Textination Newsline

Zurücksetzen
207 Ergebnisse
Texcare Messe Frankfurt (c) Messe Frankfurt
06.09.2024

Kreislaufwirtschaft in der Textilpflege-Branche längst etabliert

Der professionelle Mietservice für Wäsche und Berufsbekleidung ist ein Paradebeispiel für zirkuläres, nachhaltiges Wirtschaften: Er setzt langlebige Textilien ein, die mindere Qualitäten oder Einmalprodukte ersetzen (reduce), optimiert deren Nutzungsdauer durch eine fachgerechte Pflege, die auch Reparaturen einschließt (reuse), und entwickelt Lösungen, um sie, einmal abgenutzt, wieder neuen Zwecken zuzuführen (recycle).

Der professionelle Mietservice für Wäsche und Berufsbekleidung ist ein Paradebeispiel für zirkuläres, nachhaltiges Wirtschaften: Er setzt langlebige Textilien ein, die mindere Qualitäten oder Einmalprodukte ersetzen (reduce), optimiert deren Nutzungsdauer durch eine fachgerechte Pflege, die auch Reparaturen einschließt (reuse), und entwickelt Lösungen, um sie, einmal abgenutzt, wieder neuen Zwecken zuzuführen (recycle).

Mit dem „Green Deal“ hat die Europäische Kommission unter anderem die Transformation der Bekleidungsindustrie von einem Geschäftsmodell des kurzlebigen Verbrauchs zu einem nachhaltigeren, kreislauforientierten System eingeleitet. Bis zum Jahr 2030 soll Fast-Fashion vermehrt durch Textilerzeugnisse abgelöst werden, die einen längeren Lebenszyklus haben und dadurch zur Verminderung von Umweltbelastungen beitragen. Um dieses Ziel zu erfüllen, sollen Textilien eine bessere Haltbarkeit, Wiederverwendbarkeit, Reparierbarkeit, Faser-zu-Faser-Recyclingfähigkeit und einen höheren Anteil an recycelten Fasern aufweisen. Für den Textilservice sind die Zirkularitätsvorgaben aus Brüssel längst gelebte Realität, denn die Vermietung von professionell genutzter Berufs- und Schutzkleidung, Hotel- und Krankenhauswäsche, Wischbezügen u.a. setzt ebendiese Funktionalitäten voraus: Die Qualitäten müssen langlebig, waschbar – also wiederverwendbar – und einfach zu reparieren sein. Dank dieser Eigenschaften kann Mietwäsche lange im Service-Kreislauf verbleiben und hat sich als nachhaltige Alternative zum Kauf etabliert.

Wäsche im Kreislauf
Der textile Mietservice bietet verschiedene Systeme, die auf die Bedürfnisse der Kundengruppen zugeschnitten sind. Berufs- und Schutzkleidung wird von Mietwäschereien in einem umfassenden Größenspiegel bevorratet, so dass die Beschäftigten eines Kunden ein passendes Outfit erhalten. Dieses ist gekennzeichnet und wird dem entsprechenden Träger zur Verfügung gestellt. Sollte er aus dem Kundenbetrieb ausscheiden, wird die Ware zurückgenommen und wird – sofern sie in einem einwandfreien Zustand ist – als Ersatzkleidung weitergenutzt. Bei Arbeitskleidung im Gesundheitswesen, aber auch bei Bett-, Tisch- und Frottierwäsche ist hingegen eine Poollösung üblich. Ein Wäschepool umfasst gleichartige Textilien, die ohne individuelle Kunden- und Trägerzuordnung für eine Lieferung entnommen werden. Dadurch wird die eingesetzte Textilmenge deutlich verringert.

Zu einer Lebensverlängerung von Textilien trägt auch ein zweiter großer Bereich der gewerblichen Textilpflege bei: die lokale Textilreinigung. In den Betrieben werden unterschiedlichste Waren im Auftrag von privaten und gewerblichen Kunden sachgerecht aufbereitet. Edle Ober- und Unterbekleidung, hochwertige Heimtextilien, empfindliche Daunenjacken oder stark verschmutzte Arbeitskleidung werden wieder sauber, frisch und einsetzbar. Und sollten sich Flecken auch nach der Detachur als besonders hartnäckig erweisen, kann ein Fachbetrieb die Ware umfärben und dadurch deren Wiederverwertbarkeit sicherstellen.

Textilservice bietet Recyclingvorteile
Zusätzlich zu den beiden wesentlichen Forderungen „reuse“ und „repair“ setzt sich die Branche auch intensiv mit dem in der EU-Textilstrategie geforderten Recycling von Alttextilien auseinander. Verschiedene Hersteller von Berufskleidung haben eigene Rücknahmemodelle entwickelt, bei denen Kunden beim Kauf von Neuware die ausrangierten Stücke zurückgeben können. Diese werden dann bei Kooperationspartnern wieder- oder weiterverwertet. Auch große Unternehmen, darunter die Telekom und Ikea, haben ein zentrales Rücknahme- und Recyclingsystem für ausgediente Mitarbeiterkleidung eingeführt; das Möbelhaus hat daraus eine eigene Heimtextil-Linie kreiert. Die Umsetzung eines entsprechenden Systems lässt sich jedoch am einfachsten im Mietservice realisieren, da die Ware stets zum Fachbetrieb zurückkehrt und dort auch aussortiert wird. So summiert sich ausgediente Wäsche an einem Ort zu großen Volumen gleichartiger, gewaschener Alttextilien auf, was die Abhollogistik und den Recyclingprozess erheblich vereinfacht. Aufgrund dieser vorteilhaften Rahmenbedingungen hat sich bereits die erste Initiative gegründet, bei der mehrere Textilservice-Unternehmen ihre ausrangierte Hotelwäsche bündeln und sie dem industriellen Baumwolle-zu-Zellstoff-Recycling zuführen. Ob Einzel- oder Gemeinschaftsaktionen, sie zeugen von dem Engagement der Branche, Lösungen für „Rest-Stoffe“ zu entwickeln.

Textilupcycling für Designerstücke
Die Lösungen für Alttextilien sind vielfältiger als nur das reine Recycling. So bietet beispielsweise die Firma Fristads aus Schweden einen eigenen Reparaturservice für seine Berufskleidung an. Die britische Kaufhauskette John Lewis geht einen Schritt weiter. In einem Feldversuch können Kunden ihre Kleidung in ausgewählten Läden zum Reinigen und Reparieren abgeben, die Aufbereitung erfolgt durch die zur Timpson Group gehörende Wäscherei- und Reinigungskette Johnsons. Auch Designer haben die Chancen ausgemusterter Arbeitskleidung und Objekttextilien für ein zweites Leben (second life) erkannt. Sie bringen aufwendige Verzierungen auf Kollektionsteile auf oder zerlegen sie und setzen sie neu zusammen. Die kreativ aufgewertete Ware bringen sie dann als Designer-Stücke in den Markt zurück. Auch für großformatige Objekttextilien gibt es Verwertungslösungen: Sie werden zu Taschen oder Kosmetikaccessoires umkonfektioniert oder nach einem Umfärbeprozess zu Schürzen-Kleinserien verarbeitet. So vielfältig solche Konzepte sind, so gering ist jedoch ihr Effekt auf die Verringerung der Textilabfälle. Einzig das etablierte Second-Hand-Modell bringt größere Mengen in den Gebrauchskreislauf zurück.

Pro und Contra von Recyclingmaterialien
Während sich die Textilpflege-Branche in fast allen Punkten geschlossen hinter die Forderungen der EU-Textilstrategie stellt und sich mit Lösungen einbringt, ist sie sich bei einem gesteigerten Recyclingfaseranteil in ihren Produkten uneinig. Zwar gibt es bereits zahlreiche Berufskleidungskollektionen und Hotelwäsche-Sortimente, in denen die Vorgabe aus Brüssel erfüllt wird. In der Praxis bleibt manche Qualität jedoch den Beweis der Langlebigkeit schuldig, denn die Faserqualität leidet unter jedem Recyclingverfahren. Zugunsten der Haltbarkeit in der Industriewäsche vertraut daher so mancher Hersteller von gewerblich genutzten Textilien ausschließlich auf native, fabrikneue Fasermaterialien. Auf der Texcare International findet die Branche das passende Umfeld, diesen Zielkonflikt ausführlich zu diskutieren.

Quelle:

Messe Frankfurt

Durchbruch bei intelligenten Geweben für Sensorik und Energiegewinnung (c) University of Waterloo
26.08.2024

Durchbruch bei Smart Textiles für Sensorik und Energiegewinnung

Stellen Sie sich einen Mantel vor, der Solarenergie einfängt, um Sie bei einem kalten Winterspaziergang warm zu halten, oder ein Hemd, das Ihre Herzfrequenz und Temperatur überwachen kann. Stellen Sie sich Kleidung vor, die Sportler tragen können, um ihre Leistungsdaten zu messen, ohne dass sie sperrige Batterien benötigen.

Forscher der University of Waterloo haben ein intelligentes Gewebe mit diesen bemerkenswerten Fähigkeiten entwickelt. Das Gewebe hat das Potenzial für Anwendungen zur Energiegewinnung, Gesundheitsüberwachung und Bewegungsverfolgung.

Das neue Gewebe kann Körperwärme und Sonnenenergie in Strom umwandeln, was einen Dauerbetrieb ohne externe Stromquelle ermöglichen könnte. Verschiedene Sensoren zur Überwachung von Temperatur, Stress und mehr können in das Material integriert werden.

Stellen Sie sich einen Mantel vor, der Solarenergie einfängt, um Sie bei einem kalten Winterspaziergang warm zu halten, oder ein Hemd, das Ihre Herzfrequenz und Temperatur überwachen kann. Stellen Sie sich Kleidung vor, die Sportler tragen können, um ihre Leistungsdaten zu messen, ohne dass sie sperrige Batterien benötigen.

Forscher der University of Waterloo haben ein intelligentes Gewebe mit diesen bemerkenswerten Fähigkeiten entwickelt. Das Gewebe hat das Potenzial für Anwendungen zur Energiegewinnung, Gesundheitsüberwachung und Bewegungsverfolgung.

Das neue Gewebe kann Körperwärme und Sonnenenergie in Strom umwandeln, was einen Dauerbetrieb ohne externe Stromquelle ermöglichen könnte. Verschiedene Sensoren zur Überwachung von Temperatur, Stress und mehr können in das Material integriert werden.

Es kann Temperaturänderungen erkennen und eine Reihe anderer Sensoren zur Überwachung von Druck, chemischer Zusammensetzung und mehr einsetzen. Eine vielversprechende Anwendung sind intelligente Gesichtsmasken, die die Atemtemperatur und -frequenz überwachen und Chemikalien in der Atemluft erkennen können, um Viren, Lungenkrebs und andere Krankheiten zu identifizieren.

„Wir haben ein Gewebematerial mit multifunktionalen Sensorfähigkeiten und dem Potenzial, sich selbst mit Energie zu versorgen, entwickelt“, so Yuning Li, Professor am Fachbereich Chemieingenieurwesen. „Diese Innovation bringt uns näher an praktische Anwendungen für intelligente Gewebe.“

Im Gegensatz zu aktuellen tragbaren Geräten, die oft von externen Stromquellen oder häufigem Aufladen abhängig sind, hat diese innovative Forschung ein neuartiges Gewebe geschaffen, das stabiler, haltbarer und kostengünstiger ist als andere auf dem Markt erhältliche Gewebe.

Diese Forschung, die in Zusammenarbeit mit Professor Chaoxia Wang und Doktorand Jun Peng vom College of Textile Science and Engineering der Jiangnan University durchgeführt wurde, zeigt das Potenzial der Integration fortschrittlicher Materialien wie MXene und leitfähiger Polymere mit modernsten Textiltechnologien, um intelligente Gewebe für tragbare Technologien zu entwickeln.

Li, Direktor des Labors für druckbare elektronische Materialien in Waterloo, hob die Bedeutung dieses Fortschritts hervor, der der jüngste in der Reihe von Technologien der Universität ist, die die Grenzen der Medizin verändern.

„Die KI-Technologie entwickelt sich rasant weiter und bietet hochentwickelte Signalanalysen für die Gesundheitsüberwachung, die Lagerung von Lebensmitteln und Arzneimitteln, die Umweltüberwachung und vieles mehr. Dieser Fortschritt hängt jedoch von einer umfangreichen Datensammlung ab, die herkömmliche Sensoren, die oft sperrig, schwer und kostspielig sind, nicht leisten können“, sagte Li. „Gedruckte Sensoren, einschließlich solcher, die in intelligente Gewebe eingebettet sind, sind ideal für die kontinuierliche Datenerfassung und Überwachung. Dieses neue intelligente Gewebe ist ein Schritt nach vorn, um diese Anwendungen praxisnah zu machen.“

Die nächste Phase der Forschung wird sich darauf konzentrieren, die Leistung des Gewebes weiter zu verbessern und es in Zusammenarbeit mit Elektro- und Computeringenieuren mit elektronischen Komponenten zu versehen. Zu den künftigen Entwicklungen könnte eine Smartphone-App gehören, mit der Daten aus dem Gewebe verfolgt und an medizinisches Fachpersonal übertragen werden können, um eine nicht-invasive Gesundheitsüberwachung in Echtzeit und eine alltägliche Nutzung zu ermöglichen.

Die Studie erschien im Journal of Materials Science & Technology.

Quelle:

Waterloo University

Bildrechte: MIT News; iStock
12.08.2024

Ruhige Räume dank schallschluckender Seide

Forscher haben ein hauchdünnes Gewebe entwickelt, um einen leichten, kompakten und effizienten Weg zur Verringerung der Geräuschübertragung in einem großen Raum zu schaffen.

Wir leben in einer sehr lauten Welt. Vom Verkehrslärm vor dem Fenster über den dröhnenden Fernseher des Nachbarn bis hin zu den Geräuschen aus dem Arbeitszimmer eines Kollegen - unerwünschter Lärm ist nach wie vor ein gewaltiges Problem.

Um den Lärm zu unterdrücken, hat ein interdisziplinäres Team von Forschern des MIT und anderer Institute ein schalldämpfendes Seidengewebe entwickelt, das zur Schaffung ruhiger Räume eingesetzt werden kann.

Der Stoff, der kaum dicker als ein menschliches Haar ist, enthält eine spezielle Faser, die vibriert, wenn eine Spannung angelegt wird. Die Forscher nutzten diese Schwingungen, um den Schall auf zwei verschiedene Arten zu unterdrücken.

Forscher haben ein hauchdünnes Gewebe entwickelt, um einen leichten, kompakten und effizienten Weg zur Verringerung der Geräuschübertragung in einem großen Raum zu schaffen.

Wir leben in einer sehr lauten Welt. Vom Verkehrslärm vor dem Fenster über den dröhnenden Fernseher des Nachbarn bis hin zu den Geräuschen aus dem Arbeitszimmer eines Kollegen - unerwünschter Lärm ist nach wie vor ein gewaltiges Problem.

Um den Lärm zu unterdrücken, hat ein interdisziplinäres Team von Forschern des MIT und anderer Institute ein schalldämpfendes Seidengewebe entwickelt, das zur Schaffung ruhiger Räume eingesetzt werden kann.

Der Stoff, der kaum dicker als ein menschliches Haar ist, enthält eine spezielle Faser, die vibriert, wenn eine Spannung angelegt wird. Die Forscher nutzten diese Schwingungen, um den Schall auf zwei verschiedene Arten zu unterdrücken.

Bei der ersten Technik erzeugt der vibrierende Stoff Schallwellen, die unerwünschte Geräusche überlagern und auslöschen, ähnlich wie bei Kopfhörern mit Geräuschunterdrückung, die in einem kleinen Raum wie den Ohren gut funktionieren, aber nicht in großen Räumen wie Räumen oder Flugzeugen.

Bei der anderen, überraschenderen Technik wird der Stoff stillgehalten, um Vibrationen zu unterdrücken, die für die Übertragung von Schall entscheidend sind. Auf diese Weise wird verhindert, dass der Lärm durch den Stoff übertragen wird, und die Lautstärke dahinter wird gedämpft. Dieser zweite Ansatz ermöglicht die Lärmreduzierung in viel größeren Bereichen wie Zimmern oder Autos.

Durch die Verwendung gängiger Materialien wie Seide, Segeltuch und Musselin haben die Forscher schalldämpfende Stoffe geschaffen, die sich in realen Räumen praktisch einsetzen lassen. Man könnte ein solches Gewebe zum Beispiel für Trennwände in offenen Arbeitsräumen oder für dünne Stoffwände verwenden, die den Schall nicht durchlassen.

Der Stoff kann Geräusche unterdrücken, indem er Schallwellen erzeugt, die mit unerwünschten Geräuschen interferieren und diese auslöschen (siehe Abbildung C), oder indem er stillgehalten wird, um Vibrationen zu unterdrücken, die für die Übertragung von Geräuschen entscheidend sind (siehe Abbildung D).

„Lärm ist viel einfacher zu erzeugen als Ruhe. Um Lärm fernzuhalten, verwenden wir viel Platz auf dicke Wände. Die Arbeit von Grace bietet einen neuen Mechanismus, um mit einer dünnen Stoffbahn ruhige Räume zu schaffen“, so Yoel Fink, Professor in den Fachbereichen Materialwissenschaften und Ingenieurwesen sowie Elektrotechnik und Informatik, leitender Forscher im Research Laboratory of Electronics und leitender Autor eines Artikels über den Stoff.

Seidige Stille
Die schalldämpfende Seide baut auf den früheren Arbeiten der Gruppe zur Herstellung von Stoffmikrofonen auf.

Bei dieser Forschungsarbeit wurde ein einzelner Strang piezoelektrischer Fasern in ein Gewebe eingenäht. Piezoelektrische Materialien erzeugen ein elektrisches Signal, wenn sie zusammengedrückt oder gebogen werden. Wenn ein Geräusch in der Nähe den Stoff in Schwingung versetzt, wandelt die piezoelektrische Faser diese Schwingungen in ein elektrisches Signal um, das den Ton auffangen kann.

In der neuen Arbeit haben die Forscher diese Idee umgedreht und einen Lautsprecher aus Stoff entwickelt, der Schallwellen auslöschen kann.

„Wir können zwar mit Stoffen Schall erzeugen, aber es gibt bereits so viel Lärm in unserer Welt. Wir dachten, dass die Erzeugung von Stille noch wertvoller sein könnte“, sagt Yang.

Durch Anlegen eines elektrischen Signals an die piezoelektrische Faser wird diese in Schwingung versetzt, wodurch Schall erzeugt wird. Die Forscher demonstrierten dies, indem sie Bachs „Air“ mit einem 130 Mikrometer großen Seidenblatt spielten, das auf einem kreisförmigen Rahmen befestigt war.

Um eine direkte Schallunterdrückung zu ermöglichen, verwenden die Forscher einen Lautsprecher aus Seidengewebe, der Schallwellen aussendet, die unerwünschte Schallwellen zerstörerisch überlagern. Sie steuern die Schwingungen der piezoelektrischen Faser so, dass die vom Gewebe abgestrahlten Schallwellen den unerwünschten Schallwellen, die auf das Gewebe treffen, entgegengesetzt sind, was den Lärm ausblenden kann.

Diese Technik ist jedoch nur in einem kleinen Bereich wirksam. Die Forscher bauten also auf dieser Idee auf und entwickelten eine Technik, die die Schwingungen des Gewebes nutzt, um Geräusche in viel größeren Räumen zu unterdrücken, z. B. in einem Schlafzimmer.

Nehmen wir an, Ihre Nachbarn spielen mitten in der Nacht Tischfußball. Sie hören Geräusche in Ihrem Schlafzimmer, weil die Geräusche in deren Wohnung Ihre gemeinsame Wand in Schwingung versetzen, was zu Schallwellen auf Ihrer Seite führt.

Um diese Geräusche zu unterdrücken, könnten die Forscher den Seidenstoff auf Ihrer Seite der gemeinsamen Wand anbringen und die Schwingungen in der Faser so steuern, dass der Stoff ruhig bleibt. Diese vibrationsbedingte Unterdrückung verhindert, dass der Schall durch das Gewebe übertragen wird.

„Wenn wir diese Vibrationen kontrollieren und verhindern können, können wir auch den entstandenen Lärm stoppen“, sagt Yang.

Ein Spiegel für Sound
Überraschenderweise stellten die Forscher fest, dass das Festhalten des Gewebes dazu führt, dass der Schall vom Gewebe reflektiert wird. Das Ergebnis ist ein dünnes Stück Seide, das den Schall wie ein Spiegel das Licht reflektiert.

Ihre Experimente zeigten auch, dass sowohl die mechanischen Eigenschaften eines Stoffes als auch die Größe seiner Poren die Effizienz der Schallerzeugung beeinflussen. Seide und Musselin haben zwar ähnliche mechanische Eigenschaften, aber die kleinere Porengröße von Seide macht sie zu einem besseren Gewebe-Lautsprecher.

Die effektive Porengröße hängt aber ebenso von der Frequenz der Schallwellen ab. Wenn die Frequenz niedrig genug ist, kann auch ein Gewebe mit relativ großen Poren effektiv funktionieren, sagt Yang.

Als sie das Seidengewebe im direkten Unterdrückungsmodus testeten, stellten die Forscher fest, dass es die Lautstärke von Geräuschen bis zu 65 Dezibel (etwa so laut wie ein enthusiastisches menschliches Gespräch) deutlich reduzieren konnte. Im vibrationsvermittelten Unterdrückungsmodus konnte der Stoff die Schallübertragung um bis zu 75 Prozent reduzieren.

Diese Ergebnisse waren nur dank einer starken Gruppe von Mitarbeitern möglich, sagt Fink. Studenten an der Rhode Island School of Design halfen den Forschern, die Details der Gewebekonstruktion zu verstehen; Wissenschaftler an der University of Wisconsin in Madison führten Simulationen durch; Forscher an der Case Western Reserve University charakterisierten die Materialien; und die Chemieingenieure der Smith Group am MIT nutzten ihr Fachwissen über die Trennung von Gasmembranen, um den Luftstrom durch das Gewebe zu messen.

Künftig wollen die Forscher prüfen, ob ihr Gewebe auch zum Blockieren von Geräuschen mit mehreren Frequenzen eingesetzt werden kann. Dies würde wahrscheinlich eine komplexe Signalverarbeitung und zusätzliche Elektronik erfordern.

Außerdem wollen sie die Gewebekonstruktion weiter untersuchen, um herauszufinden, wie sich die Leistung verbessern ließe, wenn man beispielsweise die Anzahl der piezoelektrischen Fasern, die Richtung, in der sie vernäht sind, oder die angelegten Spannungen verändert.

„Es gibt viele Stellschrauben, an denen wir drehen können, um dieses schalldämpfende Gewebe wirklich effektiv zu machen. Wir wollen die Menschen dazu bringen, über die Kontrolle von Strukturschwingungen zur Schalldämpfung nachzudenken. Dies ist erst der Anfang“, sagt Yang.

Diese Arbeit wird zum Teil von der National Science Foundation (NSF), dem Army Research Office (ARO), der Defense Threat Reduction Agency (DTRA) und der Wisconsin Alumni Research Foundation finanziert.

Quelle:

Adam Zewe | MIT News
Übersetzung Textination

Empa-Forscherin Edith Perret entwickelt spezielle Fasern, die Medikamente gezielt abgeben können. Foto EMPA
01.07.2024

Medizinische Fasern mit "inneren Werten"

Sollen Medikamente lokal – und vor allem über längere Zeit kontrolliert – abgegeben werden, stoßen medizinische Produkte wie Salben oder Spritzen an ihre Grenzen. Empa-Forschende entwickeln daher Polymerfasern, die Wirkstoffe langfristig präzise abgeben können. Diese „Flüssigkernfasern“ enthalten Medikamente in ihrem Inneren und lassen sich zu medizinischen Textilien verarbeiten.

Sollen Medikamente lokal – und vor allem über längere Zeit kontrolliert – abgegeben werden, stoßen medizinische Produkte wie Salben oder Spritzen an ihre Grenzen. Empa-Forschende entwickeln daher Polymerfasern, die Wirkstoffe langfristig präzise abgeben können. Diese „Flüssigkernfasern“ enthalten Medikamente in ihrem Inneren und lassen sich zu medizinischen Textilien verarbeiten.

Wird eine Wunde oder Entzündung direkt am Ort der Entstehung behandelt, hat dies klare Vorteile: Der Wirkstoff ist sofort am Ziel, und negative Nebenwirkungen auf unbeteiligte Körperteile entfallen. Gängige lokale Verabreichungsmethoden kommen jedoch an ihre Grenzen, wenn es darum geht, Wirkstoffe über längere Zeit präzise zu dosieren. Sobald eine Salbe die Tube verlässt oder die Injektionsflüssigkeit aus der Spritze strömt, ist die Steuerung der Wirkstoffmenge kaum mehr möglich. Edith Perret aus dem Empa-Labor „Advanced Fibers“ in St. Gallen entwickelt daher medizinische Fasern mit ganz besonderen „inneren Werten“: Die Polymerfasern umschließen einen flüssigen Kern mit medizinischen Wirkstoffen. Das Ziel: medizinische Produkte mit besonderen Fähigkeiten, z.B. chirurgisches Nahtmaterial, Wundverbände und Textilimplantate, die Schmerzmittel, Antibiotika oder Insulin präzise über einen längeren Zeitraum verabreichen können. Angestrebt ist zudem eine individuelle Dosierbarkeit im Sinne einer personalisierten Medizin.

Bioverträglich und maßgeschneidert
Ein entscheidender Faktor, der eine herkömmliche Textilfaser zu einem Medizinprodukt macht, ist das Material des Fasermantels. Das Team wählte hierfür Polycaprolacton (PCL), ein bioverträgliches und bioabbaubares Polymer, das bereits erfolgreich im medizinischen Bereich eingesetzt wird. Der Fasermantel umschließt das kostbare Gut, etwa ein Schmerzmittel oder ein antibakteriell wirksames Medikament, und gibt es mit der Zeit an die Umgebung ab. Auf einer eigens konstruierten Pilotanlage erzeugten die Forschenden mittels Schmelzspinnen PCL-Fasern mit einem durchgehenden Kern aus Flüssigkeit. In ersten Laborversuchen entstanden so stabile und gleichzeitig flexible Flüssigkernfasern. Dass dieses Verfahren aber nicht nur im Labor, sondern auch im industriellen Maßstab funktioniert, hatte das Team für technische Fasern bereits zuvor gemeinsam mit einem Schweizer Industriepartner erfolgreich zeigen können.

Nach welchen Parametern die medizinischen Fasern ein eingeschlossenes Mittel freisetzen, wurde zunächst mit fluoreszierenden Modellsubstanzen und schließlich mit verschiedenen Medikamenten untersucht. „Kleine Moleküle wie das Schmerzmittel Ibuprofen bewegen sich nach und nach durch die Struktur des Außenmantels“, so Edith Perret. Größere Moleküle werden hingegen an den Enden der Fasern abgegeben.

Präzise steuerbar und langfristig wirksam
„Dank einer Vielzahl verschiedener Parameter lassen sich die Eigenschaften der medizinischen Fasern präzise steuern“, erklärt die Empa-Forscherin. Nach umfassenden Analysen mittels Fluoreszenzspektroskopie, Röntgentechnologie und Elektronenmikroskopie konnten die Forschenden beispielsweise den Einfluss von Manteldicke oder Kristallstruktur des Mantelmaterials auf die Abgaberate von Medikamenten aus den Flüssigkernfasern nachweisen.

Je nach Wirkstoff kann zudem das Herstellungsverfahren angepasst werden: Wirkstoffe, die unempfindlich gegenüber den hohen Temperaturen beim Schmelzspinnen sind, können direkt in einem kontinuierlichen Vorgang in den Kern der Fasern integriert werden. Für Temperatur-empfindliche Medikamente konnte das Team das Verfahren hingegen so optimieren, dass zunächst ein Platzhalter den Flüssigkern ausfüllt, der nach dem Schmelzspinnen durch den sensitiven Wirkstoff ausgetauscht wird.

Zu den Vorteilen der Flüssigkernfasern gehört auch die Möglichkeit, den Wirkstoff aus einem Reservoir über einen längeren Zeitraum freizusetzen. Damit ergeben sich vielfältige Anwendungsmöglichkeiten. Mit Durchmessern von 50 bis 200 Mikrometern sind die Fasern beispielsweise groß genug, um sie zu robusten Textilien zu weben oder zu stricken. Die medizinischen Fasern könnten aber auch ins Körperinnere geführt werden und dort Hormone wie Insulin abgeben, so Perret. Ein weiterer Vorteil: Fasern, die ihr Medikament freigesetzt haben, können erneut befüllt werden. Die Palette der Wirkstoffe, die mittels Flüssigkernfasern einfach, bequem und präzise verabreicht werden könnten, ist groß. Neben Schmerzmitteln sind entzündungshemmende Medikamente, Antibiotika oder sogar Lifestyle-Präparate denkbar.

In einem nächsten Schritt wollen die Forschenden chirurgisches Nahtmaterial mit antimikrobiellen Eigenschaften ausstatten. Mit dem neuen Verfahren sollen verschiedene Flüssigkernmaterialen mit medizinischen Wirkstoffen befüllt werden, um Gewebe bei einer Operation so zu vernähen, dass Wundkeime keine Chance haben, eine Infektion auszulösen. Empa-Forscherin Perret ist darüber hinaus überzeugt, dass eine künftige Zusammenarbeit mit klinischen Partnern die Basis für weitere innovative klinische Anwendungen ist.

Klinische Partnerschaften angestrebt
Eine neue Technologie vorantreiben? Innovative Anwendungsmöglichkeiten identifizieren? Empa-Forscherin Edith Perret setzt auf interessierte Medizinerinnen und Mediziner aus der Klinik, die das Potenzial von „Drug Delivery“ per Flüssigkernfaser erkennen und in diesem Bereich aktiv werden wollen.

Quelle:

Dr. Andrea Six, EMPA

Smarte Textilien machen Berührungen spürbar (c) Oliver Dietze
10.04.2024

Virtueller Hautkontakt durch smarte Textilien

Smarte Textilien sollen ermöglichen, auch vom Körpergefühl her in die virtuelle Realität einzutauchen und Berührungen am eigenen Leib zu spüren. Eine hauchdünne Folie, die Berührungsempfindungen übertragen kann, macht dabei Stoffe zur zweiten, virtuellen Haut. Schwer kranken Kindern in Isolierstationen soll sie die Körpernähe ihrer Eltern bei computersimulierten Besuchen spürbar machen. Das Team der Professoren Stefan Seelecke und Paul Motzki stellt die Technologie auf der Hannover Messe vor.

Smarte Textilien sollen ermöglichen, auch vom Körpergefühl her in die virtuelle Realität einzutauchen und Berührungen am eigenen Leib zu spüren. Eine hauchdünne Folie, die Berührungsempfindungen übertragen kann, macht dabei Stoffe zur zweiten, virtuellen Haut. Schwer kranken Kindern in Isolierstationen soll sie die Körpernähe ihrer Eltern bei computersimulierten Besuchen spürbar machen. Das Team der Professoren Stefan Seelecke und Paul Motzki stellt die Technologie auf der Hannover Messe vor.

Die Hand auf der Schulter, ein Streicheln am Arm, eine Umarmung: Solche Berührungen beruhigen, trösten, vermitteln Sicherheit, Geborgenheit und Nähe. Geben die Nervenzellen der Haut solche Reize weiter, werden blitzschnell viele Hirnbereiche aktiv und fachen die körpereigene Biochemie an. Hormone und andere Botenstoffe werden ausgeschüttet, darunter Oxytocin, das Wohlgefühl und Bindung entstehen lässt. Videokonferenzen dagegen lassen uns eher kalt, Geborgenheit und Nähe sind kaum zu spüren – es fehlt das Körperliche. Aber was, wenn Nähe wichtig ist, wenn Kinder schwer krank sind, aber die Eltern nicht zu ihnen können? Wenn Körperkontakt wegen eines geschwächten Immunsystems nicht sein darf?

Damit Kinder in Isolierstationen die Körpernähe ihrer Eltern auch bei virtuellen Besuchen spüren und möglichst realitätsnah in dieses Erlebnis eintauchen können, arbeitet an der Universität des Saarlandes, an der Hochschule für Technik und Wirtschaft des Saarlandes (htw saar), am Zentrum für Mechatronik und Automatisierungstechnik (ZeMA) und am Deutschen Forschungszentrum für Künstliche Intelligenz (DFKI) ein Forschungsteam über die Fachgrenzen hinweg zusammen. An der Schnittstelle von Ingenieurwissenschaft, Neurotechnologie, Medizin und Informatik entwickeln die Forscherinnen und Forscher im Projekt „Multi-Immerse“ eine virtuelle Begegnung, die alle Sinne ansprechen soll. „Immerse“ steht dabei für „Eintauchen“, für eine intensive Sinneswahrnehmung. Die jungen Patientinnen und Patienten sollen über neue Technologien ihre Eltern und Geschwister möglichst realitätsnah sehen, hören, fühlen und trotz der räumlichen Trennung dennoch ihre intensive Nähe spüren.

Für das Fühlen und die taktile Wahrnehmung zuständig ist dabei die Forschungsgruppe der Professoren Stefan Seelecke und Paul Motzki an der Universität des Saarlandes und am Saarbrücker ZeMA: Sie sind Spezialisten darin, Oberflächen mithilfe leichter Silikonfolien neuartige Fähigkeiten zu verleihen. Die Ingenieurinnen und Ingenieure machen die gerade mal 50 Mikrometer dünnen Folien zu einer zweiten Haut: Wie die Haut Schnittstelle des menschlichen Körpers zu seiner realen Außenwelt ist, soll die Folie seine Schnittstelle zur virtuellen Welt werden. Damit soll eine neue Körperwahrnehmung in der fiktiven Realität entstehen.

In einem Textil eingearbeitet, sollen die Folien die Berührungen auf die Haut des Kindes übertragen, die entstehen, wenn Mutter oder Vater andernorts über ein zweites smartes Textil streichen. „Wir nutzen dabei die Folien, sogenannte dielektrische Elastomere, als Sensoren, um die Berührungsbewegungen zu erfassen, und zugleich auch als Aktoren, also Antriebe, um diese Bewegungen weiterzugeben“, erklärt Stefan Seelecke, Professor für intelligente Materialsysteme. Die Folie erkennt als Sensor wie genau Hand und Finger die Folie beim Darüberstreichen eindrücken, eindellen und dehnen. Exakt diese Deformation, die durch die Berührungsbewegungen entsteht, imitiert die Folie in einem zweiten Textil auf der Haut des Kindes, um so etwa auf dem Arm den Eindruck eines Darüberstreichens zu vermitteln.

„Die Ober- und Unterseite der Folie sind mit einer leitfähigen, hochdehnbaren Elektrodenschicht bedruckt. Wenn wir hieran eine elektrische Spannung anlegen, ziehen sich die Elektroden durch die elektrostatische Anziehung an und stauchen die Folie, die zur Seite ausweicht und dabei ihre Fläche vergrößert“, erklärt Professor Paul Motzki die Technologie, der die Brückenprofessur „Smarte Materialsysteme für innovative Produktion“ zwischen Universität des Saarlandes und ZeMA innehat. Bei jeder kleinsten Bewegung ändert sich hierbei die elektrische Kapazität der Folie: eine physikalische Größe, die gemessen werden kann. Streicht also ein Finger über die Folie, verformt er diese und jeder einzelnen Stellung lässt sich ein exakter Messwert der elektrischen Kapazität zuordnen: Eine bestimmte Zahl beschreibt eine ganz bestimmte Stellung der Folie. Eine Abfolge dieser einzelnen Messwerte setzt einen Bewegungsablauf in Gang. Die Folie ist damit ihr eigener dehnbarer Sensor, der selbst erkennt, wie sie verformt wird.

Mit den Messwerten der einzelnen Verformungen können die Forscher etwa Streichelbewegungen durch das smarte Textil auf den Arm des Kindes übertragen. Sie können die Folie auch gezielt ansteuern. Durch intelligente Algorithmen lassen sich in einer Regelungseinheit Bewegungsabläufe vorausberechnen und programmieren. „Wir können die Folie stufenlos Hubbewegungen vollführen lassen, so dass es sich wie ansteigender Druck anfühlt oder auch eine bestimmte Position halten“, erklärt Doktorandin Sipontina Croce, die im Projekt forscht. Aber auch Klopfbewegungen sind möglich. Frequenz und Schwingungen können die Forscherinnen und Forscher beliebig verändern.

Auf der Hannover Messe demonstriert das Team seine Technologie mit einer „Uhr“, auf deren Rückseite eine smarte Folie angebracht ist. „Wir können mehrere solcher smarter Bausteine aneinanderreihen, so dass zum Beispiel eine lange Streichbewegung übertragen werden kann. Hierzu vernetzen wir diese Bausteine, so dass sie wie ein Schwarm untereinander kommunizieren und kooperieren“, erklärt Paul Motzki.

Das Verfahren ist günstig, leicht, geräuschlos und energieeffizient. Die Folientechnologie kann auch bei Computerspielen das Spielerlebnis durch eine realistische Körperwahrnehmung intensiver machen. In anderen Projekten kleiden die Ingenieure mit ihren Folien Arbeitshandschuhe für die Industrie 4.0 aus oder lassen den Eindruck von Knopfkanten entstehen, so dass aus dem Nichts heraus Tasten oder Schieberegler spürbar werden, wodurch sie Bedienoberflächen nutzerfreundlicher machen.

Auf der Hannover Messe zeigen die Saarbrücker Expertinnen und Experten für intelligente Materialsysteme weitere Entwicklungen mit dielektrischen Elastomeren: so zum Beispiel weitere smarte Textilien wie sensorische Shirts oder Schuhsohlen, auch Pumpen und Vakuumpumpen sowie Hochleistungsaktoren.

Quelle:

Universität des Saarlandes

Textilabfall Ki generiertes Bild: Pete Linforth, Pixabay
02.04.2024

Die Zukunft zirkulärer Textilien: „New Cotton“-Projekt abgeschlossen

Als Weltpremiere für die Modeindustrie hatten sich im Oktober 2020 zwölf Pionierunternehmen zusammengefunden, um neue Wege zu beschreiten und ein Kreislaufmodell für die kommerzielle Bekleidungsproduktion zu entwickeln. Mehr als drei Jahre lang wurden Textilabfälle gesammelt und sortiert und mithilfe der Technologie zur Wiederherstellung von Textilfasern der Infinited Fiber Company zu einer neuen, künstlichen Zellulosefaser recycelt, die aussieht und sich anfühlt wie Baumwolle - eine „neue Baumwolle“.

Als Weltpremiere für die Modeindustrie hatten sich im Oktober 2020 zwölf Pionierunternehmen zusammengefunden, um neue Wege zu beschreiten und ein Kreislaufmodell für die kommerzielle Bekleidungsproduktion zu entwickeln. Mehr als drei Jahre lang wurden Textilabfälle gesammelt und sortiert und mithilfe der Technologie zur Wiederherstellung von Textilfasern der Infinited Fiber Company zu einer neuen, künstlichen Zellulosefaser recycelt, die aussieht und sich anfühlt wie Baumwolle - eine „neue Baumwolle“.

Das zukunftsweisende New Cotton Project startete im Oktober 2020 mit dem Ziel, eine zirkuläre Wertschöpfungskette für die kommerzielle Bekleidungsproduktion aufzuzeigen. Während des gesamten Projekts arbeitete das Konsortium daran, Alttextilien zu sammeln und zu sortieren, die mithilfe der innovativen Infinited Fiber-Technologie zu einer neuen zellulosehaltigen Chemiefaser namens Infinna™ recycelt werden konnten, die genauso aussieht und sich anfühlt wie neue Baumwolle. Die Fasern wurden zu Garnen gesponnen und zu verschiedenen Geweben verarbeitet, die von adidas und H&M entworfen, produziert und verkauft wurden. Der adidas by Stella McCartney-Trainingsanzug sowie eine bedruckte Jacke und Jeans von H&M sind damit die ersten Produkte, die von einem kreislauforientierten Konsortium dieser Größenordnung hergestellt wurden und damit einen innovativen und kreislauforientierten Ansatz für die Modeindustrie aufzeigt.
 
Da das Projekt im März 2024 abgeschlossen wurde, stellt das Konsortium acht Schlüsselfaktoren in den Fokus, die es als grundlegend für die erfolgreiche Skalierung des Faser-zu-Faser-Recyclings erachtet.

Die breite Einführung zirkulärer Wertschöpfungsketten ist entscheidend für den Erfolg
Die Kreislaufwirtschaft im Textilbereich erfordert neue Formen der Zusammenarbeit und des offenen Wissensaustauschs zwischen verschiedenen Akteuren in Kreislaufökosystemen. Diese Ökosysteme müssen Akteure einbeziehen, die über die traditionellen Lieferketten hinausgehen und bisher voneinander getrennte Industrien und Sektoren wie die Textil- und Modebranche, die Abfallsammlung und -sortierung und die Recyclingindustrie sowie digitale Technologien, Forschungsorganisationen und politische Entscheidungsträger einbeziehen. Damit das Ökosystem effektiv funktionieren kann, müssen die verschiedenen Akteure an der Abstimmung von Prioritäten, Zielen und Arbeitsmethoden beteiligt sein und die Bedürfnisse, Anforderungen und technisch-wirtschaftlichen Möglichkeiten der anderen kennenlernen. Aus einer breiteren Perspektive betrachtet, ist auch ein grundlegenderer Wandel in den Denkweisen und Geschäftsmodellen im Hinblick auf einen systemischen Übergang zur Kreislaufwirtschaft erforderlich, z. B. die Abkehr von den linearen Geschäftsmodellen der Fast Fashion. Neben dem offenen Wissensaustausch innerhalb solcher Ökosysteme ist es ebenfalls wichtig, gelernte Lektionen und Erkenntnisse öffentlich zu machen, um andere Marktteilnehmer bei der Umstellung auf die Kreislaufwirtschaft zu unterstützen und zu inspirieren.
     
Kreislaufwirtschaft beginnt mit dem Designprozess
Bei der Entwicklung neuer Styles ist es wichtig, von Anfang an ein End-of-Life-Szenario im Auge zu behalten. Denn davon hängt ab, welche Verzierungen, Drucke und Accessoires verwendet werden können. Wenn Designer es dem Recyclingprozess so einfach wie möglich machen, ist die Chance größer, dass die Kleidung tatsächlich wieder als Rohstoff verwendet wird. Darüber hinaus ist es wichtig, Geschäftsmodelle zu entwickeln, die es ermöglichen, Produkte so lange wie möglich zu nutzen, einschließlich Reparatur-, Miet-, Wiederverkaufs- und Sharing-Dienste.

Aufbau und Ausbau von Sortier- und Recyclinginfrastrukturen sind entscheidend
Um die kreislauforientierte Bekleidungsproduktion auszubauen, bedarf es technologischer Innovationen und der Entwicklung von Infrastrukturen für die Sammlung und Sortierung von Alttextilien sowie für die mechanische Vorverarbeitung des Ausgangsmaterials. Derzeit erfolgt ein Großteil der Textilsortierung manuell, und die verfügbaren optischen Sortier- und Identifizierungstechnologien sind nicht in der Lage, Kleidungsschichten und komplexe Fasermischungen zu erkennen oder Abweichungen in der Qualität des Ausgangsmaterials für das Faser-zu-Faser-Recycling festzustellen. Die Vorbehandlung des Ausgangsmaterials ist ein entscheidender Schritt im Textil-zu-Textil-Recycling, der jedoch außerhalb derjenigen, die ihn tatsächlich ausführen, nicht gut verstanden wird. Dies erfordert eine Zusammenarbeit über die gesamte Wertschöpfungskette hinweg, und es bedarf eingehender Kenntnisse und Fähigkeiten, um dies richtig zu tun. Dies ist ein Bereich, der mehr Aufmerksamkeit und stärkere wirtschaftliche Anreize braucht, wenn das Textil-zu-Textil-Recycling ausgebaut wird.

Die Verbesserung von Qualität und Datenlage ist entscheidend
Es besteht immer noch ein erheblicher Mangel an verfügbaren Daten, die den Übergang zu einer Kreislauftextilindustrie unterstützen. Dies bremst die Entwicklung von Systemlösungen und wirtschaftlichen Anreizen für den Textilkreislauf. So werden beispielsweise die Mengen der auf den Markt gebrachten Textilien oft als Ersatz für die Mengen an Post-Consumer-Textilien herangezogen, aber die verfügbaren Daten sind mindestens zwei Jahre alt und oft unvollständig. Auch auf nationaler Ebene kann es unterschiedliche Zahlen zu Textilabfällen geben, die aufgrund unterschiedlicher Methoden oder Datenjahre nicht übereinstimmen. Dies zeigt sich in den Berichten der niederländischen Massenbilanzstudie 2018 und des Überwachungsberichts zur Kreislaufwirtschaftspolitik für Textilien 2020, wo es einen Unterschied von 20 % zwischen den auf den Markt gebrachten Zahlen und den gemessenen Mengen an separat gesammelten und im gemischten Restmüll enthaltenen Post-Consumer-Textilien gibt. Abgesehen von einigen guten Studien wie Sorting for Circularity Europe und der jüngsten Charakterisierungsstudie von ReFashion gibt es auch fast keine zuverlässigen Informationen über die Faserzusammensetzung im Post-Consumer-Textilstrom. Textil-zu-Textil-Recycler würden von einer besseren Verfügbarkeit zuverlässigerer Daten profitieren. Die politische Überwachung von Systemen der erweiterten Herstellerverantwortung sollte sich darauf konzentrieren, die Anforderungen an die Berichterstattung in ganz Europa von der Sammlung von Post-Consumer-Textilien bis zu ihrem endgültigen Endpunkt zu standardisieren und Anreize für die Digitalisierung zu schaffen, damit die Berichterstattung automatisiert werden kann und hochwertige Textildaten nahezu in Echtzeit zur Verfügung stehen.

Die Notwendigkeit einer kontinuierlichen Forschung und Entwicklung über die gesamte Wertschöpfungskette hinweg
Insgesamt deuten die Ergebnisse des New Cotton Project darauf hin, dass Stoffe, die Infinna™-Fasern enthalten, eine nachhaltigere Alternative zu herkömmlichen Baumwoll- und Viskosegeweben darstellen, wobei sie ähnliche Leistungsmerkmale und ästhetische Qualitäten aufweisen. Dies könnte erhebliche Auswirkungen auf die Textilindustrie im Hinblick auf Nachhaltigkeit und umweltfreundlichere Produktionsverfahren haben. Das Projekt hat jedoch auch gezeigt, dass die Skalierung des Faser-zu-Faser-Recyclings weiterhin kontinuierliche Forschung und Entwicklung in der gesamten Wertschöpfungskette erfordert. So ist beispielsweise der Bedarf an Forschung und Entwicklung im Bereich der Sortiersysteme von entscheidender Bedeutung. Im Rahmen des chemischen Recyclings ist es ebenfalls erforderlich, eine hohe Rückgewinnungsrate und den Kreislauf der verwendeten Chemikalien sicherzustellen, um die Umweltauswirkungen des Prozesses zu begrenzen. Bei den Herstellungsprozessen wurde überdies hervorgehoben, dass eine kontinuierliche Innovation bei der Verarbeitungsmethode von Vorteil ist und dass Technologien und Marken eng mit den Herstellern zusammenarbeiten müssen, um die weitere Entwicklung in diesem Bereich zu unterstützen.

Über weniger umweltbelastende Fasern hinaus denken
Die von Dritten geprüfte Ökobilanz der Wertschöpfungskette des New Cotton Project zeigt, dass die Cellulosecarbamatfaser, insbesondere wenn sie mit einer erneuerbaren Stromquelle hergestellt wird, im Vergleich zu herkömmlicher Baumwolle und Viskose potenziell geringere Umweltauswirkungen aufweist. Es ist jedoch zu beachten, dass dieser Vergleich auf der Grundlage von durchschnittlichen globalen Datensätzen von Ecoinvent für Baumwoll- und Viskosefasern durchgeführt wurde und dass die Umweltleistung der auf dem Markt erhältlichen Primärfasern unterschiedlich ist. Die Analyse verdeutlicht jedoch auch, wie wichtig der Rest der Zuliefererkette für die Verringerung der Umweltauswirkungen ist. Die Ergebnisse zeigen, dass selbst bei einer Verringerung der Umweltauswirkungen durch die Verwendung von Recyclingfasern in anderen Phasen des Lebenszyklus noch einiges zu tun ist. So sind zum Beispiel die Qualität der Kleidungsstücke und ihre Nutzung während ihrer gesamten Lebensdauer entscheidend für die Verringerung der Umweltauswirkungen pro Kleidungsstück.
          
Einbeziehung der Verbraucher
Die EU hat die Kultur als eines der Haupthindernisse für die Einführung der Kreislaufwirtschaft in Europa identifiziert. Eine quantitative Verbraucherbefragung von adidas, die während des Projekts in drei wichtigen Märkten durchgeführt wurde, ergab, dass es immer noch Verwirrung über die Kreislaufwirtschaft bei Textilien gibt, was die Bedeutung einer effektiven Kommunikation mit den Verbrauchern und von Aktivitäten zur Einbindung der Öffentlichkeit verdeutlicht hat.
     
Einheitliche Rechtsvorschriften
Die Gesetzgebung ist ein wirksames Instrument, um die Einführung nachhaltigerer und kreislauforientierter Praktiken in der Textilindustrie voranzutreiben. Da allein in der EU mehrere neue Gesetzesvorhaben anstehen, ist ein kohärenter und harmonisierter Ansatz für die erfolgreiche Umsetzung der Politik in der Textilindustrie unerlässlich. Die Betrachtung des Zusammenhangs zwischen unterschiedlichen Rechtsvorschriften wie der erweiterten Herstellerverantwortung und der Verordnung über das Ökodesign für nachhaltige Produkte sowie der entsprechenden Umsetzungsfristen wird den Akteuren in der gesamten Wertschöpfungskette helfen, sich effektiv auf die Annahme dieser neuen Vorschriften vorzubereiten.

Die hohe und ständig wachsende Nachfrage nach recycelten Materialien setzt voraus, dass alle denkbaren End-of-Use-Textilien gesammelt und sortiert werden müssen. Um die Nachfrage zu befriedigen, werden sowohl mechanische als auch chemische Recyclinglösungen benötigt. Außerdem sollten wir beide Wege, den geschlossenen Kreislauf (Faser-zu-Faser) und den offenen Kreislauf (Faser zu anderen Sektoren), effektiv umsetzen. Der Export von minderwertigen wiederverwendbaren Textilien in Länder außerhalb der EU muss dringend überdacht werden. Es wäre vorteilhafter, sie in Europa wiederzuverwenden oder, wenn sie das Ende ihrer Lebensdauer erreicht haben, diese Textilien im europäischen Binnenmarkt zu recyceln, anstatt sie in Länder zu exportieren, in denen die Nachfrage oft nicht gesichert und die Abfallwirtschaft unzureichend ist.

Insgesamt verdeutlichen die Erkenntnisse die Notwendigkeit eines ganzheitlichen Ansatzes und eines grundlegenden Umdenkens in den Arbeitsweisen der Textilindustrie. Eine vertiefte Zusammenarbeit und ein Wissensaustausch sind von zentraler Bedeutung für die Entwicklung effektiver Kreislauf-Wertschöpfungsketten, die dazu beitragen, die Skalierung innovativer Recyclingtechnologien zu unterstützen und die Verfügbarkeit von Recyclingfasern auf dem Markt zu erhöhen. Die Weiterentwicklung und Skalierung des Sammelns und Sortierens sowie die Behebung der erheblichen Lücken bei der Verfügbarkeit von qualitativ hochwertigen Daten über die Textilströme sollten dringend Vorrang haben. Das New-Cotton-Projekt hat auch gezeigt, dass Recycling-Fasern wie Infinna™ eine nachhaltigere Alternative zu einigen anderen traditionellen Fasern darstellen, gleichzeitig aber auch verdeutlicht, wie wichtig es ist, die Wertschöpfungskette als Ganzes zu betrachten, um die Umweltauswirkungen zu verringern. Kontinuierliche Forschung und Entwicklung über die gesamte Wertschöpfungskette hinweg ist ebenfalls von entscheidender Bedeutung, um sicherzustellen, dass wir in Zukunft recycelte Textilien in großem Maßstab anbieten können.

Das New Cotton Project wurde mit Mitteln aus dem Forschungs- und Innovationsprogramm Horizont 2020 der Europäischen Union unter der Finanzhilfevereinbarung Nr. 101000559 gefördert.

Quelle:

Fashion for Good

Foto: rottonara, Pixabay
29.01.2024

Naturalistische Seide aus künstlicher Spinndrüse gesponnen

Unter der Leitung von Keiji Numata ist es Wissenschaftlern des RIKEN Center for Sustainable Resource Science in Japan zusammen mit Kollegen des RIKEN Pioneering Research Cluster gelungen, ein Gerät zu entwickeln, das künstliche Spinnenseide spinnt, die der natürlichen Spinnenseide sehr ähnlich ist. Die künstliche Seidendrüse war in der Lage, die komplexe molekulare Struktur der Seide nachzubilden, indem sie die verschiedenen chemischen und physikalischen Veränderungen nachahmte, die in der Seidendrüse einer Spinne natürlich auftreten. Diese umweltfreundliche Innovation ist ein großer Schritt in Richtung Nachhaltigkeit und könnte für verschiedene Branchen relevant sein. Diese Studie wurde am 15. Januar in der Fachzeitschrift Nature Communications veröffentlicht.

Unter der Leitung von Keiji Numata ist es Wissenschaftlern des RIKEN Center for Sustainable Resource Science in Japan zusammen mit Kollegen des RIKEN Pioneering Research Cluster gelungen, ein Gerät zu entwickeln, das künstliche Spinnenseide spinnt, die der natürlichen Spinnenseide sehr ähnlich ist. Die künstliche Seidendrüse war in der Lage, die komplexe molekulare Struktur der Seide nachzubilden, indem sie die verschiedenen chemischen und physikalischen Veränderungen nachahmte, die in der Seidendrüse einer Spinne natürlich auftreten. Diese umweltfreundliche Innovation ist ein großer Schritt in Richtung Nachhaltigkeit und könnte für verschiedene Branchen relevant sein. Diese Studie wurde am 15. Januar in der Fachzeitschrift Nature Communications veröffentlicht.

Spinnenseide ist bekannt für ihre außergewöhnliche Stärke, Flexibilität und Leichtigkeit, vergleichbar mit Stahl desselben Durchmessers, aber mit einem unvergleichlichen Verhältnis von Stärke zu Gewicht. Darüber hinaus ist sie biokompatibel, d. h. sie kann in der Medizin eingesetzt werden, und biologisch abbaubar. Warum wird dann nicht alles aus Spinnenseide hergestellt? Die Gewinnung von Spinnenseide in großem Maßstab hat sich aus verschiedenen Gründen als unpraktisch erwiesen, so dass Wissenschaftler ein Verfahren entwickeln mussten, um sie im Labor herzustellen.

Spinnenseide ist eine Biopolymerfaser, die aus großen Proteinen mit sich stark wiederholenden Sequenzen, den sogenannten Spidroinen, besteht. In den Seidenfasern befinden sich molekulare Unterstrukturen, die so genannten β-Faltblätter, die richtig ausgerichtet sein müssen, damit die Seidenfasern ihre einzigartigen mechanischen Eigenschaften erhalten. Die Wiederherstellung dieser komplexen molekularen Struktur hat die Wissenschaftler jahrelang vor ein Rätsel gestellt. Anstatt zu versuchen, den Prozess von Grund auf neu zu entwickeln, wählten die RIKEN-Wissenschaftler den Ansatz der Biomimikry. Numata erklärt: „In dieser Studie haben wir versucht, die natürliche Spinnenseidenproduktion mit Hilfe der Mikrofluidik zu imitieren, bei der kleine Mengen von Flüssigkeiten durch enge Kanäle fließen und manipuliert werden. Man könnte sogar sagen, dass die Seidendrüse der Spinne als eine Art natürliches mikrofluidisches Gerät funktioniert.“

Das von den Wissenschaftlern entwickelte Gerät sieht aus wie ein kleiner rechteckiger Kasten, in den winzige Kanäle eingearbeitet sind. Die Spidroin-Vorläuferlösung wird an einem Ende platziert und dann mit Hilfe von Unterdruck zum anderen Ende gezogen. Während die Spidroine durch die mikrofluidischen Kanäle fließen, sind sie präzisen Veränderungen der chemischen und physikalischen Umgebung ausgesetzt, die durch das Design des mikrofluidischen Systems ermöglicht werden. Unter den richtigen Bedingungen bauten sich die Proteine selbst zu Seidenfasern mit ihrer charakteristischen komplexen Struktur auf.

Um die richtigen Bedingungen zu finden, experimentierten die Wissenschaftler und konnten schließlich die Wechselwirkungen zwischen den verschiedenen Bereichen des mikrofluidischen Systems optimieren. Unter anderem entdeckten sie, dass es nicht funktionierte, die Proteine mit Kraft durchzudrücken. Nur wenn sie Unterdruck einsetzten, um das Spidroin so zu ziehen, dass es sich auflöst, konnten kontinuierliche Seidenfasern mit der korrekten Ausrichtung der β-Faltblätter entstehen.

„Es war überraschend, wie robust das mikrofluidische System war, sobald die verschiedenen Bedingungen festgelegt und optimiert waren“, sagt der leitende Wissenschaftler Ali Malay, einer der Koautoren der Studie. „Der Aufbau der Fasern erfolgte spontan, extrem schnell und in hohem Maße reproduzierbar. Wichtig ist, dass die Fasern die ausgeprägte hierarchische Struktur aufwiesen, die in natürlichen Seidenfasern zu finden ist.“

Die künstliche Herstellung von Seidenfasern mit dieser Methode könnte zahlreiche Vorteile mit sich bringen. Sie könnte nicht nur dazu beitragen, die negativen Auswirkungen der derzeitigen Textilherstellung auf die Umwelt zu verringern, sondern die biologisch abbaubare und biokompatible Beschaffenheit der Spinnenseide macht sie ideal für biomedizinische Anwendungen wie Nahtmaterial und künstliche Bänder.

„Im Idealfall wollen wir eine Wirkung in der realen Welt erzielen“, sagt Numata. „Um dies zu erreichen, müssen wir unsere Faserproduktionsmethode skalieren und zu einem kontinuierlichen Prozess machen. Außerdem werden wir die Qualität unserer künstlichen Spinnenseide anhand verschiedener Metriken bewerten und auf dieser Grundlage weitere Verbesserungen vornehmen.“

Quelle:

RIKEN Center for Sustainable Resource Science, Japan

Heimtextil Trends 24/25 © SPOTT trends & business for Heimtextil
12.09.2023

Heimtextil Trends 24/25: New Sensitivity

Unter dem Leitthema „New Sensitivity“ steht textile Transformation im Mittelpunkt der Heimtextil Trends 24/25. Drei Ansätze zeigen Wege zu einer sensibleren Welt der Textilien auf: die pflanzenbasierte Herstellung von Textilien, die Unterstützung textiler Kreisläufe durch Technologie und die biotechnologische Verwendung natürlicher Inhaltsstoffe. Darüber hinaus kuratieren die Future Materials regenerative Materialien und Designs.
 
Nachdem im letzten Jahr bereits zirkuläre Lösungen im Fokus lagen, stellen die Heimtextil Trends 24/25 erneut transformative Textilinnovationen in den Mittelpunkt.

Unter dem Leitthema „New Sensitivity“ steht textile Transformation im Mittelpunkt der Heimtextil Trends 24/25. Drei Ansätze zeigen Wege zu einer sensibleren Welt der Textilien auf: die pflanzenbasierte Herstellung von Textilien, die Unterstützung textiler Kreisläufe durch Technologie und die biotechnologische Verwendung natürlicher Inhaltsstoffe. Darüber hinaus kuratieren die Future Materials regenerative Materialien und Designs.
 
Nachdem im letzten Jahr bereits zirkuläre Lösungen im Fokus lagen, stellen die Heimtextil Trends 24/25 erneut transformative Textilinnovationen in den Mittelpunkt.
Unter dem Titel „New Sensitivity“ stehen neben ästhetischen Aspekten Innovationen und Veränderungen in der Zusammensetzung von Textilien im Mittelpunkt. „In diesem Zusammenhang bedeutet Sensibilität, dass bei Entscheidungen oder der Entwicklung eines Produkts Auswirkungen auf die Umwelt von Anfang an berücksichtigt werden. Zu verstehen, wie natürliche Ökosysteme funktionieren, und dem Gleichgewicht den Vorrang zu geben, ist der Schlüssel,“ so Anja Bisgaard Gaede von SPOTT trends & business.

Wie lässt sich die neue Sensibilität in der Lifestyle-Branche konkret umsetzen und was bedeutet eine sensible Herangehensweise für Design und Produkte? Auch der Einsatz von Artificial General Intelligence (AGI) hat das Potenzial, innovative Lösungen in der Textilindustrie zu bieten, birgt aber auch gesellschaftliche Herausforderungen. AGI erfordert eine sensible Herangehensweise, um Komplexität zu reduzieren, Kreativität zu fördern und bisher unentdeckte Lösungen in der Textilwelt und darüber hinaus zu finden.
     
„Mit den Heimtextil Trends 24/25: New Sensitivity ermutigen wir die Textilbranche, sich der Zukunft mit Bedacht und rücksichtsvoll zu nähern. Konkret sehen wir diesen Wandel in drei verschiedenen Strömungen für eine sensiblere Welt der Textilien: biotechnisch, pflanzenbasiert und technologisch,“ so Bisgaard Gaede weiter.

Plant-based: Textilien aus Pflanzen und pflanzlichen Nebenerzeugnissen
Die Fasern von Textilien auf Pflanzenbasis stammen von etwas Gewachsenem und werden nicht synthetisch hergestellt. Der nachhaltige Vorteil von Textilien auf pflanzlicher Basis ist, dass sie natürlichen Ursprungs sind und daher eher für die Rückführung in existierende Ökosysteme wiederverwendet werden können. Sie können in zwei Aspekte unterteilt werden. Der erste ist die Herstellung von Textilien aus Pflanzenkulturen. Neue widerstandsfähige Pflanzen wie Kaktus, Hanf, Abaka (Manilahanf), Seegras und Kautschuk bieten hier neue, nachhaltige Textillösungen. Aufgrund der mechanischen Extraktion können sie trotz Klimaveränderungen wachsen und benötigen bei der Entwicklung weniger Chemikalien. Die zweite Gruppe sind Textilien, die aus pflanzlichen Nebenprodukten hergestellt werden, d. h. aus Rohstoffen wie Bananen, Oliven, Kakis und Hanf, die bei der Produktion übrigbleiben.

Technological: Technologie und technische Lösungen, die Textilien verändern
Technologie kann die Umwandlung von Textilien durch verschiedene Methoden unterstützen: Upcycling und Recycling von Textilien, Textilkonstruktion und Textildesign. Aufgrund der jahrzehntelangen Produktion sind Textilien heute Materialien, die im Überfluss vorhanden sind. Die Entwicklung von Technologien zur Wiederverwertung von Textilabfällen und zum textilen Upcycling erhöht die zirkuläre Nutzung bereits hergestellter Textilien. Darüber hinaus sind auch alte Textilkonstruktionstechniken ein Weg zu nachhaltigen Lösungen. Durch die Verwendung von Stricktechniken für Möbelbezüge wird weniger Textilabfall produziert, demgegenüber können durch die Webtechnik mit wenigen farbigen Garnen optisch mehrere Farben erzeugt werden. Textile Design Thinking befasst sich mit kritischen Themen wie dem Energieverbrauch oder der Haltbarkeit von Naturfasern und verbessert diese durch technologische Weiterentwicklung.

Bio-engineered: entwickelt zur Verbesserung der biologischen Abbaubarkeit
Bei bio-technisch hergestellten Textilien verschmelzen pflanzliche und technische Textilien. Bio-Engineering schlägt eine Brücke zwischen Natur und Technik und verändert die Art und Weise, wie Textilien hergestellt werden. Sie können in zwei Richtungen unterteilt werden: vollständig biotechnisch hergestellte und biologisch abbaubare Textilien. Bei vollständig biotechnologisch hergestellten Textilien werden von der Natur inspirierte Strategien angewandt. Anstatt die Pflanzen anzubauen und daraus Fasern zu extrahieren, werden Proteine und Kohlenhydrate aus Mais, Gras und Rohrzucker oder Bakterien eingesetzt. Die Textilien werden durch einen biomolekularen Prozess hergestellt, bei dem Filamente entstehen, die zu Garnen werden. Der nachhaltige Vorteil von biotechnologisch hergestellten Textilien besteht darin, dass sie einige der gleichen Funktionalitäten wie synthetisch hergestellte Textilien haben können. Da sie jedoch natürlichen Ursprungs sind, können sie biologisch abgebaut werden. „Biodegradable Fibres“ können herkömmlichen Textilien wie Polyester zugesetzt werden und verbessern deren Fähigkeit, sich zu in der Natur vorkommenden Materialien zurückzuverwandeln und sich somit in natürlichen Umgebungen wie Wasser oder Erdboden biologisch abzubauen. Die biologisch verbesserten Textilien werden zwar nicht vollständig, aber bis zu 93 Prozent im Vergleich zu herkömmlichen Textilien biologisch abgebaut.

Heimtextil Trends 24/25: Farben
Ein sensibler Ansatz bei den Färbemethoden kommt in einer dynamischen und gleichzeitig subtilen Farbpalette zum Ausdruck. Sie wird mit natürlichen, aus der Erde stammenden Pigmenten erzeugt, während traditionelle Färbeverfahren durch innovative Biotechnologie auf die nächste Stufe gebracht werden. In dem Bestreben, Farben zu erschaffen, die Emotionen hervorrufen und gleichzeitig Werte beim Umweltschutz respektieren, erzeugen Farbbakterien durch Pigmentwachstum Farbtöne von beeindruckendem Reichtum und großer Tiefe.
               
Zu dieser neuen Sensibilität gehört auch die Akzeptanz natürlicher Farbverläufe, da die Farben mit der Zeit verblassen oder sich in eine neue Farbrichtung verwandeln können. Die Farbtöne der Heimtextil Trends 24/25 wurden von natürlichen Farben inspiriert, die aus Avocadokernen, Algen, lebenden Bakterien, antiken Pigmenten wie Roh Sienna und biotechnisch hergestelltem Indigo und Cochenille stammen. Der hohe Schwarzanteil in den meisten Farben ermöglicht eine breite Anwendung und eine größere Vielfalt an Kombinationen. Die kräftigen, gesättigten Akzente beleben Sinne und Stimmung. Im Gegensatz dazu stehen die erdenden Neutraltöne in verschiedenen Grauabstufungen, Terra und sogar dunklem Violett, die für Ruhe und Gelassenheit sorgen.
     
Future Materials: regeneratives Design
Wie werden regenerative Textilien und Materialien definiert? Regeneratives Design hat sich dem Ziel verschrieben, ganzheitliche kreative Praktiken zu entwickeln, die die Ressourcen wiederherstellen oder erneuern, eine positive Auswirkung auf die Umwelt haben und das Gedeihen von Gemeinschaften fördern. Für die Heimtextil 2024 kuratiert die Design-Zukunftsberatung FranklinTill ein globales Schaufenster hochmoderner Textilien und Materialien, um die Prinzipien des regenerativen Designs zu veranschaulichen und bahnbrechende Designer*innen, Erzeuger*innen und Hersteller*innen zu würdigen, die an der Spitze des regenerativen Designs stehen.
Der Trend Space auf der Heimtextil in Frankfurt vom 9. bis 12. Januar 2023 präsentiert diese Lösungen auf inspirierende Weise. Zusätzlich bieten die Heimtextil Trends Besuchern in Form von Workshops, Vorträgen und weiteren interaktiven Formaten Orientierung und Einblicke in die Zukunft von Wohn- und Objekttextilien.

Quelle:

Heimtextil, Messe Frankfurt

sportswear Stocksnap, Pixabay
30.08.2023

Eine smarte Laufhose warnt vor …

ETH-Forschende haben ein elektronisches Garn entwickelt, das Körperbewegungen sehr genau misst. Der Textilsensor kann direkt in Sport- oder Arbeitskleidung integriert werden und sagt die Müdigkeit des Trägers während körperlicher Belastung voraus.

Wer erschöpft ist, verletzt sich leichter – sowohl beim Sport als auch bei körperlicher Arbeit. ETH-Forschende um Carlo Menon, Professor für mobile Gesundheitstechnologien, haben nun einen Textilsensor entwickelt, der in Echtzeit misst, wie erschöpft Menschen während körperlicher Belastung sind. Getestet haben sie den neuen Senor an einer Laufhose. Mit einem Blick auf das Smartphone konnten die Probanden feststellen, wann sie an ihre Belastungsgrenze kommen und besser eine Pause einlegen sollten.

ETH-Forschende haben ein elektronisches Garn entwickelt, das Körperbewegungen sehr genau misst. Der Textilsensor kann direkt in Sport- oder Arbeitskleidung integriert werden und sagt die Müdigkeit des Trägers während körperlicher Belastung voraus.

Wer erschöpft ist, verletzt sich leichter – sowohl beim Sport als auch bei körperlicher Arbeit. ETH-Forschende um Carlo Menon, Professor für mobile Gesundheitstechnologien, haben nun einen Textilsensor entwickelt, der in Echtzeit misst, wie erschöpft Menschen während körperlicher Belastung sind. Getestet haben sie den neuen Senor an einer Laufhose. Mit einem Blick auf das Smartphone konnten die Probanden feststellen, wann sie an ihre Belastungsgrenze kommen und besser eine Pause einlegen sollten.

Die von der ETH Zürich zum Patent angemeldete Erfindung könnte den Weg ebnen für eine neue Generation von smarten Kleidern: Denn bei vielen auf dem Markt verfügbaren Produkten werden elektronische Bauteile wie Sensoren, Batterien oder Chips nachträglich an der Kleidung fixiert. Dies macht die Herstellung umständlich, führt zu hohen Preisen und erschwert die Pflege der Produkte.

Im Unterschied dazu wird der Dehnungssensor der ETH-Forschenden direkt in die Stofffasern elastischer und enganliegender Sport- oder Arbeitskleidung integriert, was die industrielle Produktion erleichtert und den Preis senkt. Ein weiterer Vorteil: «Durch den engen Körperkontakt des Sensors können wir Körperbewegungen sehr genau erfassen, ohne dass der Nutzer oder die Nutzerin das bemerkt», sagt Menon.

Ein außergewöhnliches Garn
Wenn Menschen müde werden, bewegen sie sich anders. So auch beim Laufen: Die Schritte werden kürzer und weniger regelmäßig. Diesen Effekt messen die ETH-Forschenden mit ihrem neuen Sensor, der aus einem speziellen Garn besteht. Möglich wird dies durch den Aufbau des Garns: Die innere Faser besteht aus einem leitenden, elastischen Gummi. Spiralförmig um diesen herum wickelten die Forschenden einen steifen Draht, der mit einer dünnen Kunststoffschicht verkleidet ist. «Die beiden Fasern wirken als Elektroden und erzeugen ein elektrisches Feld. Sie bilden gemeinsam einen Kondensator, der eine elektrische Ladung speichern kann, die wir als Kapazität bezeichnen», erklärt Tyler Cuthbert, der als Postdoc in Menons Gruppe forschte und maßgeblich an der Entwicklung beteiligt war.

Die intelligente Laufhose
Stickt man dieses Garn nun auf der Höhe des Oberschenkels auf eine elastische Laufhose wird es beim Laufen in einem gewissen Rhythmus gedehnt und wieder gelockert. Bei jeder Bewegung ändert sich der Abstand zwischen den beiden Fasern und damit auch das elektrische Feld sowie die Kapazität des Kondensators.

Unter normalen Umständen wären diese Kapazitätsschwankungen sehr klein und würden nicht ausreichen, um damit Körperbewegungen messen zu können. Doch die Eigenschaften des Garns sind alles andere als normal: «Im Unterschied zu den meisten anderen Materialien wird es dicker, wenn man daran zieht», erklärt Cuthbert. Dadurch wird das Garn sehr viel sensibler gegenüber kleinsten Bewegungen. Dehnt es sich geringfügig aus, entstehen deutlich messbare Schwankungen in der Kapazität des Sensors. Bereits subtile Veränderungen im Laufverhalten können so gemessen und ausgewertet werden.

Doch wie kann man daraus die Müdigkeit einer Person ableiten? In einem früheren Forschungsprojekt haben Cuthbert und Menon eine Reihe von Probanden beim Laufen beobachtet, während sie eine Laufhose mit einem ähnlichen Sensor trugen. Sie zeichneten auf, wie sich die elektrischen Signale des Sensors bei zunehmender Müdigkeit änderten. Aus diesem Muster haben die Forschenden dann ein Modell erstellt, das die Erschöpfung von Läufern vorhersagt und auch für den neuen Textilsensor eingesetzt werden kann. Damit das Modell auch außerhalb des Labors zuverlässige Vorhersagen macht, braucht es allerdings noch zahlreiche weitere Tests und eine Menge Bewegungsdaten.

Textilantenne für die kabellose Datenübertragung
Um die elektrischen Signale des Textilsensors ohne Kabel an ein Smartphone zu übertragen, haben ihn die Forschenden mit einer Spulenantenne aus leitendem Garn verbunden, die ebenfalls direkt auf die Laufhose gestickt wurde. «Sensor und Antenne bilden zusammen einen elektrischen Schaltkreis, der vollständig in der Kleidung integriert ist», sagt Valeria Galli, Doktorandin in Menons Gruppe.

Das elektrische Signal des Dehnungssensors führt nun dazu, dass die Antenne ein Signal in einer bestimmten Frequenz aussendet, das von einem Smartphone gelesen werden kann. Wird der Sensor während des Laufens bewegt, entsteht ein Signalmuster mit einer ständig schwankend Frequenz, die von einer App in Echtzeit aufgezeichnet und ausgewertet werden kann. Dies ist allerdings Zukunftsmusik und erfordert noch einiges an Entwicklungsarbeit.

Anwendungen im Sport und am Arbeitsplatz
Aktuell arbeiten die Forschenden daran, aus dem Prototyp ein marktreifes Produkt zu machen. Dafür bewerben sie sich um eines der begehrten Pioneer Fellowship der ETH Zürich. «Unser Ziel ist, intelligente Kleidung günstiger herzustellen und damit einer breiteren Öffentlichkeit zugänglich zu machen», sagt ETH-Professor Menon. Anwendungen sieht Menon dabei nicht nur im Sport, sondern auch am Arbeitsplatz, um ermüdungsbedingten Verletzungen vorzubeugen, oder im Bereich der Rehabilitationsmedizin.

Quelle:

ETH Zürich

Point of View: Let’s end fast fashion, Prof Minna Halme. Foto: Veera Konsti / Aalto University
18.08.2023

Standpunkt: Schluss mit Fast Fashion!

Sich auf kurzfristige Gewinne zu fokussieren, ist nicht nachhaltig. Was können wir also tun, um in die richtige Richtung zu gehen? In allen Branchen die Widerstandsfähigkeit der Effizienz vorziehen.

Sich auf kurzfristige Gewinne zu fokussieren, ist nicht nachhaltig. Was können wir also tun, um in die richtige Richtung zu gehen? In allen Branchen die Widerstandsfähigkeit der Effizienz vorziehen.

Wir kaufen billige Produkte im Wissen, dass wir sie bald ersetzen müssen. Wir werfen gebrauchte Gegenstände weg, anstatt sie zu reparieren oder wiederzuverwenden. Arbeitgeber planen in Bezug auf finanzielle Quartale, obwohl sie hoffen, längerfristig bedeutend und stabil zu bleiben. Sogar Länder geben der kurzfristigen Wirtschaftsleistung den Vorrang und stellen das Bruttoinlandsprodukt (BIP) über jeden anderen Indikator.
 
Unsere globale Besessenheit von kurzfristiger wirtschaftlicher Effizienz - und die Frage, wie man sie überwinden kann - ist ein großes Rätsel, über das Minna Halme, Professorin für Nachhaltigkeitsmanagement, die meiste Zeit ihrer Karriere nachgedacht hat. Schon als Studentin an der Wirtschaftshochschule war sie irritiert, wie sehr sich ihr Unterricht auf kurzfristige Ziele konzentrierte.

„Es ging darum, mehr zu verkaufen, die Gewinne der Aktionäre zu maximieren, ökologisch zu wachsen - aber nicht wirklich zu fragen: Warum? Was ist der Zweck von all dem?“, so Halme.
„Selbst mir als 20-Jähriger kam das irgendwie seltsam vor.“

„Was versuchen wir hier zu tun? Versuchen wir, eine bessere Wirtschaft für alle oder für die meisten Menschen zu schaffen? Wessen Leben versuchen wir zu verbessern, wenn wir mehr unterschiedlich verpackte Joghurtsorten oder Kleidung verkaufen, die schnell unmodern ist?“

Halme hat ihre Karriere der Untersuchung dieser Fragen gewidmet. Heute ist sie eine Vordenkerin im Bereich innovativer Geschäftspraktiken und wurde unter anderem als Mitglied des finnischen Expertengremiums für nachhaltige Entwicklung und des Gremiums für globale Nachhaltigkeit der Vereinten Nationen anerkannt.

Ihr oberstes Ziel? Pionierarbeit zu leisten, zu forschen und für alternative Denkweisen einzutreten, die Werte wie langfristige wirtschaftliche Nachhaltigkeit und Widerstandsfähigkeit in den Vordergrund stellen - Alternativen, von denen sie und andere Experten glauben, dass sie allen einen dauerhaften, weitreichenden Nutzen bringen würden.
 
Wie traditionelle Indikatoren versagt haben
Ein Weg, in der unsere Vorliebe für wirtschaftliche Effizienz die Art und Weise prägt, wie wir den allgemeinen Wohlstand oder Status eines Landes messen, ist das BIP. Das ist nicht die Schuld des Erfinders des modernen Konzepts des BIP, der in den 1930er Jahren ausdrücklich davor warnte, es auf diese Weise zu verwenden.

„Das BIP war nie dazu gedacht, uns etwas über das Wohlergehen der Bürger eines Landes zu sagen", sagt Halme. Vor fünfundsiebzig Jahren war es jedoch leicht, beides miteinander zu verwechseln. Viele Länder waren eher bestrebt, ihren Wohlstand unter ihren Bürgern umzuverteilen, und Bevölkerungsumfragen zeigen, dass das BIP bis in die 1970er Jahre häufig mit dem allgemeinen Wohlstand korrelierte.

Doch mit dem Aufkommen eines zunehmend rücksichtsloseren Kapitalismus der freien Marktwirtschaft wurde dies immer weniger der Fall - und die Unzulänglichkeiten des BIP wurden umso deutlicher. „Wir befinden uns in einer Situation, in der die Verteilung des Reichtums mehr und mehr zu denjenigen wandert, die bereits über Kapital verfügen. Diejenigen, die es nicht haben, befinden sich in einer rückläufigen wirtschaftlichen Position", sagt Halme. Tatsächlich besitzen die reichsten 1 % der Weltbevölkerung heute fast die Hälfte des weltweiten Vermögens.

„Einige Regierungen, wie die finnische, berücksichtigen zwar Indikatoren für den ökologischen und sozialen Fortschritt. Aber keiner wird als so wichtig für die Entscheidungsfindung angesehen wie das BIP", sagt Halme - und das BIP gilt auch als Maßstab für den Erfolg einer Regierung. Diese Einstellung versucht Halme durch ihre Arbeit als Beraterin der finnischen Regierung zu Nachhaltigkeitspraktiken sowie durch ihre eigene Forschung zu ändern.

Wo die Industrie versagt hat
Unsere oft ausschließliche Konzentration auf die Ökonomie - und insbesondere darauf, so schnell und effizient wie möglich Gewinne zu erzielen - vermittelt kein klares Bild davon, wie es allen in einer Gesellschaft geht. Schlimmer noch, es hat die Industrie ermutigt, mit einer kurzfristigen Perspektive zu handeln, die zu längerfristigen Problemen führt.
 
Fast Fashion ist ein Beispiel dafür. Gegenwärtig sind die Lieferketten für Bekleidung - wie die der meisten Waren - linear. Die Rohstoffe kommen von einem Standort und werden Schritt für Schritt verarbeitet, in der Regel in verschiedenen Produktionsstätten auf der ganzen Welt, wobei Materialien, Energie und Transportmittel verwendet werden, die „billig“ sind, weil ihre hohen Umweltkosten nicht berücksichtigt werden.

Schließlich werden sie von einem Verbraucher gekauft, der das Produkt vorübergehend trägt, bevor er es wegwirft. Um die Gewinnspannen zu erhöhen, setzt die Branche auf schnell wechselnde Trends. Eine erschreckende Menge dieser Kleidungsstücke landet auf der Mülldeponie - einige davon, bevor sie überhaupt getragen worden sind.

Wie der COVID Lockdown gezeigt haben, ist diese Art linearer Lieferketten nicht belastbar. Und sie sind auch nicht nachhaltig.

Schätzungen zufolge ist die Modebranche derzeit die zweitgrößte Umweltverschmutzungsbranche der Welt und für bis zu 10 % aller Treibhausgasemissionen verantwortlich. Forscher der Aalto-Universität haben festgestellt, dass die Branche jährlich mehr als 92 Millionen Tonnen Deponieabfälle produziert. Bis 2030 wird ein Anstieg auf 134 Millionen Tonnen erwartet.
„Die Verringerung des CO2-Fußabdrucks der Modebranche ist nicht nur gut für die Umwelt, sondern auch für die langfristigen Aussichten der Branche selbst. Mit dieser Art von falschem Effizienzdenken untergräbt man die Grundlage unserer langfristigen Widerstandsfähigkeit sowohl für die Ökologie als auch für die Gesellschaft", sagt Halme.

Um aus dieser Falle herauszukommen, sagen sie und andere Forscher, ist ein kompletter Paradigmenwechsel erforderlich. „Es ist wirklich schwierig, nur an den Rändern zu feilen", sagt sie.
Auf dem Weg zur Resilienz

Mehrere Jahre lang erforschte und studierte Halme die ökologische Effizienz und suchte nach Möglichkeiten, wie Unternehmen mehr Produkte mit weniger Umweltbelastungen herstellen könnten. Doch allmählich wurde ihr klar, dass dies nicht die Antwort ist. Obwohl die Unternehmen durch Innovationen effizientere Produkte und Technologien entwickeln konnten, stieg ihr absoluter Verbrauch an natürlichen Ressourcen weiter an.

„Ich begann zu denken: Wenn nicht Effizienz, was dann?", sagt Halme. Sie erkannte, dass die Lösung in der Resilienz liegt, d. h. in der Förderung von Möglichkeiten, wie Systeme, einschließlich der Umwelt, in der Zukunft fortbestehen und sich sogar regenerieren können, anstatt sie in der Gegenwart weiter zu schädigen.
Die Lösung ist nicht „mehr von allem“, auch nicht von „nachhaltigen“ Materialien. Es ist weniger.

„Die einzige Möglichkeit, Fast Fashion zu verbessern, ist, sie zu beenden“, schreiben Halme und ihre Mitautoren. Das bedeutet, dass Kleidung so gestaltet werden muss, dass sie lange hält, dass Geschäftsmodelle die Wiederverwendung und Reparatur erleichtern und dass dem Upcycling Vorrang eingeräumt wird. Auch die Recyclingsysteme müssen überarbeitet werden, um festzustellen, wann ein Kleidungsstück wirklich ausgedient hat - insbesondere im Hinblick auf synthetische Mischfasern, die schwer zu trennen und abzubauen sind.

Dies würde die derzeitige Konzentration auf kurzfristige Einnahmen über den Haufen werfen. Und, so Halme, dies ist ein weiteres Beispiel dafür, dass wir bessere Möglichkeiten brauchen, um den Erfolg dieser Branchen zu messen, indem wir Faktoren wie Belastbarkeit und Nachhaltigkeit berücksichtigen - und nicht nur kurzfristige Gewinne.
Und obwohl jeder Einzelne etwas bewirken kann, müssen diese Veränderungen letztlich von der Industrie ausgehen.

„Textilien sind ein gutes Beispiel, denn wenn sie schnell kaputt gehen und man keine Reparaturwerkstatt in der Nähe hat oder wenn die Stoffe von so schlechter Qualität sind, dass es keinen Sinn macht, sie zu reparieren, dann ist das für die meisten Menschen ein zu großer Aufwand“, sagt Halme. Die meisten Lösungen sollten also von der Unternehmensseite kommen. Und das Ziel sollte sein, es den Verbrauchern sowohl modisch als auch einfach zu machen, ökologisch und sozial nachhaltige Entscheidungen zu treffen.
 
Was ist erforderlich?
Die ultimative Herausforderung, sagt Lauri Saarinen, Assistenzprofessor an der Aalto der Aalto-Universität für Wirtschaftsingenieurwesen, ist die Frage, wie man zu einem nachhaltigeren Modell gelangt und gleichzeitig die Wettbewerbsfähigkeit der Unternehmen erhält. Aber er glaubt, dass es Möglichkeiten gibt.

„Eine Möglichkeit besteht darin, die Produktion lokal zu halten. Wenn wir mit der kostengünstigen Offshore-Fertigung konkurrieren, indem wir die Dinge vor Ort und in einem geschlossenen Kreislauf herstellen, dann haben wir den doppelten Vorteil, indem wir lokal Arbeitsplätze schaffen und uns in Richtung einer nachhaltigeren Lieferkette bewegen“, sagt Saarinen. Wenn beispielsweise Kleidung näher am Verbraucher produziert würde, wäre es einfacher, Kleidungsstücke zur Reparatur zurückzuschicken oder gebrauchte Artikel zurückzunehmen und weiterzuverkaufen.

Lokale Produktion ist ein weiteres Beispiel dafür, dass wir die Methode, mit der wir den gesellschaftlichen Erfolg messen, neu überdenken müssen. Schließlich scheinen Outsourcing und Offshoring zugunsten einer billigeren Produktion kurzfristig die Kosten zu senken, aber dies geschieht zu Lasten dessen, was nach Ansicht von Halme und anderen Experten wirklich wichtig ist: eine längerfristige wirtschaftliche Tragfähigkeit, Widerstandsfähigkeit und Nachhaltigkeit. Es ist nicht einfach, zu dieser Art von Denken überzugehen. Dennoch sehen Saarinen und Halme vielversprechende Signale.
 
Für Finnland verweist Halme beispielsweise auf das Start-up-Unternehmen Menddie, das es leicht und bequem macht, Kleidungsstücke zum Reparieren oder Ändern wegzuschicken. Sie hebt auch die Bekleidungs- und Lifestyle-Marke Marimekko hervor, die ihre gebrauchten Kleidungsstücke in einem Online-Secondhand-Shop weiterverkauft, sowie das Label Anna Ruohonen, ein Konzept für Maßanfertigungen und Kunden auf Abruf, bei dem keine überschüssigen Kleidungsstücke entstehen.

Genau diese Art von Projekten findet Halme interessant - und sie hofft, mit ihrer Arbeit sowohl für diese zu werben als auch Pionierarbeit zu leisten.
„Momentan haben diese Veränderungen noch nicht zu einer echten Transformation geführt“, sagt sie. Auf globaler Ebene sind wir noch weit von einem echten Wandel hin zu längerfristiger Resilienz entfernt. Aber das könne sich, wie sie betont, schnell ändern. Schließlich hat sich das in der Vergangenheit auch bereits geändert: „Man muss sich nur ansehen, was uns hierhergebracht hat.“

„Das Streben nach Wirtschaftswachstum wurde in relativ kurzer Zeit - nur über etwa sieben Jahrzehnte - zu einem so dominanten Schwerpunkt“, sagt sie. Der Wandel hin zu einer längerfristigen Resilienz ist durchaus möglich. Wissenschaftler und Entscheidungsträger müssen nur ihr Hauptziel auf langfristige Widerstandsfähigkeit umstellen. Die Kernfrage ist, ob unsere mächtigsten Wirtschaftsakteure klug genug sind, dies zu tun.
 
Im Rahmen ihrer Forschung hat Halme Projekte geleitet, die Pionierarbeit für die Art von Veränderungen leisten, die die Modeindustrie vornehmen könnte. Gemeinsam mit ihrer Aalto-Kollegin Linda Turunen hat sie beispielsweise kürzlich ein Messverfahren entwickelt, mit dem die Modeindustrie die Nachhaltigkeit eines Produkts klassifizieren könnte. Dabei wird gemessen, wie haltbar das Produkt ist, wie leicht es recycelt werden kann und ob bei der Herstellung gefährliche Chemikalien verwendet werden - was den Verbrauchern bei der Kaufentscheidung helfen könnte. Ihre Kollegen haben vor kurzem eine Ausstellung kuratiert, in der gezeigt wurde, was wir in einer nachhaltigen Zukunft tragen könnten, z. B. eine Lederalternative, die aus weggeworfenen Blumenstecklingen hergestellt wird, oder modulare Designs, mit denen ein und dasselbe Kleidungsstück mehrfach verwendet werden kann, indem z. B. ein Rock in ein Hemd verwandelt wird.

Da all dies längerfristiges Denken, Innovation und Investitionen erfordert, ist die Industrie zurückhaltend, diese Veränderungen vorzunehmen, sagt Halme. Eine Möglichkeit, die Industrie zu einem schnelleren Wandel zu bewegen, ist die Regulierung. In der Europäischen Union beispielsweise müssen Unternehmen mit mehr als 500 Mitarbeitern aufgrund einer aktualisierten Reihe von Richtlinien nun über eine Reihe von Faktoren der Unternehmensverantwortung Bericht erstatten, die von den Auswirkungen auf die Umwelt bis zur Behandlung der Mitarbeiter reichen. Diese Vorschriften werden nicht nur dazu beitragen, Verbraucher, Investoren und andere Interessengruppen über die Rolle eines Unternehmens bei globalen Herausforderungen zu informieren. Sie werden auch dazu beitragen, Investitionsrisiken zu bewerten und abzuwägen, ob ein Unternehmen die notwendigen Maßnahmen ergreift, um langfristig finanziell stabil zu sein.

Quelle:

Aalto University, Amanda Ruggeri. Übersetzung Textination

(c) NC State
07.08.2023

Wearable Connector Technology - Vorteile für Militär, Medizin und mehr

Was kommt Ihnen in den Sinn, wenn Sie an „Wearable Technology“ denken? Im Jahr 2023 wahrscheinlich eine ganze Menge, wenn Smartwatch und Ring die Herzfrequenz messen, sportliche Aktivitäten verfolgen und sogar Textnachrichten empfangen. Vielleicht denken Sie auch an das „hässliche“ blinkende Sweatshirt oder das Kostüm, das Sie an Halloween oder in der Weihnachtszeit gesehen haben.

Am Wilson College of Textiles arbeiten Forscher jedoch hart an der Optimierung einer wahrhaft neuartigen Form von Wearable Technology, die sich in einer Vielzahl von Bereichen als nützlich erweisen kann, von Mode und Sport über Augmented Reality bis hin zu Militär und Medizin.

Dieses Projekt, das sich derzeit in der Schlussphase befindet, könnte dazu beitragen, die Nutzer in kritischen Situationen zu schützen - z. B. Soldaten im Kriegseinsatz oder Patienten in Krankenhäusern - und gleichzeitig die Grenzen dessen, was die Textilforschung leisten kann, erweitern.

Was kommt Ihnen in den Sinn, wenn Sie an „Wearable Technology“ denken? Im Jahr 2023 wahrscheinlich eine ganze Menge, wenn Smartwatch und Ring die Herzfrequenz messen, sportliche Aktivitäten verfolgen und sogar Textnachrichten empfangen. Vielleicht denken Sie auch an das „hässliche“ blinkende Sweatshirt oder das Kostüm, das Sie an Halloween oder in der Weihnachtszeit gesehen haben.

Am Wilson College of Textiles arbeiten Forscher jedoch hart an der Optimierung einer wahrhaft neuartigen Form von Wearable Technology, die sich in einer Vielzahl von Bereichen als nützlich erweisen kann, von Mode und Sport über Augmented Reality bis hin zu Militär und Medizin.

Dieses Projekt, das sich derzeit in der Schlussphase befindet, könnte dazu beitragen, die Nutzer in kritischen Situationen zu schützen - z. B. Soldaten im Kriegseinsatz oder Patienten in Krankenhäusern - und gleichzeitig die Grenzen dessen, was die Textilforschung leisten kann, erweitern.

"Die Ziele, die wir uns für diese Forschung gesetzt haben, sind völlig neuartig im Vergleich zu jeder anderen Fachliteratur, die es über tragbare Steckverbindungen gibt", sagt Shourya Dhatri Lingampally, Studentin und Forschungsassistentin am Wilson College of Textiles, die gemeinsam mit der Assistenzprofessorin Minyoung Suh an dem Projekt arbeitet.

Die im Herbst 2021 gestartete Arbeit von Suh und Lingampally konzentriert sich auf in Textilien integrierte tragbare Anschlüsse, eine einzigartige „Hightech-Brücke“ zwischen flexiblen Textilien und externen elektronischen Geräten. Im Kern zielt das Projekt darauf ab, den Technologiereifegrad (Technology Readiness Level) dieser Konnektoren zu verbessern - ein Schlüsselwert, der von der NASA und dem Verteidigungsministerium verwendet wird, um den Reifegrad einer bestimmten Technologie zu bewerten.

Zu diesem Zweck untersuchen Lingampally und ihre Kollegen Probleme, die in der Vergangenheit die Leistung von tragbaren Geräten beeinträchtigt haben.

Sicherlich können diese Fortschritte der Mode zugutekommen und zu ausgefallenen Hemden, Jacken oder Accessoires führen – „die auf der Grundlage biometrischer Daten des Trägers leuchten oder ihre Farbe ändern“, so Lingampally -, aber die Forschung hat ihre Wurzeln in einer deutlich tiefer gehenden Mission.

Potentieller Nutzen für Militär, Medizin und mehr
Das Projekt wird mit einem Zuschuss von mehr als 200.000 Dollar von Advanced Functional Fabrics of America (AFFOA) finanziert, einem US-amerikanischen Manufacturing Innovation Institute (MII) mit Sitz in Cambridge, Massachusetts. Die Aufgabe von AFFOA besteht darin, die inländischen Produktionskapazitäten für neue technische Textilprodukte, wie z. B. textilbasierte tragbare Technologien, zu fördern.

Ein Hauptziel der Forschung ist die Verbesserung der Funktionalität von tragbaren Überwachungsgeräten, mit denen Soldaten zuweilen ausgestattet werden, um die Gesundheit und Sicherheit von Einsatzkräften aus der Ferne zu überwachen.

Ähnliche Geräte ermöglichen es Ärzten und anderem medizinischen Personal, den Gesundheitszustand von Patienten aus der Ferne zu überwachen, auch wenn sie nicht am Krankenbett liegen.

Diese Technologie gibt es zwar schon seit Jahren, aber sie erforderte bisher zu oft die Verlegung von Kabeln und ein insgesamt logistisch ungünstiges Design. Das könnte sich bald ändern.

„Wir haben die elektronischen Komponenten in einem kleinen Druckknopf oder einer Schnalle zusammengefasst, so dass die Schaltkreise für den Träger weniger hinderlich sind“, erläutert Lingampally die Innovationen des Teams, zu denen auch der 3D-Druck der Verbindungsprototypen mithilfe der Stereolithographie-Technologie gehört.

„Wir versuchen, die Designparameter zu optimieren, um die elektrische und mechanische Leistung dieser Steckverbinder zu verbessern“, fügt sie hinzu.

Um ihre Ziele zu erreichen, arbeitete die Gruppe mit James Dieffenderfer, Assistant Research Professor am NC State Department of Electrical and Computer Engineering, zusammen. Das Team führte eine Vielzahl elektrischer Anschlüsse und Verbindungen wie leitende Fäden, Epoxidharz und Lötmittel durch textile Materialien, die mit starren elektronischen Geräten ausgestattet waren.

Außerdem testeten sie die Komponenten auf ihre Kompatibilität mit Standardverbindungen für digitale Geräte wie USB 2.0 und I2C.

Letztendlich hofft Lingampally, dass ihre Arbeit dazu beitragen wird, dass tragbare Technologien nicht nur einfacher und bequemer zu benutzen sind, sondern auch zu einem niedrigeren Preis erhältlich sind.

„Ich würde gerne sehen, wie sie skaliert und in Massenproduktion hergestellt werden, damit sie für jede Branche kostengünstig eingesetzt werden können“, erklärt sie.

Die Arbeit ihres Teams verdeutlicht jedoch auch die weitreichenden Grenzen der Forschung im Bereich intelligenter Textilien, die weit über Mode und Komfort hinausgehen.

Die Grenzen der Textilforschung erweitern
Die Arbeit von Suh und Lingampally ist nur die jüngste wegweisende Forschungsarbeit des Wilson College of Textile, mit der kritische Probleme in der Textilindustrie und darüber hinaus gelöst werden sollen.

"Die ständigen Fortschritte bei Technologie und Materialien bieten der Textilindustrie ein immenses Potenzial, um positive Veränderungen in verschiedenen Bereichen von der Mode bis zum Gesundheitswesen und darüber hinaus voranzutreiben", sagt Lingampally, eine Studentin im Masterstudiengang Textilien (M.S. Textiles), und verweist auf die Ermutigung, die sie in ihrem Studiengang erfährt, um bei der Festlegung und Weiterentwicklung ihrer Forschung innovativ und kreativ zu sein.

Im Promotionsprogramm für Faser- und Polymerwissenschaften, mit dem Suh arbeitet, konzentrieren die Kandidaten ihre Forschung auf eine scheinbar endlose Reihe von MINT-Themen, die, um nur einige zu nennen, von Forensik über medizinische Textilien und Nanotechnologie bis hin zu intelligenter Wearable Technology reichen.

In diesem Fall, so Suh, war die Forschung mit „unerwarteten Herausforderungen“ verbunden, die an jeder Ecke faszinierende Anpassungen“ erforderten. Letztendlich führte es aber zu Durchbrüchen, die in der Branche der Wearable Technologies bisher nicht zu beobachten waren, und das Interesse anderer Forscher außerhalb der Universität und auch privater Unternehmen weckten.

"Dieses Projekt war von seiner Art her recht experimentell, da es bisher keine Forschung gab, die auf die gleichen Ziele ausgerichtet war", so Suh.

Inzwischen hat das Team Tests zur Haltbarkeit und Zuverlässigkeit seiner in Textilien integrierten tragbaren Steckverbindungen abgeschlossen. Letztlich möchte die Gruppe die Stichprobengröße für die Tests erhöhen, um die Ergebnisse zu festigen und zu validieren. Das Team hofft auch, neue, innovative Verbindungstechniken sowie andere 3D-Drucktechniken und Materialien zu analysieren, um die Wearable Technologies weiter zu verbessern.

Quelle:

North Carolina State University, Sean Cudahy

Swijin Inage Swijin
20.06.2023

Innovative Sportbekleidung: Schwimmen und Rennen ohne Umziehen

Rechtzeitig für den Sommer: Das Schweizer Start-up Swijin bringt mit dem «SwimRunner» eine neue Sportbekleidungskategorie auf den Markt – ein Sport-BH mitsamt passenden Unterteilen, die sowohl als Schwimm- wie als Laufbekleidung funktionieren und im Handumdrehen trocknen. Entwickelt wurde das innovative Produkt zusammen mit Empa-Forschenden in einem Innosuisse-Projekt. Testen kann man den „SwimRunner“ dieses Wochenende am „Zurich City Triathlon“.
 
Nach dem Joggen noch schnell ins kühle Nass springen, ohne sich umziehen zu müssen? Swijin (sprich: Swie-Djin), ein neues Schweizer TechTex-Start-up, lanciert ihr erstes Produkt, den «SwimRunner»: einen Sport-BH mit Unterteilen, die sowohl als Schwimm- wie auch als Laufbekleidung fungieren und blitzschnell trocknen.

Rechtzeitig für den Sommer: Das Schweizer Start-up Swijin bringt mit dem «SwimRunner» eine neue Sportbekleidungskategorie auf den Markt – ein Sport-BH mitsamt passenden Unterteilen, die sowohl als Schwimm- wie als Laufbekleidung funktionieren und im Handumdrehen trocknen. Entwickelt wurde das innovative Produkt zusammen mit Empa-Forschenden in einem Innosuisse-Projekt. Testen kann man den „SwimRunner“ dieses Wochenende am „Zurich City Triathlon“.
 
Nach dem Joggen noch schnell ins kühle Nass springen, ohne sich umziehen zu müssen? Swijin (sprich: Swie-Djin), ein neues Schweizer TechTex-Start-up, lanciert ihr erstes Produkt, den «SwimRunner»: einen Sport-BH mit Unterteilen, die sowohl als Schwimm- wie auch als Laufbekleidung fungieren und blitzschnell trocknen.

Diese Innovation ermöglicht Frauen erstmals einen fließenden Übergang zwischen Land- und Wassersportarten, ohne die Kleidung wechseln zu müssen. So können Frauen etwa beim Wandern oder Laufen unkompliziert ins Wasser gehen. Auch Stand-Up-Paddlerinnen genießen mit dem „SwimRunner" uneingeschränkte Bewegungsfreiheit und gleichzeitig genügend Sitz, sowohl auf dem Board als auch im Wasser.
          
Wissenschaft im Dienste des Sports
Was auf den ersten Blick wie eine relativ einfache Anforderung erscheint, hat sich in der Entwicklung als äußerst komplexes Produkt herausgestellt. Im Rahmen eines Innosuisse-Projekts kam es zur Zusammenarbeit von Swijin mit der Empa-Abteilung für Biomimetische Membranen und Textilien. Unter der Leitung des Empa-Ingenieurs Martin Camenzind definierten die Forschenden zunächst die Anforderungen an das Material und den Schnitt des Sport-BHs. „Bei der Entwicklung hatten wir eine dreifache Herausforderung: Einerseits musste es die Anforderungen an einen hochbelastbaren Sport-BH an Land erfüllen. Gleichzeitig sollte aber die Kompression eines Badeanzugs im Wasser aufrechterhalten werden – und dies bei einer sehr kurzen Trocknungszeit“, sagt Camenzind.

Da es noch keine vergleichbare Bekleidung auf dem Markt gibt, entwickelte das Team auch gleich neue Tests für die Beurteilung des Hochleistungstextils. „Wir haben auch ein Mannequin entworfen: Ein Modell des weiblichen Oberkörpers, mit dem man die mechanischen Eigenschaften von BHs messen kann», erklärt der Forscher. Neben den wissenschaftlichen Erkenntnissen floss in die Produktentwicklung auch viel Kompetenz von Sportphysiologen, Textilingenieurinnen, Branchenspezialisten, Designerinnen und natürlich Athletinnen ein.

Höchste Ansprüche
Viele dieser Sportlerinnen entstammen der „Swimrun“-Szene. Swimrun ist eine schnell wachsende Abenteuersportart, die in den Schärengärten Schwedens entstanden ist. Im Gegensatz zu Triathleten, die zuerst schwimmen, dann Rad fahren und schließlich laufen, wechseln Swimrunner während des Rennens immer wieder zwischen Trailrunning und Schwimmen im offenen Wasser hin und her. Die Intensität dieser Sportart bot Swijin die optimalen Bedingungen für die Produktentwicklung – und gab auch den Namen der ersten Kollektion, „SwimRunner“. „Das Feedback der Athletinnen war mitentscheidend für den Erfolg des Produkts. Sie schwimmen und laufen oft sechs bis sieben Stunden am Stück. Als sie mit unseren Prototypen zufrieden waren, wussten wir: Der SwimRunner ist ‚ready for market‘“, sagt Swijin-Gründerin Claudia Glass.

Die Produktidee kam Claudia Glass während eines Urlaubs auf Mallorca. Bei ihren morgendlichen Läufen sehnte sie sich danach, kurz ins Meer tauchen zu können. „Sport-BHs sind aber nicht zum Schwimmen konzipiert“, erklärt die Gründerin. „Im Wasser saugen sie sich voll und trocknen aufgrund ihres dicken Kompressionsmaterials scheinbar nie. Letzten Sommer trug ich den ‚SwimRunner‘-Prototyp den ganzen Tag. Morgens lief ich mit meinem Hund zum Zürichsee und sprang hinein. Als ich wieder zu Hause ankam, hätte ich mich einfach an meinen Schreibtisch setzen können und anfangen zu arbeiten – ich war komplett trocken und fühlte mich sehr komfortabel.“
 
Design und Nachhaltigkeit
Das Jungunternehmen legt Wert darauf, Ingenieurwesen und Design zu vereinen. Swijins Kreativdirektorin Valeria Cereda sitzt im Zentrum der Weltmodestadt Mailand und lässt ihre Erfahrung mit Luxusmarken in die Ästhetik von Swijin einfließen. Als ehemalige Leistungsschwimmerin ist sie aber zugleich auf Funktionalität bedacht.

Die Hochleistungsprodukte von Swijin lassen sich nur mit synthetischen Materialien verwirklichen. Das junge Unternehmen ist entschlossen, die Umweltbelastung der Produkte auf ein Minimum zu reduzieren. Die enge Lieferkette hält den CO2-Fussabdruck gering. Die Materialien des „SwimRunner“ sind zu 100 % in der EU hergestellt und auf Qualität ausgelegt.

Herkömmliche Bekleidungsetiketten geben nur Auskunft über den Herstellungsort des Kleidungsstücks. Swijin arbeitet mit dem Anbieter Avery Dennison zusammen, um alle Produkte mit einem „Digital Identity Label“ auszustatten. Dieses bietet den Verbrauchern detaillierte Informationen über die gesamte Wertschöpfungskette, bis hin zu den Investitionen des Textilherstellers zur Verringerung des CO2-Fussabdrucks und zum Einsatz des wasserbasierten, lösemittelfreien Logos. Swijin verpackt alle Materialien in „Cradle to Cradle Gold“ zertifizierten Verpackungen, die von Voegeli AG im Emmental hergestellt werden.

Außerdem geht Swijin proaktiv die Herausforderungen am Ende des Produktlebenszyklus an. Um einer echten Kreislauffähigkeit funktionaler Textilien näher zu kommen, nimmt Swijin als Leuchtturmpartner im „Yarn-to-Yarn®“-Pilotprojekt der Rheiazymes AG teil. Dabei handelt es sich um eine Biotech-Lösung, die Mikroorganismen und Enzyme einsetzt, um aus Alttextilien direkt und klimaneutral neue Ausgangsstoffe zu generieren. Wenn Kundinnen „End-of-Life“ Swijin-Produkte zurückgeben – wofür Swijin auch Anreize bietet – können die hochwertigen Monomere in Ursprungsqualität wieder in die Lieferkette zurückgeführt werden: echte „circularity“.

„Als aufstrebende Marke haben wir die Pflicht und den Luxus, Partner auszuwählen, deren Vision und Werte mit unseren eigenen übereinstimmen“, sagt Claudia Glass. „Ich hatte ein klares Verständnis davon, welche Art von Marke ich kaufen würde, aber ich konnte sie nirgends finden. Mit Swijin fühlen wir uns verpflichtet, unsere Werte auch tatsächlich zu verwirklichen.“

Weitere Informationen:
Sportwear schwimmen BH Synthetikfasern Empa
Quelle:

Claudia Glass, Anna Ettlin, EMPA

DOMOTEX (c) Deutsche Messe AG
30.05.2023

„Die DOMOTEX ist und bleibt das Zuhause der gesamten Branche“

Interview zur Messelandschaft für Bodenbeläge in Deutschland

Die Auswirkungen der Corona-Pandemie waren in nahezu allen Bereichen des gesellschaftlichen und wirtschaftlichen Lebens spürbar. Insbesondere die Messebranche war stark betroffen, viele Veranstaltungen wurden abgesagt oder verschoben. Mit der Rückkehr zur Normalität stellt sich die Frage, welche Bedeutung Leitmessen in der Post-Corona-Ära haben werden und wie sich der Wettbewerb zwischen verschiedenen Veranstaltern entwickelt. Textination hat für seine Interviewreihe KLARTEXT bei Frau Sonia Wedell-Castellano, Global Director der DOMOTEX Events nachgefragt.

 

Interview zur Messelandschaft für Bodenbeläge in Deutschland

Die Auswirkungen der Corona-Pandemie waren in nahezu allen Bereichen des gesellschaftlichen und wirtschaftlichen Lebens spürbar. Insbesondere die Messebranche war stark betroffen, viele Veranstaltungen wurden abgesagt oder verschoben. Mit der Rückkehr zur Normalität stellt sich die Frage, welche Bedeutung Leitmessen in der Post-Corona-Ära haben werden und wie sich der Wettbewerb zwischen verschiedenen Veranstaltern entwickelt. Textination hat für seine Interviewreihe KLARTEXT bei Frau Sonia Wedell-Castellano, Global Director der DOMOTEX Events nachgefragt.

 

Nachdem die DOMOTEX pandemiebedingt 2021 und 2022 nicht stattfinden konnte, meldete sich die Messe 2023 mit einer erfolgreichen Veranstaltung wieder zurück. Dennoch hat sich die Zahl der Aussteller im Vergleich zu 2020 nahezu halbiert. Wie schätzen Sie die künftige Bedeutung von Leitmessen ein, nachdem sich die Branche über einen langen Zeitraum mit Onlinemeetings und Reisebeschränkungen arrangieren musste?

Ich denke, man darf nicht vergessen, dass es die erste DOMOTEX seit Ausbruch der Pandemie war, noch dazu während einer Zeit, in der die globale wirtschaftliche Lage eher schwierig ist. Natürlich hat diese Situation bei einigen Unternehmen für Zurückhaltung gesorgt, was eine Teilnahme an der DOMOTEX 2023 betraf, sodass wir noch nicht alle Unternehmen als Aussteller zurück auf der Messe begrüßen konnten. Zusätzlich herrschten zu Jahresbeginn, z.B. in China, noch erhebliche Reisebeschränkungen, die es unseren Ausstellern einfach erschwert haben, an einer Messe im Ausland teilzunehmen. Was unsere Erwartungen für die nächste Veranstaltung betrifft, kann ich sagen, dass viele Unternehmen – auch solche, die dieses Jahr nicht ausgestellt haben – ihr Interesse mitgeteilt haben, auf der DOMOTEX 2024 wieder dabei sein zu wollen.

Wir sind uns sicher, dass Leitmessen und Messen im Allgemeinen auch künftig von großer Bedeutung bleiben werden! Auf digitalen Events kann man vielleicht Bestandskunden pflegen, aber keine Neukunden generieren. Im Mittelpunkt der DOMOTEX stehen Produkte zum Anfassen, steht das haptische Erleben vor Ort. Das kann man nicht in die digitale Welt übertragen. Auch die zufälligen Begegnungen am Stand oder in den Hallen passiert digital nicht. Eine Messe lebt aber von der persönlichen Begegnung, dem persönlichen Austausch. Geschäfte werden zwischen Menschen, nicht zwischen Bildschirmen gemacht. Sowohl Aussteller als auch Besucher*innen haben uns ganz klar gesagt, dass sie die DOMOTEX als Präsenzmesse wollen und brauchen.

 

Der Internationalisierungsgrad der DOMOTEX-Besucher lag in den letzten drei Veranstaltungsjahren vor der Pandemie zwischen 62 und 67 Prozent; 2023 erreichte er sogar 69 Prozent. Würden Sie zustimmen, dass internationale Leitmessen in Deutschland primär nur noch eine Bedeutung für exportorientierte Unternehmen haben? Und was bedeutet das für die Wirtschaftlichkeit von Messen?

Sicherlich sind internationale Leitmessen in Deutschland gerade für exportorientierte Unternehmen besonders interessant, aber eben nicht ausschließlich. An der Wirtschaftlichkeit von Messen ändert das erstmal gar nichts. Wir erwirtschaften unseren Umsatz mit all unseren Ausstellern, unabhängig davon ob diese exportorientiert oder nur am DACH-Raum interessiert sind. Daher liegen uns zufriedene Aussteller sehr am Herzen. Und zufrieden ist ein Austeller dann, wenn er gute Geschäfte bzw. gute Kontakte auf unseren Messen knüpfen kann. Dabei kommt es immer mehr auf die richtige Qualität der Besucher*innen an, weniger auf die Quantität. Alle unsere Aussteller begrüßen internationale Besucher*innen dabei jedenfalls sehr!

 

Für die Messeausgabe 2024 hat die Deutsche Messe mitgeteilt, ihr DOMOTEX-Konzept geändert zu haben und auf jährlich unterschiedliche Schwerpunkte zu setzen: Carpet & Rugs in den ungeraden und Flooring in den geraden Jahren. Flooring umfasst Holz- und Laminatböden, Parkett, Designböden, elastische Bodenbeläge, Teppichböden, Outdoor-Böden sowie Anwendungs- und Verlegetechnik. Carpet & Rugs steht für handgefertigte Teppiche und Läufer sowie für maschinengewebte Teppiche.

Dennoch sagen Sie, dass insbesondere der Bereich Carpet & Rugs eine jährliche Präsentationsplattform benötigt, während sich der Bereich der Bodenbeläge aufgrund längerer Innovationszyklen alle zwei Jahre eine DOMOTEX als zentrale Plattform der Branche wünsche. Bedeutet das nicht eigentlich, dass die Bodenbeläge nur jedes zweite Jahr in Hannover sind, die Teppiche jedoch weiterhin jährlich in Hannover ausstellen? Könnten Sie das klarstellen?

2024 und in allen geraden Jahren findet die DOMOTEX – Home of Flooring statt: Das ist eine DOMOTEX mit allen Ausstellern, so wie wir sie aus der Vergangenheit kennen. Also von Fischgrätparkett über Outdoorbeläge bis hin zu orientalischen Teppichen und zeitgenössischen Designs – alles, unter einem Dach. In den ungeraden Jahren, also ab 2025, gibt es dann die DOMOTEX – Home of Carpets and Rugs, mit Fokus auf Anbieter abgepasster Teppiche.

Der Hintergrund ist der, dass sich die Industrie mit den Hartbelägen eine DOMOTEX alle zwei Jahre gewünscht hatte. Nach der diesjährigen DOMOTEX haben sich die Anbieter abgepasster Teppiche wiederum klar für eine jährliche Plattform ausgesprochen. Mit unserem neuen Fokusmodell erfüllen wir die Bedürfnisse, die vom Markt an uns herangetragen werden.

 

Die Messe Frankfurt hat für die Heimtextil im kommenden Jahr ein neues Produktsegment ausgerufen – interessanterweise unter dem Namen Carpets & Rugs. Während im geraden Jahr 2024 bei der DOMOTEX die Parole Flooring lautet, bietet die Heimtextil einen alternativen Messeplatz für die Teppiche. Wie beurteilen Sie diese Situation - müssen sich Aussteller nun zwischen Hannover und Frankfurt entscheiden und was bedeutet das für das geteilte Konzept?

Nein, Aussteller aus dem Bereich der Teppiche müssen sich künftig nicht zwischen Hannover und Frankfurt entscheiden – denn die DOMOTEX ist und bleibt das Zuhause der gesamten Branche, auch in den geraden Jahren! Home of Flooring bedeutet bei der DOMOTEX wie vorhin erläutert, dass wir das gesamte Spektrum aus Bodenbelägen und Teppichen darbieten.

Was aber noch wichtiger ist: Wir haben von Ausstellern, aber auch vielen Besucher*innen gespiegelt bekommen, dass sich der Markt keine weitere Aufspaltung wünscht. Durch die vielen (kleinen) Events macht sich die Bodenbelagsbranche nur selbst Konkurrenz. Plakativ ausgedrückt: Wenn auf zehn Veranstaltungen immer nur ein Teil der Aussteller teilnimmt, kann das nicht wirklich funktionieren. Es fehlt die kritische Masse. Eine Messe ist immer nur so gut wie die Teilnehmer*innen und diesen fehlt oftmals die Zeit mehrere Veranstaltungen zu besuchen.     

 

Eine weitere Neuerung für die DOMOTEX ist der Länderfokus. Was versprechen Sie sich davon und warum fiel Ihre Wahl für 2024 auf „Insight Italy“?

Mit unserer neuen Sonderschau möchten wir die Neugier unserer Besucher*innen – vor allem bei Handel, Architekten und Objekteuren – wecken und den internationalen Charakter der DOMOTEX hervorheben. Denn was ist spannender als ein Land intensiv kennenzulernen?  

Das INSIGHT-Konzept stellt daher künftig zu jeder DOMOTEX – Home of Flooring ein anderes Land vor. Auf speziellen Ausstellungsbereichen werden Innovationen und Produkte ausgestellt, Partnerschaften mit Designern und Hochschulen präsentiert und Trends inszeniert. Zusätzlich werden in der Konferenz Einblicke in den jeweiligen Markt und Referenzen aufgezeigt.  
In 2024 starten wir mit Italien, einem sehr designaffinen und kreativen Land, aus dem viele Trends kommen.

 

Die Deutsche Messe will den Standort Hannover für die Leitmesse DOMOTEX stärken und zusätzliche Messen nur noch in Shanghai und in Gaziantep durchführen. Die Carpet Expo wird es in Istanbul nicht geben. Welchen Einfluss hat die sich verändernde Unternehmenslandschaft hinsichtlich Produktionsländern und Märkten für Ihr internationales Konzept?

Zunächst einmal muss man festhalten, dass sich in der Türkei die Unternehmenslandschaft für Teppiche nicht geändert hat. Hier haben sich lediglich die Verbände dazu entschieden, künftig in Istanbul eine Teppichmesse zu veranstalten. Hintergrund ist die anhaltende Visaproblematik für türkische Aussteller in Deutschland sowie die immens hohe Inflation in der Türkei, die eine Auslandsbeteiligung extrem kostspielig für türkische Unternehmen macht. Wir hätten gern gemeinsam mit den türkischen Verbänden eine Teppichmesse in Istanbul organisiert, aber eben nicht um jeden Preis und nicht zu allein ihren Bedingungen. Hannover ist und bleibt die internationale Plattform der DOMOTEX und diesen Standort werden wir weiter stärken.

Wir beobachten darüber hinaus aber natürlich den weltweiten Markt und halten Augen und Ohren stets offen, für alle unsere Marken im Übrigen. Nur so konnte seinerzeit auch eine heute sehr erfolgreiche DOMOTEX asia/Chinafloor in Shanghai entstehen. Das Potenzial war da, wir waren zur rechten Zeit am rechten Ort. Hätten wir die Chance seinerzeit nicht ergriffen, gäbe es nun in Shanghai dennoch eine starke Bodenbelagsmesse – nur eben von einem unserer Wettbewerber und sie hieße heute nicht DOMOTEX.

Vielen Dank an Frau Sonia Wedell-Castellano für den KLARTEXT.

Abtrennen von Mikroplastik Foto: H & M Foundation
22.05.2023

Schallwellen filtern Mikroplastik aus Abwässern

Die vom Hong Kong Research Institute of Textiles and Apparel (HKRITA) mit Unterstützung der H&M Foundation entwickelte Technologie kann mithilfe von Schallwellen Mikroplastik aus dem Abwasser herausfiltern. Acousweep ist eine Plug-and-Play- Anwendung. Sie lässt sich leicht transportieren und an jede Abwasseranlage anschließen. Wenn die Technologie im industriellen Maßstab eingesetzt wird, wird sie einen erheblichen Einfluss auf den nachhaltigen Fußabdruck der Modeindustrie haben.
 

Die vom Hong Kong Research Institute of Textiles and Apparel (HKRITA) mit Unterstützung der H&M Foundation entwickelte Technologie kann mithilfe von Schallwellen Mikroplastik aus dem Abwasser herausfiltern. Acousweep ist eine Plug-and-Play- Anwendung. Sie lässt sich leicht transportieren und an jede Abwasseranlage anschließen. Wenn die Technologie im industriellen Maßstab eingesetzt wird, wird sie einen erheblichen Einfluss auf den nachhaltigen Fußabdruck der Modeindustrie haben.
 
Die Verschmutzung durch Mikroplastik ist ein weltweites Problem und stellt eine Gefahr für Ökosysteme, Tiere und Menschen dar. Mikroplastik stammt aus einer Vielzahl von Quellen, u. a. aus größerem Plastikmüll, der sich in immer kleinere Teile auflöst, oder aus Mikroperlen in Gesundheits- und Kosmetikprodukten oder Reinigungsmitteln wie Zahnpasta. Nach Angaben der Europäischen Umweltagentur stammt die Hauptquelle der Verschmutzung der Ozeane durch Mikroplastik, etwa 16 % bis 35 % weltweit, aus synthetischen Textilien.

Professorin Christine Loh, leitende Entwicklungsstrategin am Institute for the Environment, The Hong Kong University of Science and Technology, teilt die Ansicht, dass diese Technologie großes Potenzial hat.
Mikroplastik sind nach der Definition des Umweltprogramms der Vereinten Nationen (UNEP) und der Europäischen Union (EU) in der Regel winzige Kunststoffteile oder -partikel mit einem Durchmesser von weniger als 5 mm. Die neue Technologie kann Mikroplastikfasern mit einer Länge von mehr als 20 μm trennen, was 250-mal kleiner ist als die typische Größe. Im Gegensatz zu bestehenden Filtrationsverfahren ermöglicht das System eine kontinuierliche Wasseraufbereitung und eine einfache Sammlung von Mikroplastikfasern dank seiner akustischen Technik der Manipulation.

Acousweep nutzt schwingende akustische Wellen in einer speziell geformten Kammer, um Mikroplastikfasern physikalisch aufzufangen und effektiv vom Abwasser zu trennen. Der gesamte Prozess beruht auf einer rein physikalischen Sammlung und Trennung. Es werden keine chemischen, lösungsmittelhaltigen oder biologischen Zusatzstoffe benötigt. Das separierte Mikroplastik tropft in einen Sammeltank zur weiteren Behandlung, z. B. zum Recycling.

Das bestehende Aufbereitungssystem im Labormaßstab hat eine Kapazität von ca. 100 Litern Wasser pro Stunde und kann auf industrielle Anlagengrößen hochskaliert werden. Das System kann in einem Container mit einer Verarbeitungskapazität von 5.000 bis zu 10.000 Litern Wasser pro Stunde installiert werden. Es ist leicht transportabel und ermöglicht den Anschluss an bestehende Abwasserauslässe von Kläranlagen.
 
Verfahren zur Abtrennung von Mikroplastikfasern:

  1. An einem Ende der Kammer befindet sich ein Wandler, der eine schwingende Schallwelle mit Ultraschall-Frequenzen erzeugt. Am anderen Ende befindet sich ein Reflektor, von dem die Schallwellen reflektiert werden und stehende Wellen bilden.
  2. Wenn stehende Wellen auf die Teilchen in einer Flüssigkeit einwirken, werden die Teilchen durch akustische Strahlungswirkung festgehalten.
  3. Die stehenden Wellen übertragen dann die eingeschlossenen Partikel auf die Reflektorseite; danach konzentrieren sich die Partikel an der Spitze des Reflektors.
  4. An der Spitze befindet sich ein Nadelventil, das von einem sensorischen System gesteuert wird, das dort die Konzentration der Mikroplastikfasern überwacht. Wenn die Konzentration ausreichend hoch ist, öffnet das Sensorsystem das Nadelventil und lässt die Mikroplastikfasern in einen Auffangbehälter tropfen.
  5. Der Sammelbehälter kann mit einer hohen Temperatur betrieben werden, um das Wasser zu entfernen, so dass die Fasern agglomerieren und eine große Masse bilden, die bei einer anschließenden Aufbereitung leicht behandelt werden kann.

Die grüne Technologie hat in Hongkong gerade einen großen Sprung nach vorn gemacht. Acousweep wird der Bekleidungsindustrie und anderen Branchen helfen, eine äußerst schädliche Form der Verschmutzung zu stoppen. HKRITA hat eine neue Technik zur Beseitigung von Mikroplastik mit Hilfe eines schallwellenbasierten Systems entwickelt, das verhindert, dass es ins Meer gelangt und von Meeresbewohnern aufgenommen wird, die in der Nahrungskette sogar vom Menschen verschluckt werden können. Acousweep hat das Zeug dazu, die Industrie zu revolutionieren.
Professorin Christine Loh, leitende Entwicklungsstrategin am Umwelt-Institut der Universität für Wissenschaft und Technologie in Hongkong

 

Quelle:

The Hong Kong Research Institute of Textiles and Apparel (HKRITA); H & M Foundation

(c) Fraunhofer IBMT
10.05.2023

Mit Textilelektroden Muskel-Tremor stoppen

Wissenschaftler des Fraunhofer-Instituts für Biomedizinische Technik IBMT haben gemeinsam mit internationalen Verbundpartnern eine Technologie-Plattform entwickelt, die Menschen mit Muskelzittern künftig helfen soll, den Tremor zu stoppen. Winzige biokompatible Elektroden in der Muskulatur bilden gemeinsam mit externen Elektroden und Controllern ein intelligentes Netzwerk aus Sensoren und Aktoren, das Muskelsignale detektiert und bei Bedarf elektrische Stimuli setzt. In Kombination mit Exoskeletten könnte die Technologie auch Menschen mit Verletzungen des Rückenmarks unterstützen.

Wissenschaftler des Fraunhofer-Instituts für Biomedizinische Technik IBMT haben gemeinsam mit internationalen Verbundpartnern eine Technologie-Plattform entwickelt, die Menschen mit Muskelzittern künftig helfen soll, den Tremor zu stoppen. Winzige biokompatible Elektroden in der Muskulatur bilden gemeinsam mit externen Elektroden und Controllern ein intelligentes Netzwerk aus Sensoren und Aktoren, das Muskelsignale detektiert und bei Bedarf elektrische Stimuli setzt. In Kombination mit Exoskeletten könnte die Technologie auch Menschen mit Verletzungen des Rückenmarks unterstützen.

Ein kompakter Controller am Gürtel oder unter der Jacke, ein paar unauffällige Textilelektroden an Armen und Beinen und drei Zentimeter lange und knapp einen Millimeter dünne Elektroden, die im Muskel platziert werden – mehr ist nicht nötig, um Menschen mit Tremorerkrankungen in Zukunft zu helfen. Immer wenn das Muskelzittern einsetzt, sendet das System elektrische Stimuli in die Muskulatur, diese werden vom Nervensystem registriert. Das Nervensystem schickt dann keine Störsignale mehr in die Muskeln, und diese beruhigen sich wieder. Das ist die Grundidee hinter der Technologie, für die Wissenschaftler des Fraunhofer IBMT gemeinsam mit Verbundpartnern ein Set aus intramuskulären und externen Elektroden sowie dazugehörigem Controller entworfen, gefertigt, integriert und in Experimenten getestet haben.

Die Wissenschaftlerinnen und Wissenschaftler können bereits konkrete Erfolge vorweisen. »In Versuchen mit Patientinnen und Patienten ist es uns gelungen, das Muskelzittern deutlich zu reduzieren«, erläutert Andreas Schneider-Ickert, Projektleiter Aktive Implantate und Innovationsmanager.

Das System ist Teil des von der EU geförderten Verbundprojekts »EXTEND«. Insgesamt neun Projektpartner aus fünf Ländern entwickeln gemeinsam eine vielseitig einsetzbare Plattform verteilter neuronaler Schnittstellen. Die Technologie kann künftig Menschen mit neuromuskulären Erkrankungen wie etwa Tremor oder auch Lähmungssymptomen helfen. Sogar Menschen mit Verletzungen des Rückenmarks könnten davon profitieren. Die Technik verknüpft die implantierten Elektroden mithilfe externer Controller zu einem intelligenten Netzwerk. Die Komponenten kommunizieren drahtlos miteinander, tauschen Daten aus, detektieren Muskelsignale und senden gezielt Stimuli in die Muskulatur. Die Stimulation über implantierte Systeme gibt es in der Medizin schon. Doch bisherige Methoden gehen mit komplexen chirurgischen Eingriffen einher, die für die Patientinnen und Patienten eine erhebliche Belastung bedeuten.

Implantate für die Mensch-Maschine-Schnittstelle
Ein zentrales Element von EXTEND sind die Implantate. Diese sind aus biokompatiblem Platin-Iridium und Silikon gefertigt. Über einen Katheter werden sie in den Muskel injiziert. Das mit drei Zentimeter Länge und knapp einem Millimeter Durchmesser winzige Implantat verfügt an beiden Enden über eine Elektrode, die jeweils als Sensor oder Aktor fungiert. Das Modul wird über externe, in Textilband eingenähte Elektroden mit Energie versorgt. Diese speisen über das Muskelgewebe gepulsten Wechselstrom an das Implantat. »Innovativ ist nicht nur das intelligente Zusammenspiel zwischen Steuerelektronik, Sensoren und Aktoren, sondern auch das Prinzip, den Wechselstrom zu modulieren, um Daten zu übermitteln«, erläutert Schneider-Ickert.

Einmal implantiert und in Betrieb genommen registrieren die Sensoren die ersten Anzeichen von Muskelzittern und geben diese Informationen an die externen Komponenten weiter. Der Controller wertet die Daten aus und schickt über die Textilelektroden Signale zur Stimulation des Muskels. Der so geschlossene Regelkreis aus intelligent vernetzten sensorischen und aktorischen Komponenten wirkt dem Tremor entgegen.

Das stimulierende Signal ist aber nicht stark genug, um beim Muskel direkt eine Kontraktion auszulösen. Vielmehr spielt das Nervensystem hier die entscheidende Rolle. Es registriert die Stimulation im Muskelgewebe und reagiert darauf, indem es die Befehle einstellt, die das Muskelzittern auslösen. So lautet zumindest die Theorie, denn bis ins Detail erforscht ist der Zusammenhang zwischen Tremor und den Signalen des Nervensystems bisher noch nicht. »Allerdings funktioniert unsere Methode in klinischen Versuchen erstaunlich gut. Die ersten Versuche haben gezeigt, dass es ausreicht, die Patientin oder den Patienten für ein oder zwei Stunden mit Stimuli zu versorgen, um die Tremor-Symptome für einen längeren Zeitraum zu reduzieren«, sagt Schneider-Ickert.

Da Tremor oftmals an beiden Armen und beiden Beinen auftritt, können in allen betroffenen Muskelgruppen Implantate injiziert und externe Textilelektroden platziert werden. So entsteht ein verteiltes Sensorik-Netzwerk. Die Controller haben alle implantierten und alle externen Elektroden gleichzeitig im Blick und können diese abgestimmt aufeinander steuern. Dies alles geschieht in Echtzeit, der Mensch nimmt keine Verzögerung wahr.

Die Technologie des Verbundprojekts EXTEND ist ebenso funktional wie klassische Implantatsysteme, aber nur minimal-invasiv und daher leichter zu akzeptieren und alltagstauglich. Das Grundkonzept stammt von einem spanischen Projektpartner. Auf dieser Basis haben die Forschenden am Fraunhofer IBMT die Elektroden und implantierbare Komponenten entworfen, im eigenen Reinraum gefertigt und integriert. Die Wissenschaftlerinnen und Wissenschaftler blicken auf eine über 25-jährige Expertise im Bereich der Neuroprothetik und aktiven Implantate zurück.

Exoskelette gegen Querschnittslähmung
Für Tremor-Patientinnen und -Patienten bedeutet EXTEND die Hoffnung auf eine deutliche Linderung der Symptome. Die Technologie-Plattform könnte aber auch Menschen mit Rückenmarksverletzungen durch motorisierte Exoskelette helfen. Möglich ist das deshalb, weil die Nervenstränge bei Lähmungen oftmals nicht vollständig gekappt sind. Sie leiten immer noch, wenn auch sehr schwach, Stimuli vom Gehirn weiter. Die Sensoren registrieren die Aktivität und leiten sie an den Controller weiter. Der analysiert alle Signale, schließt daraus, welche Bewegung der Mensch ausführen will, und aktiviert dann genau jene Prothesen, die die Muskulatur beim Ausführen der Bewegung unterstützen.

Nach den ersten erfolgreichen Tests wurden die in EXTEND eingesetzten Konzepte und Technologien stetig weiterentwickelt, miniaturisiert, optimiert und weitere Implementierungsstudien durchgeführt. Damit konnte das Projekt mit einem erfolgreichen Proof of Concept des miniaturisierten integrierten Gesamtsystems im Menschen abgeschlossen werden. Das Fraunhofer IBMT wird das in EXTEND entstandene Know-how nutzen, um seine Expertise auf dem Gebiet der neuromuskulären und neuronalen Schnittstellen weiter auszubauen.

Quelle:

Fraunhofer-Institut für Biomedizinische Technik IBMT

(c) Fraunhofer-Institut für Silicatforschung ISC
02.05.2023

Bioresorbierbare Membran: Fasern als Wirkstoffdepot

Fraunhofer-Forschenden ist es gelungen, aus bioresorbierbarem Kieselgel Renacer® eine elektroversponnene Membran herzustellen, die weder zell- noch gentoxisch ist. Diese Matrix ahmt Faserstrukturen nach, die im Bindegewebe vorkommen. Sie eignet sich daher insbesondere für regenerative Anwendungen, etwa für eine bessere Wundheilung.
 
Die Behandlung großflächiger sowie innerer Wunden ist eine Herausforderung und kann äußerst langwierig sein. Forscherinnen und Forscher des Fraunhofer-Instituts für Silicatforschung ISC und des Fraunhofer-Instituts für Toxikologie und Experimentelle Medizin ITEM haben für diesen Anwendungsbereich eine bioresorbierbare Membran entwickelt, die die Wundheilung unterstützt und sich vollständig im Körper zu einer natürlichen Substanz biologisch abbaut.

Fraunhofer-Forschenden ist es gelungen, aus bioresorbierbarem Kieselgel Renacer® eine elektroversponnene Membran herzustellen, die weder zell- noch gentoxisch ist. Diese Matrix ahmt Faserstrukturen nach, die im Bindegewebe vorkommen. Sie eignet sich daher insbesondere für regenerative Anwendungen, etwa für eine bessere Wundheilung.
 
Die Behandlung großflächiger sowie innerer Wunden ist eine Herausforderung und kann äußerst langwierig sein. Forscherinnen und Forscher des Fraunhofer-Instituts für Silicatforschung ISC und des Fraunhofer-Instituts für Toxikologie und Experimentelle Medizin ITEM haben für diesen Anwendungsbereich eine bioresorbierbare Membran entwickelt, die die Wundheilung unterstützt und sich vollständig im Körper zu einer natürlichen Substanz biologisch abbaut.

Basis für die neuartige Membran ist ein am Fraunhofer ISC entwickeltes Faservlies, das für die Regeneration von chronischen Wunden, wie dem diabetischen Fuß, bereits medizinisch zugelassen ist. Das Material löst sich im Verlauf der Wundheilung nach sechs bis acht Wochen vollständig auf. Den Faserdurchmesser von 50 Mikrometer konnten die Forschenden um mehr als das 50fache verringern, sodass die Fasern nun Durchmesser von weniger als einem Mikrometer aufweisen. Dabei wendete das Team die Methode des Elektrospinnens an. Auf diese Weise konnten die Forschenden ein Kieselgelsol zu einer engmaschigen Kieselgelmembran aus Fasern mit einem Durchmesser von ca. einem Mikrometer verspinnen. Teilweise erzielten sie sogar Durchmesser von lediglich 100 Nanometern. »Diese Fasersysteme ahmen die extrazelluläre Matrix, also Faserstrukturen, die im Bindegewebe vorkommen, im Körper nach und werden von humanen Zellen sehr gut zur Regeneration angenommen. Sie verursachen keine Fremdkörperreaktionen und keine inneren Vernarbungen. Die neuartige Kieselgelmembran setzt nur ein Degradationsprodukt frei, die Monokieselsäure, die im Körper regenerierend wirkt und das Schließen von Wunden fördert«, erläutert Dr. Bastian Christ, Wissenschaftler am Fraunhofer ISC in Würzburg. Mit seinen Kolleginnen und Kollegen kümmerte er sich um die Synthese und die Verarbeitung des Materials.
 
»Während das ursprüngliche Faservlies aus 50 Mikrometer dicken Fasern von außen in eine chronische Wunde eingebracht wird, eignet sich das dünnere Faservlies auch für innere Anwendungen. Füllmaterial, das für Knochendefekte im Kiefer genutzt wird, könnte theoretisch damit abgedeckt werden, um so die Wundheilung zu beschleunigen«, beschreibt Dr. Christina Ziemann, Wissenschaftlerin am Fraunhofer ITEM und für die biologische Evaluierung des Materials zuständig, eine von vielen Einsatzmöglichkeiten. »Prinzipiell lässt sich die Membran im Körper mit bioabbaubaren Klebstoffen verkleben.«

Material ist weder zell- noch gentoxisch
Mittels eines Konfokalmikroskops, eines speziellen Lichtmikroskops, konnte gezeigt werden, dass die engmaschige Membran, die als Demonstrator vorliegt, über eine Barrierefunktion verfügt, die den Durchtritt von Bindegewebszellen über die Dauer von mindestens sieben Tagen verhindert, ohne die Zellen generell vom Wachstum abzuhalten. Darüber hinaus ist die Membran resorbierbar und weist keine Zyto- oder Gentoxizität auf, sie verursacht also weder direkte Schäden am Gewebe noch an der DNA.

Faserdurchmesser und Maschenweite beeinflussen das Verhalten der Zellen
Für die Anwendung als Adhäsionsbarriere, um postoperative Verwachsungen und Narbenbildung zu vermeiden, wurde ein dünner Faserdurchmesser mit dünnen Maschen gewählt, sodass nur Nährstoffe das Faservlies passieren konnten – jedoch keine Bindegewebszellen. Bei einem Faserdurchmesser von einem Mikrometer und entsprechend weiteren Maschen hingegen wachsen die Zellen in das Fasergeflecht ein, vermehren sich dort und wirken regenerierend auf das umliegende Gewebe. »Durch Einstellen der Materialeigenschaften wie Faserdurchmesser und Maschenweite können wir das Verhalten der Zellen wunschgemäß beeinflussen«, sagt Christ. Für das Verspinnen der Fasern werden die erforderlichen Anlagen am Fraunhofer ISC anwendungsgerecht und kundenspezifisch konstruiert. Auch die Form und Größe der Faservliese lassen sich kundenspezifisch anpassen.

Im Gegensatz zur Membran, die direkt nach dem Aufbringen aufgrund ihrer offenmaschigen Natur einen Nährstofftransport, nicht aber einen Zelldurchtritt erlaubt, ermöglichen viele am Markt erhältliche Produkte einen derartigen Stofftransport oft erst nach der Biodegradation, bzw. nach beginnender Degradation. Eine schnelle und effektive Wundheilung ist aber nur möglich, wenn das verwundete Gewebe ausreichend mit Nährstoffen versorgt wird. Gleichzeitig müssen Stoffwechselprodukte abtransportiert werden, was durch die offene Maschenstruktur der Kieselgelmembran gefördert wird.

Membran mit anorganischem Charakter
Ein weiterer Vorteil: Die Renacer®-Membran löst sich vollständig auf und zersetzt sich fast pH-neutral zu untoxischer Monokieselsäure, die einzige wasserlösliche Form von Kieselsäuren. Sie ist nativ im Körper vorhanden und stimuliert nachweislich den Bindegewebsaufbau in der Haut und den Knochenaufbau. Über solche Eigenschaften verfügen bislang erhältliche Produkte nicht. Viele biodegradierbare Materialien lösen sich zu organischen Säuren, wie Milchsäure oder Glykolsäure, auf. Dadurch können lokale Übersäuerungen im Gewebe entstehen und diese dann entzündliche Reaktionen des Immunsystems auslösen. »Unsere Tests haben gezeigt, dass auch das Auflösungsprodukt, die Monokieselsäure, nicht toxisch und komplett zellverträglich ist«, so Ziemann. »Die Membran zersetzt sich zu einem einzigen Molekül – der Monokieselsäure.«

Fasern als Wirkstoffdepot
Darüber hinaus können Wirkstoffe in das Faservlies integriert werden, die mit der Auflösung des Materials freigesetzt werden. »Während der Resorption könnte beispielsweise ein Antibiotikum auf eine Wunde im Körper abgegeben werden, damit sich keine Bakterienherde bilden können«, erläutert Christ. Am Fraunhofer ISC wird im BMBF-geförderten Projekt »GlioGel« geprüft, ob sich die Renacer®-Materialplattform als Wirkstoffdepot zur Behandlung von Hirntumoren eignet.
Quelle: Fraunhofer-Institut für Silicatforschung ISC

Quelle:

Fraunhofer-Institut für Silicatforschung ISC

intelligente Textilien (c) Sanghyo Lee
24.04.2023

Kostengünstigere Verfahren zur Herstellung gewebter Displays und intelligenter Textilien

Forscher haben intelligente Textilien der nächsten Generation entwickelt, die mit LEDs, Sensoren, Energiegewinnung und -speicherung ausgestattet sind. Diese Textilien können kostengünstig in jeder Form und Größe auf herkömmlichen industriellen Webstühlen hergestellt werden, wie sie auch für die Herstellung von Alltagskleidung verwendet werden.
 
Ein internationales Team unter der Leitung der Universität Cambridge hatte in der Vergangenheit bereits gezeigt, dass gewebte Displays in großen Größen produziert werden können, aber diese früheren Beispiele wurden mit speziellen manuellen Laborgeräten hergestellt. Andere intelligente Textilien können in spezialisierten mikroelektronischen Produktionsanlagen hergestellt werden, die jedoch sehr teuer sind und große Mengen an Abfall produzieren.

Forscher haben intelligente Textilien der nächsten Generation entwickelt, die mit LEDs, Sensoren, Energiegewinnung und -speicherung ausgestattet sind. Diese Textilien können kostengünstig in jeder Form und Größe auf herkömmlichen industriellen Webstühlen hergestellt werden, wie sie auch für die Herstellung von Alltagskleidung verwendet werden.
 
Ein internationales Team unter der Leitung der Universität Cambridge hatte in der Vergangenheit bereits gezeigt, dass gewebte Displays in großen Größen produziert werden können, aber diese früheren Beispiele wurden mit speziellen manuellen Laborgeräten hergestellt. Andere intelligente Textilien können in spezialisierten mikroelektronischen Produktionsanlagen hergestellt werden, die jedoch sehr teuer sind und große Mengen an Abfall produzieren.

Das Team fand heraus, wie flexible Displays und intelligente Textilien viel billiger und nachhaltiger hergestellt werden können, indem elektronische, optoelektronische, sensorische und energetische Faserkomponenten auf denselben industriellen Webstühlen gewebt werden, die auch für die Herstellung herkömmlicher Textilien verwendet werden. Die in der Fachzeitschrift Science Advances veröffentlichten Ergebnisse zeigen, wie intelligente Textilien eine Alternative zu größeren elektronischen Bauteilen in Bereichen wie Automobilbau, Elektronik, Mode und Bauwesen sein könnten.

Trotz der jüngsten Fortschritte bei der Entwicklung intelligenter Textilien sind deren Funktionalität, Abmessungen und Form durch die gegenwärtigen Herstellungsverfahren begrenzt.
„Wir könnten diese Textilien in speziellen Mikroelektronik-Anlagen herstellen, aber das erforderte Investitionen in Milliardenhöhe“, so Dr. Sanghyo Lee vom Cambridge Department of Engineering, Erstautor der Studie. „Zudem ist die Herstellung intelligenter Textilien auf diese Weise sehr begrenzt, da alles auf denselben starren Wafern hergestellt werden muss, die auch für die Herstellung integrierter Schaltkreise verwendet werden, so dass die maximale Größe, die wir erreichen können, etwa 30 Zentimeter im Durchmesser beträgt.

„Intelligente Textilien waren bisher auch durch ihre mangelnde Praxistauglichkeit eingeschränkt“, ergänzte Dr. Luigi Occhipinti, ebenfalls vom Fachbereich Ingenieurwissenschaften, der die Forschungsarbeiten mit leitete. „Man denke nur an das Biegen, Dehnen und Falten, dem normale Textilien standhalten müssen, und es war eine Herausforderung, die gleiche Haltbarkeit in intelligente Textilien zu integrieren.“

Letztes Jahr hatten einige derselben Forscher gezeigt, dass die in intelligenten Textilien verwendeten Fasern mit Materialien beschichtet werden können, die Dehnungen standhalten, so dass sie mit herkömmlichen Webverfahren kompatibel sind. Mit dieser Technik stellten sie ein gewebtes 46-Zoll-Demonstrationsdisplay her.

Jetzt haben die Forscher gezeigt, dass intelligente Textilien in automatisierten Prozessen hergestellt werden können, wobei ihrer Größe und Form keine Grenzen gesetzt sind. Mehrere Arten von Faserbauelementen, darunter Energiespeicher, Leuchtdioden und Transistoren, wurden hergestellt, eingekapselt und mit herkömmlichen synthetischen oder natürlichen Fasern gemischt, um durch automatisches Weben intelligente Textilien herzustellen. Die Faserbauteile wurden durch ein automatisiertes Laserschweißverfahren mit elektrisch leitendem Klebstoff miteinander verbunden.
 
Alle Prozesse wurden so optimiert, dass die elektronischen Komponenten möglichst wenig beschädigt wurden, was wiederum die intelligenten Textilien so haltbar machte, dass sie der Dehnung einer industriellen Webmaschine standhalten. Die Verkapselungsmethode wurde unter Berücksichtigung der Funktionalität der Faserkomponenten entwickelt, und die mechanische Kraft und thermische Energie wurden systematisch geprüft, um ein automatisches Weben bzw. eine laserbasierte Verbindung zu erreichen.

Gemeinsam mit Textilherstellern konnte das Forschungsteam Testflächen aus intelligenten Textilien mit einer Größe von etwa 50 x 50 Zentimetern herstellen, die jedoch auf größere Abmessungen skaliert und in großen Mengen produziert werden können.
 
„Diese Unternehmen verfügen über gut etablierte Produktionsanlagen mit Faserextrudern mit hohem Durchsatz und großen Webmaschinen, die automatisch ein Quadratmeter Textil weben können“, so Lee. „Wenn wir also die intelligenten Fasern in den Prozess einbringen, ist das Ergebnis im Grunde ein elektronisches System, das genauso hergestellt wird wie andere Textilien.“
Den Forschern zufolge könnten große, flexible Bildschirme und Monitore auf industriellen Webstühlen und nicht in spezialisierten Elektronikfertigungsanlagen hergestellt werden, was ihre Produktion wesentlich billiger machen würde. Der Prozess muss jedoch noch weiter optimiert werden.

„Die Flexibilität dieser Textilien ist absolut erstaunlich,“ sagt Occhipinti. „Nicht nur in Bezug auf ihre mechanische Flexibilität, sondern auch in Bezug auf die Flexibilität des Ansatzes, nachhaltige und umweltfreundliche Plattformen zur Herstellung von Elektronik einzusetzen, die zur Verringerung der Kohlenstoffemissionen beitragen und echte Anwendungen von intelligenten Textilien in Gebäuden, im Innenraum von Autos und in der Kleidung ermöglichen. Unser Ansatz ist in dieser Hinsicht ziemlich einzigartig.“

Die Forschung wurde teilweise von der Europäischen Union und UK Research and Innovation unterstützt.

Quelle:

University of Cambridge

Foto Pixabay
21.03.2023

3D-gedruckte Einlagen messen Sohlendruck direkt im Schuh

  • Für Sport und Physiotherapie

Forschende der ETH Zürich, der Empa und der EPFL entwickeln eine 3D-gedruckte Einlagesohle mit integrierten Sensoren, die das Messen des Sohlendrucks im Schuh und damit während beliebiger Aktivitäten erlaubt. Dies hilft Athletinnen oder Patienten, Leistungs- und Therapiefortschritte zu bestimmen.

Im Spitzensport entscheiden manchmal Sekundenbruchteile zwischen Sieg und Niederlage. Um ihre Leistungen zu optimieren, nutzen Sportlerinnen und Sportler deshalb unter anderem massgefertigte Einlagesohlen. Aber auch Menschen mit Schmerzen des Bewegungsapparates greifen auf Einlagen zurück, um ihre Beschwerden zu bekämpfen.

  • Für Sport und Physiotherapie

Forschende der ETH Zürich, der Empa und der EPFL entwickeln eine 3D-gedruckte Einlagesohle mit integrierten Sensoren, die das Messen des Sohlendrucks im Schuh und damit während beliebiger Aktivitäten erlaubt. Dies hilft Athletinnen oder Patienten, Leistungs- und Therapiefortschritte zu bestimmen.

Im Spitzensport entscheiden manchmal Sekundenbruchteile zwischen Sieg und Niederlage. Um ihre Leistungen zu optimieren, nutzen Sportlerinnen und Sportler deshalb unter anderem massgefertigte Einlagesohlen. Aber auch Menschen mit Schmerzen des Bewegungsapparates greifen auf Einlagen zurück, um ihre Beschwerden zu bekämpfen.

Um solche Einlagen exakt anzupassen, müssen Fachleute zuerst ein Druckprofil der Füsse erstellen. Dazu müssen Sportler oder Patientinnen barfuss über druckempfindliche Matten gehen, wo sie ihren individuellen Fussabdruck hinterlassen. Aufgrund dieses Druckprofils erstellen Orthopädinnen und Orthopäden dann in Handarbeit individuell passende Einlagen. Optimierungen und Anpassungen brauchen aber Zeit. Weiterer Nachteil: Die druckempfindlichen Matten lassen nur Messungen in einem begrenzten Raum zu, aber nicht während des Trainings oder Outdoor-Aktivitäten.

Nun könnte aber eine Erfindung eines Forschungsteams der ETH Zürich, der Empa und der EPFL die Situation deutlich verbessern: Die Forschenden fabrizierten nämlich mittels 3D-Druck eine massgeschneiderte Einlagesohle mit integrierten Drucksensoren. Damit kann der Fusssohlendruck direkt im Schuh bei verschiedenen Aktivitäten gemessen werden.

«Man kann anhand der ermittelten Druckmuster erkennen, ob jemand geht, läuft, eine Treppe hochsteigt oder gar eine schwere Last am Rücken trägt. Dann verlagert sich der Druck nämlich mehr auf die Ferse», erklärt Co-Projektleiter Gilberto Siqueira, Oberassistent an der Empa und am Labor für komplexe Materialien der ETH Zürich. Mühsame Mattentests sind damit passé. Die Erfindung wurde vor kurzem in der Fachzeitschrift Scientific Reports vorgestellt.

Ein Gerät, mehrere Tinten
Dabei ist aber nicht nur die Benutzung, sondern auch die Herstellung der Einlagesohlen einfach. Samt den integrierten Sensoren und Leiterbahnen werden sie in nur einem Arbeitsgang und nur auf einem 3D-Drucker hergestellt, einem sogenannten Extruder. Zum Drucken verwenden die Forschenden verschiedene Tinten, deren Rezepturen sie eigens für diese Anwendung entwickelt haben. So nutzen die Materialwissenschaftler als Grundlage der Einlagesohle ein Gemisch aus Silikon und Zellulose-Nanopartikeln.

Auf diese erste Schicht drucken sie dann mit einer leitfähigen silberhaltigen Tinte die Leiterbahnen, und auf diese an einzelnen Stellen – mit russhaltiger Tinte – die Sensoren. Die Verteilung der Sensoren ist dabei nicht zufällig: Sie werden genau dort platziert, wo der Fusssohlendruck am stärksten ist. Um die Leiterbahnen und die Sensoren zu schützen, überziehen die Forschenden diese mit einer weiteren Silikonschicht.

Eine anfängliche Schwierigkeit bestand darin, eine gute Haftung der unterschiedlichen Materialschichten zu erzielen. Die Forschenden behandelten deshalb die Oberfläche der Silikonschichten mit einem heissen Plasma.

Die Sensoren sind sogenannte Piezoelemente, die mechanischen Druck in elektrische Signale umwandeln. Sie messen Normal- und Scherkräfte. Die Forschenden haben auch eine Schnittstelle zum Auslesen der generierten Daten in die Sohle eingebaut.

Laufdaten bald drahtlos auslesen
Tests zeigten den Forschenden, dass die additiv gefertigte Einlage gut funktioniert. «Mit einer Datenanalyse können wir also tatsächlich verschiedene Aktivitäten identifizieren, je nachdem, welche Sensoren wie stark angesprochen haben», sagt Projektleiter Siqueira.

Im Moment brauchen er und seine Kolleginnen und Kollegen noch eine Kabelverbindung, um die Daten auszulesen. Seitlich der Einlage haben sie einen Kontakt eingebaut. Einer der nächsten Entwicklungsschritte werde sein, eine drahtlose Verbindung zu schaffen. «Das Auslesen der Daten stand bisher jedoch nicht im Vordergrund unserer Arbeit», betont der Forscher.

Eine solche 3D-gedruckte Einlagesohle mit integrierten Sensoren könnte künftig von Sportlerinnen und Sportlern oder auch in der Physiotherapie genutzt werden, etwa um Trainings- oder Therapiefortschritte zu messen. Auf den Messdaten basierend können dann Trainingspläne angepasst und mittels 3D-Druck permanente Schuheinlagen mit unterschiedlich harten und weichen Zonen fabriziert werden.

Obwohl Siqueira das Marktpotenzial für ihre Entwicklung besonders im Spitzensport als gross einschätzt, hat sein Team bislang noch keine Schritte in Richtung Kommerzialisierung unternommen.

An der Entwicklung der Einlagesohle waren Forschende der Empa, der ETH Zürich und der EPFL beteiligt. EPFL-Forscher Danick Briand koordinierte das Projekt und seine Gruppe steuerte die Sensoren bei, die ETH- und Empa-Forschenden die Entwicklung der Tinten und die Druckplattform. Am Projekt beteiligt waren auch das Universitätsspital Lausanne CHUV und die Orthopädiefirma Numo. Gefördert wurde das Projekt im Rahmen der «Strategic Focus Area» Advanced Manufacturing des ETH-Bereichs.

Quelle:

Peter Rüegg, ETH Zürich

Foto Freudenberg Performance Materials
10.01.2023

Fraunhofer: Optimierte Produktion von Vliesstoffmasken

Die Produktion von Infektionsschutzkleidung ist material- und energieintensiv. Fraunhofer-Forschende haben nun eine Technologie entwickelt, die bei der Produktion von Vliesstoffen hilft, Material und Energie zu sparen. Auf Basis einer mathematischen Modellierung steuert ein Digitaler Zwilling wesentliche Prozessparameter der Herstellung. Neben der Verbesserung der Maskenherstellung eignet sich die Lösung ProQuIV auch dazu, die Produktionsparameter für andere Anwendungen der vielseitig einsetzbaren technischen Textilien zu optimieren. Die Hersteller können so flexibel auf Kundenwünsche und Marktveränderungen reagieren.

Die Produktion von Infektionsschutzkleidung ist material- und energieintensiv. Fraunhofer-Forschende haben nun eine Technologie entwickelt, die bei der Produktion von Vliesstoffen hilft, Material und Energie zu sparen. Auf Basis einer mathematischen Modellierung steuert ein Digitaler Zwilling wesentliche Prozessparameter der Herstellung. Neben der Verbesserung der Maskenherstellung eignet sich die Lösung ProQuIV auch dazu, die Produktionsparameter für andere Anwendungen der vielseitig einsetzbaren technischen Textilien zu optimieren. Die Hersteller können so flexibel auf Kundenwünsche und Marktveränderungen reagieren.

Infektionsschutzmasken aus Vlies sind nicht erst seit der Corona-Pandemie millionenfach verbreitet und gelten als simpler Massenartikel. Doch ihre Herstellung stellt hohe Anforderungen an Präzision und Zuverlässigkeit des Produktionsprozesses. Der Vliesstoff in der Maske muss bei der FFP-2-Maske nach DIN mindestens 94 Prozent, bei der FFP-3-Variante sogar 99 Prozent der Aerosole herausfiltern. Gleichzeitig muss die Maske ausreichend Luft durchlassen, damit der Mensch noch gut atmen kann. Viele Hersteller suchen nach Wegen, die Herstellung zu optimieren. Außerdem soll die Produktion flexibler werden, so dass Unternehmen in der Lage sind, die vielseitig verwendbaren Vliesstoffe für ganz unterschiedliche Anwendungen und Branchen zu bearbeiten und zu liefern.

Nun hat das Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern mit ProQuIV eine Lösung vorgestellt, die beides leistet. Das Kürzel ProQuIV steht für »Produktions- und Qualitätsoptimierung von Infektionsschutzkleidung aus Vliesstoffen«. Die Grundidee: Prozessparameter der Herstellung werden bezüglich ihrer Auswirkungen auf die Gleichmäßigkeit des Vliesstoffs charakterisiert und diese wiederum mit Eigenschaften des Endprodukts, beispielsweise einer Schutzmaske, in Verbindung gesetzt. Diese Modellkette verknüpft alle relevanten Parameter mit einer Bildanalyse und bildet einen Digitalen Zwilling der Produktion. Mit dessen Hilfe lässt sich die Vliesstoffherstellung in Echtzeit überwachen, automatisch steuern und somit das Optimierungspotenzial nutzen.

Dr. Ralf Kirsch aus der Abteilung Strömungs- und Materialsimulation und Teamleiter Filtration und Separation erklärt: »Mit ProQuIV benötigen die Hersteller insgesamt weniger Material und sparen Energie. Dabei ist die Qualität des Endprodukts jederzeit gewährleistet.«

Vliesherstellung mit Hitze und Luftströmung
Vliesstoffe für Filtrationsanwendungen werden im sogenannten Meltblown-Prozess hergestellt. Dabei werden Kunststoffe wie Polypropylen geschmolzen, durch Düsen getrieben und kommen in Form von Fäden heraus, den sogenannten Filamenten. Diese werden auf zwei Seiten von Luftströmen erfasst, die sie mit annähernder Schallgeschwindigkeit nach vorne treiben und gleichzeitig verwirbeln, bevor sie auf ein Auffangband fallen. So werden die Fäden nochmals dünner. Die Dicke der Filamente liegt im Mikrometer- oder sogar Sub-Mikrometer-Bereich. Durch Abkühlung und Zugabe von Bindestoffen bildet sich der Vliesstoff. Je besser Temperatur, Luft- und Bandgeschwindigkeit aufeinander abgestimmt sind, desto gleichmäßiger sind am Ende die Fasern verteilt und desto homogener erscheint das Material dann bei der Prüfung im Durchlichtmikroskop. Hier lassen sich hellere und dunklere Stellen ausmachen. Fachleute sprechen von Wolkigkeit. Das Fraunhofer-Team hat eine Methode entwickelt, um einen Wolkigkeits-Index anhand von Bilddaten zu messen. Die hellen Stellen besitzen einen niedrigen Faservolumenanteil, sind also nicht so dicht und weisen eine niedrigere Filtrationsrate auf. Dunklere Stellen haben ein höheres Faservolumen und daher eine höhere Filtrationsrate. Andererseits führt der in diesen Bereichen erhöhte Luftwiderstand dazu, dass sie einen geringeren Anteil der Atemluft filtern. Der größere Anteil strömt durch die offeneren Bereiche, die eine geringere Filterwirkung haben.

Produktionsprozess mit Echtzeit-Steuerung
Die Durchlichtaufnahmen aus dem Mikroskop dienen bei ProQuIV für die Kalibrierung der Modelle vor dem Einsatz. Die Expertinnen und Experten analysieren den Ist-Zustand der Textilprobe und ziehen daraus Rückschlüsse, wie die Anlage optimiert werden kann. So könnten sie beispielsweise die Temperatur erhöhen, die Bandgeschwindigkeit senken oder die Stärke der Luftströme anpassen. »Ein wesentliches Ziel unseres Forschungsprojekts war, zentrale Parameter wie Filtrationsrate, Strömungswiderstand und Wolkigkeit eines Materials miteinander zu verknüpfen und darauf basierend eine Methode zu generieren, die alle Variablen im Produktionsprozess mathematisch modelliert«, sagt Kirsch. Der Digitale Zwilling überwacht und steuert die laufende Produktion in Echtzeit. Kleine Abweichungen der Anlage, wie etwa eine zu hohe Temperatur, werden in Sekunden automatisch korrigiert.

Schnelle und effiziente Herstellung
»Es ist dann nicht notwendig, die Produktion zu unterbrechen, Materialproben zu nehmen und die Maschinen neu einzustellen. Wenn die Modelle kalibriert sind, kann sich der Hersteller darauf verlassen, dass der Vliesstoff, der vom Band läuft, die Spezifikationen und Qualitätsnormen einhält«, erklärt Kirsch. Mit ProQuIV wird die Produktion deutlich effizienter. Es gibt weniger Ausschuss beim Material, und der Energieverbrauch sinkt ebenfalls. Ein weiterer Vorteil besteht darin, dass Hersteller schnell neue Produkte auf Vliesbasis entwickeln können. Dazu müssen lediglich die Zielvorgaben in der Modellierung geändert und die Parameter angepasst werden. So können produzierende Unternehmen flexibel auf Kundenwünsche oder Markttrends reagieren.

Was logisch klingt, ist in der Entwicklung komplex. Die Werte für Filtrationsleistung und Strömungswiderstand steigen nämlich keineswegs linear an und verhalten sich auch nicht proportional zum Faservolumenanteil. Eine doppelt so hohe Filament-Dichte bedeutet also nicht, dass auch Filtrationsleistung und Strömungswiderstand doppelt so hoch sind. Das Verhältnis zwischen den Parametern ist wesentlich komplexer. »Genau deshalb ist die mathematische Modellierung so wichtig. Sie hilft uns, das komplexe Verhältnis zwischen den einzelnen Prozessparametern zu verstehen«, sagt Fraunhofer-ITWM-Forscher Kirsch. Dabei kommt den Forschenden ihre langjährige Expertise bei Simulation und Modellierung zugute.

Weitere Anwendungen sind möglich
Der nächste Schritt besteht für das Fraunhofer-Team darin, den Atemwiderstand der Vliesstoffe für den Menschen bei gleicher Schutzwirkung zu reduzieren. Möglich wird dies durch die elektrische Aufladung der Fasern. Das Prinzip erinnert an die Arbeitsweise eines Staubwedels. Durch die elektrische Ladung zieht das Textilgewebe winzigste Partikel an, die andernfalls durch die Poren schlüpfen könnten. Die Stärke der elektrostatischen Ladung wird hierfür als Parameter in die Modellierung integriert.

Die Fraunhofer-Forschenden beschränken sich bei der Anwendung der Methode keineswegs nur auf Masken und Luftfilter. Ihre Technologie lässt sich ganz allgemein in der Produktion von Vliesstoffen einsetzen, beispielsweise auch bei Stoffen für die Filtration von Flüssigkeiten. Auch die Herstellung von schalldämmenden Vliesstoffen lässt sich mit ProQuIV-Methoden optimieren.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Shirt, das die Atmung überwacht Bild EMPA
28.12.2022

Wearables für die Gesundheit: Sensoren zum Anziehen

Stilvolle Sensoren zum Anziehen
Mit Sensoren, die am Körper getragen werden und Gesundheitsparameter messen, lassen wir Technik ganz nah an uns heran. Dass die medizinische Überwachung beispielsweise der Atemtätigkeit auch stilvoll als Shirt tragbar ist, zeigt eine Kooperation der Empa und der Designerin Laura Deschl, die von der Ostschweizer «Textile and Design Alliance» (TaDA) gefördert wird.
 

Stilvolle Sensoren zum Anziehen
Mit Sensoren, die am Körper getragen werden und Gesundheitsparameter messen, lassen wir Technik ganz nah an uns heran. Dass die medizinische Überwachung beispielsweise der Atemtätigkeit auch stilvoll als Shirt tragbar ist, zeigt eine Kooperation der Empa und der Designerin Laura Deschl, die von der Ostschweizer «Textile and Design Alliance» (TaDA) gefördert wird.
 
Der Wunsch nach einem gesunden Lebensstil hat in unserer Gesellschaft einen Trend zum «Self-Tracking» ausgelöst. Vitalwerte sollen jederzeit abrufbar sein, etwa um Trainingseffekte konsequent zu messen. Gleichzeitig ist bei der kontinuierlich wachsenden Bevölkerungsgruppe der über 65-Jährigen der Wunsch, bis ins hohe Alter leistungsfähig zu bleiben, stärker denn je. Präventive, gesundheitserhaltende Maßnahmen müssen hierbei kontrolliert werden, sollen sie das gewünschte Ergebnis erzielen. Die Suche nach Messsystemen, die entsprechende Gesundheitsparameter zuverlässig ermitteln, läuft auf Hochtouren. Neben dem Freizeitbereich benötigt die Medizin geeignete und verlässliche Messsysteme, die eine effiziente und wirksame Betreuung von immer mehr Menschen im Spital oder zuhause ermöglichen. Denn die Zunahme von Zivilisationskrankheiten wie Diabetes, Herz-Kreislaufproblemen oder Atemwegserkrankungen belastet das Gesundheitssystem.

Empa-Forschende um Simon Annaheim vom «Biomimetic Membranes and Textiles» Labor in St. Gallen entwickeln daher Sensoren für die Überwachung des Gesundheitszustandes, etwa für einen Diagnostik-Gurt, der auf flexiblen Sensoren mit elektrisch leitfähigen bzw. lichtleitenden Fasern basiert. Für die Akzeptanz einer kontinuierlichen medizinischen Überwachung bei den Patientinnen und Patienten können aber ganz andere, weniger technisch geprägte Eigenschaften entscheidend sein: So müssen die Sensoren angenehm zu tragen und einfach zu handhaben sein – und im Idealfall auch noch gut aussehen.
    
Diesen Aspekt greift ein Kooperationsprojekt zwischen der «Textile and Design Alliance», kurz TaDA, in der Ostschweiz und der Empa auf. Hierbei wurden Möglichkeiten aufgezeigt, wie textile Sensoren in Kleidungsstücke integriert werden können. Dabei stand neben der technischen Zuverlässigkeit und einem hohen Tragekomfort auch das Design der Kleidungsstücke im Zentrum. Die interdisziplinäre TaDA-Designerin Laura Deschl arbeitete elektrisch leitfähige Fasern in ein Shirt ein, die ihren Widerstand je nach Dehnung verändern. Damit kann das Shirt überwachen, wie stark sich Brustkorb und Bauch der Probanden beim Atmen heben und senken, was Rückschlüsse auf die Atemaktivität erlaubt. Eine kontinuierliche Überwachung der Atemtätigkeit ist speziell bei Patientinnen und Patienten während der Aufwachphase nach einer Operation sowie bei Patientinnen, die mit Schmerzmitteln behandelt werden, von Interesse. Auch für Patientinnen mit Atemproblemen wie Schlafapnoe oder Asthma könnte ein solches Shirt hilfreich sein. Zusätzlich stickte Deschl elektrisch leitfähige Fasern der Empa ins Shirt ein, die für die Verbindung zum Messgerät benötigt werden und die optisch in das Muster des Shirts integriert wurden.
 
Die «Textile and Design Alliance» ist ein Pilotprogramm der Kulturförderung der Kantone Appenzell Ausserrhoden, St. Gallen und Thurgau, um die Zusammenarbeit zwischen Kulturschaffenden aus aller Welt und der Textilindustrie zu fördern. Über internationale Ausschreibungen werden Kulturschaffende aller Sparten zu einem dreimonatigen Arbeitsaufenthalt in der Ostschweizer Textilwirtschaft eingeladen.
Das TaDA-Netzwerk umfasst 13 Kooperationspartner – Textilunternehmen, Kultur-, Forschungs- und Bildungsinstitutionen – und bietet den Kulturschaffenden dadurch direkten Zugang zu hochspezialisiertem Know-how und technischen Produktionsmitteln, um vor Ort an ihren textilen Projekten arbeiten, forschen und experimentieren. Diese künstlerische Kreativität wird den Partnern wiederum im Austausch als innovatives Potenzial zugänglich gemacht.

Während der Projektphase wurde Laura Deschl von Schoeller Textil AG (Rohware), Lobra (Transferdruck) und dem Saurer Museum (leitfähige Stickerei) bei der Realisierung des Prototyps unterstützt. Zudem erhielt sie fachliche Begleitung bezüglich der Druckqualität durch Martin Leuthold. Ideen für eine Weiterführung des Projekts sind bereits vorhanden; sie zielen auf eine smarte Patientenbekleidung ab, die die wichtigsten physiologischen Parameter ohne zusätzliche Sensorik erfassen und messen kann.