Textination Newsline

Zurücksetzen
8 Ergebnisse
Tragbare Roboter für Parkinson-Kranke Bild: Tom Claes, unsplash
19.02.2024

Tragbare Roboter für Parkinson-Kranke

Freezing, plötzliche Blockaden bei Bewegungsabläufen, ist eines der häufigsten und belastendsten Symptome der Parkinson-Krankheit, einer neurodegenerativen Erkrankung, von der weltweit mehr als 9 Millionen Menschen betroffen sind. Wenn Menschen mit Parkinson „einfrieren“, verlieren sie plötzlich die Fähigkeit, ihre Füße zu bewegen, oft mitten im Schritt, was zu einer Reihe von stakkatoartigen, stotternden Schritten führt, die immer kürzer werden, bis die Person schließlich ganz stehen bleibt. Diese Episoden sind eine der Hauptursachen für Stürze bei Menschen mit Parkinson.

Heutzutage wird Freezing mit einer Reihe von pharmakologischen, chirurgischen oder Verhaltenstherapien behandelt, von denen keine besonders wirksam ist. Was wäre, wenn es einen Weg gäbe, Freezing gänzlich zu verhindern?

Freezing, plötzliche Blockaden bei Bewegungsabläufen, ist eines der häufigsten und belastendsten Symptome der Parkinson-Krankheit, einer neurodegenerativen Erkrankung, von der weltweit mehr als 9 Millionen Menschen betroffen sind. Wenn Menschen mit Parkinson „einfrieren“, verlieren sie plötzlich die Fähigkeit, ihre Füße zu bewegen, oft mitten im Schritt, was zu einer Reihe von stakkatoartigen, stotternden Schritten führt, die immer kürzer werden, bis die Person schließlich ganz stehen bleibt. Diese Episoden sind eine der Hauptursachen für Stürze bei Menschen mit Parkinson.

Heutzutage wird Freezing mit einer Reihe von pharmakologischen, chirurgischen oder Verhaltenstherapien behandelt, von denen keine besonders wirksam ist. Was wäre, wenn es einen Weg gäbe, Freezing gänzlich zu verhindern?

Forscher der Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) und des Boston University Sargent College of Health & Rehabilitation Sciences haben einen weichen, tragbaren Roboter eingesetzt, der einem Parkinson-Patienten hilft, ohne Freezing zu gehen. Das Roboterkleidungsstück, das um Hüfte und Oberschenkel getragen wird, gibt beim Schwingen des Beins einen sanften Druck auf die Hüfte und hilft dem Patienten, einen längeren Schritt zu machen.

Mit dem Hilfsmittel konnte das Freezing der Teilnehmer beim Gehen in geschlossenen Räumen vollständig beseitigt werden, so dass sie schneller und weiter gehen konnten als ohne die Hilfe des Kleidungsstückes.

„Wir stellten fest, dass schon eine geringe mechanische Unterstützung durch unsere weiche Roboterkleidung eine Sofortwirkung hatte und das Gehen der Versuchspersonen unter verschiedenen Bedingungen nachhaltig verbesserte“, so Conor Walsh, Paul A. Maeder Professor für Ingenieur- und angewandte Wissenschaften am SEAS und Mitautor der Studie.

Die Forschung zeigt das Potenzial der Soft-Robotik zur Behandlung dieses frustrierenden und potenziell gefährlichen Symptoms der Parkinson-Erkrankung auf und könnte es Menschen, die mit dieser Krankheit leben, ermöglichen, nicht nur ihre Mobilität, sondern auch ihre Unabhängigkeit wiederzuerlangen.

Seit über einem Jahrzehnt entwickelt das Biodesign Lab von Walsh am SEAS unterstützende und rehabilitative Robotertechnologien zur Verbesserung der Mobilität von Menschen nach einem Schlaganfall, mit ALS oder anderen Krankheiten, die die Mobilität beeinträchtigen. Ein Teil dieser Technologie, insbesondere ein Exosuit für das Gehtraining nach einem Schlaganfall, wurde vom Wyss Institute for Biologically Inspired Engineering, and Harvard’s Office of Technology Development unterstützt, und das Harvard’s Office of Technology Development  koordinierte eine Lizenzvereinbarung mit ReWalk Robotics zur Vermarktung der Technologie.

Im Jahr 2022 erhielten SEAS und Sargent College einen Zuschuss von der Massachusetts Technology Collaborative, um die Entwicklung und Umsetzung von Robotik und Wearable Technologies der nächsten Generation zu unterstützen. Die Forschung ist im Move Lab angesiedelt, dessen Aufgabe es ist, Fortschritte bei  der Verbesserung der menschlichen Leistungsfähigkeit zu unterstützen, indem es den Raum für die Zusammenarbeit, die Finanzierung, die F&E-Infrastruktur und die Erfahrung bereitstellt, die notwendig sind, um vielversprechende Forschung in ausgereifte Technologien zu verwandeln, die durch die Zusammenarbeit mit Industriepartnern umgesetzt werden können. Diese Forschung ist aus dieser Partnerschaft hervorgegangen.

„Der Einsatz weicher, tragbarer Roboter zur Verhinderung des Freezing beim Gangbild von Parkinson-Patienten erforderte eine Zusammenarbeit zwischen Ingenieuren, Rehabilitationswissenschaftlern, Physiotherapeuten, Biomechanikern und Bekleidungsdesignern", so Walsh, dessen Team eng mit dem von Terry Ellis, Professor und Lehrstuhlinhaber für Physiotherapie sowie Leiter des Zentrums für Neurorehabilitation an der Universität Boston, zusammenarbeitete.

Das Team arbeitete sechs Monate lang mit einem 73-jährigen Mann, der an Parkinson erkrankt war und trotz chirurgischer und medikamentöser Behandlung mehr als zehnmal am Tag unter erheblichem und behinderndem Freezing litt, was immer wieder zu Stürzen führten. Diese Episoden hinderten ihn daran, sich in seiner Nachbarschaft zu bewegen, und zwangen ihn, sich draußen mit einem Elektromobil fortzubewegen.

In früheren Forschungsarbeiten wiesen Walsh und sein Team mithilfe der Human-in-the-Loop-Optimierung nach, dass ein weiches, am Körper zu tragendes Gerät die Hüftbeugung verstärken und den Schwung des Beins nach vorne unterstützen kann, um den Energieverbrauch beim Gehen bei gesunden Menschen effizient zu senken.

In diesem Fall verwendeten die Forscher den gleichen Ansatz, um das Freezing zu bekämpfen. Das tragbare Gerät verwendet kabelgesteuerte Aktoren und Sensoren, die um Taille und Oberschenkel getragen werden. Anhand der von den Sensoren erfassten Bewegungsdaten schätzen Algorithmen die Phase des Gangs und erzeugen im Zusammenspiel mit der Muskelbewegung Unterstützung.

Die Wirkung trat sofort ein. Ohne spezielles Training war der Patient in der Lage, ohne Freezing in geschlossenen Räumen und mit nur gelegentlichen Episoden im Freien zu gehen. Er war ebenfalls in der Lage, ohne Stocken zu gehen und zu sprechen, was ohne das Gerät kaum möglich war.

„Unser Team war sehr gespannt darauf, wie sich die Technologie auf das Gangbild der Teilnehmer auswirkt“, sagt Jinsoo Kim, ehemaliger Doktorand am SEAS und Mitautor der Studie.

Während der Studienbesuche erzählte der Teilnehmer den Forschern: „Der Anzug hilft mir, längere Schritte zu machen, wenn er nicht aktiv ist, merke ich, dass ich meine Füße viel mehr nachziehe. Er hat mir wirklich geholfen, und ich empfinde ihn als einen positiven Schritt nach vorn. Er könnte mich darin unterstützen, länger zu gehen und meine Lebensqualität zu erhalten."

„Unsere Studienteilnehmer, die freiwillig ihre Zeit opfern, sind echte Partner“, so Walsh. „Da die Mobilität schwierig ist, war es für diese Person eine echte Herausforderung, überhaupt ins Labor zu kommen, aber wir haben so sehr von ihrer Perspektive und ihrem Feedback profitiert.“

Das Gerät könnte auch eingesetzt werden, um die Mechanismen des Freezing besser zu verstehen, die nur unzureichend erforscht sind.

„Da wir das Freezing nicht wirklich verstehen, wissen wir nicht, warum dieser Ansatz so gut funktioniert“, so Ellis. Aber diese Arbeit deutet auf die potenziellen Vorteile einer "Bottom-up"-Lösung statt einer "Top-down"-Lösung zur Behandlung von Gangfehlern hin. Wir sehen, dass die Wiederherstellung einer fast normalen Biomechanik die periphere Dynamik des Gangs verändert und die zentrale Verarbeitung der Gangkontrolle beeinflussen kann.“

Das Team arbeitete sechs Monate lang mit einem 73-jährigen Mann, der an Parkinson erkrankt war und trotz chirurgischer und medikamentöser Behandlung mehr als zehnmal am Tag unter erheblichem und behinderndem Freezing litt, was immer wieder zu Stürzen führten. Diese Episoden hinderten ihn daran, sich in seiner Nachbarschaft zu bewegen, und zwangen ihn, sich draußen mit einem Elektromobil fortzubewegen.

In früheren Forschungsarbeiten wiesen Walsh und sein Team mithilfe der Human-in-the-Loop-Optimierung nach, dass ein weiches, am Körper zu tragendes Gerät die Hüftbeugung verstärken und den Schwung des Beins nach vorne unterstützen kann, um den Energieverbrauch beim Gehen bei gesunden Menschen effizient zu senken.

In diesem Fall verwendeten die Forscher den gleichen Ansatz, um das Freezing zu bekämpfen. Das tragbare Gerät verwendet kabelgesteuerte Aktoren und Sensoren, die um Taille und Oberschenkel getragen werden. Anhand der von den Sensoren erfassten Bewegungsdaten schätzen Algorithmen die Phase des Gangs und erzeugen im Zusammenspiel mit der Muskelbewegung Unterstützung.

Die Wirkung trat sofort ein. Ohne spezielles Training war der Patient in der Lage, ohne Freezing in geschlossenen Räumen und mit nur gelegentlichen Episoden im Freien zu gehen. Er war ebenfalls in der Lage, ohne Stocken zu gehen und zu sprechen, was ohne das Gerät kaum möglich war.

„Unser Team war sehr gespannt darauf, wie sich die Technologie auf das Gangbild der Teilnehmer auswirkt“, sagt Jinsoo Kim, ehemaliger Doktorand am SEAS und Mitautor der Studie.

Während der Studienbesuche erzählte der Teilnehmer den Forschern: „Der Anzug hilft mir, längere Schritte zu machen, wenn er nicht aktiv ist, merke ich, dass ich meine Füße viel mehr nachziehe. Er hat mir wirklich geholfen, und ich empfinde ihn als einen positiven Schritt nach vorn. Er könnte mich darin unterstützen, länger zu gehen und meine Lebensqualität zu erhalten."

„Unsere Studienteilnehmer, die freiwillig ihre Zeit opfern, sind echte Partner“, so Walsh. „Da die Mobilität schwierig ist, war es für diese Person eine echte Herausforderung, überhaupt ins Labor zu kommen, aber wir haben so sehr von ihrer Perspektive und ihrem Feedback profitiert.“

Das Gerät könnte auch eingesetzt werden, um die Mechanismen des Freezing besser zu verstehen, die nur unzureichend erforscht sind.

„Da wir das Freezing nicht wirklich verstehen, wissen wir nicht, warum dieser Ansatz so gut funktioniert“, so Ellis. Aber diese Arbeit deutet auf die potenziellen Vorteile einer "Bottom-up"-Lösung statt einer "Top-down"-Lösung zur Behandlung von Gangfehlern hin. Wir sehen, dass die Wiederherstellung einer fast normalen Biomechanik die periphere Dynamik des Gangs verändert und die zentrale Verarbeitung der Gangkontrolle beeinflussen kann.“

Die Studie wurde von Jinsoo Kim, Franchino Porciuncula, Hee Doo Yang, Nicholas Wendel, Teresa Baker und Andrew Chin mitverfasst. Asa Eckert-Erdheim und Dorothy Orzel trugen ebenfalls zur Entwicklung der Technologie bei, ebenso wie Ada Huang, Sarah Sullivan leitete die klinische Forschung. Das Projekt wurde von der National Science Foundation unter dem Zuschuss CMMI-1925085, von den National Institutes of Health unter dem Zuschuss NIH U01 TR002775 und von der Massachusetts Technology Collaborative, Collaborative Research and Development Matching Grant unterstützt.

Quelle:

Die Forschungsergebnisse erschienen in Nature Medicine.
Quelle: Leah Burrows
Harvard John A. Paulson. School of Engineering and Applied Sciences

Die Forscher stellten formverändernde Fasern her, indem sie einen ballonartigen Schlauch in eine geflochtene Textilhülle einkapselten. (c) : Muh Amdadul Hoque. Die Forscher stellten formverändernde Fasern her, indem sie einen ballonartigen Schlauch in eine geflochtene Textilhülle einkapselten.
27.09.2023

Künstliche Muskelfasern als Zellgerüst

In zwei neuen Studien haben Forschende der North Carolina State University eine Serie von Textilfasern entwickelt und getestet, die ihre Form verändern und wie ein Muskel Kraft erzeugen können. In der ersten Studie untersuchten die Forscher den Einfluss der Materialien auf die Stärke und die Kontraktionslänge der künstlichen Muskeln. Die Forschungsergebnisse könnten helfen, die Fasern für verschiedene Anwendungen anzupassen.

In der zweiten Studie, der Proof-of-Concept-Studie, testeten die Forscher ihre Fasern als Gerüst für lebende Zellen. Die Ergebnisse deuten darauf hin, dass die als „Faserrobots“ bezeichneten Fasern möglicherweise zur Entwicklung von 3D-Modellen lebender, sich bewegender Systeme im menschlichen Körper verwendet werden könnten.

In zwei neuen Studien haben Forschende der North Carolina State University eine Serie von Textilfasern entwickelt und getestet, die ihre Form verändern und wie ein Muskel Kraft erzeugen können. In der ersten Studie untersuchten die Forscher den Einfluss der Materialien auf die Stärke und die Kontraktionslänge der künstlichen Muskeln. Die Forschungsergebnisse könnten helfen, die Fasern für verschiedene Anwendungen anzupassen.

In der zweiten Studie, der Proof-of-Concept-Studie, testeten die Forscher ihre Fasern als Gerüst für lebende Zellen. Die Ergebnisse deuten darauf hin, dass die als „Faserrobots“ bezeichneten Fasern möglicherweise zur Entwicklung von 3D-Modellen lebender, sich bewegender Systeme im menschlichen Körper verwendet werden könnten.

„Wir haben festgestellt, dass unser Faserrobot ein sehr geeignetes Gerüst für Zellen ist. Um eine geeignetere Umgebung für die Zellen zu schaffen, können wir die Frequenz und das Kontraktionsverhältnis verändern,“ sagte Muh Amdadul Hoque, Doktorand in Textiltechnik, Chemie und Wissenschaft an der NC State. „Dies waren Proof-of-Concept-Studien; letztendlich ist es unser Ziel, herauszufinden, ob wir diese Fasern als Gerüst für Stammzellen nutzen oder sie in zukünftigen Studien zur Entwicklung künstlicher Organe verwenden können.“
 
Die Forscher stellten die formverändernden Fasern her, indem sie einen ballonartigen Schlauch aus einem gummiähnlichen Material in eine geflochtene Textilhülle einkapselten. Wird der im Innern befindliche Ballon mit einer Luftpumpe aufgeblasen, dehnt sich der geflochtene Mantel aus, wodurch er sich verkürzt.

Die Forschenden maßen die Kraft und die Kontraktionsraten von Fasern aus verschiedenen Materialien, um den Zusammenhang zwischen Material und Performance zu verstehen. Sie stellten fest, dass stärkere Garne mit größerem Querschnitt eine stärkere Kontraktionskraft erzeugen. Darüber hinaus fanden sie heraus, dass das für die Herstellung des Ballons verwendete Material einen Einfluss auf die Stärke der Kontraktion und die erzeugte Kraft ausübte.
 
„Wir haben nachgewiesen, dass wir die Materialeigenschaften an die erforderliche Leistung des Geräts anpassen können“, so Xiaomeng Fang, Assistenzprofessorin für Textiltechnik, Chemie und Wissenschaft an der NC State. "Wir haben auch gezeigt, dass wir dieses Gerät klein genug machen können, so dass wir es potenziell bei der Herstellung von Textilien und anderen Textilanwendungen einsetzen können, unter anderem in Wearables und Hilfsmitteln."
 
In einer Folgestudie untersuchten die Forschenden, ob sie die formverändernden Fasern als Gerüst für Fibroblasten verwenden könnten, eine Zellart, die in Bindegeweben vorkommt und andere Gewebe oder Organe stützt.

„Die Dehnung soll die dynamischen Bewegungen des Körpers imitieren“, sagt Jessica Gluck, Assistenzprofessorin für Textiltechnik, Chemie und Wissenschaft an der NC State University und Mitautorin der Studie.

Die Wissenschaftler untersuchten die Reaktion der Zellen auf die Bewegung der formverändernden Fasern sowie auf die verschiedenen Materialien, die bei der Faserstruktur verwendet wurden. Sie fanden heraus, dass die Zellen in der Lage waren, die Flechthülle des Faserrobots zu bedecken und sogar zu durchdringen, stellten jedoch eine Abnahme der Stoffwechselaktivität der Zellen fest, wenn die Kontraktion des Faserrobots über ein bestimmtes Maß hinaus anhielt, im Vergleich zu einer Einheit aus demselben Material, die sie stationär hielten.

The researchers are interested in building on the findings to see if they could use the fibers as a 3D biological model, and to investigate whether movement would impact cell differentiation. They said their model would be an advance over other existing experimental models that have been developed to show cellular response to stretching and other motion, since they can only move in two dimensions.
Die Ergebnisse sollen weiter ausgebaut werden, um zu sehen, ob die Fasern als biologisches 3D-Modell verwenden werden können, und weiter, um zu untersuchen, ob die Bewegung die Zellteilung beeinflussen würde. Ihr Modell wäre ein Fortschritt gegenüber anderen experimentellen Modellen, die entwickelt wurden, um die Reaktion von Zellen auf zweidimensionale Dehnung und andere Bewegungen zu zeigen.
 
„Wenn man Zellen dehnen oder belasten will, legt man sie normalerweise auf eine Kunststoffschale und dehnt sie in eine oder zwei Richtungen“, sagte Gluck. „In dieser Studie konnten wir zeigen, dass die Zellen in dieser dynamischen 3D-Kultur bis zu 72 Stunden überleben können.“

„Dies ist besonders nützlich für Stammzellen“, fügte Gluck hinzu. „In Zukunft könnten wir untersuchen, was auf zellulärer Ebene bei mechanischer Belastung passiert. Man könnte Muskelzellen betrachten und sehen, wie sie sich entwickeln, oder analysieren, wie die mechanische Einwirkung zur Zellteilung beitragen würde.“

Die Studie „Effect of Material Properties on Fiber-Shaped Pneumatic Actuators Performance” wurde am 18. März in Actuators veröffentlicht. Emily Petersen war Mitautorin. Die Studie wurde durch eine Anschubfinanzierung gefördert, die Fang vom Department of Textile Engineering, Chemistry and Science der NC State University erhielt.

Die Studie mit dem Titel „Development of a Pneumatic-Driven Fiber-Shaped Robot Scaffold for Use as a Complex 3D Dynamic Culture System“ (Entwicklung eines pneumatisch angetriebenen faserförmigen Robotgerüsts zur Verwendung als komplexes dynamisches 3D-Kultursystem) wurde am 21. April online in Biomimetics veröffentlicht. Neben Gluck, Hoque und Fang gehörten Nasif Mahmood, Kiran M. Ali, Eelya Sefat, Yihan Huang, Emily Petersen und Shane Harrington zu den Co-Autoren. Die Studie wurde vom NC State Wilson College of Textiles, der Abteilung für Textiltechnik, -chemie und -wissenschaft sowie dem Wilson College of Textiles Research Opportunity Seed Fund Program finanziert.

Quelle:

North Carolina State University, Laura Oleniacz. Übersetzung Textination

(c) Fraunhofer IBMT
10.05.2023

Mit Textilelektroden Muskel-Tremor stoppen

Wissenschaftler des Fraunhofer-Instituts für Biomedizinische Technik IBMT haben gemeinsam mit internationalen Verbundpartnern eine Technologie-Plattform entwickelt, die Menschen mit Muskelzittern künftig helfen soll, den Tremor zu stoppen. Winzige biokompatible Elektroden in der Muskulatur bilden gemeinsam mit externen Elektroden und Controllern ein intelligentes Netzwerk aus Sensoren und Aktoren, das Muskelsignale detektiert und bei Bedarf elektrische Stimuli setzt. In Kombination mit Exoskeletten könnte die Technologie auch Menschen mit Verletzungen des Rückenmarks unterstützen.

Wissenschaftler des Fraunhofer-Instituts für Biomedizinische Technik IBMT haben gemeinsam mit internationalen Verbundpartnern eine Technologie-Plattform entwickelt, die Menschen mit Muskelzittern künftig helfen soll, den Tremor zu stoppen. Winzige biokompatible Elektroden in der Muskulatur bilden gemeinsam mit externen Elektroden und Controllern ein intelligentes Netzwerk aus Sensoren und Aktoren, das Muskelsignale detektiert und bei Bedarf elektrische Stimuli setzt. In Kombination mit Exoskeletten könnte die Technologie auch Menschen mit Verletzungen des Rückenmarks unterstützen.

Ein kompakter Controller am Gürtel oder unter der Jacke, ein paar unauffällige Textilelektroden an Armen und Beinen und drei Zentimeter lange und knapp einen Millimeter dünne Elektroden, die im Muskel platziert werden – mehr ist nicht nötig, um Menschen mit Tremorerkrankungen in Zukunft zu helfen. Immer wenn das Muskelzittern einsetzt, sendet das System elektrische Stimuli in die Muskulatur, diese werden vom Nervensystem registriert. Das Nervensystem schickt dann keine Störsignale mehr in die Muskeln, und diese beruhigen sich wieder. Das ist die Grundidee hinter der Technologie, für die Wissenschaftler des Fraunhofer IBMT gemeinsam mit Verbundpartnern ein Set aus intramuskulären und externen Elektroden sowie dazugehörigem Controller entworfen, gefertigt, integriert und in Experimenten getestet haben.

Die Wissenschaftlerinnen und Wissenschaftler können bereits konkrete Erfolge vorweisen. »In Versuchen mit Patientinnen und Patienten ist es uns gelungen, das Muskelzittern deutlich zu reduzieren«, erläutert Andreas Schneider-Ickert, Projektleiter Aktive Implantate und Innovationsmanager.

Das System ist Teil des von der EU geförderten Verbundprojekts »EXTEND«. Insgesamt neun Projektpartner aus fünf Ländern entwickeln gemeinsam eine vielseitig einsetzbare Plattform verteilter neuronaler Schnittstellen. Die Technologie kann künftig Menschen mit neuromuskulären Erkrankungen wie etwa Tremor oder auch Lähmungssymptomen helfen. Sogar Menschen mit Verletzungen des Rückenmarks könnten davon profitieren. Die Technik verknüpft die implantierten Elektroden mithilfe externer Controller zu einem intelligenten Netzwerk. Die Komponenten kommunizieren drahtlos miteinander, tauschen Daten aus, detektieren Muskelsignale und senden gezielt Stimuli in die Muskulatur. Die Stimulation über implantierte Systeme gibt es in der Medizin schon. Doch bisherige Methoden gehen mit komplexen chirurgischen Eingriffen einher, die für die Patientinnen und Patienten eine erhebliche Belastung bedeuten.

Implantate für die Mensch-Maschine-Schnittstelle
Ein zentrales Element von EXTEND sind die Implantate. Diese sind aus biokompatiblem Platin-Iridium und Silikon gefertigt. Über einen Katheter werden sie in den Muskel injiziert. Das mit drei Zentimeter Länge und knapp einem Millimeter Durchmesser winzige Implantat verfügt an beiden Enden über eine Elektrode, die jeweils als Sensor oder Aktor fungiert. Das Modul wird über externe, in Textilband eingenähte Elektroden mit Energie versorgt. Diese speisen über das Muskelgewebe gepulsten Wechselstrom an das Implantat. »Innovativ ist nicht nur das intelligente Zusammenspiel zwischen Steuerelektronik, Sensoren und Aktoren, sondern auch das Prinzip, den Wechselstrom zu modulieren, um Daten zu übermitteln«, erläutert Schneider-Ickert.

Einmal implantiert und in Betrieb genommen registrieren die Sensoren die ersten Anzeichen von Muskelzittern und geben diese Informationen an die externen Komponenten weiter. Der Controller wertet die Daten aus und schickt über die Textilelektroden Signale zur Stimulation des Muskels. Der so geschlossene Regelkreis aus intelligent vernetzten sensorischen und aktorischen Komponenten wirkt dem Tremor entgegen.

Das stimulierende Signal ist aber nicht stark genug, um beim Muskel direkt eine Kontraktion auszulösen. Vielmehr spielt das Nervensystem hier die entscheidende Rolle. Es registriert die Stimulation im Muskelgewebe und reagiert darauf, indem es die Befehle einstellt, die das Muskelzittern auslösen. So lautet zumindest die Theorie, denn bis ins Detail erforscht ist der Zusammenhang zwischen Tremor und den Signalen des Nervensystems bisher noch nicht. »Allerdings funktioniert unsere Methode in klinischen Versuchen erstaunlich gut. Die ersten Versuche haben gezeigt, dass es ausreicht, die Patientin oder den Patienten für ein oder zwei Stunden mit Stimuli zu versorgen, um die Tremor-Symptome für einen längeren Zeitraum zu reduzieren«, sagt Schneider-Ickert.

Da Tremor oftmals an beiden Armen und beiden Beinen auftritt, können in allen betroffenen Muskelgruppen Implantate injiziert und externe Textilelektroden platziert werden. So entsteht ein verteiltes Sensorik-Netzwerk. Die Controller haben alle implantierten und alle externen Elektroden gleichzeitig im Blick und können diese abgestimmt aufeinander steuern. Dies alles geschieht in Echtzeit, der Mensch nimmt keine Verzögerung wahr.

Die Technologie des Verbundprojekts EXTEND ist ebenso funktional wie klassische Implantatsysteme, aber nur minimal-invasiv und daher leichter zu akzeptieren und alltagstauglich. Das Grundkonzept stammt von einem spanischen Projektpartner. Auf dieser Basis haben die Forschenden am Fraunhofer IBMT die Elektroden und implantierbare Komponenten entworfen, im eigenen Reinraum gefertigt und integriert. Die Wissenschaftlerinnen und Wissenschaftler blicken auf eine über 25-jährige Expertise im Bereich der Neuroprothetik und aktiven Implantate zurück.

Exoskelette gegen Querschnittslähmung
Für Tremor-Patientinnen und -Patienten bedeutet EXTEND die Hoffnung auf eine deutliche Linderung der Symptome. Die Technologie-Plattform könnte aber auch Menschen mit Rückenmarksverletzungen durch motorisierte Exoskelette helfen. Möglich ist das deshalb, weil die Nervenstränge bei Lähmungen oftmals nicht vollständig gekappt sind. Sie leiten immer noch, wenn auch sehr schwach, Stimuli vom Gehirn weiter. Die Sensoren registrieren die Aktivität und leiten sie an den Controller weiter. Der analysiert alle Signale, schließt daraus, welche Bewegung der Mensch ausführen will, und aktiviert dann genau jene Prothesen, die die Muskulatur beim Ausführen der Bewegung unterstützen.

Nach den ersten erfolgreichen Tests wurden die in EXTEND eingesetzten Konzepte und Technologien stetig weiterentwickelt, miniaturisiert, optimiert und weitere Implementierungsstudien durchgeführt. Damit konnte das Projekt mit einem erfolgreichen Proof of Concept des miniaturisierten integrierten Gesamtsystems im Menschen abgeschlossen werden. Das Fraunhofer IBMT wird das in EXTEND entstandene Know-how nutzen, um seine Expertise auf dem Gebiet der neuromuskulären und neuronalen Schnittstellen weiter auszubauen.

Quelle:

Fraunhofer-Institut für Biomedizinische Technik IBMT

(c) Fraunhofer-Institut für Silicatforschung ISC
02.05.2023

Bioresorbierbare Membran: Fasern als Wirkstoffdepot

Fraunhofer-Forschenden ist es gelungen, aus bioresorbierbarem Kieselgel Renacer® eine elektroversponnene Membran herzustellen, die weder zell- noch gentoxisch ist. Diese Matrix ahmt Faserstrukturen nach, die im Bindegewebe vorkommen. Sie eignet sich daher insbesondere für regenerative Anwendungen, etwa für eine bessere Wundheilung.
 
Die Behandlung großflächiger sowie innerer Wunden ist eine Herausforderung und kann äußerst langwierig sein. Forscherinnen und Forscher des Fraunhofer-Instituts für Silicatforschung ISC und des Fraunhofer-Instituts für Toxikologie und Experimentelle Medizin ITEM haben für diesen Anwendungsbereich eine bioresorbierbare Membran entwickelt, die die Wundheilung unterstützt und sich vollständig im Körper zu einer natürlichen Substanz biologisch abbaut.

Fraunhofer-Forschenden ist es gelungen, aus bioresorbierbarem Kieselgel Renacer® eine elektroversponnene Membran herzustellen, die weder zell- noch gentoxisch ist. Diese Matrix ahmt Faserstrukturen nach, die im Bindegewebe vorkommen. Sie eignet sich daher insbesondere für regenerative Anwendungen, etwa für eine bessere Wundheilung.
 
Die Behandlung großflächiger sowie innerer Wunden ist eine Herausforderung und kann äußerst langwierig sein. Forscherinnen und Forscher des Fraunhofer-Instituts für Silicatforschung ISC und des Fraunhofer-Instituts für Toxikologie und Experimentelle Medizin ITEM haben für diesen Anwendungsbereich eine bioresorbierbare Membran entwickelt, die die Wundheilung unterstützt und sich vollständig im Körper zu einer natürlichen Substanz biologisch abbaut.

Basis für die neuartige Membran ist ein am Fraunhofer ISC entwickeltes Faservlies, das für die Regeneration von chronischen Wunden, wie dem diabetischen Fuß, bereits medizinisch zugelassen ist. Das Material löst sich im Verlauf der Wundheilung nach sechs bis acht Wochen vollständig auf. Den Faserdurchmesser von 50 Mikrometer konnten die Forschenden um mehr als das 50fache verringern, sodass die Fasern nun Durchmesser von weniger als einem Mikrometer aufweisen. Dabei wendete das Team die Methode des Elektrospinnens an. Auf diese Weise konnten die Forschenden ein Kieselgelsol zu einer engmaschigen Kieselgelmembran aus Fasern mit einem Durchmesser von ca. einem Mikrometer verspinnen. Teilweise erzielten sie sogar Durchmesser von lediglich 100 Nanometern. »Diese Fasersysteme ahmen die extrazelluläre Matrix, also Faserstrukturen, die im Bindegewebe vorkommen, im Körper nach und werden von humanen Zellen sehr gut zur Regeneration angenommen. Sie verursachen keine Fremdkörperreaktionen und keine inneren Vernarbungen. Die neuartige Kieselgelmembran setzt nur ein Degradationsprodukt frei, die Monokieselsäure, die im Körper regenerierend wirkt und das Schließen von Wunden fördert«, erläutert Dr. Bastian Christ, Wissenschaftler am Fraunhofer ISC in Würzburg. Mit seinen Kolleginnen und Kollegen kümmerte er sich um die Synthese und die Verarbeitung des Materials.
 
»Während das ursprüngliche Faservlies aus 50 Mikrometer dicken Fasern von außen in eine chronische Wunde eingebracht wird, eignet sich das dünnere Faservlies auch für innere Anwendungen. Füllmaterial, das für Knochendefekte im Kiefer genutzt wird, könnte theoretisch damit abgedeckt werden, um so die Wundheilung zu beschleunigen«, beschreibt Dr. Christina Ziemann, Wissenschaftlerin am Fraunhofer ITEM und für die biologische Evaluierung des Materials zuständig, eine von vielen Einsatzmöglichkeiten. »Prinzipiell lässt sich die Membran im Körper mit bioabbaubaren Klebstoffen verkleben.«

Material ist weder zell- noch gentoxisch
Mittels eines Konfokalmikroskops, eines speziellen Lichtmikroskops, konnte gezeigt werden, dass die engmaschige Membran, die als Demonstrator vorliegt, über eine Barrierefunktion verfügt, die den Durchtritt von Bindegewebszellen über die Dauer von mindestens sieben Tagen verhindert, ohne die Zellen generell vom Wachstum abzuhalten. Darüber hinaus ist die Membran resorbierbar und weist keine Zyto- oder Gentoxizität auf, sie verursacht also weder direkte Schäden am Gewebe noch an der DNA.

Faserdurchmesser und Maschenweite beeinflussen das Verhalten der Zellen
Für die Anwendung als Adhäsionsbarriere, um postoperative Verwachsungen und Narbenbildung zu vermeiden, wurde ein dünner Faserdurchmesser mit dünnen Maschen gewählt, sodass nur Nährstoffe das Faservlies passieren konnten – jedoch keine Bindegewebszellen. Bei einem Faserdurchmesser von einem Mikrometer und entsprechend weiteren Maschen hingegen wachsen die Zellen in das Fasergeflecht ein, vermehren sich dort und wirken regenerierend auf das umliegende Gewebe. »Durch Einstellen der Materialeigenschaften wie Faserdurchmesser und Maschenweite können wir das Verhalten der Zellen wunschgemäß beeinflussen«, sagt Christ. Für das Verspinnen der Fasern werden die erforderlichen Anlagen am Fraunhofer ISC anwendungsgerecht und kundenspezifisch konstruiert. Auch die Form und Größe der Faservliese lassen sich kundenspezifisch anpassen.

Im Gegensatz zur Membran, die direkt nach dem Aufbringen aufgrund ihrer offenmaschigen Natur einen Nährstofftransport, nicht aber einen Zelldurchtritt erlaubt, ermöglichen viele am Markt erhältliche Produkte einen derartigen Stofftransport oft erst nach der Biodegradation, bzw. nach beginnender Degradation. Eine schnelle und effektive Wundheilung ist aber nur möglich, wenn das verwundete Gewebe ausreichend mit Nährstoffen versorgt wird. Gleichzeitig müssen Stoffwechselprodukte abtransportiert werden, was durch die offene Maschenstruktur der Kieselgelmembran gefördert wird.

Membran mit anorganischem Charakter
Ein weiterer Vorteil: Die Renacer®-Membran löst sich vollständig auf und zersetzt sich fast pH-neutral zu untoxischer Monokieselsäure, die einzige wasserlösliche Form von Kieselsäuren. Sie ist nativ im Körper vorhanden und stimuliert nachweislich den Bindegewebsaufbau in der Haut und den Knochenaufbau. Über solche Eigenschaften verfügen bislang erhältliche Produkte nicht. Viele biodegradierbare Materialien lösen sich zu organischen Säuren, wie Milchsäure oder Glykolsäure, auf. Dadurch können lokale Übersäuerungen im Gewebe entstehen und diese dann entzündliche Reaktionen des Immunsystems auslösen. »Unsere Tests haben gezeigt, dass auch das Auflösungsprodukt, die Monokieselsäure, nicht toxisch und komplett zellverträglich ist«, so Ziemann. »Die Membran zersetzt sich zu einem einzigen Molekül – der Monokieselsäure.«

Fasern als Wirkstoffdepot
Darüber hinaus können Wirkstoffe in das Faservlies integriert werden, die mit der Auflösung des Materials freigesetzt werden. »Während der Resorption könnte beispielsweise ein Antibiotikum auf eine Wunde im Körper abgegeben werden, damit sich keine Bakterienherde bilden können«, erläutert Christ. Am Fraunhofer ISC wird im BMBF-geförderten Projekt »GlioGel« geprüft, ob sich die Renacer®-Materialplattform als Wirkstoffdepot zur Behandlung von Hirntumoren eignet.
Quelle: Fraunhofer-Institut für Silicatforschung ISC

Quelle:

Fraunhofer-Institut für Silicatforschung ISC

Bild: Gaharwar Laboratory
13.12.2022

Neue Tinten für 3D-druckbare, tragbare Bioelektronik

Flexible Elektronik hat die Entwicklung von Sensoren, Aktoren, Mikrofluidik und Elektronik auf flexiblen, konformen und/oder dehnbaren Trägerschichten für tragbare, implantierbare oder einzunehmende Anwendungen ermöglicht. Diese Geräte haben jedoch im Vergleich zum menschlichen Gewebe sehr unterschiedliche mechanische und biologische Eigenschaften und können daher nicht in den menschlichen Körper integriert werden.

Ein Forscherteam an der Texas A&M University hat eine neue Klasse von Biomaterialtinten entwickelt, die die nativen Eigenschaften von hoch leitfähigem menschlichem Gewebe, ähnlich wie Haut, nachahmen, was für die Verwendung der Tinte im 3D-Druck unerlässlich ist.

Flexible Elektronik hat die Entwicklung von Sensoren, Aktoren, Mikrofluidik und Elektronik auf flexiblen, konformen und/oder dehnbaren Trägerschichten für tragbare, implantierbare oder einzunehmende Anwendungen ermöglicht. Diese Geräte haben jedoch im Vergleich zum menschlichen Gewebe sehr unterschiedliche mechanische und biologische Eigenschaften und können daher nicht in den menschlichen Körper integriert werden.

Ein Forscherteam an der Texas A&M University hat eine neue Klasse von Biomaterialtinten entwickelt, die die nativen Eigenschaften von hoch leitfähigem menschlichem Gewebe, ähnlich wie Haut, nachahmen, was für die Verwendung der Tinte im 3D-Druck unerlässlich ist.

Diese Biomaterial-Tinte nutzt eine neue Klasse von 2D-Nanomaterialien, die als Molybdändisulfid (MoS2) bekannt sind. Die dünnschichtige Struktur von MoS2 enthält Defektzentren, die es chemisch aktiv machen und in Kombination mit modifizierter Gelatine ein flexibles Hydrogel ergeben, vergleichbar mit der Struktur von Götterspeise.

„Die Auswirkungen dieser Arbeit sind für den 3D-Druck weitreichend", sagte Dr. Akhilesh Gaharwar, außerordentlicher Professor in der Abteilung für Biomedizinische Technik und Presidential Impact Fellow. "Diese neu entwickelte Hydrogeltinte ist hochgradig biokompatibel und elektrisch leitfähig und ebnet den Weg für die nächste Generation von tragbarer und implantierbarer Bioelektronik.”1

Die Tinte hat strukturviskose oder scherverdünnende Eigenschaften. Ihre nimmt Viskosität mit zunehmender Kraft ab, so dass sie im Inneren der Tube fest ist, aber beim Zusammendrücken eher wie eine Flüssigkeit fließt, ähnlich wie Ketchup oder Zahnpasta. Das Team hat diese elektrisch leitfähigen Nanomaterialien in eine modifizierte Gelatine eingearbeitet, um eine Hydrogeltinte mit Eigenschaften herzustellen, die für die Entwicklung von Tinte für den 3D-Druck wichtig sind.

„Diese 3D-gedruckten Geräte sind extrem elastisch und können zusammengedrückt, gebogen oder verdreht werden, ohne zu brechen", so Kaivalya Deo, Doktorand in der Abteilung für biomedizinische Technik und Hauptautor der Arbeit. „Darüber hinaus sind diese Geräte elektronisch aktiv, so dass sie dynamische menschliche Bewegungen überwachen können und den Weg für eine kontinuierliche Bewegungsüberwachung ebnen.”

Für den 3D-Druck der Tinte haben die Forscher im Gaharwar-Labor einen kostengünstigen, Open-Source 3D-Biodrucker mit mehreren Druckköpfen entwickelt, der voll funktionsfähig und anpassbar ist und mit Open-Source Tools und Freeware läuft. Dies ermöglicht es jedem Forscher, 3D-Biodrucker zu bauen, die auf seine eigenen Forschungsbedürfnisse zugeschnitten sind.

Die elektrisch leitfähige 3D-gedruckte Hydrogel-Tinte kann komplexe 3D-Schaltkreise erzeugen und ist nicht auf plane Designs beschränkt, so dass Forscher eine anpassbare Bioelektronik herstellen können, die auf patientenspezifische Anforderungen zugeschnitten ist.

Mit Hilfe dieser 3D-Drucker konnte Deo elektrisch aktive und dehnbare elektronische Geräte drucken. Diese Geräte weisen außergewöhnliche Dehnungsmessfähigkeiten auf und können für die Entwicklung anpassbarer Überwachungssysteme verwendet werden. Dies eröffnet ebenfalls neue Möglichkeiten für die Entwicklung dehnbarer Sensoren mit integrierten miroelektronischen Komponenten.

Eine der möglichen Anwendungen der neuen Tinte ist der 3D-Druck elektronischer Tätowierungen für Patienten mit Parkinson. Die Forscher stellen sich vor, dass ein gedrucktes E-Tattoo die Bewegungen des Patienten, einschließlich des Zitterns, überwachen kann.

Dieses Projekt wurde in Zusammenarbeit mit Dr. Anthony Guiseppi-Elie, Vizepräsident für akademische Angelegenheiten und Personalentwicklung am Tri-County Technical College in South Carolina, und Dr. Limei Tian, Assistenzprofessor für Biomedizintechnik an der Texas A&M University, durchgeführt.
Die Studie wurde vom National Institute of Biomedical Imaging and Bioengineering, dem National Institute of Neurological Disorders and Stroke und dem Texas A&M University President's Excellence Fund finanziert. Ein vorläufiges Patent auf diese Technologie wurde in Zusammenarbeit mit der Texas A&M Engineering Experiment Station angemeldet.

1 Die Studie wurde bei ACS Nano veröffentlicht.

Quelle:

Alleynah Veatch Cofas, Texas A & M University

Foto: Marlies Thurnheer
25.10.2022

Textile Elektroden für Medtech-Anwendungen

  • Erfolgreiche Finanzierungsrunde für Empa-Spin-off «Nahtlos»

Nahtlos, ein Spin-off der Empa, hat in einer ersten Finanzierungsrunde 1 Million Franken von einem Netzwerk von «Business Angels» aus der Schweiz und Liechtenstein sowie von der Startfeld-Stiftung erhalten. Damit möchte Nahtlos den Markteintritt der neu entwickelten Textil-basierten Elektrode für medizinische Anwendungen vorantreiben.

  • Erfolgreiche Finanzierungsrunde für Empa-Spin-off «Nahtlos»

Nahtlos, ein Spin-off der Empa, hat in einer ersten Finanzierungsrunde 1 Million Franken von einem Netzwerk von «Business Angels» aus der Schweiz und Liechtenstein sowie von der Startfeld-Stiftung erhalten. Damit möchte Nahtlos den Markteintritt der neu entwickelten Textil-basierten Elektrode für medizinische Anwendungen vorantreiben.

Nahtlos, ein Spin-off der Empa, hat in den vergangenen zwei Jahren neuartige, Textil-basierte Elektroden zur Aufzeichnung der Herzaktivität (Elektrokardiogramm, EKG) – etwa, um Vorhofflimmern zu erkennen – sowie für Elektrostimulationstherapien entwickelt, z.B. um die Muskelmasse bei gelähmten Patienten zu erhalten. Textil-basierte Elektroden ermöglichen eine sanfte und hautschonende Anwendung, auch wenn die Elektroden über mehrere Tage oder gar Wochen getragen werden müssen. Die textile Elektrode ist somit die erste Alternative zur Gel-Elektrode, welche vor 60 Jahren entwickelt worden ist und noch heute als Standard für medizinische Anwendungen gilt.

Der Nahtlos-Gründer und ehemalige Empa-Forscher Michel Schmid und der Mit-Gründer und Betriebswirtschaftler José Näf haben die Textil-basierte Technologie, welche in verschiedenen, unter anderem von der Innosuisse geförderten Projekten an der Empa entwickelt und patentiert worden ist, weiterentwickelt und ausgereift. Das Ziel war dabei, ein Produkt für medizinische Langzeit-Anwendungen herzustellen, welches während einer Anwendung von bis zu mehreren Wochen zuverlässig EKG Signale aufzeichnet, dabei eine hohe Patientenakzeptanz erreicht und durch seine Wirtschaftlichkeit für den Leistungserbringer überzeugt. Heute ist das Patent zur textilbasierten Elektrodentechnologie nach Erreichen eines Meilensteins im Eigentum von nahtlos.

Finanzierung durch «Business Angels» und Startfeld-Stiftung
Für die Zertifizierung ihres Produkts, den Produktionsaufbau und die Marktbearbeitung haben Schmid und Näf nach Investoren gesucht – und konnten die Seed-Finanzierungsrunde vor kurzem erfolgreich beenden: die beiden Jungunternehmer akquirierten CHF 1 Million von Business Angelnetzwerken aus der Schweiz und Liechtenstein und von der Startfeld Stiftung. Die Nahtlos AG wurde beim Aufbau des Unternehmens von Startfeld, der Start-up Förderung des Switzerland Innovation Park Ost (SIP Ost), in Form von Coaching, Beratung und Frühphasen-Finanzierung unterstützt. Nahtlos ist zudem im Innovationspark Ost an der Lerchen-feldstraße 3 beheimatet, wo durch die Zusammenarbeit von Start-ups, Unternehmen und Hochschulen Innovationen initiiert und beschleunigt werden.

Zusammen mit der Empa und Nahtlos war der SIP Ost dieses Jahr auch auf der OLMA präsent. Am Stand konnten sich Besucherinnen und Besucher live und vor Ort über die Forschungsaktivitäten der Empa im Bereich «Digital Health» sowie über die Nahtlos-Technologie und deren Textil-Elektroden zur Gesundheitsüberwachung informieren.

Quelle:

EMPA

Grafik: Pixabay
11.01.2022

Innovationsnetzwerk FIMATEC startet in die zweite Förderphase

Das Netzwerk für die Entwicklung von faserbasierten Werkstofftechnologien für Anwendungen in der Medizin und im Sport wird für weitere zwei Jahre aus Mitteln des Zentralen Innovationsprogramm Mittelstand (ZIM) gefördert.

Einen entsprechenden Antrag hat das Bundesministerium für Wirtschaft und Energie (BMWi) im Dezember 2021 bewilligt. Damit werden bis Juni 2023 weiterhin Fördermittel für die Entwicklung von innovativen Funktionsfasern, smarten Textilien und anwendungsoptimierten Faserverbundmaterialien zur Verfügung gestellt und die technologische Wettbewerbsfähigkeit und Innovationskraft von kleinen und mittleren Unternehmen (KMU) gestärkt.

Das Netzwerk für die Entwicklung von faserbasierten Werkstofftechnologien für Anwendungen in der Medizin und im Sport wird für weitere zwei Jahre aus Mitteln des Zentralen Innovationsprogramm Mittelstand (ZIM) gefördert.

Einen entsprechenden Antrag hat das Bundesministerium für Wirtschaft und Energie (BMWi) im Dezember 2021 bewilligt. Damit werden bis Juni 2023 weiterhin Fördermittel für die Entwicklung von innovativen Funktionsfasern, smarten Textilien und anwendungsoptimierten Faserverbundmaterialien zur Verfügung gestellt und die technologische Wettbewerbsfähigkeit und Innovationskraft von kleinen und mittleren Unternehmen (KMU) gestärkt.

Hierfür bündelt das Innovationsnetzwerk FIMATEC Kompetenzen aus unterschiedlichen ingenieurs- und naturwissenschaftlichen Fachrichtungen mit kleinen und mittelständischen Herstellern und Dienstleistern aus den Zielbranchen in Medizin und Sport (z. B. Orthopädie, Prothetik, Chirurgie, Smarte Textilien) sowie Akteuren der Textil- und Kunststoffbranche zusammen. 

Diese interdisziplinäre Zusammensetzung aus industriellen Partnern sowie anwendungsnahen Forschungseinrichtungen erhöht die Wettbewerbsfähigkeit und ermöglicht den Akteuren, ihre technischen Forschungs- und Entwicklungsvorhaben schnell und zielgerichtet zu realisieren. Im Mittelpunkt für die gemeinsamen F&E-Vorhaben der Unternehmen und Forschungseinrichtungen stehen die Entwicklung innovativer Materialien und effizienter Fertigungstechnologien.        
          
Faserbasierte Materialien sind aus vielen Anwendungen in der Medizin und im Sport nicht mehr wegzudenken. Als reine Faser, verarbeitet zum Textil oder als Faserverbundkunststoff bieten sie eine nahezu beliebige Vielfalt zur Einstellung von Eigenschafts- und Funktionsprofilen. Dabei steigen die Anforderungen an Funktionsumfang, Leistungsfähigkeit und Wirtschaftlichkeit stetig, sodass ein großes Potential für Innovationen vorhanden ist. Die Entwicklungen werden dabei zum einen durch neue Materialien und Fertigungsverfahren, zum anderen durch innovative Anwendungen getrieben. Produkte mit neuen und überlegenen Funktionen schaffen einen technologischen Vorsprung gegenüber der internationalen Konkurrenz und ermöglichen höhere Verkaufserlöse. Darüber hinaus führen effiziente Verfahren, anwendungsoptimierte Materialien oder auch die Funktionsintegration in die Grundstruktur textiler Werkstoffe perspektivisch zu geringeren Produktionskosten und verbesserten Vermarktungsmöglichkeiten.
Für Entwicklungen in diesem Kontext haben sich die Partner im Innovationsnetzwerk fimatec zusammengeschlossen und bündeln so ihre Kompetenzen. Innerhalb des Netzwerkes werden auf diese Weise zu den nachfolgenden Themenbereichen gemeinsam innovative Materialien und Verfahren entwickelt und in zukunftsweisenden Produkten und Dienstleistungen erprobt:

  • Funktionsfasern
    Innovative Fasermaterialien mit integrierten Funktionalitäten.    
  • Preforming
    Hochgradig lastpfadoptimierte Faserorientierungen für komplexe Faserverbundbauteile.    
  • Smarte Textilien
    Textilbasierte Sensorik und Aktorik.
  • Hybride Werkstoff- und Fertigungstechnologien
    Anwendungsoptimierte Bauteile durch technologieübergreifende Lösungsansätze.    
  • Faserverbundwerkstoffe
    Intelligente Matrixsysteme und funktionsoptimierte Fasermaterialien.    
  • Faserverstärkter 3D-Druck
    Hochqualitative additive Fertigungsverfahren für die effiziente Herstellung individualisierter Produkte.

 
17 Netzwerkpartner forschen an faserbasierten Werkstoffen für Medizin- und Sporttechnik
Aktuell sind zehn Unternehmen und sieben Forschungseinrichtungen an FIMATEC beteiligt. Interessierte Unternehmen und Forschungseinrichtungen sowie potenzielle Anwender können weiterhin an dem Kooperationsnetzwerk oder F&E-Projekten partizipieren. Im Zuge der Mitgliedschaft werden die Partner aktiv bei der Identifizierung und Initiierung von Innovationsprojekten sowie der Sicherstellung von Finanzierungen durch Fördermittelakquise unterstützt.

Ziel des bereits bewilligten Projektes „CFKadapt“ ist die Entwicklung eines thermoformbaren Faser-Kunststoff-Verbundmaterials für optimal adaptierbare orthopädische Hilfsmittel wie Prothesen und Orthesen. Im Projekt „Modul3Rad“ wollen die Projektpartner ein modulares Leichtbau-Rahmensystem für den Aufbau von nutzerfreundlichen, alltagstauglichen Therapiedreirädern für schwer- und schwerstbehinderte Kinder entwickeln. Drei weitere Kooperationsvorhaben sind bereits in der Planung.

Der Technologie- und Wissenstransfer ermöglicht insbesondere kleinen und mittelständischen Unternehmen (KMU) den Zugang zu technologischer Spitzenforschung, besonders diesen bleibt der Zugang zu Innovationen oftmals aufgrund des Fehlens eigener Forschungsabteilungen versagt. Die IWS GmbH hat das Netzwerkmanagement für FIMATEC übernommen und unterstützt die Partner von der ersten Idee über die Suche nach passenden Projektpartnern bis zur Ausarbeitung und Koordination von Förderanträgen. Angestrebt wird eine Förderung durch das Zentrale Innovationsprogramm Mittelstand (ZIM), das Unternehmen in Kooperation mit Forschungseinrichtungen Fördermöglichkeiten für eine breite Palette an technischen Innovationsvorhaben bietet.

FIMATEC-Netzwerkpartner
all ahead composites GmbH | Veitshöchheim | www.bike-ahead-composites.de
Altropol Kunststoff GmbH | Stockelsdorf | www.altropol.de
Diondo GmbH | Hattingen | www.diondo.com
Mailinger innovative fiber solutions GmbH | Sontra | www.mailinger.de
Sanitätshaus Manfred Klein GmbH & Co. KG | Stade | www.klein-sanitaetshaus.de
STREHL GmbH & Co KG | Bremervörde | www.rehastrehl.de
WESOM Textil GmbH | Olbersdorf | www.wesom-textil.de
Faserinstitut Bremen e.V. (FIBRE) | www.faserinstitut.de
E.F.M. GmbH | Olbersdorf | www.efm-gmbh.de
REHA-OT Lüneburg Melchior und Fittkau GmbH | Olbersdorf | www.rehaot.de
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM | Bremen | www.ifam.fraunhofer.de
Leibniz-Institut für Polymerforschung Dresden e.V. (IPF) | www.ipfdd.de
Institut für Polymertechnologien Wismar e.V. (IPT) | www.ipt-wismar.de
Institut für Verbundwerkstoffe GmbH | Kaiserslautern | www.ivw.uni-kl.de
Assoziierte Netzwerkpartner
9T Labs AG | Zürich, Schweiz | www.9tlabs.com
Fachhochschule Nordwestschweiz, Institut für Kunststofftechnik (FHNW) | www.fhnw.ch
KATZ - Kunststoff Ausbildungs- und Technologie-Zentrum | Aarau, Schweiz | www.katz.ch

Quelle:

Textination / IWS Innovations- und Wissensstrategien GmbH

Pixabay: INNO4COV-19 (c) Pixabay
08.12.2020

Fraunhofer FEP: INNO4COV-19 - Förderung von Innovationen zur Covid-19 Diagnose, Prävention und Überwachung

Das kürzlich gestartete und von der Europäischen Kommission geförderte 6,1-Millionen-Euro-Projekt INNO4COV-19 (Förderkennzeichen 101016203) soll die Vermarktung neuer Produkte zur Bekämpfung von COVID-19 in den nächsten zwei Jahren in ganz Europa unterstützen. Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP trägt hierzu sein Know-how in der Sterilisation mithilfe beschleunigter Elektronen und in der augennahen Visualisierung bei.

Das kürzlich gestartete und von der Europäischen Kommission geförderte 6,1-Millionen-Euro-Projekt INNO4COV-19 (Förderkennzeichen 101016203) soll die Vermarktung neuer Produkte zur Bekämpfung von COVID-19 in den nächsten zwei Jahren in ganz Europa unterstützen. Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP trägt hierzu sein Know-how in der Sterilisation mithilfe beschleunigter Elektronen und in der augennahen Visualisierung bei.

Im Rahmen des 6,1 Millionen Euro-Projekts INNO4COV-19 soll in den nächsten zwei Jahren die Kommerzialisierung neuer Produkte zur Bekämpfung von COVID-19 in ganz Europa unterstützt werden. Auf der Suche nach einer raschen Entwicklung von Produkten – angefangen bei Medizintechnologien bis hin zu Überwachungslösungen - wird das Projekt Innovationen zur Bekämpfung des neuen Coronavirus fördern, die Technologieführerschaft Europas und die Industrie stärken, um die Sicherheit und das Wohl der Bürger zu schützen.

Der virtuelle Auftakt des am 1. Oktober gestarteten Projekts fand vom 6. bis 7. Oktober 2020 mit Unterstützung zweier Vertreter der Europäischen Kommission statt.

Unter der Leitung des INL – International Iberian Nanotechnology Laboratory suchen die 11 Konsortialpartner nun nach effizienten und schnellen Lösungen, die gemeinsam mit den anderen aktiv beteiligten Industrie- und RTO-Partnern im Kampf gegen COVID-19 helfen können.

Ziel des Projekts INNO4COV-19 ist es, mit einer „Lab-to-Fab“-Plattform eine gemeinsame Ressourcenplattform zur Zusammenarbeit zu schaffen, auf der Unternehmen und Referenzlabors die richtigen Werkzeuge zur Entwicklung und Implementierung innovativer Technologien finden – von der ersten Ideenbewertung bis zur Markteinführung. Diese Arbeiten werden im Rahmen der Coronavirus-Initiative der Europäischen Union und in enger Zusammenarbeit mit allen dort geförderten Projekten durchgeführt, um die Markteinführungszeit erfolgversprechender Produkte zu verkürzen.

INNO4COV-19 wird bis zu 30 Testfälle und Anwendungen aus verschiedenen Bereichen unterstützen, die von der Medizintechnik über Umweltüberwachungssystemen, Sensoren, Schutz von Mitarbeitern des Gesundheitswesens bis hin zu künstlicher Intelligenz und Data Mining reichen. Um dies zu realisieren, vergibt INNO4COV-19 die Hälfte des Budgets an 30 Unternehmen, die im ersten Jahr des Projekts im Rahmen offener Aufrufe ausgewählt wurden.

Der erste Aufruf wird im November 2020 auf mehreren Plattformen veröffentlicht. Die ausgewählten Firmen erhalten jeweils bis zu 100.000 € und profitieren von der technischen, regulatorischen und geschäftlichen Expertise des INNO4COV-19-Konsortiums.

Rolle-zu-Rolle- und Elektronenstrahltechnologien zur großflächigen Sterilisation von textilen Materialien
Bei Pandemie-Ereignissen wie COVID-19, MERS, SARS oder Ebola wurde aufgrund der der plötzlichen Nachfragespitzen ein erheblicher Mangel an sterilem Material für medizinische Zwecke festgestellt. Das Fraunhofer FEP wird hierfür seine Rolle-zu-Rolle Anlagentechnik und Elektronenstrahltechnologien für die Sterilisation von Textilmaterialien auf großen Flächen in das Projekt INNO4COV-19 einbringen.

Normalerweise wird das Textilmaterial unter unsterilen Bedingungen hergestellt und muss daher vor der Auslieferung an die Verbraucher (z. B. Krankenhäuser) sterilisiert werden. Die Sterilisation auf Produkt-Level (Sterilisation der fertig hergestellten Masken) ist im Durchsatz begrenzt, da eine hohe Anzahl von einzelnen kleinen Stücken sterilisiert werden muss.

Projektleiter Dr. Steffen Guenther vom Fraunhofer FEP erläutert die Rolle und die Ziele des Instituts näher: "INNO4COV-19 wird eine Prozesskette für die Elektronenstrahl-Sterilisation von Gewebematerial in Rollenform mit hohem Durchsatz (4500 m²/h) in einer einzigen Pilotmaschine TRL 7 aufbauen und verifizieren, um eine effiziente Herstellung von sterilen Gesichtsmasken und anderen gewebebasierten Sterilprodukten zu ermöglichen, ohne dass das Endprodukt sterilisiert werden muss.“

OLED-Mikrodisplays zur Erkennung infizierter Personen
Ein weiteres Thema des Fraunhofer FEP im Rahmen von INNO4COV-19 befasst sich mit der frühestmöglichen Erkennung von infizierten Personen. Eine weit verbreitete Strategie zur Früherkennung von Personen mit Krankheitssymptomen ist das Körpertemperatur-Screening mit Wärmebildkameras.
Eine Option, um eine kontinuierliche Überwachung der Körpertemperatur zu ermöglichen, ist die Integration einer Wärmekamera in ein intelligentes, tragbares Gerät. Das Fraunhofer FEP setzt dazu seine OLED-Mikrodisplay-Technologie ein. Damit können kleine (< 3 × 2 cm²), ultradünne (< 5 mm einschließlich Steuerschaltkreis) und extrem stromsparende Geräte (< 5 mW) visuelle Informationen anzeigen. In Kombination mit einem Infrarotsensor wird eine Wärmebildkamera realisiert, die sowohl die Körpertemperatur misst als auch das Ergebnis direkt über eine augennahe Visualisierung anzeigt. Das System kann in intelligente Brillen, Kopfbedeckungen, Kappen oder persönliche Gesichtsschutzschilde eingebettet werden.

Zum Projekt:
Das Projekt wird im Rahmen des Horizon 2020 Forschungs- und Innovationsprogramms der Europäischen Union gefördert.
Förderkennzeichen: 101016203

Quelle:

Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP