der Nanodiamanten.

Dr. Shadi Houshyar, Projektleiterin und Dozentin, sagte in der Zeitschrift Polymers for Advanced Technologies, dass es eine große Chance gebe, diese Erkenntnisse zu nutzen, um neue Textilien für Sportbekleidung und sogar für persönliche Schutzkleidung zu entwickeln, wie z. B. Unterzieher, die Feuerwehrleute kühl halten.

Die Studie ergab auch, dass Nanodiamanten den UV-Schutz von Baumwolle erhöhen, was sie ideal für Sommerkleidung im Freien macht.

„2 oder 3 Grad mögen nicht viel erscheinen, aber sie machen einen Unterschied in Bezug auf den Komfort und die Auswirkungen auf die Gesundheit über einen längeren Zeitraum und könnten in der Praxis den Unterschied ausmachen, ob man seine Klimaanlage aus- oder anschaltet“, so Houshyar. „Es gibt auch die Möglichkeit zu erforschen, wie Nanodiamanten eingesetzt werden können, um Gebäude vor Überhitzung zu schützen, was wiederum Vorteile für die Umwelt mit sich bringen kann.“

Die Verwendung dieses Gewebes in der Kleidung wird voraussichtlich zu einer Energieeinsparung von 20-30 % führen, da der Verbrauch von Klimaanlagen reduziert wird.

Das Forschungsteam des Centre for Materials Innovation and Future Fashion (CMIFF) besteht aus Ingenieuren und Textilforschern des RMIT, die über fundierte Kenntnisse in der Entwicklung smarter Textilien der nächsten Generation verfügen und mit der Industrie zusammenarbeiten, um realistische Lösungen zu entwickeln.

Entgegen der landläufigen Meinung sind Nanodiamanten nicht dasselbe wie die Diamanten, die Schmuck schmücken, sagte Houshyar. „Sie sind tatsächlich billig herzustellen - billiger als Graphenoxid und andere Arten von Kohlenstoffmaterialien“, sagte sie. „Sie haben zwar eine Kohlenstoff-Gitterstruktur, sind aber viel kleiner. Außerdem lassen sie sich leicht durch Methoden wie Detonation oder aus Abfallmaterialien herstellen.“

Wie es funktioniert
Das Baumwollmaterial wurde zunächst mit einem Klebstoff beschichtet und dann mit einer Polymerlösung aus Nanodiamanten, Polyurethan und Lösungsmittel elektrogesponnen.

Durch dieses Verfahren entsteht ein Netz aus Nanofasern auf den Baumwollfasern, die dann ausgehärtet werden, um die beiden zu verbinden.

Die leitende Forscherin und Forschungsassistentin, Dr. Aisha Rehman, erklärte, dass die Beschichtung mit Nanodiamanten bewusst nur auf einer Seite des Gewebes aufgebracht wurde, um zu verhindern, dass die Wärme aus der Atmosphäre auf den Körper zurück übertragen wird.  

„Die Seite des Stoffes mit der Nanodiamantenbeschichtung berührt die Haut. Die Nanodiamanten leiten dann die Wärme vom Körper an die Luft weiter“, so Rehman, die im Rahmen ihrer Doktorarbeit an der Studie mitarbeitete. „Weil Nanodiamanten so gute Wärmeleiter sind, geht das schneller als bei unbehandeltem Stoff.“

Nanodiamanten wurden für diese Studie aufgrund ihrer hohen Wärmeleitfähigkeit ausgewählt, so Rehman. Nanodiamanten werden häufig in der IT-Branche eingesetzt und können auch dazu beitragen, die thermischen Eigenschaften von Flüssigkeiten und Gelen zu verbessern und die Korrosionsbeständigkeit von Metallen zu erhöhen.

„Nanodiamanten sind auch biokompatibel, d. h. sie sind für den menschlichen Körper ungefährlich. Daher haben sie ein großes Potenzial nicht nur für Textilien, sondern auch für den biomedizinischen Bereich“, so Rehman.
Obwohl die Forschung noch vorläufig ist, sagte Houshyar, hat diese Methode der Beschichtung von Textilien mit Nanofasern ein großes kommerzielles Potenzial.

„Dieser Ansatz des Elektrospinnens ist einfach und kann die Vielfalt der Herstellungsschritte im Vergleich zu den bisher getesteten Methoden, die langwierige Prozesse und die Verschwendung von Nanodiamanten mit sich bringen, erheblich reduzieren“, sagte Houshyar.

Weitere Forschungsarbeiten werden die Haltbarkeit der Nanofasern, insbesondere während des Waschvorgangs, untersuchen.

Quelle:

Shu Shu Zheng, RMIT University