Textination Newsline

Zurücksetzen
25 Ergebnisse
Wasserabweisende Fasern ohne PFAS Bild: Empa
22.04.2024

Wasserabweisende Fasern ohne PFAS

Regenjacken, Badehosen oder Polsterstoffe: Textilien mit wasserabweisenden Eigenschaften benötigen eine chemische Imprägnierung. Fluor-haltige PFAS-Chemikalien sind zwar wirkungsvoll, schaden aber der Gesundheit und reichern sich in der Umwelt an. Empa-Forschende entwickeln nun ein Verfahren mit alternativen Substanzen, mit dem sich umweltfreundliche wasserabweisende Textilfasern erzeugen lassen. Erste Analysen zeigen: Die „guten“ Fasern weisen Wasser stärker ab und trocknen schneller als die der herkömmlichen Produkte.

Regenjacken, Badehosen oder Polsterstoffe: Textilien mit wasserabweisenden Eigenschaften benötigen eine chemische Imprägnierung. Fluor-haltige PFAS-Chemikalien sind zwar wirkungsvoll, schaden aber der Gesundheit und reichern sich in der Umwelt an. Empa-Forschende entwickeln nun ein Verfahren mit alternativen Substanzen, mit dem sich umweltfreundliche wasserabweisende Textilfasern erzeugen lassen. Erste Analysen zeigen: Die „guten“ Fasern weisen Wasser stärker ab und trocknen schneller als die der herkömmlichen Produkte.

Soll eine Badehose nach dem Schwimmen ihre Form behalten und schnell trocknen, muss sie zwei Eigenschaften kombinieren: Sie muss elastisch sein und darf sich nicht mit Wasser vollsaugen. Eine derartige wasserabweisende Wirkung lässt sich in der Textilindustrie durch das Behandeln der Textilien mit Chemikalien erreichen, die das elastische Kleidungsstück mit sogenannten hydrophoben Eigenschaften ausstatten. In den 1970er-Jahren begann man, hierfür neuartige synthetische Fluorverbindungen zu verwenden – Verbindungen, die bedenkenlos unzählige Anwendungsmöglichkeiten zu bieten schienen, sich später aber als höchst problematisch herausstellten. Denn diese Fluor-Kohlenstoff-Verbindungen, kurz PFAS, reichern sich in der Umwelt an und schaden der Gesundheit. Empa-Forschende entwickeln daher gemeinsam mit Schweizer Textilunternehmen alternative umweltfreundliche Verfahren, mit denen sämtliche Fasern wasserabweisend ausgerüstet werden können. Dirk Hegemann vom „Advanced Fibers“-Labor der Empa in St. Gallen erläutert das von der Innosuisse geförderte Projekt: „Wir setzen sogenannte hochvernetzte Siloxane ein, die Silikon-ähnliche Schichten erzeugen und – anders als Fluor-haltige PFAS – unbedenklich sind.“

Die Plasma-Beschichtungsanlagen der Empa reichen von handlichen Tischmodellen bis hin zu raumfüllenden Geräten. Für die Faserbeschichtung werden die Siloxane in einem reaktiven Gas zerstäubt und aktiviert. Auf diese Weise behalten sie ihre funktionalen Eigenschaften und umschliessen die Textilfasern mit einer nur 30-Nanometer-feinen wasserabweisenden Hülle. Derart beschichtete Fäden lassen sich danach zu wasserabweisenden Textilien jeglicher Art verarbeiten, etwa zu Kleidungsstücken oder technischen Textilien wie Polsterstoffe.

Der Vorteil gegenüber herkömmlichen nasschemischen Verfahren: Selbst bei komplex strukturierten Textilien ist die lückenlose Verteilung der hydrophoben Substanzen bis in alle Windungen der verschlungenen Fasern gewährleistet. Dies ist zentral, denn schon eine winzige benetzbare Stelle würde genügen, damit Wasser in die Tiefe einer Badehose eindringt und so das schnelle Trocknen des Kleidungsstücks verhindert. „Es ist uns sogar gelungen, selbst anspruchsvollere, elastische Fasern mit dem neuen Verfahren dauerhaft zu imprägnieren, was bisher nicht möglich war“, so Empa-Forscher Hegemann.

Großes Interesse der Industrie
In ersten Laboranalysen schneiden Textilien aus den neuen Fasern mit umweltfreundlicher Beschichtung bereits leicht besser ab als herkömmliche PFAS-beschichtete Stoffe: Sie saugen weniger Wasser auf und trocknen schneller. So richtig ins Gewicht fallen die wundersamen Eigenschaften der Fluor-freien Beschichtung aber erst nach mehrmaligem Waschen der Textilien: Während die herkömmliche PFAS-Imprägnierung bei dehnbaren Textilien bereits deutlich leidet, bleibt die Fluor-freie Faser auf hohem Niveau. Damit ist sie trotz Beanspruchung doppelt so wasserabweisend und trocknet deutlich effizienter.

Hegemann und sein Team sind nun daran, das Fluor-freie Laborverfahren zu leistungsfähigen und wirtschaftlich tragfähigen industriellen Prozessen zu skalieren. „Die Industrie ist sehr interessiert, nachhaltige Alternativen zu PFAS zu finden“, sagt Hegemann. Die Schweizer Textilunternehmen Lothos KLG, beag Bäumlin & Ernst AG und AG Cilander sind daher bereits mit an Bord, wenn es darum geht, umweltfreundliche Fluor-freie Textilien zu entwickeln. „Eine gelungene Zusammenarbeit, die Materialien, Fasertechnologie und Plasmabeschichtung kombiniert und zu einer innovativen, nachhaltigen und effektiven Lösung führt“, sagt etwa Dominik Pregger von Lothos. Bernd Schäfer, CEO von beag, fügt an: „Die Technologie ist umweltfreundlich und verfügt gleichzeitig über ein interessantes wirtschaftliches Potenzial.“

Weitere Informationen:
Empa PFAS Plasma Fasern
Quelle:

Dr. Andrea Six, EMPA

Foto: rottonara, Pixabay
29.01.2024

Naturalistische Seide aus künstlicher Spinndrüse gesponnen

Unter der Leitung von Keiji Numata ist es Wissenschaftlern des RIKEN Center for Sustainable Resource Science in Japan zusammen mit Kollegen des RIKEN Pioneering Research Cluster gelungen, ein Gerät zu entwickeln, das künstliche Spinnenseide spinnt, die der natürlichen Spinnenseide sehr ähnlich ist. Die künstliche Seidendrüse war in der Lage, die komplexe molekulare Struktur der Seide nachzubilden, indem sie die verschiedenen chemischen und physikalischen Veränderungen nachahmte, die in der Seidendrüse einer Spinne natürlich auftreten. Diese umweltfreundliche Innovation ist ein großer Schritt in Richtung Nachhaltigkeit und könnte für verschiedene Branchen relevant sein. Diese Studie wurde am 15. Januar in der Fachzeitschrift Nature Communications veröffentlicht.

Unter der Leitung von Keiji Numata ist es Wissenschaftlern des RIKEN Center for Sustainable Resource Science in Japan zusammen mit Kollegen des RIKEN Pioneering Research Cluster gelungen, ein Gerät zu entwickeln, das künstliche Spinnenseide spinnt, die der natürlichen Spinnenseide sehr ähnlich ist. Die künstliche Seidendrüse war in der Lage, die komplexe molekulare Struktur der Seide nachzubilden, indem sie die verschiedenen chemischen und physikalischen Veränderungen nachahmte, die in der Seidendrüse einer Spinne natürlich auftreten. Diese umweltfreundliche Innovation ist ein großer Schritt in Richtung Nachhaltigkeit und könnte für verschiedene Branchen relevant sein. Diese Studie wurde am 15. Januar in der Fachzeitschrift Nature Communications veröffentlicht.

Spinnenseide ist bekannt für ihre außergewöhnliche Stärke, Flexibilität und Leichtigkeit, vergleichbar mit Stahl desselben Durchmessers, aber mit einem unvergleichlichen Verhältnis von Stärke zu Gewicht. Darüber hinaus ist sie biokompatibel, d. h. sie kann in der Medizin eingesetzt werden, und biologisch abbaubar. Warum wird dann nicht alles aus Spinnenseide hergestellt? Die Gewinnung von Spinnenseide in großem Maßstab hat sich aus verschiedenen Gründen als unpraktisch erwiesen, so dass Wissenschaftler ein Verfahren entwickeln mussten, um sie im Labor herzustellen.

Spinnenseide ist eine Biopolymerfaser, die aus großen Proteinen mit sich stark wiederholenden Sequenzen, den sogenannten Spidroinen, besteht. In den Seidenfasern befinden sich molekulare Unterstrukturen, die so genannten β-Faltblätter, die richtig ausgerichtet sein müssen, damit die Seidenfasern ihre einzigartigen mechanischen Eigenschaften erhalten. Die Wiederherstellung dieser komplexen molekularen Struktur hat die Wissenschaftler jahrelang vor ein Rätsel gestellt. Anstatt zu versuchen, den Prozess von Grund auf neu zu entwickeln, wählten die RIKEN-Wissenschaftler den Ansatz der Biomimikry. Numata erklärt: „In dieser Studie haben wir versucht, die natürliche Spinnenseidenproduktion mit Hilfe der Mikrofluidik zu imitieren, bei der kleine Mengen von Flüssigkeiten durch enge Kanäle fließen und manipuliert werden. Man könnte sogar sagen, dass die Seidendrüse der Spinne als eine Art natürliches mikrofluidisches Gerät funktioniert.“

Das von den Wissenschaftlern entwickelte Gerät sieht aus wie ein kleiner rechteckiger Kasten, in den winzige Kanäle eingearbeitet sind. Die Spidroin-Vorläuferlösung wird an einem Ende platziert und dann mit Hilfe von Unterdruck zum anderen Ende gezogen. Während die Spidroine durch die mikrofluidischen Kanäle fließen, sind sie präzisen Veränderungen der chemischen und physikalischen Umgebung ausgesetzt, die durch das Design des mikrofluidischen Systems ermöglicht werden. Unter den richtigen Bedingungen bauten sich die Proteine selbst zu Seidenfasern mit ihrer charakteristischen komplexen Struktur auf.

Um die richtigen Bedingungen zu finden, experimentierten die Wissenschaftler und konnten schließlich die Wechselwirkungen zwischen den verschiedenen Bereichen des mikrofluidischen Systems optimieren. Unter anderem entdeckten sie, dass es nicht funktionierte, die Proteine mit Kraft durchzudrücken. Nur wenn sie Unterdruck einsetzten, um das Spidroin so zu ziehen, dass es sich auflöst, konnten kontinuierliche Seidenfasern mit der korrekten Ausrichtung der β-Faltblätter entstehen.

„Es war überraschend, wie robust das mikrofluidische System war, sobald die verschiedenen Bedingungen festgelegt und optimiert waren“, sagt der leitende Wissenschaftler Ali Malay, einer der Koautoren der Studie. „Der Aufbau der Fasern erfolgte spontan, extrem schnell und in hohem Maße reproduzierbar. Wichtig ist, dass die Fasern die ausgeprägte hierarchische Struktur aufwiesen, die in natürlichen Seidenfasern zu finden ist.“

Die künstliche Herstellung von Seidenfasern mit dieser Methode könnte zahlreiche Vorteile mit sich bringen. Sie könnte nicht nur dazu beitragen, die negativen Auswirkungen der derzeitigen Textilherstellung auf die Umwelt zu verringern, sondern die biologisch abbaubare und biokompatible Beschaffenheit der Spinnenseide macht sie ideal für biomedizinische Anwendungen wie Nahtmaterial und künstliche Bänder.

„Im Idealfall wollen wir eine Wirkung in der realen Welt erzielen“, sagt Numata. „Um dies zu erreichen, müssen wir unsere Faserproduktionsmethode skalieren und zu einem kontinuierlichen Prozess machen. Außerdem werden wir die Qualität unserer künstlichen Spinnenseide anhand verschiedener Metriken bewerten und auf dieser Grundlage weitere Verbesserungen vornehmen.“

Quelle:

RIKEN Center for Sustainable Resource Science, Japan

Neue leitfähige Faser auf Baumwollbasis für Smart Textiles entwickelt Foto: Dean Hare, WSU Photo Services
29.12.2023

Neue leitfähige Faser auf Baumwollbasis für Smart Textiles entwickelt

Ein einzelner Faserstrang, der an der Washington State University entwickelt wurde, hat die Flexibilität von Baumwolle und die elektrische Leitfähigkeit eines Polymers namens Polyanilin.

Das neu entwickelte Material zeigt gutes Potenzial für tragbare E-Textiles. Die WSU-Forscher testeten die Fasern mit einem System, das eine LED-Lampe mit Strom versorgte, und einem anderen, das Ammoniakgas aufspürte. Ihre Ergebnisse veröffentlichten sie in der Zeitschrift „Carbohydrate Polymers“.

„Wir haben eine Faser aus zwei Schichten: eine Schicht ist die herkömmliche Baumwolle, die flexibel und stark genug für den täglichen Gebrauch ist, und die andere Seite ist das leitfähige Material", sagt Hang Liu, Textilwissenschaftlerin an der WSU und Autorin der Studie.

„Die Baumwolle kann das leitfähige Material tragen, das die gewünschte Funktion erfüllen kann.“

Ein einzelner Faserstrang, der an der Washington State University entwickelt wurde, hat die Flexibilität von Baumwolle und die elektrische Leitfähigkeit eines Polymers namens Polyanilin.

Das neu entwickelte Material zeigt gutes Potenzial für tragbare E-Textiles. Die WSU-Forscher testeten die Fasern mit einem System, das eine LED-Lampe mit Strom versorgte, und einem anderen, das Ammoniakgas aufspürte. Ihre Ergebnisse veröffentlichten sie in der Zeitschrift „Carbohydrate Polymers“.

„Wir haben eine Faser aus zwei Schichten: eine Schicht ist die herkömmliche Baumwolle, die flexibel und stark genug für den täglichen Gebrauch ist, und die andere Seite ist das leitfähige Material", sagt Hang Liu, Textilwissenschaftlerin an der WSU und Autorin der Studie.

„Die Baumwolle kann das leitfähige Material tragen, das die gewünschte Funktion erfüllen kann.“

Die Idee ist, solche Fasern als Sensoraufnäher mit flexiblen Schaltkreisen in die Kleidung zu integrieren, auch wenn es noch weiterer Entwicklung bedarf. Diese Aufnäher könnten Teil der Uniformen von Feuerwehrleuten, Soldaten oder Arbeitern sein, die mit Chemikalien umgehen, um gefährliche Expositionen zu erkennen. Andere Anwendungen sind Gesundheitsüberwachungen oder Sporthemden, die mehr können als die derzeitigen Fitnessmonitore.

„Es gibt bereits einige intelligente Wearables, wie z. B. intelligente Uhren, die die Bewegung und die menschlichen Vitalparameter überwachen können, aber wir hoffen, dass in Zukunft auch die Alltagskleidung diese Funktionen erfüllen kann“, so Liu. „Mode ist nicht nur Farbe und Stil, wie viele Leute denken: Mode ist Wissenschaft.“

In dieser Studie arbeitete das WSU-Team daran, die Herausforderungen beim Mischen des leitfähigen Polymers mit Baumwollzellulose zu meistern. Polymere sind Stoffe mit sehr großen Molekülen, die ein sich wiederholendes Muster aufweisen. In diesem Fall verwendeten die Forscher Polyanilin, auch bekannt als PANI, ein synthetisches Polymer mit leitenden Eigenschaften, das bereits in Anwendungen wie der Herstellung von Leiterplatten verwendet wird.

Polyanilin ist zwar von Natur aus leitfähig, aber spröde und kann daher nicht zu einer Faser für Textilien verarbeitet werden. Um dieses Problem zu bewältigen, lösten die WSU-Forscher Baumwollzellulose aus recycelten T-Shirts in einer Lösung und das leitfähige Polymer in einer anderen Lösung auf. Diese beiden Lösungen wurden dann zusammengeführt, und das Material wurde zu einer Faser extrudiert.

Das Ergebnis zeigte eine gute Grenzflächenbindung, was wiederum bedeutet, dass die Moleküle der verschiedenen Materialien durch Dehnung und Biegung zusammenbleiben würden.

Die richtige Mischung an der Schnittstelle zwischen Baumwollzellulose und Polyanilin zu erzielen, sei ein schwieriger Balanceakt, so Liu.

„Wir wollten, dass diese beiden Lösungen so zusammenwirken, dass sich die Baumwolle und das leitfähige Polymer bei Kontakt bis zu einem gewissen Grad vermischen und sozusagen zusammenkleben, aber wir wollten nicht, dass sie sich zu sehr vermischen, da sonst die Leitfähigkeit beeinträchtigt würde“, sagte sie.

Weitere WSU-Autoren dieser Studie waren der Hauptautor Wangcheng Liu sowie Zihui Zhao, Dan Liang, Wei-Hong Zhong und Jinwen Zhang. Diese Forschung wurde von der National Science Foundation und dem Walmart Foundation Project unterstützt.

Quelle:

Sara Zaske, WSU News & Media Relations

06.11.2023

Wandlungsfähige Stoffe aus formverändernden Fasern

Die kostengünstige FibeRobo, die mit bestehenden Textilherstellungstechniken kompatibel ist, könnte für adaptive Funktionsbekleidung oder Kompressionskleidung verwendet werden.

Forscher des MIT und der Northeastern University haben eine Flüssigkristall-Elastomerfaser entwickelt, die ihre Form als Reaktion auf thermische Reize verändern kann. Die Faser, die mit bestehenden Textilherstellungsmaschinen vollständig kompatibel ist, könnte zur Herstellung von sich wandelnden Textilien verwendet werden, z. B. für eine Jacke, die bei sinkenden Temperaturen stärker isoliert, um den Träger warm zu halten.

Stellen Sie sich vor, Sie bräuchten nicht mehr für jede Jahreszeit einen Mantel, sondern eine Jacke, die ihre Form dynamisch verändert, so dass sie bei sinkenden Temperaturen isolierender wird und Sie warmhält.

Die kostengünstige FibeRobo, die mit bestehenden Textilherstellungstechniken kompatibel ist, könnte für adaptive Funktionsbekleidung oder Kompressionskleidung verwendet werden.

Forscher des MIT und der Northeastern University haben eine Flüssigkristall-Elastomerfaser entwickelt, die ihre Form als Reaktion auf thermische Reize verändern kann. Die Faser, die mit bestehenden Textilherstellungsmaschinen vollständig kompatibel ist, könnte zur Herstellung von sich wandelnden Textilien verwendet werden, z. B. für eine Jacke, die bei sinkenden Temperaturen stärker isoliert, um den Träger warm zu halten.

Stellen Sie sich vor, Sie bräuchten nicht mehr für jede Jahreszeit einen Mantel, sondern eine Jacke, die ihre Form dynamisch verändert, so dass sie bei sinkenden Temperaturen isolierender wird und Sie warmhält.

Eine von einem interdisziplinären Team von MIT-Forschern entwickelte programmierbare Antriebsfaser könnte diese Vision eines Tages Wirklichkeit werden lassen. Die als FibeRobo bezeichnete Faser zieht sich bei einem Temperaturanstieg zusammen und kehrt sich dann selbst um, wenn die Temperatur sinkt - ohne eingebettete Sensoren oder andere feste Komponenten.

Die kostengünstige Faser ist voll kompatibel mit Textilherstellungstechniken, einschließlich Webmaschinen, Stickereien und industriellen Strickmaschinen, und kann kontinuierlich kilometerweise produziert werden. Dies könnte es Designern ermöglichen, eine breite Palette von Stoffen für unzählige Anwendungen mit Antriebs- und Sensorfunktionen auszustatten.

Die Fasern können auch mit einem leitfähigen Faden kombiniert werden, der als Heizelement wirkt, wenn elektrischer Strom durch ihn fließt. Auf diese Weise werden die Fasern durch Elektrizität aktiviert, was dem Nutzer eine digitale Kontrolle über die Form des Textils ermöglicht. So könnte ein Stoff beispielsweise seine Form auf der Grundlage digitaler Informationen, wie den Messwerten eines Herzfrequenzsensors, verändern.

„Wir verwenden Textilien für alles. Wir bauen Flugzeuge aus Faserverbundwerkstoffen, wir kleiden die Internationale Raumstation mit einem Strahlenschutzgewebe aus, wir verwenden sie für individuelle Bekleidung und Funktionsbekleidung. Vieles in unserer Umwelt ist anpassungsfähig und reaktionsfähig, aber das, was am anpassungsfähigsten und reaktionsfähigsten sein muss - Textilien - ist völlig träge“, sagt Jack Forman, Doktorand in der Tangible Media Group des MIT Media Lab, der auch am Center for Bits and Atoms tätig ist, und Hauptautor einer Arbeit über die aktivierende Faser.

An dem Papier arbeiten 11 weitere Forscher des MIT und der Northeastern University mit, darunter seine Berater Professor Neil Gershenfeld, der das Center for Bits and Atoms leitet, und Hiroshi Ishii, der Jerome B. Wiesner Professor of Media Arts and Sciences und Leiter der Tangible Media Group. Die Forschungsergebnisse werden auf dem ACM Symposium on User Interface Software and Technology vorgestellt.

Sich verwandelnde Materialien
Die MIT-Forscher wollten eine Faser, die sich geräuschlos bewegen und ihre Form drastisch verändern kann und gleichzeitig mit den üblichen Textilherstellungsverfahren kompatibel ist. Um dies zu erreichen, verwendeten sie ein Material, das als Flüssigkristall-Elastomer (LCE) bekannt ist.

Ein Flüssigkristall besteht aus einer Reihe von Molekülen, die wie eine Flüssigkeit fließen können, aber wenn sie sich absetzen, stapeln sie sich zu einer periodischen Kristallanordnung. Die Forscher bauen diese Kristallstrukturen in ein Elastomernetzwerk ein, das dehnbar ist wie ein Gummiband.

Wenn sich das LCE-Material erwärmt, geraten die Kristallmoleküle aus ihrer Ausrichtung und ziehen das Elastomernetzwerk zusammen, wodurch sich die Faser zusammenzieht. Wenn die Hitze weggenommen wird, kehren die Moleküle in ihre ursprüngliche Ausrichtung zurück und das Material erhält seine ursprüngliche Länge, erklärt Forman.

Durch sorgfältiges Mischen von Chemikalien zur Synthese der LCE können die Forscher die endgültigen Eigenschaften der Faser steuern, z. B. ihre Dicke oder die Temperatur, bei der sie aktiviert wird.

Sie perfektionierten eine Präparationstechnik, mit der LCE-Fasern hergestellt werden können, die bei hautverträglichen Temperaturen aktiviert werden können, so dass sie sich für tragbare Stoffe eignen.

"Es gibt viele Knöpfe, an denen wir drehen können. Es war eine Menge Arbeit, dieses Verfahren von Grund auf neu zu entwickeln, aber letztendlich gibt es uns viel Freiheit für die entstehende Faser", fügt er hinzu.

Die Forscher stellten jedoch fest, dass die Herstellung von Fasern aus LCE-Harz ein heikler Prozess ist. Bestehende Techniken führen oft zu einer verschmolzenen Masse, die sich nicht abspulen lässt.

Die Forscher untersuchen auch andere Möglichkeiten zur Herstellung funktioneller Fasern, wie z. B. die Einarbeitung von Hunderten von mikroskopisch kleinen digitalen Chips in ein Polymer, die Verwendung eines aktivierten Fluidiksystems oder die Einbeziehung von piezoelektrischem Material, das Schallschwingungen in elektrische Signale umwandeln kann.

Faserherstellung
Forman baute eine Maschine mit 3D-gedruckten und lasergeschnittenen Teilen und einfacher Elektronik, um die Herausforderungen bei der Herstellung zu meistern. Er baute die Maschine zunächst im Rahmen des Graduiertenkurses MAS.865 (Rapid-Prototyping of Rapid-Prototyping Machines: How to Make Something that Makes [almost] Anything).

Zu Beginn wird das dicke und zähflüssige LCE-Harz erhitzt und dann langsam durch eine Düse wie bei einer Klebepistole gepresst. Wenn das Harz austritt, wird es sorgfältig mit UV-Lichtern ausgehärtet, die auf beide Seiten der langsam extrudierenden Faser leuchten. Ist das Licht zu schwach, trennt sich das Material und tropft aus der Maschine, ist es jedoch zu hell, können sich Klumpen bilden, was zu unebenen Fasern führt.

Dann wird die Faser in Öl getaucht, um ihr eine gleitfähige Beschichtung zu verleihen, und erneut ausgehärtet, diesmal mit voll aufgedrehtem UV-Licht, wodurch eine starke und glatte Faser entsteht. Schließlich wird die Faser auf eine Spule aufgewickelt und in Pulver getaucht, damit sie leicht in die Maschinen für die Textilherstellung gleiten kann.

Von der chemischen Synthese bis zur fertigen Spule dauert der Prozess etwa einen Tag und ergibt etwa einen Kilometer gebrauchsfertige Faser. „Am Ende des Tages will man keine Diva-Faser. Man möchte eine Faser, die sich bei der Arbeit mit ihr in das Ensemble der Materialien einfügt - eine Faser, mit der man wie mit jedem anderen Fasermaterial arbeiten kann, die aber eine Menge aufregender neuer Möglichkeiten bietet“, sagt Forman.

Die Entwicklung einer solchen Faser erforderte eine Menge „trial and error“ sowie die Zusammenarbeit von Forschern mit Fachwissen in vielen Disziplinen, von der Chemie über den Maschinenbau und die Elektronik bis hin zum Design. Die so entstandene Faser mit dem Namen FibeRobo kann sich um bis zu 40 Prozent zusammenziehen, ohne sich zu krümmen, sie kann bei hautverträglichen Temperaturen aktiviert werden (die hautverträgliche Version der Faser zieht sich um bis zu 25 Prozent zusammen) und sie kann mit einer kostengünstigen Anlage für 20 Cent pro Meter hergestellt werden, was etwa 60-mal billiger ist als handelsübliche formverändernde Fasern. Die Faser kann sowohl in industrielle Näh- und Strickmaschinen als auch in nicht-industrielle Verfahren wie Handwebstühle oder manuelles Häkeln integriert werden, ohne dass eine Prozessänderung erforderlich ist.

Die MIT-Forscher haben mit FibeRobo mehrere Anwendungen demonstriert, darunter einen adaptiven Sport-BH, der durch Stickerei hergestellt wird und sich strafft, wenn die Trägerin mit dem Training beginnt. Sie verwendeten auch eine industrielle Strickmaschine, um eine Kompressionsweste für den Hund von Forman, der Professor heißt, herzustellen. Die Jacke wird über ein Bluetooth-Signal von Formans Smartphone aktiviert und „umarmt“ den Hund. Kompressionswesten werden üblicherweise verwendet, um die Trennungsangst eines Hundes zu lindern, wenn sein Besitzer nicht zu Hause ist.

In Zukunft wollen die Forscher die chemischen Komponenten der Faser so anpassen, dass sie recycelbar oder biologisch abbaubar ist. Darüber hinaus wollen sie den Prozess der Polymersynthese vereinfachen, so dass auch Nutzer ohne Nasslaborerfahrung ihn selbst durchführen können.

Forman ist gespannt auf die FibeRobo-Anwendungen, die andere Forschungsgruppen auf der Grundlage dieser frühen Ergebnisse entwickeln. Langfristig hofft er, dass FibeRobo zu einem Produkt wird, das man wie ein Garnknäuel im Bastelladen kaufen kann und mit dem sich leicht veränderliche Stoffe herstellen lassen.

„LCE-Fasern erwachen zum Leben, wenn sie in Funktionstextilien integriert werden. Es ist besonders faszinierend zu beobachten, wie die Autoren kreative Textildesigns mit einer Vielzahl von Web- und Strickmustern entwickelt haben“, sagt Lining Yao, der Cooper-Siegel Associate Professor of Human Computer Interaction an der Carnegie Mellon University, der jedoch nicht an dieser Arbeit beteiligt war.

Diese Forschungsarbeit wurde zum Teil durch das William Asbjornsen Albert Memorial Fellowship, das Dr. Martin Luther King Jr. Visiting Professor Program, Toppan Printing Co., Honda Research, Chinese Scholarship Council und Shima Seiki unterstützt. Zum Team gehörten Ozgun Kilic Afsar, Sarah Nicita, Rosalie (Hsin-Ju) Lin, Liu Yang, Akshay Kothakonda, Zachary Gordon und Cedric Honnet am MIT sowie Megan Hofmann und Kristen Dorsey an der Northeastern University.

Quelle:

MIT und Northeastern University

Die Forscher stellten formverändernde Fasern her, indem sie einen ballonartigen Schlauch in eine geflochtene Textilhülle einkapselten. (c) : Muh Amdadul Hoque. Die Forscher stellten formverändernde Fasern her, indem sie einen ballonartigen Schlauch in eine geflochtene Textilhülle einkapselten.
27.09.2023

Künstliche Muskelfasern als Zellgerüst

In zwei neuen Studien haben Forschende der North Carolina State University eine Serie von Textilfasern entwickelt und getestet, die ihre Form verändern und wie ein Muskel Kraft erzeugen können. In der ersten Studie untersuchten die Forscher den Einfluss der Materialien auf die Stärke und die Kontraktionslänge der künstlichen Muskeln. Die Forschungsergebnisse könnten helfen, die Fasern für verschiedene Anwendungen anzupassen.

In der zweiten Studie, der Proof-of-Concept-Studie, testeten die Forscher ihre Fasern als Gerüst für lebende Zellen. Die Ergebnisse deuten darauf hin, dass die als „Faserrobots“ bezeichneten Fasern möglicherweise zur Entwicklung von 3D-Modellen lebender, sich bewegender Systeme im menschlichen Körper verwendet werden könnten.

In zwei neuen Studien haben Forschende der North Carolina State University eine Serie von Textilfasern entwickelt und getestet, die ihre Form verändern und wie ein Muskel Kraft erzeugen können. In der ersten Studie untersuchten die Forscher den Einfluss der Materialien auf die Stärke und die Kontraktionslänge der künstlichen Muskeln. Die Forschungsergebnisse könnten helfen, die Fasern für verschiedene Anwendungen anzupassen.

In der zweiten Studie, der Proof-of-Concept-Studie, testeten die Forscher ihre Fasern als Gerüst für lebende Zellen. Die Ergebnisse deuten darauf hin, dass die als „Faserrobots“ bezeichneten Fasern möglicherweise zur Entwicklung von 3D-Modellen lebender, sich bewegender Systeme im menschlichen Körper verwendet werden könnten.

„Wir haben festgestellt, dass unser Faserrobot ein sehr geeignetes Gerüst für Zellen ist. Um eine geeignetere Umgebung für die Zellen zu schaffen, können wir die Frequenz und das Kontraktionsverhältnis verändern,“ sagte Muh Amdadul Hoque, Doktorand in Textiltechnik, Chemie und Wissenschaft an der NC State. „Dies waren Proof-of-Concept-Studien; letztendlich ist es unser Ziel, herauszufinden, ob wir diese Fasern als Gerüst für Stammzellen nutzen oder sie in zukünftigen Studien zur Entwicklung künstlicher Organe verwenden können.“
 
Die Forscher stellten die formverändernden Fasern her, indem sie einen ballonartigen Schlauch aus einem gummiähnlichen Material in eine geflochtene Textilhülle einkapselten. Wird der im Innern befindliche Ballon mit einer Luftpumpe aufgeblasen, dehnt sich der geflochtene Mantel aus, wodurch er sich verkürzt.

Die Forschenden maßen die Kraft und die Kontraktionsraten von Fasern aus verschiedenen Materialien, um den Zusammenhang zwischen Material und Performance zu verstehen. Sie stellten fest, dass stärkere Garne mit größerem Querschnitt eine stärkere Kontraktionskraft erzeugen. Darüber hinaus fanden sie heraus, dass das für die Herstellung des Ballons verwendete Material einen Einfluss auf die Stärke der Kontraktion und die erzeugte Kraft ausübte.
 
„Wir haben nachgewiesen, dass wir die Materialeigenschaften an die erforderliche Leistung des Geräts anpassen können“, so Xiaomeng Fang, Assistenzprofessorin für Textiltechnik, Chemie und Wissenschaft an der NC State. "Wir haben auch gezeigt, dass wir dieses Gerät klein genug machen können, so dass wir es potenziell bei der Herstellung von Textilien und anderen Textilanwendungen einsetzen können, unter anderem in Wearables und Hilfsmitteln."
 
In einer Folgestudie untersuchten die Forschenden, ob sie die formverändernden Fasern als Gerüst für Fibroblasten verwenden könnten, eine Zellart, die in Bindegeweben vorkommt und andere Gewebe oder Organe stützt.

„Die Dehnung soll die dynamischen Bewegungen des Körpers imitieren“, sagt Jessica Gluck, Assistenzprofessorin für Textiltechnik, Chemie und Wissenschaft an der NC State University und Mitautorin der Studie.

Die Wissenschaftler untersuchten die Reaktion der Zellen auf die Bewegung der formverändernden Fasern sowie auf die verschiedenen Materialien, die bei der Faserstruktur verwendet wurden. Sie fanden heraus, dass die Zellen in der Lage waren, die Flechthülle des Faserrobots zu bedecken und sogar zu durchdringen, stellten jedoch eine Abnahme der Stoffwechselaktivität der Zellen fest, wenn die Kontraktion des Faserrobots über ein bestimmtes Maß hinaus anhielt, im Vergleich zu einer Einheit aus demselben Material, die sie stationär hielten.

The researchers are interested in building on the findings to see if they could use the fibers as a 3D biological model, and to investigate whether movement would impact cell differentiation. They said their model would be an advance over other existing experimental models that have been developed to show cellular response to stretching and other motion, since they can only move in two dimensions.
Die Ergebnisse sollen weiter ausgebaut werden, um zu sehen, ob die Fasern als biologisches 3D-Modell verwenden werden können, und weiter, um zu untersuchen, ob die Bewegung die Zellteilung beeinflussen würde. Ihr Modell wäre ein Fortschritt gegenüber anderen experimentellen Modellen, die entwickelt wurden, um die Reaktion von Zellen auf zweidimensionale Dehnung und andere Bewegungen zu zeigen.
 
„Wenn man Zellen dehnen oder belasten will, legt man sie normalerweise auf eine Kunststoffschale und dehnt sie in eine oder zwei Richtungen“, sagte Gluck. „In dieser Studie konnten wir zeigen, dass die Zellen in dieser dynamischen 3D-Kultur bis zu 72 Stunden überleben können.“

„Dies ist besonders nützlich für Stammzellen“, fügte Gluck hinzu. „In Zukunft könnten wir untersuchen, was auf zellulärer Ebene bei mechanischer Belastung passiert. Man könnte Muskelzellen betrachten und sehen, wie sie sich entwickeln, oder analysieren, wie die mechanische Einwirkung zur Zellteilung beitragen würde.“

Die Studie „Effect of Material Properties on Fiber-Shaped Pneumatic Actuators Performance” wurde am 18. März in Actuators veröffentlicht. Emily Petersen war Mitautorin. Die Studie wurde durch eine Anschubfinanzierung gefördert, die Fang vom Department of Textile Engineering, Chemistry and Science der NC State University erhielt.

Die Studie mit dem Titel „Development of a Pneumatic-Driven Fiber-Shaped Robot Scaffold for Use as a Complex 3D Dynamic Culture System“ (Entwicklung eines pneumatisch angetriebenen faserförmigen Robotgerüsts zur Verwendung als komplexes dynamisches 3D-Kultursystem) wurde am 21. April online in Biomimetics veröffentlicht. Neben Gluck, Hoque und Fang gehörten Nasif Mahmood, Kiran M. Ali, Eelya Sefat, Yihan Huang, Emily Petersen und Shane Harrington zu den Co-Autoren. Die Studie wurde vom NC State Wilson College of Textiles, der Abteilung für Textiltechnik, -chemie und -wissenschaft sowie dem Wilson College of Textiles Research Opportunity Seed Fund Program finanziert.

Quelle:

North Carolina State University, Laura Oleniacz. Übersetzung Textination

(c) Institut auf dem Rosenberg
01.09.2023

'Blue Nomad' - Auf Flachsfasern in die Zukunft gleiten

Da die Menschheit mit dem Klimawandel und dem steigenden Meeresspiegel zu kämpfen hat, ist unsere kollektive Vorstellungskraft wichtiger denn je. Vor diesem Hintergrund war bcomp von Arbeit der Studenten des Instituts auf dem Rosenberg in St. Gallen und SAGA Space Architects fasziniert. Sie haben entwickelten eine außergewöhnliche Lösung für die ökologischen Herausforderungen, mit denen wir konfrontiert sind: das schwimmende Lebensraumprojekt "Blue Nomad".

‘Blue Nomad" ist ein solarbetriebenes Heim, das für ein komfortables Leben auf dem Meer konzipiert wurde. Es symbolisiert eine Zukunft, in der wir die sich verändernde Umwelt der Erde erforschen und uns an sie anpassen müssen. Inspiriert von den ersten polynesischen Nomadensiedlungen und ausgestattet mit Solarpaneelen zur Selbstversorgung, fördert das Habitat die Vision des Lebens und Reisens auf dem Wasser.

Da die Menschheit mit dem Klimawandel und dem steigenden Meeresspiegel zu kämpfen hat, ist unsere kollektive Vorstellungskraft wichtiger denn je. Vor diesem Hintergrund war bcomp von Arbeit der Studenten des Instituts auf dem Rosenberg in St. Gallen und SAGA Space Architects fasziniert. Sie haben entwickelten eine außergewöhnliche Lösung für die ökologischen Herausforderungen, mit denen wir konfrontiert sind: das schwimmende Lebensraumprojekt "Blue Nomad".

‘Blue Nomad" ist ein solarbetriebenes Heim, das für ein komfortables Leben auf dem Meer konzipiert wurde. Es symbolisiert eine Zukunft, in der wir die sich verändernde Umwelt der Erde erforschen und uns an sie anpassen müssen. Inspiriert von den ersten polynesischen Nomadensiedlungen und ausgestattet mit Solarpaneelen zur Selbstversorgung, fördert das Habitat die Vision des Lebens und Reisens auf dem Wasser.

bcomp begeistert besonders an dem Projekt, dass das in London und Monaco ausgestellte Modell die eigenen ampliTex™ Flachsfasern enthält. Das Institut auf dem Rosenberg und SAGA entwickeln derzeit einen Plan für den Bau eines tatsächlichen Prototyps des schwimmenden Hauses. Es könnte aus einem strukturell optimierten Gewebe aus Flachsfasern hergestellt werden und die Zukunft organischer und regenerativer Hochleistungsmaterialien aufzeigen, die herkömmliche synthetische und fossile Technologien ersetzen.

Blue Nomad" ist nicht nur ein solitärer Lebensraum, sondern ein Konzept für eine neue Art von Gemeinschaft. Als modulare Blöcke konzipiert, können diese Lebensräume größere Gemeinschaften und Meeresfarmen bilden, die es den Bewohnern ermöglichen, Ressourcen zu teilen, während sie von einer Meeresfarm zur nächsten ziehen. Es ist eine beeindruckende Vision einer Zukunft, in der die Grenzen zwischen Land und Wasser verschwimmen und Nachhaltigkeit und Gemeinschaftsbildung im Mittelpunkt der menschlichen Siedlungen stehen.

Doch diese Vision ist nicht nur eine theoretische. Geplant ist eine Jungfernfahrt des "Blue Nomad" quer durch Europa, die ausschließlich mit Solarenergie betrieben wird und die Nachhaltigkeit der Ozeane, die Klimatologie und das Nomadentum der Zukunft fördert.

Dieses Projekt erinnert daran, was wir erreichen können, wenn wir Bildung, innovatives Design und Nachhaltigkeit miteinander verbinden. Der "Blue Nomad" repräsentiert die Zukunft - eine Zukunft, in der nachhaltige Materialien eine entscheidende Rolle beim Schutz unseres Planeten spielen.

Das Projekt "Blue Nomad" wurde auf der Londoner Design-Biennale 2023 sowie der Monaco Energy Boat Challenge ausgestellt, wo es Besucher in seinen Bann zog und große Begeisterung in der Öffentlichkeit auslöste.

Quelle:

Bcomp

Foto: Claude Huniade
11.07.2023

Ionisch leitfähige Fasern als neuer Weg für intelligente und Funktionstextilien

Elektronisch leitfähige Fasern werden bereits in intelligenten Textilien verwendet, doch in einem kürzlich veröffentlichten Forschungsartikel wurde nachgewiesen, dass ionisch leitfähige Fasern von zunehmendem Interesse sind. Die sogenannten Ionenfasern sind flexibler und haltbarer und entsprechen der Art von Leitfähigkeit, die unser Körper nutzt. In Zukunft könnten sie unter anderem für Textilbatterien, Textildisplays und Textilmuskeln verwendet werden.

Das Forschungsprojekt wird von dem Doktoranden Claude Huniade an der Universität Borås durchgeführt und ist Teil eines größeren Projekts, Weafing. Sein Ziel es ist, neuartige, noch nie dagewesene Kleidungsstücke für haptische Stimulation zu entwickeln, die flexible und tragbare textile Aktoren und Sensoren, einschließlich Steuerelektronik, als eine neue Art von textilbasierter Großflächenelektronik umfassen.

Elektronisch leitfähige Fasern werden bereits in intelligenten Textilien verwendet, doch in einem kürzlich veröffentlichten Forschungsartikel wurde nachgewiesen, dass ionisch leitfähige Fasern von zunehmendem Interesse sind. Die sogenannten Ionenfasern sind flexibler und haltbarer und entsprechen der Art von Leitfähigkeit, die unser Körper nutzt. In Zukunft könnten sie unter anderem für Textilbatterien, Textildisplays und Textilmuskeln verwendet werden.

Das Forschungsprojekt wird von dem Doktoranden Claude Huniade an der Universität Borås durchgeführt und ist Teil eines größeren Projekts, Weafing. Sein Ziel es ist, neuartige, noch nie dagewesene Kleidungsstücke für haptische Stimulation zu entwickeln, die flexible und tragbare textile Aktoren und Sensoren, einschließlich Steuerelektronik, als eine neue Art von textilbasierter Großflächenelektronik umfassen.

WEAFING steht für Wearable Electroactive Fabrics Integrated in Garments. Das Projekt startete am 1. Januar 2019 und endete am 30. Juni 2023.

Diese Wearables basieren auf einer neuen Art von Textilmuskeln, deren Garne mit elektromechanisch aktiven Polymeren beschichtet sind und sich zusammenziehen, wenn eine niedrige Spannung angelegt wird. Textilmuskeln bieten eine völlig neue und sehr unterschiedliche Qualität haptischer Empfindungen und sprechen auch Rezeptoren unseres taktilen Sinnessystems an, die nicht auf Vibration, sondern auf sanften Druck oder Schlag reagieren.

Da es sich um textile Materialien handelt, bieten sie zudem eine neue Möglichkeit, tragbare Haptik zu entwerfen und herzustellen. Sie können nahtlos in Stoffe und Kleidungsstücke integriert werden. Für diese neuartige Form der textilen Muskeln ist eine große Bandbreite an haptischen Anwendungsmöglichkeiten abzusehen: für Ergonomie, Bewegungscoaching im Sport oder Wellness, zur Unterstützung von Virtual- oder Augmented-Reality-Anwendungen in Spielen oder zu Trainingszwecken, zur Inklusion von sehbehinderten Menschen durch Informationen über ihre Umgebung, zur Stressreduktion oder sozialen Kommunikation, für anpassungsfähige Möbel, die Automobilindustrie und vieles mehr.

Im Projekt von Claude Huniade geht es darum, leitfähige Garne ohne leitfähige Metalle herzustellen.

„In meiner Forschung geht es um die Herstellung elektrisch leitfähiger Textilfasern - letzendlich von Garnen - durch die nachhaltige Beschichtung handelsüblicher Garne mit Nicht-Metallen. Die größte Herausforderung besteht darin, ein Gleichgewicht zwischen der Beibehaltung der textilen Eigenschaften und dem Hinzufügen der leitenden Eigenschaft zu finden“, so Claude Huniade.

Ionofasern könnten als Sensoren verwendet werden, da ionische Flüssigkeiten empfindlich auf ihre Umgebung reagieren. So können die Ionenfasern beispielsweise Änderungen der Luftfeuchtigkeit, aber auch jede Dehnung oder jeden Druck, dem sie ausgesetzt sind, wahrnehmen.

„Ionofasern könnten wirklich herausragen, wenn sie mit anderen Materialien oder Geräten kombiniert werden, die Elektrolyte benötigen. Ionofasern ermöglichen es, dass bestimmte Phänomene, die derzeit nur in Flüssigkeiten möglich sind, auch in der Luft auf leichtgewichtige Weise realisiert werden können. Die Anwendungsmöglichkeiten sind vielfältig und einzigartig, zum Beispiel für Textilbatterien, textile Displays oder textile Muskeln“, so Claude Huniade.

Weitere Forschung ist erforderlich
Es sind noch weitere Forschungsarbeiten erforderlich, um die Ionenfasern mit anderen funktionellen Fasern zu kombinieren und spezielle textile Produkte herzustellen.

Wie unterscheiden sie sich von herkömmlichen elektronisch leitfähigen Fasern?

„Im Vergleich zu elektronisch leitfähigen Fasern unterscheiden sich Ionofasern dadurch, wie sie Elektrizität leiten. Sie sind weniger leitfähig, bringen aber andere Eigenschaften mit, die elektronisch leitfähigen Fasern oft fehlen. Ionofasern sind flexibler und haltbarer und entsprechen der Art der Leitung, die unser Körper verwendet. Sie entsprechen sogar besser als elektronisch leitende Fasern der Art, wie Elektrizität in der Natur vorkommt“, schloss er.

Derzeit liegt die Einzigartigkeit seiner Forschung in den Beschichtungsstrategien. Diese Methoden umfassen sowohl die Verfahren als auch die verwendeten Materialien.

Verwendung von ionischen Flüssigkeiten
Eine der Spuren, die er verfolgt, betrifft eine neue Art von Material als Textilbeschichtung, nämlich ionische Flüssigkeiten in Kombination mit handelsüblichen Textilfasern. Genau wie Salzwasser leiten sie Strom, aber ohne Wasser. Ionische Flüssigkeiten sind stabilere Elektrolyte als Salzwasser, da nichts verdunstet.

„Der Faktor der Verarbeitbarkeit ist eine wichtige Voraussetzung, da die Textilproduktion Fasern stark beansprucht, vor allem, wenn sie in größerem Maßstab eingesetzt werden. Die Fasern können auch zu Geweben oder Gewirken verarbeitet werden, ohne dass sie mechanisch beschädigt werden, wobei ihre Leitfähigkeit erhalten bleibt. Überraschenderweise ließen sie sich sogar glatter zu Stoffen verarbeiten als die handelsüblichen Garne, aus denen sie hergestellt werden“, erklärte Claude Huniade.

Quelle:

University of Borås

Fadenähnliche Pumpen können in Kleidung eingewebt werden (c) LMTS EPFL
27.06.2023

Fadenähnliche Pumpen können in Kleidung eingewebt werden

Forscher der Ecole Polytechnique Fédérale de Lausanne (EPFL) haben faserähnliche Pumpen entwickelt, die es ermöglichen, Hochdruck-Fluidkreisläufe in Textilien einzuweben, ohne dass eine externe Pumpe benötigt wird. Weiche, stützende Exoskelette, thermoregulierende Kleidung und immersive Haptik können so von Pumpen angetrieben werden, die in den Geweben der Vorrichtungen selbst eingenäht sind.

Viele flüssigkeitsbasierte, tragbare Hilfstechnologien benötigen heute eine große und laute Pumpe, die unpraktisch - wenn nicht gar unmöglich - in die Kleidung integriert werden kann. Dies führt zu einem Widerspruch: Tragbare Geräte sind routinemäßig an untragbare Pumpen gebunden. Forscher des Soft Transducers Laboratory (LMTS) an der School of Engineering haben nun eine elegante und einfache Lösung für dieses Dilemma entwickelt.

Forscher der Ecole Polytechnique Fédérale de Lausanne (EPFL) haben faserähnliche Pumpen entwickelt, die es ermöglichen, Hochdruck-Fluidkreisläufe in Textilien einzuweben, ohne dass eine externe Pumpe benötigt wird. Weiche, stützende Exoskelette, thermoregulierende Kleidung und immersive Haptik können so von Pumpen angetrieben werden, die in den Geweben der Vorrichtungen selbst eingenäht sind.

Viele flüssigkeitsbasierte, tragbare Hilfstechnologien benötigen heute eine große und laute Pumpe, die unpraktisch - wenn nicht gar unmöglich - in die Kleidung integriert werden kann. Dies führt zu einem Widerspruch: Tragbare Geräte sind routinemäßig an untragbare Pumpen gebunden. Forscher des Soft Transducers Laboratory (LMTS) an der School of Engineering haben nun eine elegante und einfache Lösung für dieses Dilemma entwickelt.

„Wir präsentieren die weltweit erste Pumpe in Form einer Faser, also eines Schlauches, der seinen eigenen Druck und Durchfluss erzeugt“, so LMTS-Chef Herbert Shea. "Jetzt können wir unsere Faserpumpen direkt in Textilien und Kleidung einnähen und herkömmliche Pumpen hinter uns lassen." Die Forschungsergebnisse wurden in der Zeitschrift Science veröffentlicht.

Leicht, leistungsstark ... und waschbar
Sheas Labor hat eine lange Tradition in der zukunftsweisenden Fluidik. Im Jahr 2019 stellten sie die erste dehnbare Pumpe der Welt her.

„Diese Arbeit baut auf unserer vorherigen Generation von Soft-Pumpen auf“, erläutert Michael Smith, ein LMTS-Post-Doktorand und Hauptautor der Studie. „Das Faserformat ermöglicht es uns, leichtere und leistungsstärkere Pumpen herzustellen, die besser mit tragbarer Technologie kompat-bel sind.“

Die LMTS-Faserpumpen nutzen ein Prinzip namens Ladungsinjektion-Elektrohydrodynamik (EHD), um einen Flüssigkeitsstrom ohne bewegliche Teile zu erzeugen. Zwei schraubenförmige Elektroden, die in die Pumpenwand eingebettet sind, ionisieren und beschleunigen die Moleküle einer speziellen, nicht leitenden Flüssigkeit. Die Ionenbewegung und die Form der Elektroden erzeugen einen Netto-Fluidstrom, der geräuschlos und ohne Vibrationen arbeitet und nur ein handtellergroßes Netzteil und eine Batterie benötigt.

Um die einzigartige Struktur der Pumpe zu erreichen, entwickelten die Forscher ein neuartiges Herstellungsverfahren, bei dem Kupferdrähte und Polyurethanfäden um einen Stahlstab gewickelt und dann durch Hitze verschmolzen werden. Nachdem der Stab entfernt wurde, können die 2 mm dicken Fasern mit herkömmlichen Web- und Nähtechniken in Textilien integriert werden.

Die einfache Konstruktion der Pumpe hat eine Reihe von Vorteilen. Die benötigten Materialien sind preiswert und leicht verfügbar, der Herstellungsprozess lässt sich leicht skalieren. Da die Höhe des von der Pumpe erzeugten Drucks direkt mit ihrer Länge zusammenhängt, können die Schläuche auf die jeweilige Anwendung zugeschnitten werden, um die Leistung zu optimieren und gleichzeitig das Gewicht zu minimieren. Die robuste Konstruktion kann auch mit herkömmlichen Waschmitteln gereinigt werden.

Vom Exoskelett zur virtuellen Realität
Die Autoren haben bereits gezeigt, wie diese Faserpumpen in neuen und spannenden tragbaren Technologien eingesetzt werden können. So können sie beispielsweise heiße und kalte Flüssigkeiten durch Kleidungsstücke zirkulieren lassen, die in Umgebungen mit extremen Temperaturen oder in therapeutischen Umgebungen zur Behandlung von Entzündungen und sogar zur Optimierung sportlicher Leistungen eingesetzt werden.

„Diese Anwendungen erfordern ohnehin lange Schläuche, und in unserem Fall sind die Schläuche die Pumpe. Das bedeutet, dass wir sehr einfache und leichte Flüssigkeitskreisläufe herstellen können, die bequem und angenehm zu tragen sind“, erklärt Smith.

In der Studie werden auch künstliche Muskeln aus Stoff und eingebetteten Faserpumpen beschrieben, die als Antrieb für weiche Exoskelette verwendet werden könnten, um Patienten beim Bewegen und Gehen zu helfen.

Die Pumpe könnte sogar eine neue Dimension in die Welt der virtuellen Realität bringen, indem sie das Temperaturempfinden simuliert. In diesem Fall tragen die Nutzer einen Handschuh mit Pumpen, die mit heißer oder kalter Flüssigkeit gefüllt sind, so dass sie die Temperaturveränderungen als Reaktion auf den Kontakt mit einem virtuellen Objekt spüren können.

Aufgepumpt für die Zukunft
Die Forscher sind bereits dabei, die Leistung ihres Geräts zu verbessern. "Die Pumpen funktionieren bereits gut, und wir sind zuversichtlich, dass wir mit weiteren Arbeiten weitere Verbesserungen in Bereichen wie Effizienz und Lebensdauer erzielen können", sagt Smith. Es wurde bereits damit begonnen, die Produktion der Faserpumpen zu erhöhen, und das LMTS plant auch, sie in komplexere tragbare Geräte einzubauen.

„Wir sind überzeugt, dass diese Innovation die Wearable Technology entscheidend verändern wird“, sagt Shea.

Weitere Informationen:
EPFL Fasern Exoskelette wearables
Quelle:

Celia Luterbacher, School of Engineering | STI
Übersetzung: Textination

Ein blau gefärbtes Baumwollgestrick, das zehnmal gewaschen wurde, um getragene Kleidungsstücke zu simulieren, wird enzymatisch zu einem Schlamm aus feinen Fasern und „blauem Glukosesirup“ abgebaut, der durch Filtration getrennt wird - beide separierten Anteile haben einen potenziellen Wiederverwendungswert. Ein blau gefärbtes Baumwollgestrick, das zehnmal gewaschen wurde, um getragene Kleidungsstücke zu simulieren, wird enzymatisch zu einem Schlamm aus feinen Fasern und „blauem Glukosesirup“ abgebaut, der durch Filtration getrennt wird - beide separierten Anteile haben einen potenziellen Wiederverwendungswert. Foto: Sonja Salmon.
11.04.2023

Enzymatische Trennung von Baumwolle und Polyester in Mischgeweben

In einer neuen Studie haben Forscher der North Carolina State University nachgewiesen, dass sie Mischgewebe aus Baumwolle und Polyester mithilfe von Enzymen - natürlichen Werkzeugen zur Beschleunigung chemischer Reaktionen – voneinander trennen können. Die Forschenden hoffen, dass ihre Ergebnisse letztlich zu einer effizienteren Wiederverwertung der Stoffbestandteile und damit zur Verringerung des Textilabfalls führen werden. Sie stellten jedoch auch fest, dass der Prozess mehr Arbeitsschritte erfordert, wenn das Mischgewebe gefärbt oder mit Chemikalien behandelt wurde, die die Knitterfestigkeit erhöhen.

In einer neuen Studie haben Forscher der North Carolina State University nachgewiesen, dass sie Mischgewebe aus Baumwolle und Polyester mithilfe von Enzymen - natürlichen Werkzeugen zur Beschleunigung chemischer Reaktionen – voneinander trennen können. Die Forschenden hoffen, dass ihre Ergebnisse letztlich zu einer effizienteren Wiederverwertung der Stoffbestandteile und damit zur Verringerung des Textilabfalls führen werden. Sie stellten jedoch auch fest, dass der Prozess mehr Arbeitsschritte erfordert, wenn das Mischgewebe gefärbt oder mit Chemikalien behandelt wurde, die die Knitterfestigkeit erhöhen.

„Wir können die gesamte Baumwolle aus einer Baumwoll-Polyester-Mischung herauslösen, was bedeutet, dass wir anschließend sauberes Polyester haben, das recycelt werden kann“, so die korrespondierende Autorin der Studie, Sonja Salmon, außerordentliche Professorin für Textilingenieurwesen, Chemie und Wissenschaft an der NC State. „Auf einer Mülldeponie wird sich das Polyester nicht abbauen, und die Baumwolle kann mehrere Monate oder länger brauchen, um sich zu zersetzen. Mit unserer Methode können wir die Baumwolle in weniger als 48 Stunden vom Polyester trennen.“

Nach Angaben der US-Umweltschutzbehörde werfen Verbraucher jedes Jahr etwa 11 Millionen Tonnen Textilabfälle auf US-Mülldeponien. Die Forscher wollten eine Methode entwickeln, um die Baumwolle vom Polyester zu trennen, so dass die einzelnen Bestandteile recycelt werden können.

In der Studie verwendeten die Forscher einen „Cocktail“ von Enzymen in einer leicht sauren Lösung, um die Zellulose in der Baumwolle zu zersetzen. Zellulose ist das Material, das den Zellwänden der Pflanzen Struktur verleiht. Die Idee ist, die Zellulose so zu zerkleinern, dass sie aus der gemischten Gewebestruktur „herausfällt“ und einige winzige Baumwollfaserfragmente zusammen mit Glukose zurückbleiben. Glukose ist das biologisch abbaubare Nebenprodukt der abgebauten Zellulose. Anschließend wird die Glukose weggewaschen und die Baumwollfaserfragmente herausgefiltert, so dass reines Polyester übrig bleibt.
 
Assoc. Professor Sonja Salmon    „Dies ist ein mildes Verfahren - die Behandlung ist leicht sauer, wie bei Essig“, sagte Salmon. „Wir haben es auch bei 50 Grad Celsius laufen lassen, was der Temperatur einer heißen Waschmaschine entspricht. Es ist wirklich vielversprechend, dass wir das Polyester bis zu einem sauberen Niveau trennen können", fügte Salmon hinzu.
"Wir müssen noch einiges tun, um die Eigenschaften des Polyesters zu bestimmen, aber wir glauben, dass sie sehr gut sein werden, weil die Bedingungen so mild sind. Wir fügen lediglich Enzyme hinzu, die das Polyester ignorieren."

Sie verglichen den Abbau von Stoffen aus 100 % Baumwolle mit dem von Baumwoll- und Polyestermischungen und testeten außerdem Stoffe, die mit roten und blauen Reaktivfarbstoffen gefärbt und mit haltbaren Presschemikalien behandelt worden waren. Um die gefärbten Stoffe abzubauen, mussten die Forscher den Zeitaufwand und den Einsatz von Enzymen erhöhen. Bei Stoffen, die mit Chemikalien knitterfrei ausgerüstet wurden, mussten sie vor der Zugabe der Enzyme eine chemische Vorbehandlung durchführen.

„Der gewählte Farbstoff hat einen großen Einfluss auf die potenzielle Schädigung des Gewebes", sagte die Leiterin der Studie, Jeannie Egan, Doktorandin an der NC State. "Außerdem haben wir festgestellt, dass das größte Hindernis bisher die knitterfreie Ausrüstung ist. Die Chemie dahinter blockiert den Zugang des Enzyms zur Zellulose erheblich. Ohne Vorbehandlung erreichten wir einen Abbau von weniger als 10 %, aber nach zwei Enzymdosen konnten wir die Zellulose vollständig abbauen, was ein wirklich beeindruckendes Ergebnis ist.“

Den Forschenden zufolge wäre das Polyester recycelbar, während die Aufschlämmung der Baumwollfragmente als Zusatzstoff für Papier oder als nützliche Ergänzung für Verbundwerkstoffe wertvoll sein könnte. Sie untersuchen ebenfalls, ob eine Verwendung der Glukose für die Herstellung von Biokraftstoffen möglich wäre.

„Die Aufschlämmung besteht aus Baumwollresten, die einem sehr starken enzymatischen Abbau widerstehen“, so Salmon. „Sie kann als Verstärkungsstoff verwendet werden. Was den Glukosesirup betrifft, so arbeiten wir an einem Projekt, um herauszufinden, ob wir ihn in einen anaeroben Fermenter einspeisen können, um Biokraftstoff herzustellen. Wir würden Abfälle in Bioenergie umwandeln, was viel besser wäre, als sie auf eine Mülldeponie zu werfen.“

Die Studie mit dem Titel „Enzymatische Textilfasertrennung für nachhaltige Abfallverarbeitung“ wurde in der Zeitschrift Resources, Environment and Sustainability veröffentlicht. Zu den Koautoren gehören Siyan Wang, Jialong Shen, Oliver Baars und Geoffrey Moxley. Finanziert wurde die Studie von der Environmental Research and Education Foundation, der Kaneka Corporation und dem Department of Textile Engineering, Chemistry and Science an der NC State.

Quelle:

North Carolina State University, Laura Oleniacz

Bild: Marcin Szczepanski/Lead Multimedia Storyteller, University of Michigan College of Engineering
15.02.2023

Der neue Schmetterlingseffekt: Wendepunkt für das Recyceln von Kleidung?

Photonische Fasern nach dem Vorbild von Schmetterlingsflügeln ermöglichen unsichtbare, unauslöschliche Sortieretiketten.

Weniger als 15 % der 92 Millionen Tonnen Kleidung und anderer Textilien, die jährlich weggeworfen werden, werden recycelt - zum Teil, weil sie so schwer zu sortieren sind. Eingewebte Etiketten aus preiswerten photonischen Fasern, die von einem Team unter der Leitung der University of Michigan entwickelt wurden, könnten dies ändern.

„Es ist wie ein Strichcode, der direkt in den Stoff eines Kleidungsstücks eingewebt ist“, sagt Max Shtein, Professor an der University of Michigan für Materialwissenschaft und Technik und korrespondierender Autor der Studie in Advanced Materials Technologies. „Wir können die photonischen Eigenschaften der Fasern so anpassen, dass sie für das bloße Auge sichtbar sind, nur unter Nahinfrarotlicht lesbar sind oder eine beliebige Kombination.“

Photonische Fasern nach dem Vorbild von Schmetterlingsflügeln ermöglichen unsichtbare, unauslöschliche Sortieretiketten.

Weniger als 15 % der 92 Millionen Tonnen Kleidung und anderer Textilien, die jährlich weggeworfen werden, werden recycelt - zum Teil, weil sie so schwer zu sortieren sind. Eingewebte Etiketten aus preiswerten photonischen Fasern, die von einem Team unter der Leitung der University of Michigan entwickelt wurden, könnten dies ändern.

„Es ist wie ein Strichcode, der direkt in den Stoff eines Kleidungsstücks eingewebt ist“, sagt Max Shtein, Professor an der University of Michigan für Materialwissenschaft und Technik und korrespondierender Autor der Studie in Advanced Materials Technologies. „Wir können die photonischen Eigenschaften der Fasern so anpassen, dass sie für das bloße Auge sichtbar sind, nur unter Nahinfrarotlicht lesbar sind oder eine beliebige Kombination.“

Herkömmliche Etiketten überleben oft nicht bis zum Ende der Lebensdauer eines Kleidungsstücks - sie können abgeschnitten oder gewaschen werden, bis sie unleserlich sind, und die Informationen ohne Etiketten können sich abnutzen. Das Recycling könnte effektiver sein, wenn ein Etikett in den Stoff eingewebt würde, unsichtbar, bis es gelesen werden muss. Genau das könnte die neue Faser leisten.

Recycler verwenden bereits Nahinfrarot-Sortiersysteme, die verschiedene Materialien anhand ihrer natürlich vorkommenden optischen Signaturen identifizieren - PET-Kunststoff in einer Wasserflasche beispielsweise sieht unter Nahinfrarotlicht anders aus als der HDPE-Kunststoff in einer Milchverpackung. Auch verschiedene Stoffe haben unterschiedliche optische Signaturen, aber Brian Iezzi, Postdoktorand in Shteins Labor und Hauptautor der Studie, erklärt, dass diese Signaturen für Recycler nur von begrenztem Nutzen sind, da Mischgewebe weit verbreitet sind.

„Für ein wirklich kreislauforientiertes Recyclingsystem ist es wichtig, die genaue Zusammensetzung eines Stoffes zu kennen - ein Baumwoll-Recycler möchte nicht für ein Kleidungsstück zahlen, das zu 70 % aus Polyester besteht“, so Iezzi. „Natürliche optische Signaturen können dieses Maß an Präzision nicht bieten, aber unsere photonischen Fasern können es.“

Das Team hat die Technologie entwickelt, indem es das photonische Fachwissen von Iezzi und Shtein, das normalerweise bei Produkten wie Displays, Solarzellen und optischen Filtern zum Einsatz kommt, mit der fortschrittlichen Textilexpertise des Lincoln Labs des MIT kombiniert hat. Das Labor arbeitete daran, die photonischen Eigenschaften in ein Verfahren einzubringen, das mit einer großtechnischen Produktion kompatibel ist.

Sie lösten diese Aufgabe, indem sie mit einer Preform begannen - einem Kunststoffrohstoff, der aus Dutzenden von sich abwechselnden Schichten besteht. In diesem Fall verwendeten sie Acryl und Polycarbonat. Während jede einzelne Schicht durchsichtig ist, wird das Licht durch die Kombination zweier Materialien gebeugt und gebrochen, so dass optische Effekte entstehen, die wie Farben aussehen können. Es ist das gleiche grundlegende Phänomen, das Schmetterlingsflügeln ihren Schimmer verleiht.

Die Preform wird erhitzt und dann mechanisch - ähnlich wie Toffee - zu einem haardünnen Faserstrang gezogen. Das Herstellungsverfahren unterscheidet sich zwar von der Extrusionstechnik, mit der herkömmliche synthetische Fasern wie Polyester hergestellt werden, doch können damit dieselben kilometerlangen Faserstränge produziert werden. Diese Stränge können dann mit denselben Geräten verarbeitet werden, die bereits von Textilherstellern verwendet werden.

Durch Anpassung der Materialmischung und der Geschwindigkeit, mit der die Vorform gezogen wird, haben die Forscher die Faser so eingestellt, dass sie die gewünschten optischen Eigenschaften aufweist und recycelbar ist. Obwohl die photonische Faser teurer ist als herkömmliche Textilien, schätzen die Forscher, dass sie nur zu einem geringen Anstieg der Kosten für die Endprodukte führen wird.

„Die photonischen Fasern müssen nur einen kleinen Prozentsatz ausmachen - gerade einmal 1 % des fertigen Kleidungsstücks“, so Iezzi. „Das könnte die Kosten des Endprodukts um etwa 25 Cent erhöhen - ähnlich wie die Kosten für die uns allen bekannten Pflegeetiketten.“

Shtein ist überzeugt, dass die photonische Kennzeichnung nicht nur das Recycling erleichtern, sondern auch dazu verwendet werden könnte, Verbrauchern mitzuteilen, wo und wie die Waren hergestellt wurden, und sogar die Echtheit von Markenprodukten zu überprüfen. Dies könnte eine Option sein, Kunden einen wichtigen Mehrwert zu bieten.

„Wenn elektronische Geräte wie Mobiltelefone immer ausgereifter werden, könnten sie möglicherweise in der Lage sein, diese Art von photonischer Kennzeichnung zu lesen“, so Shtein. „Ich könnte mir also eine Zukunft vorstellen, in der eingewebte Etiketten sowohl für Verbraucher als auch für Recycler ein nützliches Merkmal sind.“

Das Team hat Patentschutz beantragt und prüft derzeit Möglichkeiten, die Technologie zu vermarkten.

Die Forschung wurde von der National Science Foundation und dem Under Secretary of Defense for Research and Engineering unterstützt.

Quelle:

Gabe Cherry, College of Engineering, University of Michigan / Textination

Foto: Bcomp
22.11.2022

Made in Switzerland: Ist Flachs das neue Carbon?

  • Bcomp gewinnt BMW Group Supplier Innovation Award in der Kategorie "Newcomer des Jahres"

Am 17. November 2022 wurden in der BMW Welt in München die sechsten BMW Group Supplier Innovation Awards in sechs Kategorien vergeben: "Powertrain & E-Mobility", "Sustainability", "Digitalisation", "Customer Experience", "Newcomer of the Year" und "Exceptional Team Performance".

Bcomp gewann den BMW Group Supplier Innovation Award in der Kategorie Newcomer of the Year. Nach der erfolgreichen Zusammenarbeit mit BMW M Motorsport für den neuen BMW M4 GT4, bei dem die Naturfaserlösungen powerRibs™ und ampliTex™ von Bcomp in großem Umfang zum Einsatz kommen, und der kürzlich erfolgten Beteiligung von BMW iVentures an Bcomp als Lead-Investor in der Series-B-Runde ist diese Auszeichnung ein weiterer wichtiger Schritt und eine Anerkennung auf dem Weg zur Dekarbonisierung der Mobilität.

  • Bcomp gewinnt BMW Group Supplier Innovation Award in der Kategorie "Newcomer des Jahres"

Am 17. November 2022 wurden in der BMW Welt in München die sechsten BMW Group Supplier Innovation Awards in sechs Kategorien vergeben: "Powertrain & E-Mobility", "Sustainability", "Digitalisation", "Customer Experience", "Newcomer of the Year" und "Exceptional Team Performance".

Bcomp gewann den BMW Group Supplier Innovation Award in der Kategorie Newcomer of the Year. Nach der erfolgreichen Zusammenarbeit mit BMW M Motorsport für den neuen BMW M4 GT4, bei dem die Naturfaserlösungen powerRibs™ und ampliTex™ von Bcomp in großem Umfang zum Einsatz kommen, und der kürzlich erfolgten Beteiligung von BMW iVentures an Bcomp als Lead-Investor in der Series-B-Runde ist diese Auszeichnung ein weiterer wichtiger Schritt und eine Anerkennung auf dem Weg zur Dekarbonisierung der Mobilität.

„Innovationen sind der Schlüssel zum Erfolg unserer Transformation hin zu Elektromobilität, Digitalisierung und Nachhaltigkeit. Mit unserer Preisverleihung würdigen wir Innovation und partnerschaftliche Zusammenarbeit mit unseren Lieferanten - gerade in herausfordernden Zeiten“, sagte Joachim Post, Mitglied des Vorstands der BMW AG, verantwortlich für Einkauf und Lieferantennetzwerk, bei der Preisverleihung in der BMW Welt in München.

BMW begann 2019 erstmals mit den Materialien von Bcomp zu arbeiten, als sie Hochleistungs-Naturfaserverbundwerkstoffe im BMW iFE.20 Formel-E-Auto einsetzten. Aus dem mit Flachsfasern verstärkten Kühlschacht entwickelte sich die Zusammenarbeit, und bald darauf wurden die proprietären ampliTex™- und powerRibs™-Naturfaserlösungen erfolgreich als Ersatz für ausgewählte Kohlefaserkomponenten in DTM-Tourenwagen von BMW M Motorsport eingesetzt. Solche Entwicklungen, die auch in andere Fahrzeugprogramme einfließen, unterstreichen die wichtige Rolle, die BMW M Motorsport als Technologielabor für die gesamte BMW Group spielt. Die jüngste Zusammenarbeit mit Bcomp zur Erhöhung des Anteils nachwachsender Rohstoffe beim Nachfolger des BMW M4 GT4 setzt dies fort.

Mit der Markteinführung des neuen BMW M4 GT4 wird er das Serien-GT-Fahrzeug mit dem höchsten Anteil an Naturfaser-Komponenten sein. Die Flachsfaserlösungen ampliTex™ und powerRibs™ von Bcomp finden sich im gesamten Innenraum auf dem Armaturenbrett und der Mittelkonsole sowie auf Karosserieteilen wie Motorhaube, Frontsplitter, Türen, Kofferraum und Heckflügel. Abgesehen vom Dach gibt es fast keine Bauteile aus kohlenstofffaserverstärktem Kunststoff (CFK), die nicht durch die nachwachsenden Hochleistungsflachsmaterialien ersetzt wurden. "Produktnachhaltigkeit gewinnt auch im Motorsport zunehmend an Bedeutung", sagt Franciscus van Meel, Vorsitzender der Geschäftsführung der BMW M GmbH.

Bcomp ist ein führender Anbieter von Lösungen für Naturfaser-Verstärkungen in Hochleistungsanwendungen vom Rennsport bis zur Raumfahrt.

Das Unternehmen begann 2011 als Garagenprojekt mit dem Ziel, leichte und dennoch leistungsstarke Skier zu entwickeln. Die bCores™ wurden eingeführt und erfolgreich von einigen der größten Namen im Freeride-Skisport übernommen. Die Gründer, promovierte Materialwissenschaftler der École Polytechnique Fédérale de Lausanne (EPFL), verwendeten Flachsfasern zur Verstärkung des Balsakerns und zur Verbesserung der Schersteifigkeit. Beeindruckt von den hervorragenden mechanischen Eigenschaften der Flachsfasern begann die Entwicklung nachhaltiger Leichtbaulösungen für den breiteren Mobilitätsmarkt.

Flachs ist eine einheimische Pflanze, die in Europa natürlich wächst und seit Jahrhunderten Teil der Agrargeschichte ist. Sie benötigt sehr wenig Wasser und Nährstoffe, um erfolgreich zu wachsen. Zudem fungiert sie als Fruchtfolgepflanze und verbessert so die Ernteerträge auf bestehenden Anbauflächen. Weder beim Anbau noch bei der Verarbeitung der Flachspflanzen werden Chemikalien eingesetzt, die das Grundwasser verunreinigen könnten, die Ernte ist ein rein mechanischer Prozess. Nach der Ernte kann die gesamte Flachspflanze als Futtermittel oder zur Ölherstellung verwendet werden, und ihre Fasern werden vor allem für Heimtextilien und Kleidung genutzt. Die langen Fasern der Flachspflanze besitzen sehr gute mechanische Eigenschaften und ein hervorragendes Dämpfungsverhalten im Verhältnis zu ihrer Dichte, wodurch sie sich besonders gut als natürliche Faserverstärkung für alle Arten von Polymeren eignen.

Die Ernte und Verarbeitung des Flachses erfolgen lokal in den ländlichen Gebieten, in denen er angebaut wurde. Die Verwendung von europäischem Flachs, den Bcomp über seine gut etablierte und transparente Lieferkette bezieht, ermöglicht es, die wirtschaftliche und soziale Struktur in den ländlichen Gebieten zu unterstützen, da für die Aufrechterhaltung der Flachsproduktion zahlreiche qualifizierte Arbeitskräfte erforderlich sind. Bei der Herstellung der technischen Produkte wie dem powerRibs™-Bewehrungsnetz investiert Bcomp in lokale Produktionskapazitäten in der Nähe seines Hauptsitzes in Freiburg, Schweiz, schafft so neue Arbeitsplätze und erhält das technische Know-how in der Region. Die Produktion ist so effizient wie möglich und mit minimalen Umweltauswirkungen und Abfällen aufgebaut.

Zur weiteren Stärkung der lokalen Wirtschaft ist Bcomp bestrebt, regionale Unternehmen für Aufträge zu engagieren. Da sich der Hauptsitz im Freiburger Stadtviertel "Blaue Fabrik" befindet, kann Bcomp sowohl von der Entwicklung eines nachhaltigen und vielfältigen Viertels profitieren als auch dazu beitragen.

Quelle:

Bcomp; BMW Group

© ITM/TUD - Biomimetische Fischflosse mit dielektrischen Elastomeraktoren und Faserverstärkung.
08.11.2022

Förderung für Faser-Elastomer-Verbunde: Intelligente Materialien für Robotik und Prothesen

  • Erfolgreiche Bewilligung der 2. Förderperiode des DFG-Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“

Dresdner Forschende wollen eine völlig neue Werkstoffklasse entwickeln, bei der Aktoren und Sensoren in flexible Faserverbundwerkstoffe integriert werden. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte dazu die 2. Phase des Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“ an der TU Dresden in Kooperation mit dem Leibniz-Institut für Polymerforschung Dresden. Sprecher ist Professor Chokri Cherif vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden. In den nächsten 4,5 Jahren werden neben Sach- und Projektmittel insgesamt 22 Doktorandinnen und Doktoranden in 11 interdisziplinären Teilprojekten gefördert.

  • Erfolgreiche Bewilligung der 2. Förderperiode des DFG-Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“

Dresdner Forschende wollen eine völlig neue Werkstoffklasse entwickeln, bei der Aktoren und Sensoren in flexible Faserverbundwerkstoffe integriert werden. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte dazu die 2. Phase des Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“ an der TU Dresden in Kooperation mit dem Leibniz-Institut für Polymerforschung Dresden. Sprecher ist Professor Chokri Cherif vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden. In den nächsten 4,5 Jahren werden neben Sach- und Projektmittel insgesamt 22 Doktorandinnen und Doktoranden in 11 interdisziplinären Teilprojekten gefördert.

Ziel ist die simulationsgestützte Entwicklung intelligenter Werkstoffkombinationen für autarke Faserverbundwerkstoffe. Dabei werden Aktoren und Sensoren in die Strukturen integriert und müssen nicht mehr wie bisher nachträglich platziert werden. In der ersten Förderphase wurden hierfür wichtige Grundsteine gelegt, um große zweidimensionale Verformungen in weichen, biomimetischen Strukturen zu erzielen. Die weitere Förderung durch die DFG ist eine Bestätigung für die herausragenden bisherigen Ergebnisse. Darauf aufbauend stehen in der zweiten Förderphase ionische und helixförmige Aktor-Sensor-Konzepte im Fokus. Durch die Kombination mit intelligenten Auslegungs- und Regelungsalgorithmen werden autarke, sich dreidimensional verformende Materialsysteme entstehen. So werden diese Systeme robuster, komplexe Vorformungsmuster lassen sich an der gewünschten Stelle maßgeschneidert einstellen – und zwar reversibel und berührungslos.

Faserverbundwerkstoffe werden aufgrund der hohen spezifischen Steifigkeiten und Festigkeiten sowie der Möglichkeit zur maßgeschneiderten Einstellung dieser Eigenschaften immer stärker in bewegten Komponenten eingesetzt. Durch die Integration adaptiver Funktionalitäten in derartige Werkstoffe, entfällt die Notwendigkeit einer nachträglichen Aktorplatzierung und die Robustheit des Systems wird signifikant verbessert. Besonders vielversprechend sind dabei Aktoren und Sensoren auf textiler Basis, wie sie am ITM erforscht und entwickelt werden, da diese direkt im Fertigungsprozess in die Faserverbundwerkstoffe integriert werden können.

Mit ihren innovativen Eigenschaften sind interaktive Faser-Elastomer-Verbunde für zahlreiche Anwendungsfelder im Maschinen- und Fahrzeugbau, in der Robotik, Architektur, Orthetik und Prothetik prädestiniert: Beispiele sind Systeme für präzise Greif- und Transportvorgänge (z.B. bei Handprothesen, Verschlüssen und verformbaren Membranen) und Bauteile (z.B. Trimmklappen für Land- und Wasserfahrzeuge).

Quelle:

TU Dresden: Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

05.04.2022

Das klügere Pflaster gibt nach: Verband mit integrierten Medikamenten

Mit einem Verband, der Medikamente freisetzt, sobald eine Infektion in einer Wunde beginnt, ließen sich Verletzungen effizienter behandeln. Empa-Forschende arbeiten derzeit an Polymerfasern, die weich werden, sobald sich die Umgebung aufgrund einer Infektion erwärmt, und dadurch ein keimtötendes Mittel abgeben.

Ob eine Wunde unter dem Verband problemlos verheilt oder Bakterien in das verletzte Gewebe eindringen und eine Entzündung entfachen, lässt sich von außen nicht erkennen. Sicherheitshalber werden also desinfizierende Salben oder Antibiotika auf der Wunde verteilt, bevor ein Verband angelegt wird. Diese vorbeugenden Maßnahmen sind aber nicht in jedem Fall notwendig. So werden Medikamente verschwendet und Wunden «übertherapiert».

Mit einem Verband, der Medikamente freisetzt, sobald eine Infektion in einer Wunde beginnt, ließen sich Verletzungen effizienter behandeln. Empa-Forschende arbeiten derzeit an Polymerfasern, die weich werden, sobald sich die Umgebung aufgrund einer Infektion erwärmt, und dadurch ein keimtötendes Mittel abgeben.

Ob eine Wunde unter dem Verband problemlos verheilt oder Bakterien in das verletzte Gewebe eindringen und eine Entzündung entfachen, lässt sich von außen nicht erkennen. Sicherheitshalber werden also desinfizierende Salben oder Antibiotika auf der Wunde verteilt, bevor ein Verband angelegt wird. Diese vorbeugenden Maßnahmen sind aber nicht in jedem Fall notwendig. So werden Medikamente verschwendet und Wunden «übertherapiert».

Schlimmer noch: Der verschwenderische Umgang mit Antibiotika fördert die Entstehung von multiresistenten Keimen, die ein immenses Problem der globalen Gesundheitsversorgung darstellen. Empa-Forschende der beiden Empa-Labore «Biointerfaces» und «Biomimetic Membranes and Textiles» in St. Gallen wollen dies ändern. Sie entwickeln einen Verband, der selbstständig nur dann antibakterielle Medikamente verabreicht, wenn sie auch wirklich benötigt werden.

Die Idee des interdisziplinären Teams um Qun Ren und Fei Pan: Der Verband sollte mit Medikamenten «beladen» sein und zudem auf Umweltreize reagieren. «Auf diese Weise könnten Wunden präzise und im richtigen Moment behandelt werden», erklärt Fei Pan. Als Umweltreiz suchte sich das Team einen bestens bekannten Effekt aus: den Temperaturanstieg in einer infizierten, entzündeten Wunde.

Nun hiess es für das Team, ein Material zu designen, das auf diesen Temperaturanstieg passend reagieren würde. Hierzu wurde ein hautverträglicher Polymer-Verbundstoff aus mehreren Komponenten entwickelt: Acrylglas (Polymethylmethacrylat, kurz PMMA), das beispielsweise für Brillengläser und in der Textilindustrie verwendet wird, und Eudragit, ein bioverträgliches Polymergemisch, mit dem beispielsweise Tabletten überzogen werden. Mittels Elektrospinnen liess sich das Kunststoffgemisch zu einer feinen Membran aus Nanofasern verarbeiten. Als medizinisch wirksame Komponente konnte schliesslich Octenidin in die Nanofasern eingekapselt werden. Octenidin ist ein Desinfektionsmittel, das schnell gegen Bakterien, Pilze und manche Viren wirkt. In der Medizin kann es auf der Haut, auf Schleimhäuten und zur Wunddesinfektion verwendet werden.

Entzündungszeichen als Trigger
Bereits in der Antike beschrieb der griechische Arzt Galen die Anzeichen einer Entzündung. Noch heute besitzen die fünf lateinischen Fachbegriffe ihre Gültigkeit: Dolor (Schmerz), Calor (Erwärmung), Rubor (Rötung), Tumor (Schwellung) und Functio laesa (eingeschränkte Funktion) stehen für die klassischen Hinweise auf eine Entzündung. Bei einer infizierten Hautwunde kann die lokale Erwärmung bis zu fünf Grad ausmachen. Dieser Temperaturunterschied lässt sich als Trigger nutzen: Geeignete Materialien verändern in diesem Bereich ihre Konsistenz und können therapeutische Substanzen freisetzen.

Zersplitternder Handschuh
«Damit die Membran als "smarter Verband" wirkt und das Desinfektionsmittel auch tatsächlich freisetzt, wenn sich die Wunde aufgrund einer Infektion erwärmt, haben wir das Polymergemisch aus PMMA und Eudragit so zusammengestellt, dass wir die Glasübergangstemperatur passend einstellen konnten», sagt Empa-Forscher Fei Pan. Dabei handelt es sich um die Temperatur, bei der ein Kunststoff von einer festen Konsistenz in einen gummig-zähen Zustand wechselt. Bildlich beschrieben wird der Effekt gerne in umgekehrter Weise: Legt man einen Gummihandschuh in flüssigen Stickstoff bei minus 196 Grad, ändert er seine Konsistenz und wird so hart, dass man ihn mit einem Schlag wie Glas zersplittern lassen kann.

Die gewünschte Glasübergangstemperatur der Polymermembran hingegen lag im Bereich von 37 Grad. Wenn eine Entzündung vorliegt und sich die Haut über ihre normale Temperatur von 32 bis 34 Grad hinaus erwärmt, wechselt das Polymer von seinem festen in einen weicheren Zustand. In Laborexperimenten konnte das Team beobachten, wie das Desinfektionsmittel bei 37 Grad aus dem Polymer freigesetzt wird, nicht jedoch bei 32 Grad. Ein weiterer Vorteil: Der Prozess ist reversibel und kann bis zu fünf Mal wiederholt werden, da sich der Vorgang bei Abkühlung immer wieder von selbst «abschaltet». Nach diesen erfolgreichen Tests möchten die Empa-Forschenden nun das Feintuning des Effekts angehen. Statt eines Temperaturbereichs von vier bis fünf Grad soll der smarte Verband sich dann bereits bei kleineren Temperaturunterschieden an- und abschalten.

Smart und schonungslos
Um die Wirksamkeit der Nanofaser-Membranen gegenüber Wundkeimen zu untersuchen, stehen nun weitere Laborexperimente an. Teamleiterin Qun Ren befasst sich seit Langem mit Keimen, die sich in den Grenzschichten zwischen Oberflächen und der Umwelt einnisten, wie etwa auf einer Hautwunde. «In diesem biologischen Setting, einer Art Niemandsland zwischen Körper und Verbandsmaterial, finden Bakterien eine perfekte biologische Nische», so die Empa-Forscherin. Infektionserreger wie Staphylokokken oder Pseudomonas-Bakterien können hier schwere Wundheilungsstörungen verursachen. Genau diese Wundkeime liess das Team in der Petrischale Bekanntschaft mit dem smarten Verband machen. Und tatsächlich: Die Zahl der Bakterien verringerte sich um den Faktor 1000, wenn Octenidin aus dem smarten Verband freigesetzt wurde. «Mit Octenidin ist uns ein "Proof of Principle" für die kontrollierte Medikamentenfreisetzung durch einen externen Reiz gelungen», so Qun Ren. Künftig lasse sich die Technologie auch für andere Arten von Medikamenten einsetzen, wodurch die Effizienz und Präzision bei deren Dosierung gesteigert werden könnte.

Der smarte Verband
In interdisziplinären Teams arbeiten Empa-Forschende an verschiedenen Ansätzen zur Verbesserung der medizinischen Wundbehandlung. Beispielsweise sollen flüssige Sensoren durch Farbumschlag an der Aussenseite des Verbands sichtbar machen, wenn eine Wunde schlecht verheilt. Als Biomarker dienen hierbei kritische Glukose- und pH-Werte.

Damit bakterielle Infektionen direkt in der Wunde bekämpft werden können, arbeiten die Forschenden zudem an einem Polymerschaum, der mit entzündungshemmenden Substanzen beladen ist und an einer hautfreundlichen Membran aus Pflanzenmaterial. Die Cellulose-Membran ist mit antimikrobiellen Eiweissbausteinen ausgestattet und tötet in Labortests Bakterien äusserst effizient ab.

Zudem kann die Digitalisierung bei der Wundversorgung sparsamere und effizientere Dosierungen erreichen: Empa-Forschende entwickeln digitale Zwillinge der Haut, die die Steuerung und Vorhersage des Therapieverlaufs mittels Modellierung in Echtzeit erlauben.

Informationen
Prof. Dr. Katharina Maniura
Biointerfaces  
Tel. +41 58 765 74 47
Katharina.Maniura@empa.ch

Prof. Dr. René Rossi
Biomimetic Membranes and Textiles
Tel. +41 58 765 77 65
Rene.rossi@empa.ch

Quelle:

EMPA, Andrea Six

Foto: pixabay
15.02.2022

Intelligente Fasern: Farbwechsel bei beschädigten Seilen

Hochleistungsfasern, die hohen Temperaturen ausgesetzt waren, verlieren meist unerkannt ihre mechanischen Eigenschaften und können im schlimmsten Fall genau dann reißen, wenn Leben davon abhängen. Zum Beispiel Sicherheitsseile der Feuerwehr oder Tragseile für schwere Lasten auf Baustellen. Empa-Forschende haben eine Beschichtung entwickelt, die die Farbe wechselt, wenn sie hohen Temperaturen durch Reibung oder Feuer ausgesetzt war.

Der Feuerwehrmann rennt ins brennende Gebäude und durchsucht systematisch Raum für Raum nach Personen, die Rettung bedürfen. An ihm befestigt ist ein Sicherungsseil, an dessen anderem Ende die Kollegen draußen vor dem Haus warten und ihn im Notfall – sollte er aus irgendwelchen Gründen das Bewusstsein verlieren – aus dem Gebäude ziehen oder ihm zur Rettung ins Gebäude folgen können. Ist dieses Seil allerdings bei vorherigen Einsätzen zu großer Hitze ausgesetzt gewesen, kann es vorkommen, dass es reißt. Das bedeutet Lebensgefahr!

Hochleistungsfasern, die hohen Temperaturen ausgesetzt waren, verlieren meist unerkannt ihre mechanischen Eigenschaften und können im schlimmsten Fall genau dann reißen, wenn Leben davon abhängen. Zum Beispiel Sicherheitsseile der Feuerwehr oder Tragseile für schwere Lasten auf Baustellen. Empa-Forschende haben eine Beschichtung entwickelt, die die Farbe wechselt, wenn sie hohen Temperaturen durch Reibung oder Feuer ausgesetzt war.

Der Feuerwehrmann rennt ins brennende Gebäude und durchsucht systematisch Raum für Raum nach Personen, die Rettung bedürfen. An ihm befestigt ist ein Sicherungsseil, an dessen anderem Ende die Kollegen draußen vor dem Haus warten und ihn im Notfall – sollte er aus irgendwelchen Gründen das Bewusstsein verlieren – aus dem Gebäude ziehen oder ihm zur Rettung ins Gebäude folgen können. Ist dieses Seil allerdings bei vorherigen Einsätzen zu großer Hitze ausgesetzt gewesen, kann es vorkommen, dass es reißt. Das bedeutet Lebensgefahr!

Bislang gab es keine Möglichkeit, dem Seil diese Schäden anzumerken. Ein Forscherteam der Empa und der ETH Zürich entwickelten eine Beschichtung, die aufgrund der physikalischen Reaktion mit Hitze ihre Farbe wechselt und so deutlich anzeigt, ob ein Seil auch zukünftig noch die Sicherheit bietet, die es verspricht.

Forschende der ETH Zürich und der Empa entwickelten 2018 im Rahmen einer Masterarbeit ein Beschichtungssystem, das das Empa-Team 2021 auf Fasern anwenden konnten. "Das war ein Prozess mit mehreren Schritten", so Dirk Hegemann von der Empa-Abteilung Advances Fibers. Die ersten Beschichtungen funktionierten lediglich auf glatten Oberflächen; die Methode musste also zunächst einmal so angepasst werden, dass sie auch bei gekrümmten Flächen funktioniert. Die Empa verfügt beim Beschichten von Fasern über ein breites Know-How – so haben Hegemann und sein Team in der Vergangenheit bereits elektrisch leitfähige Fasern entwickelt. Das sogenannte Sputtering kam nun auch bei der neusten Beschichtung erfolgreich zum Einsatz.

Damit die Faser bei Hitze auch tatsächlich ihre Farbe verändert, sind drei Schichten nötig. Auf die Faser selbst, im Falle der Forschungsarbeit PET (also Polyester) und VectranTM, eine Hightech-Faser, bringen die Forschenden Silber auf. Dieses dient als Reflektor – also als metallische Basisschicht. Dann folgt eine Zwischenschicht aus Titan-Stickoxid, die dafür sorgt, dass das Silber stabil bleibt. Und erst dann folgt jene amorphe Schicht, die für die Farbveränderung sorgt: Gerade einmal 20 Nanometer dünnes Germanium-Antimon-Tellurium (GST). Wird diese Schicht erhöhten Temperaturen ausgesetzt, kristallisiert sie; dadurch verändert sich der Farbeindruck, etwa von blau nach weißlich. Der Farbumschlag basiert auf einem physikalischen Phänomen, der so genannten Interferenz. Dabei treffen zwei unterschiedliche Wellen (z.B. Licht) aufeinander und verstärken sich beziehungsweise schwächen sich gegenseitig ab. Abhängig von der chemischen Zusammensetzung der temperatursensitiven Schicht lässt sich diese Farbveränderung auf einen Temperaturbereich zwischen 100 und 400 Grad einstellen und damit an die mechanischen Eigenschaften des Fasertyps anpassen.

Maßgeschneiderte Lösungen
Noch sind die möglichen Anwendungsgebiete der farbverändernden Fasern offen, und Hegemann ist auf der Suche nach möglichen Projektpartnern. Nebst Sicherheitsausrüstung für Feuerwehrleute oder Bergsteiger lassen sich die Fasern auch für Lastseile in Produktionsstätten, auf Baustellen usw. nutzen. Die Forschung am Thema ist jedenfalls noch längst nicht abgeschlossen. So lässt sich die Fasern zurzeit noch nicht über längere Zeiträume lagern, ohne ihre Funktionalität zu verlieren. «Leider oxidieren die Phase-Change-Materialien im Verlauf von einigen Monaten», so Hegemann. Das bedeutet, dass der entsprechende Phasenwechsel – die Kristallisation – selbst bei Hitze nicht mehr stattfindet und das Seil somit sein «Warnsignal» verliert. Dass das Prinzip funktioniert, ist jedenfalls bewiesen und die Haltbarkeit ein Thema zukünftiger Forschung, so Hegemann. «Sobald erste Partner aus der Industrie ihr Interesse für eigene Produkte anmelden, lassen sich die Fasern entsprechend ihren Bedürfnissen weiter optimieren».

Informationen:
Dr. Dirk Hegemann
Advanced Fibers
Tel. +41 58 765 7268
Dirk.Hegemann@empa.ch

Quelle:

EMPA, Andrea Six

Foto: pixabay, Hilary Clark
01.02.2022

Baumwollfasern 2.0: Feuerfest und anschmiegsam

Ein an der Empa entwickeltes chemisches Verfahren macht aus Baumwolle ein schwer entflammbares Gewebe, das trotzdem die hautfreundlichen Eigenschaften von Baumwolle behält.

Herkömmliche flammhemmende Baumwolltextilien enthalten oft Rückstände von Formaldehyd und sind zudem unangenehm auf der Haut. Empa-Wissenschaftlern ist es gelungen, dieses Problem zu umgehen, indem sie ein physikalisch und chemisch unabhängiges Netzwerk im Inneren der Fasern schufen. So bleiben die positiven Eigenschaften der Baumwollfaser erhalten, die drei Viertel des weltweiten Bedarfs an Naturfasern in Kleidung und Heimtextilien ausmachen: Baumwolle ist hautfreundlich, weil sie erhebliche Mengen an Wasser aufnehmen kann und ein günstiges Mikroklima auf der Haut gewährleistet.

Ein an der Empa entwickeltes chemisches Verfahren macht aus Baumwolle ein schwer entflammbares Gewebe, das trotzdem die hautfreundlichen Eigenschaften von Baumwolle behält.

Herkömmliche flammhemmende Baumwolltextilien enthalten oft Rückstände von Formaldehyd und sind zudem unangenehm auf der Haut. Empa-Wissenschaftlern ist es gelungen, dieses Problem zu umgehen, indem sie ein physikalisch und chemisch unabhängiges Netzwerk im Inneren der Fasern schufen. So bleiben die positiven Eigenschaften der Baumwollfaser erhalten, die drei Viertel des weltweiten Bedarfs an Naturfasern in Kleidung und Heimtextilien ausmachen: Baumwolle ist hautfreundlich, weil sie erhebliche Mengen an Wasser aufnehmen kann und ein günstiges Mikroklima auf der Haut gewährleistet.

Für Feuerwehrleute und andere Einsatzkräfte ist die Schutzkleidung die wichtigste Barriere. Für solche Zwecke wird hauptsächlich Baumwolle als innere Textilschicht verwendet, die jedoch zusätzliche Eigenschaften benötigt: Sie muss etwa feuerfest sein oder vor biologischen Schadstoffen schützen. Dennoch sollte sie nicht wasserabweisend sein, weil dies ein unangenehmes Mikroklima schaffen würde. Diese zusätzlichen Eigenschaften können durch geeignete chemische Modifikationen in die Baumwollfasern «eingebaut» werden.

Dauerhaft aber toxisch
«Bislang war es immer ein Kompromiss, Baumwolle feuerfest zu machen», sagt der Chemiker und Polymerexperte Sabyasachi Gaan aus der Empa-Abteilung «Advanced Fibers». Waschbeständige, flammhemmende Baumwolle wird in der Industrie durch die Behandlung des Gewebes mit Flammschutzmitteln hergestellt, die sich chemisch mit der Zellulose in der Baumwolle verbinden. Derzeit hat die Textilindustrie keine andere Wahl, als auf Formaldehyd basierende Chemikalien zu verwenden – und Formaldehyd gilt als krebserregend. Ein jahrzehntealtes Problem. Formaldehyd-basierte Flammschutzmittel sind zwar langlebig, haben aber weitere Nachteile: Die OH-Gruppen der Zellulose werden chemisch blockiert, was die Fähigkeit der Baumwolle, Wasser aufzunehmen, erheblich mindert, und zu einem unangenehmen Tragegefühl der Textilien führt.

Gaan hat an der Empa viele Jahre lang Flammschutzmittel auf Basis der Phosphorchemie entwickelt, die bereits in vielen industriellen Anwendungen eingesetzt werden. 2021 ist es ihm gelungen, einen eleganten und einfachen Weg zu finden, Phosphor in Form eines unabhängigen Netzwerks in der Baumwolle zu verankern.

Chemisches Netzwerk zwischen den Baumwollfasern
Gaan und seine Forscherkollegen Rashid Nazir, Dambarudhar Parida und Joel Borgstädt, nutzten eine tri-funktionale Phosphorverbindung (Trivinylphosphinoxid), die die Fähigkeit besitzt, nur mit bestimmten zugesetzten Molekülen (Stickstoffverbindungen wie Piperazin) zu reagieren und ein eigenes Netzwerk im Inneren der Baumwolle zu bilden. Dadurch wird die Baumwolle dauerhaft feuerbeständig, ohne die günstigen OH-Gruppen zu blockieren. Darüber hinaus ist das physikalische Phosphinoxid-Netzwerk auch noch hydrophil und nimmt zusätzlich Feuchtigkeit auf. Diese flammhemmende Ausrüstung enthält kein krebserregendes Formaldehyd, das vor allem die Textilarbeiter bei der Herstellung gefährden würde, und die Phosphinoxid-Netzwerke waschen sich auch nicht aus: Nach 50 Wäschen sind noch 95 Prozent des Flammschutznetzwerks im Gewebe vorhanden.

Um der an der Empa entwickelten flammhemmenden Baumwolle zusätzliche Schutzfunktionen zu verleihen, brachten die Forscher Silber-Nanopartikel in das Gewebe ein. Dies funktioniert in einem einstufigen Prozess zusammen mit der Erzeugung der Phosphinoxid-Netzwerke. Die Silber-Nanopartikel verleihen der Faser antimikrobielle Eigenschaften und überleben selbst 50 Waschgänge.

Eine Hightech-Lösung aus dem Schnellkochtopf
«Wir haben einen einfachen Ansatz verwendet, um die Phosphinoxid-Netzwerke im Inneren der Zellulose zu fixieren», sagt Gaan. «Für unsere Laborexperimente haben wir die Baumwolle zunächst mit einer wässrigen Lösung von Phosphor- und Stickstoffverbindungen behandelt und anschliessend in einem handelsüblichen Schnellkochtopf gedämpft, um die Vernetzungsreaktion der Phosphor- und Stickstoffmoleküle zu erleichtern.» Der Anwendungsprozess ist mit den in der Textilindustrie bereits eingesetzten Behandlungsmaschinen kompatibel. «Das Dämpfen von Textilien nach dem Färben, Bedrucken und Veredeln ist ein normaler Schritt in der Textilindustrie. Es ist also keine zusätzliche Investition nötig, um unser Verfahren anzuwenden», so der Empa-Chemiker.

Inzwischen sind diese neu entwickelte Phosphorchemie und ihre Anwendung durch eine Patentanmeldung geschützt. «Es bleiben noch zwei wichtige Hürden», so Gaan. «Für die zukünftige Kommerzialisierung müssen wir einen geeigneten Chemikalienhersteller finden, der Trivinylphosphinoxid herstellen und liefern kann. Außerdem muss Trivinylphosphinoxid noch in der EU-Chemikaliendatenbank REACH registriert werden, damit sie problemlos gehandelt und transportiert werden kann.»

Kontakt:
Dr. Sabyasachi Gaan
Advanced Fibers
Tel. +41 58 765 7611
sabyasachi.gaan@empa.ch

Kontakt:
Prof. Dr. Manfred Heuberger
Advanced Fibers
Tel: +41 58 765 7878
manfred.heuberger@empa.ch

Ein Gel, das Medikamente freisetzt
Die neuartige Phosphorchemie kann auch für die Entwicklung anderer Materialien genutzt werden, etwa für die Herstellung von Hydrogelen, die bei wechselndem pH-Wert gezielt Medikamente freisetzen können. Solche Gele könnten Anwendung bei der Behandlung von Wunden finden, die nur langsam heilen. Bei solchen Wunden steigt der pH-Wert der Hautoberfläche an, und die neuen phosphorbasierten Gele können so getriggert werden, dass sie gezielt Medikamente auf die Wunde dosieren oder einen Farbstoff freisetzen, der Ärzte und Pflegepersonal auf das Problem aufmerksam macht. Die Empa hat auch die Herstellung solcher Hydrogele patentiert.

Quelle:

EMPA, Rainer Klose

14.12.2021

Förderprojekt Rohstoffklassifizierung recycelter Fasern

Schon seit Jahrhunderten werden aus Alttextilien Reißfasern hergestellt und zu neuen textilen Produkten verarbeitet. Dieses effektive Recycling ist einer der ältesten Materialkreisläufe der Welt. Heute geht es nicht nur um Bekleidung, sondern auch um hochwertige technische Textilien. So wie sich die Produkte der Textilindustrie weiterentwickeln, steigen auch die Anforderungen an das Textilrecycling. Grundlage dafür sind eine klare Beurteilung und Klassifizierung der Rohstoffe.

Schon seit Jahrhunderten werden aus Alttextilien Reißfasern hergestellt und zu neuen textilen Produkten verarbeitet. Dieses effektive Recycling ist einer der ältesten Materialkreisläufe der Welt. Heute geht es nicht nur um Bekleidung, sondern auch um hochwertige technische Textilien. So wie sich die Produkte der Textilindustrie weiterentwickeln, steigen auch die Anforderungen an das Textilrecycling. Grundlage dafür sind eine klare Beurteilung und Klassifizierung der Rohstoffe.

Im Forschungsprojekt der Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) und dem Sächsischen Textilforschungsinstitut e.V. (STFI) wird eine Methodik entwickelt, die es ermöglicht, den Reiß als auch die nachfolgenden Prozesse in Bezug auf die Faserqualität zu analysieren. Durch die systematische Analyse soll es gelingen, die nachfolgenden Spinnprozesse so zu optimieren, dass der Recyclinganteil im Garn erhöht werden kann, ohne, dass sich die Garneigenschaften gegenüber einem aus 100% Gutfasern bestehenden Garn wesentlich unterscheiden. Diese Garne können anschließend zu nachhaltigen textilen Produkten wie zum Beispiel Kleidung oder Verbundbauteile verarbeitet werden.

Das vom BMWi/IGF geförderte Projekt hat eine Laufzeit von zwei Jahren und endet am 31.12.2022. Der Nutzen für die teilnehmenden Unternehmen liegt insbesondere darin, ihnen den verstärkten Einsatz von Sekundärrohstoffen zu ermöglichen, neue Märkte durch im Projekt entwickelte Technologien oder Produkte zu erschließen, Synergien und langfristige Kooperationen anzubahnen sowie einen gemeinsamen Marktauftritt vorzubereiten.

Das Projekt umfasst verschiedene Arbeitsschritte:

  • Materialauswahl und Beschaffung
    Zu verarbeitende Baumwollfasern werden aus Alttextilien (T-Shirts) und Abfällen aus der Baumwollspinnerei gewonnen. Die Aramidfasern werden aus gebrauchter Schutzbekleidung und technischen Textilien aufbereitet.
  • Optimierung der Aufbereitung / Auflösung der Textilien
    Damit die Fasern aus den entsprechenden Textilien möglichst schonend und mit einer nicht zu hohen Einkürzung herausgelöst werden, sind exakte Einstellungen beim Reißprozess zu finden, welche technologisch sehr anspruchsvoll sind und viel Erfahrung voraussetzen.
  • Ermittlung der Qualitätskriterien zur Beurteilung der Faserauflösung
    Um die Qualitätskriterien zu definieren werden die aus der Reißerei kommenden Fasern mittels MDTA-4 Messgerät der Textechno GmbH & Co. KG ermittelt. Mit den ermittelten Kriterien soll die (möglichst geringe) Fasereinkürzung durch den Reißprozess charakterisiert werden.
  • Ermittlung optimierter Einstellungen beim Spinnprozess
    Um die optimalen Einstellungen zur Erzeugung eines Garnes aus den Recyclingfasern zu ermitteln, werden diese nach dem Rotorspinnprozess ersponnen. Durch Anpassung des Spinnprozesses soll ein Garn hergestellt werden, das eine gute Gleichmäßigkeit und auch eine entsprechende Festigkeit aufweist.
  • Herstellung und Vergleich von Garnen aus recycelten Rohstoffen
    Damit aus den Recyclingfasern - bestehend aus Aramid und Baumwolle - jeweils ein Flächengebilde hergestellt werden kann, soll das Material im industriellen Maßstab verarbeitet werden. Dazu werden die Fasern über eine komplette Putzereilinie mit anschließender Bandherstellung über angepasste Karden verarbeitet. Nach dem Verstrecken und der anschließenden Vorgarnherstellung werden Garne nach dem Rotor- bzw. nach dem Ringspinnverfahren hergestellt. Mit den fertiggestellten Garnen werden Gestricke produziert.
  • Koordination, Analyse der Ergebnisse und Erstellung der Berichte
    Die Erstellung des Abschlussberichtes erfolgt durch die DITF und das STFI. Ein Ergebnistransfer erfolgt durch Veröffentlichungen, Fachinformationen an Verbände und Messeauftritte. Begleitend sind regelmäßige Sitzungen mit den beteiligten Firmen geplant.

Textination sprach mit Stephan Baz, dem Stv. Leiter Kompetenzzentrum Stapelfaser, Weberei & Simulation Leitung Stapelfasertechnologie und Markus Baumann, Wissenschaftlicher Mitarbeiter am Kompetenzzentrum Stapelfaser, Weberei & Simulation (beide DITF) sowie Bernd Gulich, Abteilungsleiter Vliesstoffe/Recycling und Johannes Leis, wissenschaftlicher Mitarbeiter Schwerpunkt Vliesstoffe/Recycling (beide STFI) über den aktuellen Stand des Förderprojektes.

Wie ist der aktuelle Stand des Projekts?
Aktuell befinden wir uns in der Phase der Versuchsdurchführungen und der iterativen Optimierung gleich mehrerer Projektbausteine. Erwartungsgemäß sind für die mechanische Aufbereitung selbst und auch die Einstellung des Spinnprozesses mit den verschiedenen Varianten mehrere Schleifen notwendig. Letztendlich zielt das Projekt ja darauf ab, die Prozesse der mechanischen Aufbereitung und der Spinnerei als Verarbeitung aufeinander abzustimmen, um optimale Ergebnisse zu erzielen. Gleichzeitig ist die Ermittlung der Qualitätskriterien der erzeugten Fasern nicht trivial. Hierfür braucht es zudem die Weiterentwicklung von Prozessen und Prüfmethoden, welche in der Industrie produktiv umsetzbar sind und welche eine Beurteilung der Qualität der erzeugten Fasern tatsächlich und unbeeinflusst von z.B. Restgarnen ermöglichen. Wirklich bemerkenswert ist das Interesse und die Bereitschaft der Industrie die Projektarbeit voranzutreiben. Die in beträchtlichem Umfang benötigten Mengen an Materialien für unsere Versuche haben wir von der ReSales Textilhandel und -recycling GmbH, von der Altex Textil-Recycling GmbH & Co. KG und der Gebrüder Otto GmbH & Co. KG erhalten. Des Weiteren sind mit der Temafa Maschinenfabrik GmbH, Nomaco GmbH & Co. KG, Schill + Seilacher GmbH, Spinnerei Neuhof GmbH & Co. KG und Maschinenfabrik Rieter AG viele Mitglieder des projektbegleitenden Ausschusses von der Beratung bis hin zu der Bereitstellung von Technologien aktiv in das Projekt involviert. Die Firma Textechno Herbert Stein GmbH & Co. KG hat für die Dauer des Projektes ein Prüfgerät des Typ MDTA4 zur Verfügung gestellt und unterstützt unserer Arbeit in Bezug auf die Beurteilung der mechanisch aufbereiteten Fasern. Hierüber sind wir natürlich besonders froh, denn so konnten wir sowohl in der mechanischen Aufbereitung, der Prüfung als auch der Spinnerei mehrere Technologien betrachten und analysieren. Wir erwarten, zu Beginn des kommenden Jahres detailliertere Aussagen treffen zu können.

Welche Ansätze halten Sie für besonders vielversprechend?
Bezogen auf Technologien müssen wir auf die Auswertung und Analyse der Versuchsdurchführungen verweisen, welche derzeit noch andauern. Im ersten Quartal des nächsten Jahres werden wir hierzu mehr ins Detail gehen können.

Es zeichnen sich natürlich schon Dinge ab. Bei den meta-Aramid-Abfällen ließen sich sehr schnell vielversprechende Ansätze finden, bei der Post-Consumer-Baumwolle ist dies deutlich komplexer. Offensichtlich ist die Verbindung zwischen Qualität des Ausgangsmaterials und der Qualität der Erzeugnisse. Wir haben in den beschafften Waren teilweise bereits sehr niedrige mittlere Faserlängen feststellen können, diese spiegeln sich zu einem gewissen Grad natürlich direkt im Output unserer Prozesse wider. Daraus leitet sich, das ist keine neue Erkenntnis, erneut eine große Bedeutung des Designs der Textilien ab.

Worin liegen die Herausforderungen?
Neben dem zu erwartenden hohen Kurzfaseranteil sind die Restgarne nach dem Reißprozess ein Thema mit besonderem Fokus. Zwischen den Materialien und Aufbereitungstechnologien kann der Anteil dieser Restgarne variieren, aber die weitere Auflösung der Produkte des Reißprozesses ist essenziell.
Werden die Prozesse in einer Nutzungsphase weitergedacht, stellt sich die Frage des Designs natürlich auch für die bestmögliche Verwendung von recycelten Fasern. Viele Probleme, aber auch die Lösungsansätze für die Verwendung von vergleichsweise kurzen Fasern sind auch auf die (mehrfache) Verwendung von mechanisch recycelten Fasern zu erwarten.

Kann man beim Endprodukt von einem Upcycling sprechen?
Wir sehen das Garn-zu-Garn-Recycling weder als Up- noch als Downcycling, sondern als Kreislaufführung. Hintergrund ist, dass die Erzeugnisse in dieselbe Anwendung gehen sollen aus der sie gekommen sind und dabei mit Primärmaterial konkurrieren müssen. Dies bedeutet, dass gewisse spezifische Anforderungen zu erfüllen sind und gleichzeitig erheblicher Preisdruck herrscht. Beim Downcycling wird eine deutliche Verringerung der Eigenschaften in Kauf genommen, beim Upcycling kann aufgrund der höherpreisigen Anwendung der Aufbereitungsaufwand aufgefangen werden. Bei dem Bestreben, aus Garnmaterial wieder Garnmaterial zu fertigen, ist beides nur in geringem Maß zulässig. Dies stellt die besondere Herausforderung dar.

Was bedeutet ein aus Alttextilien aufbereitetes Rezyklat für den Spinnprozess?
Ein Teil dieser Fragestellung soll im Projekt durch die detaillierte Klassifizierung der aufbereiteten Fasern beantwortet werden und ist somit Gegenstand der aktuell laufenden Untersuchungen. Es zeigt sich, dass es neben den eher offensichtlichen Punkten wie deutlich reduzierte Faserlänge, Prozessstörungen durch unaufgelöste Gewebe und Garnstücke auch weniger offensichtliche Aspekte wie z.B. eine deutlich erhöhte Abgangsmenge für die Verarbeitung im Spinnprozess zu beachten sind. Die Abgangsmenge ist dabei von besonderem Interesse, denn am Ende soll im neu hergestellten Garn auch ein erheblicher Anteil an aufbereiteten Fasern enthalten sein.

Welche Konsequenzen hat das für den Textilmaschinenbau?
Die Konsequenzen, die zum aktuellen Zeitpunkt bereits abgeschätzt werden können, sind, dass insbesondere bei der Verarbeitung von Baumwolle der Maschinenpark im Spinnereivorwerk auf die Verarbeitung von (Neu-)Naturfasern mit einem gewissen Schmutzanteil spezialisiert ist. Bei aufbereiteten Fasern handelt es sich im Gegensatz zu den Neufasern um saubere Fasern mit deutlich höherem Kurzfaseranteil. Elemente, die gut Schmutz entfernen können, scheiden auch vermehrt kurze Fasern aus, das kann unter Umständen zu ungewollt hohen Abgangsmengen führen. Es ist somit notwendig die etablierte Maschinentechnologie an das neue Anforderungsprofil des Rohstoffes „aufbereitete Fasern“ anzupassen. Analoge Anpassungen sind vermutlich über die komplette Verarbeitungskette bis ins Garn notwendig. Im Streckwerk der Spinnmaschine natürlich eher bedingt durch den hohen Kurzfaseranteil als durch Elemente, die auf das Ausreinigen von Schmutz und Fremdbestandteilen hin optimiert wurden.

Weitere Informationen:
DITF STFI Fasern Recycling Spinnerei
Quelle:

Textination GmbH

(c) nova-Institut GmbH
07.12.2021

Finalisten für „Cellulose Fibre Innovation of the Year 2022” stehen fest

Zellulosefaser-Innovation des Jahres 2022: Zellulosefaser-Lösungen erweitern sich von Hygieneartikeln und Textilien sowie Vliesstoffen bis hin zu Alternativen für Carbonfasern für Leichtbauanwendungen.

Die Auswahl der Finalisten für den Innovationspreis war aufgrund der hochklassigen Einreichungen eine Herausforderung: Alle bieten vielversprechende nachhaltige Lösungen für die Wertschöpfungskette von Zellulosefasern. Sechs von ihnen erhalten die Chance, ihr Potenzial einem breiten Publikum vor Ort in Köln und Online zu demonstrieren.

Zellulosefaser-Innovation des Jahres 2022: Zellulosefaser-Lösungen erweitern sich von Hygieneartikeln und Textilien sowie Vliesstoffen bis hin zu Alternativen für Carbonfasern für Leichtbauanwendungen.

Die Auswahl der Finalisten für den Innovationspreis war aufgrund der hochklassigen Einreichungen eine Herausforderung: Alle bieten vielversprechende nachhaltige Lösungen für die Wertschöpfungskette von Zellulosefasern. Sechs von ihnen erhalten die Chance, ihr Potenzial einem breiten Publikum vor Ort in Köln und Online zu demonstrieren.

Das nova-Institut kürt zum zweiten Mal die „Cellulose Fibre Innovation of the Year“ im Rahmen der „International Conference on Cellulose Fibres 2022“ (2.-3. Februar 2022). Der Konferenzbeirat hat sechs Produkte nominiert, von Zellulose aus Orangen- und Holzzellstoff bis hin zu einer neuartigen Technologie zur Zellulosefaserherstellung. Die Präsentationen der Kandidaten, die Wahl des Gewinners durch das Konferenzpublikum und die Preisverleihung finden am ersten Tag der Konferenz statt.

Zellulosefasern weisen ein immer breiteres Anwendungsspektrum auf, während die Märkte gleichzeitig durch technologische Entwicklungen und politische Rahmenbedingungen, insbesondere Verbote und Beschränkungen für Kunststoffe und steigende Nachhaltigkeitsanforderungen, bewegt werden. Die Konferenz bietet einen ausführlichen Überblick über die Perspektiven für Zellulosefasern durch eine Einschätzung der politischen Rahmenbedingungen, eine Session zu Nachhaltigkeit, Recycling und alternativen Rohstoffen sowie Informationen zu den neuesten Entwicklungen in Zellstoff, Zellulosefasern und Garne. Dazu gehören Anwendungen wie Vliesstoffe, Verpackungen und Verbundwerkstoffe.

Das sind die Nominierten:
Kohlenstofffasern aus Holz - Deutsche Institute für Textil- und Faserforschung Denkendorf (Deutschland)
Die HighPerCellCarbon®-Technologie ist ein nachhaltiges und alternatives Verfahren zur Herstellung von Kohlenstofffasern aus Holz. Die Technologie beginnt mit dem Nassspinnen von Zellulosefasern unter Verwendung ionischer Flüssigkeiten (IL) als direktes Lösungsmittel in einem umweltfreundlichen, geschlossenen Filamentspinnverfahren (HighPerCell®-Technologie). Diese Filamente werden durch einen Niederdruck-Stabilisierungsprozess direkt in Kohlenstofffasern umgewandelt, gefolgt von einem geeigneten Karbonisierungsprozess. Während des gesamten Prozesses entstehen keine Abgase oder giftige Nebenprodukte. Darüber hinaus ermöglicht das Verfahren ein vollständiges Recycling von Lösungsmittel und Vorläuferfasern, wodurch ein einzigartiger und umweltfreundlicher Prozess entsteht. Kohlenstofffasern werden in vielen Leichtbauanwendungen eingesetzt und sind eine nachhaltige Alternative zu Fasern auf fossiler Basis.

Fibers365, Wirklich kohlenstoffnegative Frischfasern aus Stroh – Fibers365 (Deutschland)
Fibers365 sind die ersten kohlenstoffnegativen Fasern aus frischem Stroh auf dem Markt. Das Fibers365-Konzept basiert auf einem einzigartigen, hochmodernen Verfahren zur Herstellung funktioneller, kohlenstoffnegativer und wettbewerbsfähiger Nichtholz-Biomasseprodukte wie Frischfasern für Papier- Verpackungs- und Textilzwecke sowie hochwertige Prozessenergie-, Biopolymer- und Düngemittel-Nebenströme. Die Produkte werden aus den Stängeln einjähriger Nahrungspflanzen wie Stroh durch eine chemikalienfreie, regionale, bäuerliche Dampfexplosionsauflösungstechnologie gewonnen, die eine einfache Trennung der Fasern von Zucker, Lignin, organischer Säure und Mineralien ermöglicht. Bei einjährigen Pflanzen werden die CO2-Emissionen innerhalb von 12 Monaten nach dem Produktionsdatum zurückgewonnen, so dass ein sofortiger jährlicher Ausgleich der entsprechenden Emissionen möglich ist.

Iroony® Hanf- und Flachszellulose – RBX Créations (Frankreich)
Iroony® ist eine Marken-Zellulose, die von RBX Créations aus Hanf hergestellt wird. Die widerstandsfähige Hanfpflanze wächst schnell innerhalb weniger Monate, bindet massiv Kohlenstoff und weist einen hohen Zellulosegehalt auf. Die Biomasse wird direkt von französischen Landwirten geerntet, die sie ohne Chemikalien und Bewässerung in ausgedehnten Rotationszyklen anbauen und so zur Regeneration des Bodens und zur Artenvielfalt beitragen. Für ein diversifiziertes Angebot kann der Hanf mit biologisch angebautem Flachs kombiniert werden. Durch sein patentiertes Verfahren gewinnt RBX Créations hochreine Zellulose, die sich perfekt für Spinntechnologien wie HighPerCell® des DITF-Forschungszentrums eignet. Die daraus gewonnenen Fasern weisen vielseitige Eigenschaften wie Feinheit, Festigkeit und Dehnbarkeit auf und eignen sich für Anwendungen wie Bekleidung oder technische Textilien. Iroony® vereint geringe Umweltauswirkungen, Nachverfolgbarkeit und Leistung.

SPINNOVA, Nachhaltige Textilfasern ohne schädliche Chemikalien – Spinnova (Finnland)
Die innovative Technologie von Spinnova ermöglicht die Herstellung nachhaltiger Textilfasern in einem mechanischen Verfahren, ohne Auflösen oder schädliche Chemikalien. Das Verfahren umfasst die Verwendung von Zellstoff in Papierqualität und die mechanische Raffination zur Herstellung mikrofibrillierter Zellulose (MFC). Die aus MFC bestehende Fasersuspension wird ohne Regenerationsverfahren zu Textilfasern extrudiert. Beim Spinnova-Verfahren fallen keine Nebenabfälle an, und der ökologische Fußabdruck von SPINNOVA® umfasst 65 % weniger CO2-Emissionen und 99 % weniger Wasser im Vergleich zur Baumwollproduktion. Die Lösung von Spinnova ist außerdem skalierbar: Spinnova strebt an, in den nächsten 10 bis 12 Jahren eine jährliche Produktionskapazität von 1 Million Tonnen zu erreichen.

Nachhaltige Menstruationsunterwäsche: Anwendungsorientierte Funktionalisierung von Fasern – Kelheim Fibres (Deutschland)
Die pflanzlichen und biologisch abbaubaren Fasern von Kelheim leisten einen wichtigen Beitrag für eine nachhaltige Zukunft im Bereich der wiederverwendbaren Hygienetextilien. Durch innovative Funktionalisierung werden sie gezielt auf die Anforderungen der einzelnen Lagen abgestimmt und erreichen dadurch eine vergleichbare Leistungsfähigkeit wie synthetische Fasern. Es entsteht eine einzigartige Dualität in der Fasertechnologie: nachhaltig hergestellte Zellulosefasern, die einen hohen Tragekomfort und Wiederverwendbarkeit bei außergewöhnlicher, langlebiger Leistung ermöglichen. Die Faserkonzepte umfassen Celliant® Viscose, eine faserinterne Infrarotlösung und Danufil®-Fasern in der Oberschicht, Galaxy, eine trilobale Faser für die ADL, Bramante, eine Viskosehohlfaser, im absorbierenden Kern und ein wasserabweisendes Gewebe, eine biologisch abbaubare PLA-Folie oder eine nachhaltige Beschichtung als Unterschicht.

Lyocellfaser der Marke TENCEL™ aus Orangen- und Holzzellstoff – Orange Fiber (Italien)
Orange Fiber ist das weltweit erste Unternehmen, das eine nachhaltige Textilfaser aus einem patentierten Verfahren zur Gewinnung von Zellulose herstellt, die aus den Resten von Zitrusfrüchten gesponnen wird, von denen allein in Italien mehr als 1 Million Tonnen pro Jahr anfallen. Das Ergebnis der Partnerschaft mit der Lenzing Gruppe, dem weltweit führenden Hersteller von Spezialfasern auf Holzbasis, ist die erste Lyocellfaser der Marke TENCEL™, die aus Orangen- und Holzzellstoff hergestellt wird. Eine neuartige Zellulosefaser, die die Nachhaltigkeit in der gesamten Wertschöpfungskette weiter vorantreibt und die Grenzen der Innovation verschiebt. Diese Faser, die Teil der TENCEL™ Limited Edition Initiative ist, zeichnet sich durch eine weiche Anmutung und eine hohe Feuchtigkeitsaufnahme aus. Sie hat bereits das OEKO-TEX Standard 100 Zertifikat erhalten und wird derzeit einer Reihe weiterer Nachhaltigkeitsbewertungen unterzogen.

Foto: pixabay
19.10.2021

Mikromechanische Simulation der Resilienz von Vliesstoffen

Vliesstoffe sind ein wichtiger Bestandteil in diversen Produkten mit verschiedenen Anwendungsgebieten, z.B. Hygieneprodukte, Dämmstoffe oder Filter. In der Regel werden sie auf einer Reihe großer Anlagen hergestellt; daher gestalteten sich experimentelle Designstudien zur Optimierung dieser Vliesstoffstrukturen sehr aufwändig.

Einfluss Designparameter
Es gibt sehr viele Designparameter, wie z.B. Fasern, Flächengewicht oder Vliesverfestigungstyp, welche die Vliesstoffeigenschaften beeinflussen. Zum Austausch eines einzelnen Parameters, beispielsweise des Fasermaterials, muss der vollständige Produktionsprozess vom Faserspinnen über die Faserablage bis hin zur Vliesverfestigung umgestellt werden.

Vliesstoffe sind ein wichtiger Bestandteil in diversen Produkten mit verschiedenen Anwendungsgebieten, z.B. Hygieneprodukte, Dämmstoffe oder Filter. In der Regel werden sie auf einer Reihe großer Anlagen hergestellt; daher gestalteten sich experimentelle Designstudien zur Optimierung dieser Vliesstoffstrukturen sehr aufwändig.

Einfluss Designparameter
Es gibt sehr viele Designparameter, wie z.B. Fasern, Flächengewicht oder Vliesverfestigungstyp, welche die Vliesstoffeigenschaften beeinflussen. Zum Austausch eines einzelnen Parameters, beispielsweise des Fasermaterials, muss der vollständige Produktionsprozess vom Faserspinnen über die Faserablage bis hin zur Vliesverfestigung umgestellt werden.

Im Anschluss an die Produktion eines solchen Prototyps wird eine aufwändige experimentelle Charakterisierung der Vliesstoffeigenschaften benötigt. Aufgrund dieser kostenintensiven Produktion und Charakterisierung sind detaillierte Studien mit mehreren Designparametern unwirtschaftlich.

Daher werden bei uns im Projekt mikromechanische Simulationsmodelle entwickelt. Mithilfe dieser Modelle können die effektiven Vliesstoffeigenschaften numerisch für verschiedenste Designparameter vorhergesagt werden. Zum virtuellen Austausch einzelner Parameter werden in diesem Ansatz lediglich die entsprechenden Eingangsgrößen im Modell angepasst.

Schnelle Vorhersagen möglich
Der Fokus der numerischen Vorhersagen liegt hierbei vor allem auf dem zeitabhängigen Verhalten der Vliesstoffe. Die dynamischen Eigenschaften können durch numerische Nachbildung von zyklischen Messungen bestimmt werden. Dabei wird eine gute Übereinstimmung von Simulation und Messungen erzielt.

Im Gegensatz zu Experimenten verlängert sich die benötigte Simulationszeit für das Verhalten bei niedrigen Frequenzen nicht. Somit sind durch die numerischen Modelle schnelle Vorhersagen für das Langzeitverhalten (Monate bis Jahre) und die entsprechende Resilienz von Vliesstoffen möglich. Sehr viele Varianten können innerhalb weniger Stunden simuliert und studiert werden.

Ein weiterer Vorteil des mikromechanischen Ansatzes besteht darin, dass nicht nur effektive (makroskopische) Vliesstoffeigenschaften berechnet werden, sondern auch lokale Größen wie Spannungsverteilungen in Binder und Fasern bestimmt werden. Somit trägt die Simulation zum besseren Verständnis von Vliesstoffeigenschaft bei.

Zukünftige Entwicklungen beschäftigen sich mit der Erweiterung der Modelle in Richtung der Simulation des Herstellungsprozesses. Dies ermöglicht eine vollständige digitalisierte Auslegung von Vliesstoffen vom Herstellungsprozess bis hin zur Optimierung der Funktionalität.

 

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Foto: pixabay
17.08.2021

Innovative Wundversorgung: Maßgeschneiderte Wundauflagen aus Tropoelastin

Maßgeschneiderte, biomedizinisch einsetzbare Materialien auf der Basis von Tropoelastin entwickeln die Skinomics GmbH aus Halle, die Martin-Luther-Universität Halle-Wittenberg und das Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS in einem gemeinsamen Projekt. Das Material vereint biologische Verträglichkeit, Haltbarkeit, biologische Abbaubarkeit und günstige mechanische Eigenschaften, die denen der Haut ähneln. Präklinische Tests haben bestätigt, dass es sich zur Verwendung als Wundauflagematerial eignet, das bei der Versorgung chronischer und komplexer Wunden zum Einsatz kommt.

Maßgeschneiderte, biomedizinisch einsetzbare Materialien auf der Basis von Tropoelastin entwickeln die Skinomics GmbH aus Halle, die Martin-Luther-Universität Halle-Wittenberg und das Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS in einem gemeinsamen Projekt. Das Material vereint biologische Verträglichkeit, Haltbarkeit, biologische Abbaubarkeit und günstige mechanische Eigenschaften, die denen der Haut ähneln. Präklinische Tests haben bestätigt, dass es sich zur Verwendung als Wundauflagematerial eignet, das bei der Versorgung chronischer und komplexer Wunden zum Einsatz kommt.

Insbesondere vor dem Hintergrund einer alternden Gesellschaft gewinnen spezielle Wundauflagen an Bedeutung. Die Behandlung komplexer Wunderkrankungen, wie »Ulcus Cruris«, im Volksmund »offenes Bein« genannt, oder diabetischer Wunden stellt für medizinisches Personal eine schwierige, für die Betroffenen eine langfristige und schmerzhafte sowie für das Gesundheitswesen eine kostspielige Aufgabe dar. Für die Versorgung solcher Wunden kommen inzwischen auch innovative proteinbasierte Materialien zum Einsatz, die jedoch aufgrund ihrer Herstellung aus tierischen Geweben erhöhte Infektionsrisiken bergen oder unerwünschte Immunreaktionen zur Folge haben können. Hinzu kommen zunehmende Vorbehalte in der Bevölkerung gegenüber Medizinprodukten tierischer Herkunft.

Im gemeinsamen Forschungsprojekt entwickeln die Projektpartner derzeit maßgeschneiderte, biomedizinisch einsetzbare Materialien auf der Basis von humanem Tropoelastin. Dieses Vorläufermaterial wird im Körper zu Elastin umgewandelt, einem lebensnotwendigen und langlebigen Strukturprotein, das über außergewöhnliche mechanische Eigenschaften verfügt und damit der Haut und weiteren Organen die für deren Funktion erforderliche Elastizität und Spannkraft verleiht.

»Elastin ist chemisch und enzymatisch äußerst stabil, biokompatibel und erzeugt bei der Anwendung als Biomaterial bei Menschen keine immunologischen Abstoßungen. Daher wollen wir auf Basis des humanen Tropoelastins neue und innovative Lösungen für die Behandlung komplexer Wunden schaffen«, sagt Dr. Christian Schmelzer, Leiter des Geschäftsfeldes Biologische und makromolekulare Materialien am Fraunhofer IMWS.

Individuelle Wundbehandlung
Zunächst ist es im Rahmen des Forschungsprojekts unter der Leitung von Prof. Dr. Markus Pietzsch von der Martin-Luther-Universität Halle-Wittenberg gelungen, ein biotechnologisches Verfahren zur Modifizierung von Tropoelastin zu entwickeln. Die Verarbeitung des modifizierten Tropoelastins erfolgt am Fraunhofer IMWS. Hier werden mittels eines Elektrospinnverfahrens hauchdünne Nanofasern hergestellt, deren Durchmesser nur wenige Hundert Nanometer betragen. Diese Fasern werden zu Nanofaservliesen gesponnen. Über chemische Quervernetzungsschritte werden die Vliese für ihre spätere Anwendung stabilisiert. Die entwickelten Verfahren wurden dahingehend optimiert, dass biomedizinische Parameter wie Porengröße, Stabilität und mechanische Eigenschaften variabel sind und damit individuell und maßgeschneidert den Erfordernissen der jeweiligen Wundbehandlung angepasst werden können. Die mit den neuen Verfahren hergestellten Materialien werden durch die Skinomics GmbH in ersten präklinischen Tests hinsichtlich ihrer Hautverträglichkeit untersucht und erzielten bereits vielversprechende Ergebnisse.

Zum Abschluss des Projektes am Ende dieses Jahres sollen Schutzrechtsanmeldungen als Grundlage für eine anschließende Produktentwicklungsphase für zertifizierte Medizinprodukte erfolgen.

PERFORMANCE DAYS Nothing to Waste - Closing the Loop (c) PERFORMANCE DAYS
20.10.2020

PERFORMANCE DAYS Nothing to Waste - Closing the Loop

  • Endliche Ressourcen und unendliche Müllberge, vor dem Hintergrund heißt es zur 25. Edition der PERFORMANCE DAYS: Nichts verschwenden, auch keine Zeit, recycelte Kleidung wieder recycelte Kleidung werden lassen und den Kreislauf schließen.

Passend zum Thema planen die Messemacher Fakten wie Visionen auf den Punkt und Expertenrunden auf die Bühne zu bringen. Die Branche darf auf die entsprechende Auswahl an nachhaltigen Materialien gespannt sein, die die PERFORMANCE FORUM Jury eigens kürt. Recycelte Materialen wie: PET-Flaschen in Garnen, recyclebare MonoComponent Materialien oder auch Mischungen, im Cradle-to-Cradle Ansatz zu Biomasse zerfallende Shirts und mehr. „Nothing to Waste. Closing the Loop“ wird am 9. bis 10. Dezember 2020 auf dem Gelände der Messe München wie auch online auf der Digital Fair zu sehen sein.

  • Endliche Ressourcen und unendliche Müllberge, vor dem Hintergrund heißt es zur 25. Edition der PERFORMANCE DAYS: Nichts verschwenden, auch keine Zeit, recycelte Kleidung wieder recycelte Kleidung werden lassen und den Kreislauf schließen.

Passend zum Thema planen die Messemacher Fakten wie Visionen auf den Punkt und Expertenrunden auf die Bühne zu bringen. Die Branche darf auf die entsprechende Auswahl an nachhaltigen Materialien gespannt sein, die die PERFORMANCE FORUM Jury eigens kürt. Recycelte Materialen wie: PET-Flaschen in Garnen, recyclebare MonoComponent Materialien oder auch Mischungen, im Cradle-to-Cradle Ansatz zu Biomasse zerfallende Shirts und mehr. „Nothing to Waste. Closing the Loop“ wird am 9. bis 10. Dezember 2020 auf dem Gelände der Messe München wie auch online auf der Digital Fair zu sehen sein.

Mit dem neuen Focus Topic hat die Messe PERFORMANCE DAYS ein Thema gewählt, das nicht nur die eigene Branche betrifft. Längst schon recycelt die Textilbranche eigene Abfälle für eine effizientere Produktion und zudem verwertet sie u.a. PET-Flaschen, also industriefremde Materialien. Gleichzeitig existieren Textilien neben Glas, Papier, Metall, Kunststoff & Co als eigene Sparte in der Abfallwirtschaft. Doch trotz aller Recyclingambitionen durch Abfall- und Textilindustrie bestehen weiterhin Herausforderungen, um ein effizienteres Nutzen der Ressource Textil-Abfall zu ermöglichen. Produktion, Verbraucher und Entsorgung in einer globalen Welt kilometerweit auseinander liegend, fehlendes Expertenwissen aus den jeweils anderen Industrien, nicht vorhandene internationale Standards oder politische Unterstützung, potenzieren die Schwierigkeiten.

Endstation Müll
0,8% des geförderten Erdöls verbraucht die Textilbranche gemäß Informationen des Bundesamts für Umwelt für die Produktion von neuen Textilien .  Doch der Weg von endlichen und aufwendig verarbeiten Ressourcen endet nur allzu schnell im Müll. Modisch veraltet oder qualitativ verschlissen endet die Bekleidung spätestens nach 3 Jahren als Wegwerfware im Müll, ergibt eine Greenpeace Umfrage. 5,8 Millionen Tonnen gebrauchte Textilien landen so Schätzung der European Environmental Agency pro Jahr im Hausmüll, die verbrannt, deponiert und in mechanisch-biologischen Kläranlagen gebracht werden . Und auch wenn Bekleidung durch staatliche oder privatwirtschaftliche Unternehmen entsorgt werden kann, kann diese oft nicht mehr (als Second Hand) weiterverkauft, gespendet oder (zu Putzlappen oder Dämmstoffen) recycelt werden. So bleibt im günstigsten Fall nur noch das Verbrennen, also das Wandeln in thermische Energie.

Recycling und Material-Kreisläufe
Rückstandslose Abfall-, -Vermeidung, Verwertung und Beseitigung unter ökonomischen und ökologischen Gesichtspunkten, so wird Recycling definiert. Recycling bedeutet demnach auch, das Produkt Bekleidung am Ende des Lebenszyklus‘ in ein anderes Produkt, also keine Bekleidung, umzuwandeln. Man spricht von einem Open-Loop. Textilien werden in diesem Sinne oftmals verbrannt, jedoch kann die Menge an gewonnener Energie sehr unterschiedlich ausfallen, je nachdem wie effizient die Müllverbrennungsanlage arbeitet. Doch Downcycling, also das Abwerten des Produkts zu einem Produkt mit weniger Wert als sein Ausgangsprodukt, ist nicht die einzige Lösung. Produkte zurück in ein und dasselbe Produkt zu recyclen ist das Ziel des Closed-Loop Ansatzes. Bei erneuerbaren Naturmaterialien kann dies bedeuten, dass die Naturfaser am Ende zu Erde wird, die der Nährstoff/Boden für eine neue Naturfaser ist, also einen Cradle-to-Cradle Ansatz bedeutet. Im Fall von synthetischer Bekleidung heißt es wieder künstliche manmade Fasern zu gewinnen und erneut zu Bekleidung zu verarbeiten.

Das Ende im Vorfeld durchdacht
Statt sich erst am Ende des Lebenszyklus‘ mit Recycling zu beschäftigen, können Marken schon heute geschlossene Kreisläufe bereits beim Entwurf und Design entwickeln, die u.a.: Leasing, Labeling der Materialien sowie ihrer Entsorgungen, Reparaturen oder Aufarbeiten mit einplanen, um die Nutzungsdauer zu verlängern und auch den Gedanken verfolgen 100% Alttextilien zu 100% als Neutextilien in die Lieferkette zurück zu bringen. Da das Trennen von unterschiedlichen Fasertypen in Materialgemischen sehr aufwändig und kostenintensiv, kompliziert wegen nicht (mehr) vorhandenen Etikettierung oder technisch (noch) nicht möglich ist, versuchen auch immer mehr Firmen und Bekleidungshersteller auf das Mischen von Fasern zu verzichten und auf „Mono-Materialien“ oder „Mono-Komponenten“ umzuschwenken. Am leichtesten gelingt dies noch in Shirts, doch kommen Knöpfe, Reißverschlüsse und ähnliches hinzu wird die Angelegenheit bereits komplexer.

Nichts verschwenden - auch keine Zeit
Wer sich wie viele Endkonsumenten, Marken und auch Produzenten wünscht die vorhanden wertvollen Ressourcen nachhaltiger zu nutzen, sollte sich daher schon jetzt auf der Messe-Website unter „Visitor Login“ registrieren. Von hier aus besteht Zugang zum gratis Messe-Ticket für den 9+10 De-zember 2020, zu den gratis und bald erweiterten Digital Fair Angeboten und/oder dem gratis Mailings-Newsletter. 

•     09.-10. Dezember 2020      DIGITAL FAIR  Trends Winter 2022/23 

 

UPDATE
CoVid-19 hält die Welt weiter in Atem. Viele Besucher wie Aussteller der PERFORMANCE DAYS kündigten bereits an, dass eine Anreise nach München im Dezember für sie unmöglich sei. Aufgrund der sich verschärfenden Ansteckungszahlen drohen nun weitere internationale Reiseverbote und firmeninterne Reisebeschränkungen. Daher wird auch im Dezember 2020 leider keine PERFORMANCE DAYS auf dem Gelände der Messe München stattfinden, wohl aber die Digital Fair! Zum geplanten Termin am 09-10. Dezember gehen sowohl bewährte als auch erweiterte, neue Tools online.