Textination Newsline

Zurücksetzen
2 Ergebnisse
(c) Fraunhofer IKTS
02.08.2022

Fraunhofer-Technologie: Hightech-Weste überwacht Lungenfunktion

Patienten mit schweren Atemwegs- oder Lungenerkrankungen benötigen intensive Behandlung und ständige Kontrolle der Lungenfunktionen. Fraunhofer-Forschende haben im Projekt »Pneumo.Vest« eine Technologie entwickelt, bei der Akustiksensoren in einer Textilweste die Lungengeräusche erfassen. Eine Software setzt die Signale in eine visuelle Darstellung um. Auf diese Weise können Patientinnen und Patienten auch außerhalb von Intensivstationen fortlaufend überwacht werden. Die Technologie erweitert die Diagnosemöglichkeiten und verbessert die Lebensqualität der Betroffenen.

Das Stethoskop gehört seit mehr als 200 Jahren zum täglichen Arbeitswerkzeug von Medizinern und gilt als Symbol für die ärztliche Kunst schlechthin. In TV-Krankenhaus-Serien eilen Ärzte mit Stethoskop um den Hals über die Flure. Tatsächlich können erfahrene Ärztinnen oder Ärzte damit erstaunlich genau Herztöne und Lungengeräusche abhören und dementsprechend Krankheiten diagnostizieren.

Patienten mit schweren Atemwegs- oder Lungenerkrankungen benötigen intensive Behandlung und ständige Kontrolle der Lungenfunktionen. Fraunhofer-Forschende haben im Projekt »Pneumo.Vest« eine Technologie entwickelt, bei der Akustiksensoren in einer Textilweste die Lungengeräusche erfassen. Eine Software setzt die Signale in eine visuelle Darstellung um. Auf diese Weise können Patientinnen und Patienten auch außerhalb von Intensivstationen fortlaufend überwacht werden. Die Technologie erweitert die Diagnosemöglichkeiten und verbessert die Lebensqualität der Betroffenen.

Das Stethoskop gehört seit mehr als 200 Jahren zum täglichen Arbeitswerkzeug von Medizinern und gilt als Symbol für die ärztliche Kunst schlechthin. In TV-Krankenhaus-Serien eilen Ärzte mit Stethoskop um den Hals über die Flure. Tatsächlich können erfahrene Ärztinnen oder Ärzte damit erstaunlich genau Herztöne und Lungengeräusche abhören und dementsprechend Krankheiten diagnostizieren.

Doch nun bekommt das Stethoskop Verstärkung. Forschende am Fraunhofer-Institut für Keramische Technologien und Systeme IKTS am Standort Berlin haben im Projekt Pneumo.Vest eine Textilweste mit integrierten Akustiksensoren entwickelt, die eine leistungsfähige Ergänzung zum klassischen Stethoskop darstellt. In der Vorder- und Rückseite der Weste sind Akustiksensoren auf Piezokeramik-Basis eingearbeitet. Diese registrieren rund um den Thorax jedes noch so leise Geräusch, das die Lunge produziert. Eine Software nimmt die Signale auf und gibt diese elektrisch verstärkt aus. Zusätzlich erscheint eine visuelle Darstellung der Lunge auf einem Display. Da die Software die Position jedes einzelnen Sensors kennt, platziert sie dessen Daten gleich an der entsprechenden Stelle. So entsteht ein detailreiches akustisches wie optisches Szenario der Belüftungssituation aller Lungenbereiche. Das Besondere daran: Da das System die Daten permanent erfasst und speichert, kann die Untersuchung zu jedem beliebigen Zeitpunkt ohne Beisein des Krankenhauspersonals erfolgen. Außerdem zeigt Pneumo.Vest den Status der Lunge im zeitlichen Verlauf an, also beispielsweise über die vergangenen 24 Stunden. Auch die klassische Auskultation direkt am Patienten ist selbstverständlich möglich. Doch anstelle der manuellen und punktuellen Auskultation mit dem Stethoskop kommen viele Sensoren gleichzeitig zum Einsatz.

»Pneumo.Vest will das Stethoskop nicht überflüssig machen und ist auch kein Ersatz für die Fähigkeiten erfahrener Pneumologen. Doch eine Auskultation oder auch ein Lungen-CT stellen immer nur eine Momentaufnahme zum Zeitpunkt der Untersuchung dar. Der Mehrwert unserer Technik besteht darin, dass sie ähnlich wie ein Langzeit-EKG die kontinuierliche Überwachung der Lunge erlaubt, und zwar auch dann, wenn der Patient oder die Patientin nicht an Geräten auf der Intensivstation angeschlossen, sondern auf der Normalstation untergebracht ist«, erläutert Ralf Schallert, Projektleiter am Fraunhofer IKTS.

Machine-Learning-Algorithmen unterstützen die Diagnose
Herzstück der Weste ist neben den Akustiksensoren die Software. Sie ist für die Speicherung, Darstellung und Analyse der Daten zuständig. Mit ihr kann der Arzt oder die Ärztin das akustische Geschehen in einzelnen Lungenbereichen gezielt auf dem Display betrachten. Der Einsatz von Algorithmen der digitalen Signalverarbeitung ermöglicht eine gezielte Bewertung akustischer Signale. So ist es beispielsweise möglich, den Herzschlag herauszufiltern oder charakteristische Frequenzbereiche zu verstärken. Lungengeräusche wie Rascheln oder Röcheln sind dann viel deutlicher hörbar.

Die Forschenden am Fraunhofer IKTS entwickeln darüber hinaus Machine-Learning-Algorithmen. Diese sind zukünftig in der Lage, die komplexe Geräuschkulisse im Thorax zu strukturieren und zu klassifizieren. Die endgültige Bewertung und Diagnose nimmt dann die Pneumologin oder der Pneumologe vor.

Entlastung von Intensivstationen
Auch die Patientinnen und Patienten profitieren von der digitalen Sensor-Alternative. Mit angelegter Weste können sie ohne ständige Beobachtung durch das medizinische Personal genesen. Sie können auf die Normalstation verlegt und vielleicht sogar nach Hause geschickt werden und sich weitgehend frei bewegen. Die Lunge wird trotzdem fortlaufend kontrolliert und eine plötzlich eintretende Verschlechterung sofort an das medizinische Personal gemeldet.

Erste Tests mit Personal an der Klinik für Intensivmedizin der Universität Magdeburg zeigen, dass das Konzept in der Praxis aufgeht. »Das Feedback von Ärztinnen und Ärzten war überaus positiv. Die Kombination aus Akustiksensoren, Visualisierung und Machine-Learning-Algorithmen wird in der Lage sein, eine Reihe von unterschiedlichen Lungengeräuschen zuverlässig zu charakterisieren«, erläutert Schallert. Auf die Technik freut sich auch Dr. Alexander Uhrig von der Universitätsmedizin Berlin. Der Spezialist für Infektiologie und Pneumologie an der renommierten Charité war einer der Initiatoren der Idee: »Pneumo.Vest adressiert genau das, was wir brauchen. Wir bekommen damit ein Instrument, das die Diagnosemöglichkeiten erweitert, unser Klinikpersonal entlastet und den Klinikaufenthalt für die Patientinnen und Patienten angenehmer gestaltet.«  

Die Technologie ist in erster Linie für Beatmungspatienten konzipiert, doch sie eignet sich genauso gut für Menschen in Pflegeeinrichtungen oder auch für den Einsatz im Schlaflabor. Eine weitere Anwendung ist das Training junger Ärztinnen und Ärzte für die Auskultation.

Bedarf für Clinical Grade Wearables steigt
Die Forschenden am Fraunhofer IKTS haben mit Pneumo.Vest ein Produkt konzipiert, das wie gemacht ist für die zunehmend angespannte Situation in Krankenhäusern. So müssen in Deutschland jährlich 385 000 Patienten mit Atemwegs- oder Lungenerkrankungen in stationäre Behandlung. Über 60 Prozent sind länger als 24 Stunden ans Beatmungsgerät angeschlossen. Der aktuelle Anstieg bei Beatmungspatienten während der Corona-Pandemie ist dabei nicht mitgerechnet. Durch die steigende Lebenserwartung rechnet die Medizinbranche auch mit einer Zunahme an älteren Patientinnen und Patienten mit Atemproblemen. Mithilfe der Technik aus dem Fraunhofer IKTS könnten die Krankenhäuser und insbesondere die teuren Intensivstationen entlastet werden, da die Betten nicht mehr so lange belegt werden.

Hinzu kommt, dass der Markt für sogenannte Clinical Grade Wearables (CGW) rapide wächst. Darunter versteht man kompakte medizinische Geräte, die man direkt am Körper trägt und die Vitalfunktionen wie etwa Herzschlag, Sauerstoffsättigung des Blutes, Atemfrequenz oder Hauttemperatur messen. Als flexibel einsetzbares medizinisches Gerät passt Pneumo.Vest bestens zu dieser Entwicklung. Ihr geliebtes Stethoskop werden die Ärztinnen und Ärzte aber auch in Zukunft noch benutzen.

Fraunhofer-Clusterprojekt »M³ Infekt«
Pneumo.Vest ist ein Teil des Clusterprojekts M³ Infekt. Ziel ist es, Monitoringsysteme zur dezentralen Überwachung von Patientinnen und Patienten zu entwickeln. Durch die laufende Überwachung der Vitalfunktionen wird eine Verschlechterung des Zustands schnell erkannt und Maßnahmen zur Behandlung werden veranlasst. M3 Infekt lässt sich auch für viele Krankheitsbilder und Szenarien einsetzen. Die Systeme sind modular und multimodal aufgebaut, sodass Biosignale wie Herzrate, EKG, Sauerstoffsättigung oder Atemfrequenz und -volumen gemessen werden können.

An dem Clusterprojekt unter Federführung des Fraunhofer-Instituts für Integrierte Schaltungen IIS in Dresden arbeiten zehn Fraunhofer-Institute. Als medizinische Partner sind das Klinikum Magdeburg, die Charité – Universitätsmedizin Berlin sowie die Universitätskliniken Erlangen und Dresden eingebunden.

Quelle:

Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

LKW-Planen als Stromerzeuger Bild von Peter H. auf Pixabay
20.08.2019

TEXTILE SOLARZELLEN: STROM AUS STOFF

LKW-Planen als Stromerzeuger?

LKW-Planen als Stromerzeuger?
Neuartige textile Solarzellen von Fraunhofer-Forscherinnen und -Forschern aus Dresden machen es möglich: Über sie könnten die Anhänger den benötigten Strom – etwa für Kühlaggregate – autark erzeugen. Kurzum: Textile Solarzellen erweitern die Möglichkeiten enorm, Strom aus der Sonnenstrahlung zu gewinnen. Sie stellen somit eine sinnvolle Ergänzung zu herkömmlichen Siliziumzellen dar. Solarzellen auf den Dächern sind längst Usus, ebenso wie große Solarparks. Künftig sollen jedoch auch solche Flächen zur Energieerzeugung genutzt werden, die bislang nicht dazu taugten. LKW-Planen etwa könnten die Anhänger autark mit dem Strom versorgen, den der Fahrer während der Fahrt und auf Rastplätzen verbraucht oder der auf Logistikplätzen für die LKW-Ortung benötigt wird. Zudem könnten ganze Gebäudefronten zur Stromerzeugung beitragen, indem sie nicht wie bisher verputzt, sondern mit stromerzeugenden Abspanntextilien verkleidet werden. Bei Glasfassaden könnten Abschattungstextilien wie Rollos Hunderte von Quadratmetern in Stromerzeugungsflächen umwandeln.

Glasfasergewebe als Solarzellenbasis
Möglich machen es textile, biegsame Solarzellen, die Forscherinnen und Forscher vom FraunhoferInstitut für Keramische Technologien und Systeme IKTS entwickelt haben – gemeinsam mit dem Fraunhofer-Institut für Elektronische Nanosysteme ENAS, dem Sächsischen Textilforschungsinstitut e.V. und den Firmen erfal GmbH & Co. KG, PONGS Technical Textiles GmbH, Paul Rauschert GmbH & Co. KG und GILLES PLANEN GmbH. »Über verschiedene Beschichtungsverfahren können wir Solarzellen direkt auf technischen Textilien herstellen«, erläutert Dr. Lars Rebenklau, Gruppenleiter für Systemintegration und AVT am Fraunhofer IKTS. Sprich: Die Forscher verwenden kein Glas oder Silizium wie bei herkömmlichen Solarmodulen, sondern Textilien als Substrat. »Das jedoch ist alles andere als leicht – schließlich sind die Anlagen in den textilverarbeitenden Unternehmen mit fünf bis sechs Metern Stoffbreite und Stofflängen von tausend Metern riesig groß. Dazu kommt: Die Textilien müssen während der Beschichtung Temperaturen von etwa 200 Grad Celsius überstehen«, ergänzt Dr. Jonas Sundqvist, Gruppenleiter für Dünnschichttechnologien am Fraunhofer IKTS. Auch andere Anforderungen wie Brandschutz-Vorschriften, große Stabilität und ein günstiger Preis sind für die Herstellung von Solarzellen elementar. »Wir haben uns im Konsortium daher für ein Glasfasergewebe entschieden, das all diese Anforderungen erfüllt«, sagt Rebenklau.

Bewusst auf Standardverfahren gesetzt
Eine Herausforderung stellte auch das Aufbringen der verschiedenen Schichten einer Solarzelle auf das Gewebe dar – also die Grundelektrode, die photovoltaisch wirksame Schicht und die Deckelektrode. Denn verglichen mit diesen nur ein bis zehn Mikrometer dünnen Schichten gleicht die Oberfläche eines Textils einem riesigen Gebirge. Die Forscher greifen daher zu einem Trick: Sie bringen zunächst eine Einebnungsschicht auf das Textil auf, die Berge und Täler ausgleicht. Dazu nutzen sie den Transferdruck – ein Standardverfahren der Textilbranche, das auch zum Gummieren verwendet wird. Auch alle weiteren Produktionsprozesse haben die Forschenden von Anfang an so gestaltet, dass sie sich problemlos in die Fertigungslinien der Textilindustrien einfügen lassen: So bringen sie die Elektroden aus elektrisch leitfähigem Polymer ebenso wie die photovoltaisch wirksame Schicht über das gängige Rolle-zu-Rolle-Verfahren auf. Um die Solarzelle möglichst robust werden zu lassen, laminieren die Forscherinnen und Forscher zusätzlich eine Schutzschicht auf.

Marktreife Solartextilien in etwa fünf Jahren
Den ersten Prototyp hat das Forscherteam bereits hergestellt. »Wir konnten zeigen, dass unsere textile Solarzelle an sich funktioniert«, sagt Rebenklau. »Ihre Effizienz liegt momentan bei 0,1 bis 0,3 Prozent.« In einem Nachfolgeprojekt arbeiten der Ingenieur und seine Kollegen nun daran, die Effizienz auf über fünf Prozent zu steigern – denn ab diesem Wert rechnet sich die textile Solarzelle. Zwar erreichen Siliziumzellen mit zehn bis 20 Prozent deutlich höhere Effizienzwerte. Allerdings soll die neuartige Zelle ja nicht mit den herkömmlichen konkurrieren, sondern sie sinnvoll ergänzen. Auch die Lebensdauer der textilen Solarzelle wollen die Forscherinnen und Forscher in den kommenden Monaten untersuchen und optimieren. Wenn alles funktioniert wie erhofft, könnte die textile Solarzelle in etwa fünf Jahren auf den Markt kommen. Dann wäre das ursprüngliche Ziel des Projekts PhotoTex erreicht: Neue Anregungen für den Textilstandort Deutschland zu finden und die Wettbewerbsfähigkeit dieser Industriebranche zu steigern.