Nachhaltige Textilien - der Weg in die Zukunft
Die hohe Abhängigkeit von fossilem Kohlenstoff, der damit verbundene hohe Kohlenstoff-Fußabdruck, niedrige Recyclingraten und Mikroplastik: Es zeichnen sich mehrere Lösungsansätze ab.
Die Entwicklung der Nachfrage nach Textilfasern von 1960 bis heute (siehe Abbildung 1 und Tabelle 1) zeigt, wie die Textilindustrie in dieses Dilemma geraten ist. Im Jahr 1960 waren etwa 95 % der Textilfasern natürlichen Ursprungs, aus biobasiertem Kohlenstoff, und es gab kein Problem mit Mikroplastik, alle Fasern waren biologisch abbaubar.
Der explosionsartige Anstieg der Nachfrage - um 650 % zwischen 1960 und 2023 - konnte nur durch die synthetischen Fasern der Chemie- und Kunststoffindustrie gedeckt werden. Ihr Anteil stieg von 3 % im Jahr 1960 auf 68 % im Jahr 2023 und von weniger als 700.000 Tonnen auf 85 Millionen Tonnen/Jahr (The Fiber Year 2024). Die neuen Fasern deckten ein breites Eigenschaftsspektrum ab, konnten sogar bisher unbekannte Eigenschaften realisieren und vor allem konnten dank einer leistungsfähigen und innovativen Chemie- und Kunststoffindustrie die Produktionsmengen rasch gesteigert und verhältnismäßig niedrige Preise realisiert werden.
Gleichzeitig hat die Nachhaltigkeit abgenommen, der Kohlenstoff-Fußabdruck der Textilien hat sich deutlich vergrößert und das Problem des Mikroplastiks erfordert Lösungen.
Der erste Schritt wäre, den Anteil an nachwachsenden Fasern deutlich zu erhöhen, denn nur so lässt sich die Abhängigkeit von fossilem Kohlenstoff, vor allem in Form von Erdöl, verringern und damit der Kohlenstoff-Fußabdruck verkleinern. Doch wie kann dies erreicht werden? Nach der Definition der Renewable Carbon Initiative stammt erneuerbarer Kohlenstoff aus Biomasse, CO2 und Recycling: Aus oberirdischem Kohlenstoff. Damit wird das Kernproblem des Klimawandels angegangen, nämlich die Gewinnung und Nutzung von zusätzlichem fossilem Kohlenstoff aus dem Boden, der dann in die Atmosphäre gelangt.
Was können Baumwolle, Bastfasern und Wolle beitragen?
Die Baumwollfaserproduktion kann kaum gesteigert werden, sie stagniert zwischen 20 und max. 25 Millionen Tonnen/Jahr. Die Anbauflächen können nur wenig ausgeweitet werden, und die bestehenden Flächen werden durch die erforderliche Bewässerung versalzen. Mit Ausnahme von etwa 1% Bio-Baumwolle werden erhebliche Mengen an Pestiziden eingesetzt. Der Marktanteil der „präferierten“ Baumwolle - definiert durch eine Liste anerkannter Programme - wird nach Jahren des Wachstums von 27 % der gesamten Baumwollproduktion im Jahr 2019/20 auf 24 % im Jahr 2020/21 sinken. (Textile Exchange, Oktober 2022: Preferred Fiber & Materi-als Market Report) Bastfasern wie Jute (75 %), Flachs, Hanf, Ramie oder Kenaf würden einen enormen Schub an Technologieentwicklung und Kapazitätsinvestitionen erfordern und werden dennoch wahrscheinlich teurer bleiben als Baumwolle, einfach weil Bastfasern viel komplizierter zu verarbeiten sind, z. B. die Trennung der Faser vom Stängel, was bei Baumwolle als Fruchtfaser nicht notwendig ist. Als Quelle für Zellulosefasern werden Bastfasern teurer bleiben als Holz.
Obwohl Bastfasern nachhaltiger sind als viele andere Fasern, wird es wahrscheinlich keine große Veränderung geben - es sei denn, China setzt auf Bastfasern als Ersatz für Baumwolle. Entsprechende Pläne wurden aufgrund technologischer Probleme auf Eis gelegt.
Die Bedeutung von Man-made Cellulosefasern (MMCFs) oder einfach: Cellulosefasern
Die Produktion von Cellulosefasern ist in den letzten Jahrzehnten stetig gewachsen und hat im Jahr 2023 mit fast 8 Millionen Tonnen einen historischen Höchststand erreicht, der bis 2030 auf 11 Millionen Tonnen ansteigen soll. Cellulosefasern sind die einzigen biobasierten und biologisch abbaubaren Fasern, die ein breiteres Spektrum an Eigenschaften und Anwendungen abdecken und ihre Kapazität schnell steigern können. Als Rohstoffe können sowohl Frischholz als auch alle Arten von Zelluloseabfällen aus der Forst- und Landwirtschaft, Abfälle aus der Baumwollverarbeitung, Textilabfälle und Papierabfälle verwendet werden. Die Erhöhung des Anteils zellulosehaltiger Fasern wird daher eine entscheidende Rolle bei der Lösung der Nachhaltigkeitsherausforderungen in der Textilindustrie spielen.
Die Produktion von MMCFs umfasst Viskose, Lyocell, Modal, Acetat und Cupro. Der Marktanteil von FSC- und/oder PEFC-zertifizierten MMCF stieg von 55-60 % im Jahr 2020 auf 60-65 % aller MMCF im Jahr 2021. Der Marktanteil von ³eRecycling-MMCF³c stieg auf einen geschätzten Anteil von 0,5 %. Zahlreiche Forschungs- und Entwicklungsarbeiten sind im Gange. Infolgedessen wird erwartet, dass die Mengen an rezyklierten MMCF in den kommenden Jahren erheblich ansteigen werden. (Textile Ex-change, Oktober 2022: Preferred Fiber & Materials Market Report)
Die CEPI-Studie „Forest-Based Biorefineries: Innovative Bio-Based Products for a Clean Transition“ (renewable-carbon.eu/publications/product/innovative-bio-based-products-for-a-clean-transition-pdf/) wurden 143 Bioraffinerien in Europa ermittelt, von denen 126 in Betrieb und 17 in Planung sind. Die meisten von ihnen basieren auf chemischem Zellstoff (67 %) - dem Vorprodukt von Zellulosefasern. Die meisten Bioraffinerien befinden sich in Schweden, Finnland, Deutschland, Portugal und Österreich. Aber in 18 verschiedenen europäischen Ländern sind bereits Bioraffinerien in Betrieb oder geplant.
Der globale Bericht „Is there enough biomass to defossilise the Chemicals and Derived Materials Sector by 2050?“ (bevorstehende Veröffentlichung Ende Februar 2025, abrufbar unter: renewablecarbon.eu/publications) zeigt ein besonders hohes Wachstum bei Zellstoff (von 9 im Jahr 2020 auf 44 Millionen Tonnen im Jahr 2050; Wachstum von 406 %), Zellulosefasern (von 7 im Jahr 2020 auf 38 Millionen Tonnen im Jahr 2050; Wachstum von 447 %) und Zellulosederivaten (von 2 im Jahr 2020 auf 6 Millionen Tonnen im Jahr 2050; Wachstum von 190 %).
Biosynthetik - Biobasierte und CO2-basierte Synthesefasern
Um den Anteil der fossilen Kunstfasern weiter zu reduzieren, sind biobasierte Polymerfasern (auch „Biosynthetics“ genannt) aufgrund ihres breiten Eigenschaftsspektrums eine hervorragende Option - nur die Umsetzung wird Jahrzehnte dauern, da der Anteil heute nur unter 0,5 % liegt. Es gibt viele Optionen, wie Polyesterfasern (PLA, PTT, PEF, PHA), Polyolefinfasern (PE/PP), biobasierte PA-Fasern aus Rizinusöl. PTT zum Beispiel ist auf dem US-Teppichmarkt gut etabliert und PLA auf dem Hygienemarkt. Sie alle sind biobasiert, aber nur wenige sind auch biologisch abbaubar (PLA, PHA).
Biokunststoffe sind eine von vielen Anwendungen für biobasierte Polymere. Im Allgemeinen sind derzeit 17 biobasierte Polymere mit einer installierten Kapazität von über 4 Millionen Tonnen im Jahr 2023 kommerziell verfügbar. Zehn dieser biobasierten Polymere werden als Biokunststoffe verwendet, was zu einer Produktion von über einer Million Tonnen Biokunststoffen führt:
(nova report: Bio-based Building Blocks and Polymers - Global Capacities, Production and Trends 2023-2028, renewable-carbon.eu/publications/product/bio-based-buildingblocks-and-polymers-global-capacities-production-and-trends-2023-2028-short-version/).
Im Prinzip können viele Fasern auch aus CO2 hergestellt werden, aber hier müssen die Technologie und die Kapazitäten noch entwickelt werden, vielleicht parallel zur Herstellung nachhaltiger Flugkraftstoffe aus CO2, die zur Pflicht werden.
Kreislaufwirtschaft - Recycling von Textilabfällen und Recycling von Fasern zu Fasern
Die Textilindustrie befindet sich an einem entscheidenden Punkt, an dem Nachhaltigkeit nicht mehr eine Option, sondern eine Notwendigkeit ist. Da die Umweltauswirkungen der Textilproduktion und -entsorgung immer deutlicher werden, wächst der Druck, die Prinzipien der Kreislaufwirtschaft zu übernehmen.
Eine vielversprechende Lösung ist das Faser-zu-Faser-Recycling, ein Verfahren, bei dem gebrauchte Textilien in neue, hochwertige Fasern umgewandelt werden, wodurch der Abfallkreislauf effektiv geschlossen wird. In der Europäischen Union wurden zwar erhebliche Fortschritte erzielt, doch gibt es nach wie vor Probleme, insbesondere bei der Ausweitung der Technologien, dem Fehlen von Sammelsystemen und der Handhabung von Textilien aus Mischfasern. In Europa fallen derzeit etwa 6,95 (1,25 + 5,7) Millionen Tonnen Textilabfälle pro Jahr an, von denen nur 1,95 Millionen Tonnen getrennt gesammelt und 1,02 Millionen Tonnen durch Recycling oder Verfüllung behandelt werden (Abbildung 3).
Das Recycling von Textilien verringert die Nachfrage nach neuen Fasern und den textilen Fußabdruck. Der Anteil der recycelten Fasern stieg leicht von 8,4 % im Jahr 2020 auf 8,9 % im Jahr 2021, was hauptsächlich auf einen Anstieg der PET-Fasern aus Flaschen zurückzuführen ist. Im Jahr 2021 wird jedoch weniger als 1 % des globalen Fasermarktes aus Pre- und Post-Consumer-Recycling-Textilien stammen (Textile Exchange, Oktober 2022: Preferred Fiber & Materials Market Report). Neue Vorschriften aus Brüssel für das Recycling in geschlossenen Kreisläufen, insbesondere das Recycling von Flaschen, könnten die Verwendung von PET-Fasern aus Flaschen in der Textilindustrie gefährden. Dies würde eine Verringerung der Recyclingraten in der Textilindustrie bedeuten, bis die Logistik und die Technologien für das Recycling von Textilien in großem Umfang vorhanden sind. Dies wird notwendig sein, um einen Beitrag zur Kreislaufwirtschaft zu leisten. Mehrere Forschungsprojekte sind im Gange, um Lösungen zu finden, und erste Pilotimplementierungen sind verfügbar.
Die Zukunft der nachhaltigen Textilien
Die nachhaltige Textilindustrie der Zukunft wird auf einem Fundament aus Baumwollfasern und schnell wachsenden Zellulosefasern aufgebaut sein, das später durch bio- und CO2-basierte Synthetikfasern (Biosynthetics") und hohe Recyclingraten für alle Faserarten stark unterstützt wird. Diese Kombination kann bis zum Jahr 2050 die meisten Kunstfasern auf fossiler Basis ersetzen.
Um die neuesten Informationen über Cellulosefasern zu erhalten, veranstaltet das nova-Institut jedes Jahr die „Cellulosefasertagung“, die das nächste Mal am 12. und 13. März 2025 in Köln stattfinden wird - dieses Jahr erstmals mit Biokunststoffen.
Michael Carus und Dr. Asta Partanen, nova-Institute (Deutschland)