Textination Newsline

from to
Zurücksetzen
314 Ergebnisse
Federn und Daunen von Wassergeflügel (c) Daunen- und Federnverbände Mainz
05.03.2024

Klebstoffe: Federn statt Erdöl

Klebstoffe beruhen fast immer auf fossilen Rohstoffen wie Erdöl. Fraunhofer-Forschende haben nun ein Verfahren entwickelt, mit dem der biobasierte Rohstoff Keratin erschlossen wird. Die leistungsfähige Protein-Verbindung ist beispielsweise in Hühnerfedern enthalten. Damit kann man nicht nur eine Vielzahl unterschiedlicher Klebstoffe für verschiedene Anwendungsbereiche herstellen. Die Verfahren und Endprodukte sind vielmehr nachhaltig und orientieren sich am Grundprinzip einer bioinspirierten Kreislaufwirtschaft. Das gemeinsame Projekt mit der Henkel AG & Co. KGaA adressiert einen Milliardenmarkt.

Klebstoffe beruhen fast immer auf fossilen Rohstoffen wie Erdöl. Fraunhofer-Forschende haben nun ein Verfahren entwickelt, mit dem der biobasierte Rohstoff Keratin erschlossen wird. Die leistungsfähige Protein-Verbindung ist beispielsweise in Hühnerfedern enthalten. Damit kann man nicht nur eine Vielzahl unterschiedlicher Klebstoffe für verschiedene Anwendungsbereiche herstellen. Die Verfahren und Endprodukte sind vielmehr nachhaltig und orientieren sich am Grundprinzip einer bioinspirierten Kreislaufwirtschaft. Das gemeinsame Projekt mit der Henkel AG & Co. KGaA adressiert einen Milliardenmarkt.

Klebstoffe sind fast überall: in Sportschuhen, im Smartphone, im Bodenbelag, in Möbeln, in Textilien oder in Verpackungen. Sogar die Frontscheiben von Autos werden eingeklebt. Experten kennen mehr als 1000 unterschiedliche Klebstoff-Varianten. Diese verbinden fast alle denkbaren Materialien miteinander. Klebstoffe wiegen nicht viel und sind deshalb für den Leichtbau geeignet. Zudem verziehen sich geklebte Flächen nicht, da der Druck anders als bei Schraubverbindungen gleichmäßig verteilt wird. Klebstoff rostet nicht und dichtet gegen Feuchtigkeit ab. Zudem sind mit Klebstoff verbundene Flächen weniger empfindlich gegen Schwingungen. Und Klebstoffe sind preiswert und relativ einfach zu verarbeiten.

Federn aus der Geflügelfleischproduktion
Bisher werden Klebstoffe fast immer aus fossilen Rohstoffen wie Erdöl hergestellt. Das Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB geht nun einen anderen Weg. Die Forscherinnen und Forscher nutzen Federn als Ausgangsmaterial statt Erdöl. Federn fallen bei der Geflügelfleischherstellung als Abfälle an. Sie werden vernichtet oder in Tierfutter gemischt. Doch für Abfall sind die Federn viel zu schade, denn Federn enthalten das Strukturprotein Keratin. Dieses Biopolymer wird von Tieren für Krallen, Klauen, Hufe oder eben Federn gebildet. Seine Faserstruktur verleiht hohe Festigkeit.

Warum Keratin ideal für die Klebstoff-Herstellung ist
Keratin ist ein umweltfreundlicher, weil biologisch abbaubarer Stoff, der darüber hinaus durch seine Struktur jene Eigenschaften besitzt, die ihn für die Herstellung von Klebstoffen besonders geeignet machen. Die Polymer-Struktur, also die besonders langkettigen Moleküle, in Verbindung mit der Eigenschaft, über seine funktionellen Gruppen Vernetzungsreaktionen einzugehen, prädestiniert Keratin für die Herstellung von Klebstoffen aller Art. »Die für Klebstoffe erforderlichen Merkmale sind im Ausgangsmaterial gewissermaßen schon angelegt und müssen nur freigelegt, modifiziert und formuliert werden«, erklärt Projektleiter Dr. Michael Richter.

Plattform-Chemikalie und Spezialklebstoffe
Beim Projekt KERAbond »Spezialchemikalien aus maßgeschneiderten funktionalen Keratin-Proteinen« – Kera steht für Keratin, das englische Wort bond für Kleben – hat das Fraunhofer IGB in den letzten drei Jahren mit der Henkel AG & Co. KGaA zusammengearbeitet. Das Unternehmen ist Weltmarktführer im Klebstoff-Bereich.

Dabei haben die Projektpartner ein neues Verfahren entwickelt und optimiert. Im ersten Schritt werden die vom Schlachtbetrieb angelieferten Federn sterilisiert, gewaschen und mechanisch zerkleinert. Anschließend erfolgt ein enzymatischer Prozess, bei dem die langkettigen Polymere bzw. Protein-Ketten via Hydrolyse in kurzkettige Polymere gespalten werden.

Im Ergebnis soll eine Plattform-Chemikalie entstehen, die als Ausgangsstoff für die Weiterentwicklung speziell formulierter Klebstoffe dienen kann. „Wir nutzen das Verfahren und die Plattform-Chemikalie wie eine Toolbox, mit der wir die gewünschten Merkmale des Endprodukts herstellen“, sagt Richter. Auf diese Weise könnte man Parameter wie Aushärtezeit, Elastizität, Temperaturverhalten oder Festigkeit des gewünschten Spezialklebers festlegen. Daneben lassen sich nicht nur einfach Klebstoffe, sondern auch verwandte Substanzen wie Härter, Beschichtungen oder Grundierungen produzieren.

Im nächsten Schritt peilte das Fraunhofer-Team die Konversion der Federn im Großmaßstab an. Diese Hochskalierung fand am Fraunhofer-Zentrum für Chemisch-Biotechnologische Prozesse CBP in Leuna statt. Ziel war es zu beweisen, dass die Herstellung der Plattform-Chemikalien auf Keratin-Basis auch im industriellen Maßstab kostengünstig realisierbar ist. Dabei wurden mehrere Kilogramm Hühnerfedern verarbeitet, und das dabei produzierte Material konnte für erste vielversprechende Materialtests am Fraunhofer IGB und bei Henkel eingesetzt werden.

Baustein für eine bioinspirierte Ökonomie
Für die Fraunhofer-Gesellschaft hat diese bioinspirierte Verfahrenstechnik eine besondere Bedeutung. Biotechnologie zählt zu den zentralen Forschungsfeldern der Fraunhofer-Gesellschaft: „Wir lassen uns von Funktionen oder Eigenschaften inspirieren, die in der Natur oder in natürlichen Rohstoffen bereits vorhanden sind. Und wir versuchen, diese Eigenschaften durch innovative Herstellungsprozesse in die Produkte zu übersetzen. So entsteht ein bioinspirierter Kreislauf der wertvollen Rohstoffe,“ so Richter.

Ökonomisch hat das Projekt Gewicht. Nach Angaben von Statista wurden allein in Deutschland im Jahr 2019 rund eine Million Tonnen Klebstoffe produziert. Deren Gesamtwert beträgt etwa 1,87 Milliarden Euro.

Zum neuen Verfahren wurde eine Patentanmeldung eingereicht sowie eine Veröffentlichung in einem wissenschaftlichen Fachjournal publiziert. Zwei Doktoranden, die bei Henkel und Fraunhofer intensiv an dem Projekt forschten, werden ihre Doktorarbeiten voraussichtlich im ersten Quartal 2024 abschließen können. Mit der neuen Technologie auf Keratin-Basis werden sich viele Plattform-Chemikalien nachhaltig und bioinspiriert produzieren lassen.

Das KERAbond-Projekt wurde über drei Jahre von der Fachagentur Nachwachsende Rohstoffe (FNR) in Gülzow im Auftrag des Bundesministeriums für Ernährung und Landwirtschaft aus dem Förderprogramm „Nachwachsende Rohstoffe“ gefördert und unterstützt (Förderkennzeichen 22014218).

Quelle:

Fraunhofer IBG

Windenergie Foto: Carlos / Saigon - Vietnam, Pixabay
21.02.2024

Composites: Hoffnungsträger Windenergie und Luftfahrt

Composites Germany legt Ergebnisse der 22. Markterhebung vor    

  • Kritische Bewertung der aktuellen Geschäftslage
  • Zukunftserwartungen hellen sich auf
  • Investitionsklima bleibt verhalten
  • Erwartungen an Anwendungsindustrien unterschiedlich
  • Wachstumstreiber mit leichten Verschiebungen
  • Composites-Index zeigt in verschiedene Richtungen

Zum 22. Mal hat Composites Germany aktuelle Kennzahlen zum Markt für faserverstärkte Kunststoffe erhoben. Befragt wurden alle Mitgliedsunternehmen der Trägerverbände von Composites Germany: AVK und Composites United sowie des assoziierten Partners VDMA.

Um die problemlose Vergleichbarkeit der unterschiedlichen Erhebungen zu gewährleisten, wurden auch in diesem Halbjahr keine grundlegenden Änderungen bei der Befragung durchgeführt. Erhoben wurden erneut überwiegend qualitative Daten in Bezug auf die aktuelle und zukünftige Marktentwicklung.

Composites Germany legt Ergebnisse der 22. Markterhebung vor    

  • Kritische Bewertung der aktuellen Geschäftslage
  • Zukunftserwartungen hellen sich auf
  • Investitionsklima bleibt verhalten
  • Erwartungen an Anwendungsindustrien unterschiedlich
  • Wachstumstreiber mit leichten Verschiebungen
  • Composites-Index zeigt in verschiedene Richtungen

Zum 22. Mal hat Composites Germany aktuelle Kennzahlen zum Markt für faserverstärkte Kunststoffe erhoben. Befragt wurden alle Mitgliedsunternehmen der Trägerverbände von Composites Germany: AVK und Composites United sowie des assoziierten Partners VDMA.

Um die problemlose Vergleichbarkeit der unterschiedlichen Erhebungen zu gewährleisten, wurden auch in diesem Halbjahr keine grundlegenden Änderungen bei der Befragung durchgeführt. Erhoben wurden erneut überwiegend qualitative Daten in Bezug auf die aktuelle und zukünftige Marktentwicklung.

Kritische Bewertung der aktuellen Geschäftslage
Nachdem bei der Bewertung der aktuellen Geschäftslage in 2021 durchweg positive Tendenzen zu erkennen waren, rutschte diese seit 2022 ab. Auch in der aktuellen Befragung ist weiterhin keine Trendumkehr festzustellen. Die Gründe für die negative Stimmung sind vielfältig und zeigten sich bereits in der letzten Erhebung.     

Derzeit scheint es der Politik nicht zu gelingen, mit entsprechenden Maßnahmen ein für die Industrie positiveres Umfeld zu schaffen. Insgesamt zeigt vor allem Deutschland, aber auch Europa derzeit ein sehr schwieriges Marktumfeld.

Haupttreiber der derzeitigen, schwierigen Situation dürften aber vor allem die nach wie vor hohen Energie- und Rohstoffpreise sein. Hinzu kommen weiterhin Probleme in einzelnen Bereichen der Logistikketten, beispielsweise auf einzelnen Handels-/Containerruten sowie ein zurückhaltendes Konsumklima. Eine Verlangsamung des Welthandels und Unsicherheiten im politischen Bereich befeuern derzeit die negative Stimmung im Markt. Trotz steigender Zulassungszahlen ist auch die Automobilindustrie als wichtigster Anwendungsbereich für Composites noch nicht auf ihr altes Volumen zurückgekehrt. Die Bauindustrie als zweiter zentraler Anwendungsbereich steckt derzeit in einer Krise. Zwar sind die Auftragsbücher noch gut gefüllt, aber Neuaufträge bleiben vielfach aus. Hohe Zinsen und Materialkosten bei hohen Lebenshaltungskosten belasten vor allem den privaten Bau stark, aber auch der öffentliche Bau kann die selbst gesteckten Ziele momentan nicht erreichen. Laut dem ZDB (Zentralverband Deutsches Baugewerbe) bleiben die Prognosen in diesem wichtigen Bereich düster: „Der Rückgang der Baukonjunktur setzt sich weiter fort. Der Umsatz wird in diesem Jahr real um 5,3 % zurückgehen und im kommenden Jahr gehen wir von weiteren minus 3 % aus. Verantwortlich für das Minus bleibt der Wohnungsbau, der in diesem Jahr real um 11 % einbricht und 2024 mit -13 % seinen Sinkflug fortsetzt.“

Nicht nur die Bewertung der generellen Geschäftslage bleibt pessimistisch. Auch die Situation der eigenen Unternehmen wird weiterhin kritisch bewertet. Vor allem für Deutschland zeigt sich ein negatives Bild. Fast 50 % der Befragten bewerten die aktuelle Geschäftslage in Deutschland kritisch. Etwas positiver fällt die Sichtweise auf das weltweite Geschäft und Europa aus. Hier bewerten „nur“ 40 % bzw. 35 % der Befragten die Situation eher negativ.

Zukunftserwartungen hellen sich auf
Trotz der generell eher verhaltenen Bewertung der Geschäftslage scheinen viele der Befragten, zumindest in Europa, von einer Besserung der Stimmung überzeugt zu sein. Befragt nach ihrer Einschätzung zur zukünftigen generellen Geschäftsentwicklung, zeigen sich die Werte für Europa und auch die Welt optimistischer als bei der letzten Befragung. Für Deutschland erwarten die Teilnehmer der Befragung derzeit keine Verbesserung der Situation.

Auch für das eigene Unternehmen zeigen sich die Befragten hinsichtlich ihrer Zukunftserwartungen für Europa und den Weltmarkt optimistischer:
     
Die Teilnehmenden gehen anscheinend von einer moderaten kurz- bis mittelfristigen Erholung der Weltwirtschaft aus. Die Prognosen sind optimistischer als die Bewertung der aktuellen Situation. Auffällig ist, dass die Sichtweise auf die Region Deutschland im Verhältnis zu Europa und der weltweiten Konjunktur kritischer ist. 28 % der Befragten erwarten eine negative Entwicklung der generellen Marktsituation in Deutschland. Nur 13 % erwarten eine Verbesserung der aktuellen Situation. Für Europa und auch die Welt zeigen sich bessere Kennwerte.
          
Investitionsklima bleibt verhalten
Die aktuell eher zurückhaltende Bewertung der wirtschaftlichen Situation wirkt sich auch weiterhin auf das Investitionsklima aus.

Nachdem in der letzten Befragung noch 22% der Teilnehmenden von einem Anstieg bei der Personalkapazität ausgegangen waren (Befragung 1/2023 = 40 %), liegt dieser Wert aktuell nur noch bei 18 %. Demgegenüber stehen 18 %, die sogar von einem Rückgang im Bereich Personal ausgehen.

Auch der Anteil der Befragten, die Maschineninvestitionen planen, ist rückläufig. Waren bei der letzten Befragung noch 56 % von entsprechenden Investitionen ausgegangen, so sinkt dieser Wert nun auf 46 % ab.


Erwartungen an Anwendungsindustrien unterschiedlich
Der Composites Markt ist durch eine starke Heterogenität sowohl material- aber auch anwendungsseitig gekennzeichnet. In der Befragung werden die Teilnehmenden gebeten, ihre Einschätzung hinsichtlich der Marktentwicklung unterschiedlicher Kernbereiche zu geben.

Die Erwartungen zeigen sich äußerst verschieden. Die beiden wichtigsten Anwendungsbereiche sind der Mobilitäts- und der Bau-/Infrastruktursektor. Beide befinden sich derzeit in starken Umbrüchen bzw. sind von Rückgängen betroffen, was sich auch in der Befragung deutlich zeigt. Wachstum wird vor allem im Bereich Windenergie und Luftfahrt erwartet.

Wachstumstreiber mit leichten Verschiebungen
Bei den Werkstoffen zeigt sich ein Wechsel hinsichtlich der Einschätzungen der Wachstumstreiber. Wurde von den Befragten in den letzten 9 Erhebungen stets GFK als Material genannt, aus dessen Umfeld die wesentlichen Wachstumsimpulse für den Composites-Bereich zu erwarten sind, so werden die wesentlichen Impulse mittlerweile erneut von CFK oder materialübergreifend vermutet.

Regional kommt es zu einer leichten Verschiebung. Deutschland wird weniger stark als Wachstumstreiber gesehen. Demgegenüber werden Europa (ohne Deutschland) und Asien deutlich mehr genannt.

Composites-Index zeigt in verschiedene Richtungen
Die zahlreichen negativen Einflüsse der letzten Zeit zeigen sich weiterhin auch im Gesamt-Composites-Index. Dieser gibt vor allem bei der Betrachtung der momentanen Geschäftslage weiterhin nach. Demgegenüber steht eine leichte Aufhellung hinsichtlich der Erwartungen an die zukünftige Marktentwicklung, welche jedoch auf niedrigem Niveau bleibt.
 
Die gesamte verarbeitende Composites-Menge in Europa in 2022 war bereits rückläufig, auch für 2023 muss weiterer Rückgang erwartet werden. Dieser dürfte erneut bei etwa 5% liegen. Es bleibt abzuwarten, ob es gelingen wird, der negativen Entwicklung gegenzusteuern. Hier wäre ein zielgerichtetes Eingreifen, auch der politischen Entscheidungsträger, wünschenswert. Dies kann aber ohne die Industrie/Wirtschaft nicht gelingen. Nur gemeinsam wird es möglich sein, den Wirtschafts-/Industriestandort Deutschland zu erhalten und erneut zu stärken. Für Composites als Materialgruppe generell zeigen sich, aufgrund des speziellen Eigenschaftsportfolios, nach wie vor sehr gute Chancen zum Ausbau der Marktposition in neuen, aber auch bestehenden Märkten. Die Abhängigkeit von gesamtwirtschaftlichen Entwicklungen aber bleibt bestehen. Es gilt nun über Innovationen neue Marktfelder zu erschließen, Chancen konsequent zu nutzen und gemeinsam daran zu arbeiten, Composites weiter in bestehenden Märkten zu implementieren. Dies kann gemeinsam oftmals besser gelingen als alleine. Composites Germany bietet mit seinem hervorragenden Netzwerk vielfältige Möglichkeiten.

Die nächste Composites-Markterhebung erscheint im Juli 2024.

Quelle:

Composites Germany

Tragbare Roboter für Parkinson-Kranke Bild: Tom Claes, unsplash
19.02.2024

Tragbare Roboter für Parkinson-Kranke

Freezing, plötzliche Blockaden bei Bewegungsabläufen, ist eines der häufigsten und belastendsten Symptome der Parkinson-Krankheit, einer neurodegenerativen Erkrankung, von der weltweit mehr als 9 Millionen Menschen betroffen sind. Wenn Menschen mit Parkinson „einfrieren“, verlieren sie plötzlich die Fähigkeit, ihre Füße zu bewegen, oft mitten im Schritt, was zu einer Reihe von stakkatoartigen, stotternden Schritten führt, die immer kürzer werden, bis die Person schließlich ganz stehen bleibt. Diese Episoden sind eine der Hauptursachen für Stürze bei Menschen mit Parkinson.

Heutzutage wird Freezing mit einer Reihe von pharmakologischen, chirurgischen oder Verhaltenstherapien behandelt, von denen keine besonders wirksam ist. Was wäre, wenn es einen Weg gäbe, Freezing gänzlich zu verhindern?

Freezing, plötzliche Blockaden bei Bewegungsabläufen, ist eines der häufigsten und belastendsten Symptome der Parkinson-Krankheit, einer neurodegenerativen Erkrankung, von der weltweit mehr als 9 Millionen Menschen betroffen sind. Wenn Menschen mit Parkinson „einfrieren“, verlieren sie plötzlich die Fähigkeit, ihre Füße zu bewegen, oft mitten im Schritt, was zu einer Reihe von stakkatoartigen, stotternden Schritten führt, die immer kürzer werden, bis die Person schließlich ganz stehen bleibt. Diese Episoden sind eine der Hauptursachen für Stürze bei Menschen mit Parkinson.

Heutzutage wird Freezing mit einer Reihe von pharmakologischen, chirurgischen oder Verhaltenstherapien behandelt, von denen keine besonders wirksam ist. Was wäre, wenn es einen Weg gäbe, Freezing gänzlich zu verhindern?

Forscher der Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) und des Boston University Sargent College of Health & Rehabilitation Sciences haben einen weichen, tragbaren Roboter eingesetzt, der einem Parkinson-Patienten hilft, ohne Freezing zu gehen. Das Roboterkleidungsstück, das um Hüfte und Oberschenkel getragen wird, gibt beim Schwingen des Beins einen sanften Druck auf die Hüfte und hilft dem Patienten, einen längeren Schritt zu machen.

Mit dem Hilfsmittel konnte das Freezing der Teilnehmer beim Gehen in geschlossenen Räumen vollständig beseitigt werden, so dass sie schneller und weiter gehen konnten als ohne die Hilfe des Kleidungsstückes.

„Wir stellten fest, dass schon eine geringe mechanische Unterstützung durch unsere weiche Roboterkleidung eine Sofortwirkung hatte und das Gehen der Versuchspersonen unter verschiedenen Bedingungen nachhaltig verbesserte“, so Conor Walsh, Paul A. Maeder Professor für Ingenieur- und angewandte Wissenschaften am SEAS und Mitautor der Studie.

Die Forschung zeigt das Potenzial der Soft-Robotik zur Behandlung dieses frustrierenden und potenziell gefährlichen Symptoms der Parkinson-Erkrankung auf und könnte es Menschen, die mit dieser Krankheit leben, ermöglichen, nicht nur ihre Mobilität, sondern auch ihre Unabhängigkeit wiederzuerlangen.

Seit über einem Jahrzehnt entwickelt das Biodesign Lab von Walsh am SEAS unterstützende und rehabilitative Robotertechnologien zur Verbesserung der Mobilität von Menschen nach einem Schlaganfall, mit ALS oder anderen Krankheiten, die die Mobilität beeinträchtigen. Ein Teil dieser Technologie, insbesondere ein Exosuit für das Gehtraining nach einem Schlaganfall, wurde vom Wyss Institute for Biologically Inspired Engineering, and Harvard’s Office of Technology Development unterstützt, und das Harvard’s Office of Technology Development  koordinierte eine Lizenzvereinbarung mit ReWalk Robotics zur Vermarktung der Technologie.

Im Jahr 2022 erhielten SEAS und Sargent College einen Zuschuss von der Massachusetts Technology Collaborative, um die Entwicklung und Umsetzung von Robotik und Wearable Technologies der nächsten Generation zu unterstützen. Die Forschung ist im Move Lab angesiedelt, dessen Aufgabe es ist, Fortschritte bei  der Verbesserung der menschlichen Leistungsfähigkeit zu unterstützen, indem es den Raum für die Zusammenarbeit, die Finanzierung, die F&E-Infrastruktur und die Erfahrung bereitstellt, die notwendig sind, um vielversprechende Forschung in ausgereifte Technologien zu verwandeln, die durch die Zusammenarbeit mit Industriepartnern umgesetzt werden können. Diese Forschung ist aus dieser Partnerschaft hervorgegangen.

„Der Einsatz weicher, tragbarer Roboter zur Verhinderung des Freezing beim Gangbild von Parkinson-Patienten erforderte eine Zusammenarbeit zwischen Ingenieuren, Rehabilitationswissenschaftlern, Physiotherapeuten, Biomechanikern und Bekleidungsdesignern", so Walsh, dessen Team eng mit dem von Terry Ellis, Professor und Lehrstuhlinhaber für Physiotherapie sowie Leiter des Zentrums für Neurorehabilitation an der Universität Boston, zusammenarbeitete.

Das Team arbeitete sechs Monate lang mit einem 73-jährigen Mann, der an Parkinson erkrankt war und trotz chirurgischer und medikamentöser Behandlung mehr als zehnmal am Tag unter erheblichem und behinderndem Freezing litt, was immer wieder zu Stürzen führten. Diese Episoden hinderten ihn daran, sich in seiner Nachbarschaft zu bewegen, und zwangen ihn, sich draußen mit einem Elektromobil fortzubewegen.

In früheren Forschungsarbeiten wiesen Walsh und sein Team mithilfe der Human-in-the-Loop-Optimierung nach, dass ein weiches, am Körper zu tragendes Gerät die Hüftbeugung verstärken und den Schwung des Beins nach vorne unterstützen kann, um den Energieverbrauch beim Gehen bei gesunden Menschen effizient zu senken.

In diesem Fall verwendeten die Forscher den gleichen Ansatz, um das Freezing zu bekämpfen. Das tragbare Gerät verwendet kabelgesteuerte Aktoren und Sensoren, die um Taille und Oberschenkel getragen werden. Anhand der von den Sensoren erfassten Bewegungsdaten schätzen Algorithmen die Phase des Gangs und erzeugen im Zusammenspiel mit der Muskelbewegung Unterstützung.

Die Wirkung trat sofort ein. Ohne spezielles Training war der Patient in der Lage, ohne Freezing in geschlossenen Räumen und mit nur gelegentlichen Episoden im Freien zu gehen. Er war ebenfalls in der Lage, ohne Stocken zu gehen und zu sprechen, was ohne das Gerät kaum möglich war.

„Unser Team war sehr gespannt darauf, wie sich die Technologie auf das Gangbild der Teilnehmer auswirkt“, sagt Jinsoo Kim, ehemaliger Doktorand am SEAS und Mitautor der Studie.

Während der Studienbesuche erzählte der Teilnehmer den Forschern: „Der Anzug hilft mir, längere Schritte zu machen, wenn er nicht aktiv ist, merke ich, dass ich meine Füße viel mehr nachziehe. Er hat mir wirklich geholfen, und ich empfinde ihn als einen positiven Schritt nach vorn. Er könnte mich darin unterstützen, länger zu gehen und meine Lebensqualität zu erhalten."

„Unsere Studienteilnehmer, die freiwillig ihre Zeit opfern, sind echte Partner“, so Walsh. „Da die Mobilität schwierig ist, war es für diese Person eine echte Herausforderung, überhaupt ins Labor zu kommen, aber wir haben so sehr von ihrer Perspektive und ihrem Feedback profitiert.“

Das Gerät könnte auch eingesetzt werden, um die Mechanismen des Freezing besser zu verstehen, die nur unzureichend erforscht sind.

„Da wir das Freezing nicht wirklich verstehen, wissen wir nicht, warum dieser Ansatz so gut funktioniert“, so Ellis. Aber diese Arbeit deutet auf die potenziellen Vorteile einer "Bottom-up"-Lösung statt einer "Top-down"-Lösung zur Behandlung von Gangfehlern hin. Wir sehen, dass die Wiederherstellung einer fast normalen Biomechanik die periphere Dynamik des Gangs verändert und die zentrale Verarbeitung der Gangkontrolle beeinflussen kann.“

Das Team arbeitete sechs Monate lang mit einem 73-jährigen Mann, der an Parkinson erkrankt war und trotz chirurgischer und medikamentöser Behandlung mehr als zehnmal am Tag unter erheblichem und behinderndem Freezing litt, was immer wieder zu Stürzen führten. Diese Episoden hinderten ihn daran, sich in seiner Nachbarschaft zu bewegen, und zwangen ihn, sich draußen mit einem Elektromobil fortzubewegen.

In früheren Forschungsarbeiten wiesen Walsh und sein Team mithilfe der Human-in-the-Loop-Optimierung nach, dass ein weiches, am Körper zu tragendes Gerät die Hüftbeugung verstärken und den Schwung des Beins nach vorne unterstützen kann, um den Energieverbrauch beim Gehen bei gesunden Menschen effizient zu senken.

In diesem Fall verwendeten die Forscher den gleichen Ansatz, um das Freezing zu bekämpfen. Das tragbare Gerät verwendet kabelgesteuerte Aktoren und Sensoren, die um Taille und Oberschenkel getragen werden. Anhand der von den Sensoren erfassten Bewegungsdaten schätzen Algorithmen die Phase des Gangs und erzeugen im Zusammenspiel mit der Muskelbewegung Unterstützung.

Die Wirkung trat sofort ein. Ohne spezielles Training war der Patient in der Lage, ohne Freezing in geschlossenen Räumen und mit nur gelegentlichen Episoden im Freien zu gehen. Er war ebenfalls in der Lage, ohne Stocken zu gehen und zu sprechen, was ohne das Gerät kaum möglich war.

„Unser Team war sehr gespannt darauf, wie sich die Technologie auf das Gangbild der Teilnehmer auswirkt“, sagt Jinsoo Kim, ehemaliger Doktorand am SEAS und Mitautor der Studie.

Während der Studienbesuche erzählte der Teilnehmer den Forschern: „Der Anzug hilft mir, längere Schritte zu machen, wenn er nicht aktiv ist, merke ich, dass ich meine Füße viel mehr nachziehe. Er hat mir wirklich geholfen, und ich empfinde ihn als einen positiven Schritt nach vorn. Er könnte mich darin unterstützen, länger zu gehen und meine Lebensqualität zu erhalten."

„Unsere Studienteilnehmer, die freiwillig ihre Zeit opfern, sind echte Partner“, so Walsh. „Da die Mobilität schwierig ist, war es für diese Person eine echte Herausforderung, überhaupt ins Labor zu kommen, aber wir haben so sehr von ihrer Perspektive und ihrem Feedback profitiert.“

Das Gerät könnte auch eingesetzt werden, um die Mechanismen des Freezing besser zu verstehen, die nur unzureichend erforscht sind.

„Da wir das Freezing nicht wirklich verstehen, wissen wir nicht, warum dieser Ansatz so gut funktioniert“, so Ellis. Aber diese Arbeit deutet auf die potenziellen Vorteile einer "Bottom-up"-Lösung statt einer "Top-down"-Lösung zur Behandlung von Gangfehlern hin. Wir sehen, dass die Wiederherstellung einer fast normalen Biomechanik die periphere Dynamik des Gangs verändert und die zentrale Verarbeitung der Gangkontrolle beeinflussen kann.“

Die Studie wurde von Jinsoo Kim, Franchino Porciuncula, Hee Doo Yang, Nicholas Wendel, Teresa Baker und Andrew Chin mitverfasst. Asa Eckert-Erdheim und Dorothy Orzel trugen ebenfalls zur Entwicklung der Technologie bei, ebenso wie Ada Huang, Sarah Sullivan leitete die klinische Forschung. Das Projekt wurde von der National Science Foundation unter dem Zuschuss CMMI-1925085, von den National Institutes of Health unter dem Zuschuss NIH U01 TR002775 und von der Massachusetts Technology Collaborative, Collaborative Research and Development Matching Grant unterstützt.

Quelle:

Die Forschungsergebnisse erschienen in Nature Medicine.
Quelle: Leah Burrows
Harvard John A. Paulson. School of Engineering and Applied Sciences

  Forschende um Bernd Nowack haben die Freisetzung von Nanopartikeln beim Waschen von Polyestertextilien untersucht. Bild: Empa
14.02.2024

Freisetzung von Oligomeren aus Polyester-Textilien

Wenn Nanoplastik keiner ist ... Textilien aus synthetischen Fasern geben beim Waschen Mikro- und Nanoplastik ab. Empa-Forschende konnten nun zeigen, dass ein Teil des vermeintlichen Nanoplastiks gar nicht aus Plastikpartikeln besteht, sondern aus wasserunlöslichen Oligomeren. Welche Auswirkungen sie auf Mensch und Umwelt haben, ist noch kaum erforscht.

Gebrauchsgegenstände aus Kunststoff und Kleider aus Kunstfasern setzen Mikroplastik frei: Partikel unter fünf Millimeter Größe, die unbemerkt in die Umwelt gelangen können. Ein kleiner Teil dieser Partikel befindet sich sogar im Nanometerbereich. Solcher Nanoplastik ist Gegenstand intensiver Forschung, denn aufgrund ihrer geringen Größe können Nanoplastik-Teilchen in den menschlichen Körper aufgenommen werden – über ihre potenzielle Toxizität ist jedoch noch wenig bekannt.

Wenn Nanoplastik keiner ist ... Textilien aus synthetischen Fasern geben beim Waschen Mikro- und Nanoplastik ab. Empa-Forschende konnten nun zeigen, dass ein Teil des vermeintlichen Nanoplastiks gar nicht aus Plastikpartikeln besteht, sondern aus wasserunlöslichen Oligomeren. Welche Auswirkungen sie auf Mensch und Umwelt haben, ist noch kaum erforscht.

Gebrauchsgegenstände aus Kunststoff und Kleider aus Kunstfasern setzen Mikroplastik frei: Partikel unter fünf Millimeter Größe, die unbemerkt in die Umwelt gelangen können. Ein kleiner Teil dieser Partikel befindet sich sogar im Nanometerbereich. Solcher Nanoplastik ist Gegenstand intensiver Forschung, denn aufgrund ihrer geringen Größe können Nanoplastik-Teilchen in den menschlichen Körper aufgenommen werden – über ihre potenzielle Toxizität ist jedoch noch wenig bekannt.

Empa-Forschende aus der Gruppe von Bernd Nowack aus dem Labor „Technologie und Gesellschaft" haben nun gemeinsam mit Kollegen aus China Nanopartikel aus Textilien unter die Lupe genommen. Tong Yang, Erstautor der Studie, hat die Untersuchungen während seines Doktorats an der Empa durchgeführt. Bereits in früheren Studien konnten die Empa-Forscher zeigen, dass beim Waschen von Polyester Mikro- und Nanoplastik freigesetzt wird. Eine genaue Untersuchung der freigesetzten Nanopartikel hat nun ergeben, dass nicht alles, was auf den ersten Blich nach Nanoplastik aussieht, auch tatsächlich Nanoplastik ist.

Zu einem beträchtlichen Teil handelte es sich tatsächlich nicht um Nanoplastik, sondern um Klumpen von sogenannten Oligomeren, also kleinen bis mittelgroßen Moleküle, die eine Zwischenstufe zwischen den langen verketteten Polymeren und ihren Einzelbausteinen, den Monomeren, darstellen. Diese Moleküle sind noch kleiner als Nanoplastik-Partikel. Auch über ihre Toxizität ist kaum etwas bekannt. Die Ergebnisse veröffentlichten die Forschenden in der Zeitschrift „Nature Water“.

Für die Studie haben die Forschenden zwölf unterschiedliche Polyesterstoffe untersucht, darunter etwa Mikrofaser, Satin und Jersey. Die Stoffproben wurden bis zu vier Mal gewaschen und die dabei freigesetzten Nanopartikel analysiert und charakterisiert. Keine einfache Aufgabe, sagt Bernd Nowack. „Plastik, vor allem Nanoplastik, ist überall, auch an unseren Geräten und Utensilien“, so der Wissenschaftler. „Bei Nanoplastik-Messungen müssen wir dieses 'Hintergrundrauschen' berücksichtigen.“

Großer Anteil löslicher Partikel
Um Nanoplastik von Oligomerklumpen zu unterscheiden, nutzten die Forschenden ein Ethanolbad. Plastikstückchen, egal wie klein, lösen sich darin nicht auf, Ansammlungen von Oligomeren dagegen schon. Der Befund: Rund ein Drittel bis knapp 90 Prozent der beim Waschen freigesetzten Nanopartikel ließen sich in Ethanol auflösen. „Dadurch konnten wir zeigen, dass nicht alles, was im ersten Moment nach Nanoplastik aussieht, auch Nanoplastik ist“, sagt Nowack.

Ob die Freisetzung von „nanopartikulären“ Oligomeren beim Waschen von Textilien negative Auswirkungen auf Mensch und Umwelt hat, ist noch nicht klar. „Bei anderen Kunststoffen haben Studien bereits gezeigt, dass nanopartikuläre Oligomere toxischer sind als Nanoplastik“, sagt Nowack. „Das ist ein Hinweis, dass man das genauer untersuchen sollte.“ Die Forschenden konnten jedoch feststellen, dass die Beschaffenheit des Textils sowie die Schnittmethode – Schere oder Laser – keinen großen Einfluss auf die Menge der freigesetzten Partikel haben.

Auch der Mechanismus der Freisetzung ist noch nicht geklärt – weder für Nanoplastik noch für die Oligomerpartikel. Die erfreuliche Nachricht ist, dass die Menge der freigesetzten Partikel mit wiederholten Waschgängen stark abnimmt. Denkbar wäre, dass die Oligomerpartikel bei der Herstellung des Textils entstehen oder sich durch chemische Prozesse bei der Lagerung von den Fasern abspalten. Auch hierzu sind weitere Studien notwendig.

Nowack und sein Team widmen sich jedoch vorerst wieder größeren Partikeln: In einem nächsten Projekt wollen sie untersuchen, welche Fasern beim Waschen von Textilien aus nachwachsenden Rohstoffen freigesetzt werden und ob diese die Umwelt und die Gesundheit belasten könnten. „Halbsynthetische Textilien wie Viskose oder Lyocell werden als Ersatz für Polyester angepriesen“, sagt Nowack. „Aber wir wissen noch gar nicht, ob sie wirklich besser sind, wenn es um die Freisetzung von Fasern geht.“

 

Quelle:

Empa

Bakterien, die Kunststoff essen und vielseitige Spinnenseide produzieren Foto: Kareni, Pixabay
05.02.2024

Plastikfressende Bakterien, die Spinnenseide produzieren

Wissenschaftler haben zum ersten Mal Bakterien eingesetzt, um Polyethylenabfälle „upzucyceln“: Mach Platz Spider-Man: Wissenschaftler des Rensselaer Polytechnic Institute haben einen Bakterienstamm entwickelt, der Plastikabfälle in biologisch abbaubare Spinnenseide mit vielfältigen Verwendungsmöglichkeiten verwandeln kann.

In ihrer neuen Studie haben Wissenschaftler zum ersten Mal Bakterien eingesetzt, um Polyethylen-Kunststoff - wie er in vielen Einwegartikeln verwendet wird - in ein hochwertiges Proteinprodukt umzuwandeln.

Dieses Produkt, das die Wissenschaftler aufgrund seiner Ähnlichkeit mit der Seide, mit der Spinnen ihre Netze spinnen, als "bio-inspirierte Spinnenseide" bezeichnen, kann in Textilien, Kosmetika und sogar in der Medizin eingesetzt werden.

Wissenschaftler haben zum ersten Mal Bakterien eingesetzt, um Polyethylenabfälle „upzucyceln“: Mach Platz Spider-Man: Wissenschaftler des Rensselaer Polytechnic Institute haben einen Bakterienstamm entwickelt, der Plastikabfälle in biologisch abbaubare Spinnenseide mit vielfältigen Verwendungsmöglichkeiten verwandeln kann.

In ihrer neuen Studie haben Wissenschaftler zum ersten Mal Bakterien eingesetzt, um Polyethylen-Kunststoff - wie er in vielen Einwegartikeln verwendet wird - in ein hochwertiges Proteinprodukt umzuwandeln.

Dieses Produkt, das die Wissenschaftler aufgrund seiner Ähnlichkeit mit der Seide, mit der Spinnen ihre Netze spinnen, als "bio-inspirierte Spinnenseide" bezeichnen, kann in Textilien, Kosmetika und sogar in der Medizin eingesetzt werden.

„Spinnenseide ist das Kevlar der Natur", sagte Helen Zha, Ph.D., Assistenzprofessorin für Chemie- und Bioingenieurwesen und eine der RPI-Forschenden, die das Projekt leiteten. „Sie kann unter Spannung fast so stark sein wie Stahl. Es hat jedoch eine sechsmal geringere Dichte als Stahl und ist daher sehr leicht. Als Biokunststoff ist es dehnbar, zäh, ungiftig und biologisch abbaubar.“

All diese Eigenschaften machen es zu einem großartigen Material für eine Zukunft, in der erneuerbare Ressourcen und die Vermeidung von anhaltender Plastikverschmutzung die Norm sind, so Zha.

Polyethylen-Kunststoffe, die in Produkten wie Plastiktüten, Wasserflaschen und Lebensmittelverpackungen enthalten sind, tragen weltweit am stärksten zur Plastikverschmutzung bei und brauchen bis zu 1.000 Jahre, um sich natürlich abzubauen. Nur ein kleiner Teil des Polyethylen-Kunststoffs wird recycelt, so dass die in der Studie verwendeten Bakterien dazu beitragen könnten, einen Teil des verbleibenden Abfalls „upzucyceln“.

Pseudomonas aeruginosa, das in der Studie verwendete Bakterium, kann auf natürliche Weise Polyethylen als Nahrungsquelle aufnehmen. Das RPI-Team stellte sich der Herausforderung, dieses Bakterium so zu steuern, dass es die Kohlenstoffatome des Polyethylens in ein genetisch kodiertes Seidenprotein umwandelt. Überraschenderweise stellten sie fest, dass ihre neu entwickelten Bakterien das Seidenprotein mit einer Effizienz herstellen konnten, die mit der einiger, üblicherweise in der Bioproduktion verwendeten Bakterienstämmen vergleichbar ist. Der biologische Prozess, der dieser Innovation zugrunde liegt, ist etwas, das die Menschen seit Jahrtausenden nutzen.

„Im Grunde genommen fermentieren die Bakterien den Kunststoff. Die Fermentierung wird zur Herstellung und Konservierung aller Arten von Lebensmitteln wie Käse, Brot und Wein verwendet, und in der biochemischen Industrie wird sie zur Herstellung von Antibiotika, Aminosäuren und organischen Säuren genutzt“, sagte Mattheos Koffas, Ph.D., Dorothy and Fred Chau ʼ71 Career Development Constellation Professor in Biocatalysis and Metabolic Engineering und der andere Wissenschaftler, der das Projekt leitet und zusammen mit Zha Mitglied des Center for Biotechnology and Interdisciplinary Studies in Rensselaer ist.

Damit die Bakterien Polyethylen fermentieren können, muss der Kunststoff zunächst „vorverdaut“ werden, so Zha. Genau wie wir Menschen unsere Nahrung in kleinere Stücke schneiden und kauen müssen, bevor unser Körper sie verwerten kann, haben die Bakterien Schwierigkeiten, die langen Molekülketten oder Polymere zu essen, aus denen Polyethylen besteht.

In der Studie arbeiteten Zha und Koffas mit Wissenschaftlern des Argonne National Laboratory zusammen, die den Kunststoff durch Erhitzen unter Druck depolymerisierten, wodurch eine weiche, wachsartige Substanz entstand. Anschließend trug das Team eine Schicht des aus dem Kunststoff gewonnenen Wachses auf die Böden der Kolben auf, die als Nährstoffquelle für die Bakterienkultur dienten. Dies unterscheidet sich von der üblichen Fermentation, bei der Zucker als Nährstoffquelle dient.

„Es ist, als würden wir die Bakterien nicht mit Kuchen füttern, sondern mit den Kerzen auf dem Kuchen“, so Zha.

Als dann der Inhalt der Kolben auf einer Wärmeplatte sanft umgewälzt wurde, gingen die Bakterien an die Arbeit. Nach 72 Stunden ließen die Wissenschaftler die Bakterien aus der flüssigen Kultur abtropfen, reinigten das Seidenprotein und gefriergetrockneten es. In diesem Stadium könnte das Protein, das zerrissenen Wattebällchen ähnelte, potenziell zu Garn gesponnen oder in andere nützliche Formen weiterverarbeitet werden.

„Das wirklich Spannende an diesem Prozess ist, dass er im Gegensatz zur heutigen Kunststoffproduktion wenig Energie verbraucht und keine giftigen Chemikalien benötigt“, so Zha. „Die besten Chemiker der Welt könnten Polyethylen nicht in Spinnenseide umwandeln, aber diese Bakterien können es. Wir machen uns wirklich zunutze, was die Natur entwickelt hat, um die Herstellung für uns zu übernehmen.“

Bevor jedoch Produkte aus recycelter Spinnenseide zur Realität werden, müssen die Wissenschaftler zunächst Wege finden, um das Seidenprotein effizienter herzustellen.
 
„Diese Studie zeigt, dass wir diese Bakterien verwenden können, um Plastik in Spinnenseide umzuwandeln. In unserer künftigen Arbeit werden wir untersuchen, ob wir die Bakterien oder andere Aspekte des Prozesses optimieren können, um die Produktion zu steigern“, sagte Koffas.

„Die Professoren Zha und Koffas repräsentieren die neue Generation von Chemie- und Bioingenieuren, die biologisches Engineering mit Materialwissenschaften zur Herstellung umweltfreundlicher Produkte verbinden. Ihre Arbeit ist ein neuartiger Ansatz zum Schutz der Umwelt und zur Verringerung unserer Abhängigkeit von nicht erneuerbaren Ressourcen“, sagte Shekhar Garde, Ph.D., Dekan der RPI School of Engineering.

Die Studie, die vom Erstautor Alexander Connor, der 2023 am RPI promoviert, und den Co-Autoren Jessica Lamb und Massimiliano Delferro vom Argonne National Laboratory durchgeführt wurde, wurde in der Zeitschrift „Microbial Cell Factories“ veröffentlicht.

Quelle:

Samantha Murray, Rensselaer

Foto: TheDigitalArtist, Pixabay
31.01.2024

Vliesstoff-Nanokomposit-Folien für tragbare Elektronik, Fahrzeuge und Gebäude

  • Kleine, leichte, dehnbare und kosteneffiziente thermoelektrische Komponenten bedeuten einen Durchbruch in der nachhaltigen Energieentwicklung und Abwärme-Rückgewinnung.
  • Flexible Energiegewinnungssysteme der nächsten Generation werden ihre Effizienz der Integration von Graphen-Nanoröhren verdanken. Sie bieten einfache Verarbeitbarkeit, stabile thermoelektrische Leistung, Flexibilität und robuste mechanische Eigenschaften.
  • Nanokomposite haben ein hohes Marktpotenzial bei der Herstellung von Generatoren für medizinische und intelligente Wearables, Fahrzeugsensoren und effizientes Gebäudemanagement.

Etwa die Hälfte der weltweit nutzbaren Energie wird aufgrund der begrenzten Effizienz von Energieumwandlungsgeräten als Wärme verschwendet. So geht zum Beispiel ein Drittel der Energie eines Fahrzeugs als Abwärme in den Abgasen verloren. Gleichzeitig enthalten die Fahrzeuge immer mehr elektronische Geräte, die elektrische Energie benötigen.

  • Kleine, leichte, dehnbare und kosteneffiziente thermoelektrische Komponenten bedeuten einen Durchbruch in der nachhaltigen Energieentwicklung und Abwärme-Rückgewinnung.
  • Flexible Energiegewinnungssysteme der nächsten Generation werden ihre Effizienz der Integration von Graphen-Nanoröhren verdanken. Sie bieten einfache Verarbeitbarkeit, stabile thermoelektrische Leistung, Flexibilität und robuste mechanische Eigenschaften.
  • Nanokomposite haben ein hohes Marktpotenzial bei der Herstellung von Generatoren für medizinische und intelligente Wearables, Fahrzeugsensoren und effizientes Gebäudemanagement.

Etwa die Hälfte der weltweit nutzbaren Energie wird aufgrund der begrenzten Effizienz von Energieumwandlungsgeräten als Wärme verschwendet. So geht zum Beispiel ein Drittel der Energie eines Fahrzeugs als Abwärme in den Abgasen verloren. Gleichzeitig enthalten die Fahrzeuge immer mehr elektronische Geräte, die elektrische Energie benötigen. Ein weiteres Beispiel sind leichte, am Körper zu tragende Sensoren für die Gesundheits- und Umweltüberwachung, die ebenfalls zunehmend gefragt sind. Die Möglichkeit, Abwärme oder Sonnenenergie in nutzbare elektrische Energie umzuwandeln, hat sich als Chance für ein nachhaltigeres Energiemanagement erwiesen. Praktische thermoelektrische Generatoren (TEGs) haben derzeit nur einen geringen Wirkungsgrad und sind relativ groß und schwer. Sie bestehen aus teuren oder korrosionsanfälligen Materialien, sind starr und enthalten oft giftige Elemente.
 
Kürzlich entwickelte, leicht zu verarbeitende, selbsttragende und flexible Vliesstoff-Nanokomposit-Folien zeigen hervorragende thermoelektrische Eigenschaften in Kombination mit guter mechanischer Robustheit. In einem aktuellen Artikel in ACS Applied Nano Materials wird erläutert, wie die Forscher ein thermoplastisches Polyurethan (TPU) mit TUBALLTM Graphen-Nanoröhrchen kombinieren, um ein Nanokompositmaterial herzustellen, das elektrische Energie aus Abwärmequellen gewinnen kann.
 
Dank ihres hohen Aspektverhältnisses und ihrer spezifischen Oberfläche verleihen Graphen-Nanoröhrchen dem TPU elektrische Leitfähigkeit, wodurch eine hohe thermoelektrische Leistung bei gleichbleibenden oder verbesserten mechanischen Eigenschaften erreicht werden kann. "Steifigkeit, Festigkeit und Zugzähigkeit wurden im Vergleich zu Bucky Papers um das 7-, 25- bzw. 250-fache verbessert. Die Nanokompositfolie zeigt einen niedrigen elektrischen Widerstand von 7,5*10-3 Ohm×cm, einen hohen E-Modul von 1,8 GPa, eine Bruchfestigkeit von 80 MPa und eine Bruchdehnung von 41%", sagt Dr. Beate Krause, Gruppenleiterin am Leibniz-Institut für Polymerforschung Dresden e. V.

Da es sich bei Graphen-Nanoröhren um ein grundlegend neues Material handelt, bietet sich die Möglichkeit, die derzeitigen TEG-Materialien durch umweltfreundlichere zu ersetzen. Die von solch thermoelektrischen Generatoren betriebenen Sensoren könnten als "intelligente Haut" für Fahrzeuge und Gebäude fungieren, indem sie Sensorfunktionen zur Leistungsüberwachung und Vermeidung potenzieller Probleme bereitstellen, bevor diese zu Ausfällen führen, und so eine optimale Betriebseffizienz gewährleisten. In Flugzeugen könnten drahtlose Nanokomposite als eigenständige Sensoren zur Überwachung von Enteisungssystemen dienen, wodurch ein umfangreiches Netz von elektrischen Kabeln überflüssig würde. Die hohe Flexibilität, Festigkeit und Zuverlässigkeit der mit Graphen-Nanoröhrchen ausgestatteten thermoelektrischen Materialien ermöglichen auch Anwendungen im Bereich der intelligenten tragbaren und medizinischen Geräte.

Quelle:

Leibniz-Institut für Polymerforschung Dresden e. V. / OCSiAl

Foto: rottonara, Pixabay
29.01.2024

Naturalistische Seide aus künstlicher Spinndrüse gesponnen

Unter der Leitung von Keiji Numata ist es Wissenschaftlern des RIKEN Center for Sustainable Resource Science in Japan zusammen mit Kollegen des RIKEN Pioneering Research Cluster gelungen, ein Gerät zu entwickeln, das künstliche Spinnenseide spinnt, die der natürlichen Spinnenseide sehr ähnlich ist. Die künstliche Seidendrüse war in der Lage, die komplexe molekulare Struktur der Seide nachzubilden, indem sie die verschiedenen chemischen und physikalischen Veränderungen nachahmte, die in der Seidendrüse einer Spinne natürlich auftreten. Diese umweltfreundliche Innovation ist ein großer Schritt in Richtung Nachhaltigkeit und könnte für verschiedene Branchen relevant sein. Diese Studie wurde am 15. Januar in der Fachzeitschrift Nature Communications veröffentlicht.

Unter der Leitung von Keiji Numata ist es Wissenschaftlern des RIKEN Center for Sustainable Resource Science in Japan zusammen mit Kollegen des RIKEN Pioneering Research Cluster gelungen, ein Gerät zu entwickeln, das künstliche Spinnenseide spinnt, die der natürlichen Spinnenseide sehr ähnlich ist. Die künstliche Seidendrüse war in der Lage, die komplexe molekulare Struktur der Seide nachzubilden, indem sie die verschiedenen chemischen und physikalischen Veränderungen nachahmte, die in der Seidendrüse einer Spinne natürlich auftreten. Diese umweltfreundliche Innovation ist ein großer Schritt in Richtung Nachhaltigkeit und könnte für verschiedene Branchen relevant sein. Diese Studie wurde am 15. Januar in der Fachzeitschrift Nature Communications veröffentlicht.

Spinnenseide ist bekannt für ihre außergewöhnliche Stärke, Flexibilität und Leichtigkeit, vergleichbar mit Stahl desselben Durchmessers, aber mit einem unvergleichlichen Verhältnis von Stärke zu Gewicht. Darüber hinaus ist sie biokompatibel, d. h. sie kann in der Medizin eingesetzt werden, und biologisch abbaubar. Warum wird dann nicht alles aus Spinnenseide hergestellt? Die Gewinnung von Spinnenseide in großem Maßstab hat sich aus verschiedenen Gründen als unpraktisch erwiesen, so dass Wissenschaftler ein Verfahren entwickeln mussten, um sie im Labor herzustellen.

Spinnenseide ist eine Biopolymerfaser, die aus großen Proteinen mit sich stark wiederholenden Sequenzen, den sogenannten Spidroinen, besteht. In den Seidenfasern befinden sich molekulare Unterstrukturen, die so genannten β-Faltblätter, die richtig ausgerichtet sein müssen, damit die Seidenfasern ihre einzigartigen mechanischen Eigenschaften erhalten. Die Wiederherstellung dieser komplexen molekularen Struktur hat die Wissenschaftler jahrelang vor ein Rätsel gestellt. Anstatt zu versuchen, den Prozess von Grund auf neu zu entwickeln, wählten die RIKEN-Wissenschaftler den Ansatz der Biomimikry. Numata erklärt: „In dieser Studie haben wir versucht, die natürliche Spinnenseidenproduktion mit Hilfe der Mikrofluidik zu imitieren, bei der kleine Mengen von Flüssigkeiten durch enge Kanäle fließen und manipuliert werden. Man könnte sogar sagen, dass die Seidendrüse der Spinne als eine Art natürliches mikrofluidisches Gerät funktioniert.“

Das von den Wissenschaftlern entwickelte Gerät sieht aus wie ein kleiner rechteckiger Kasten, in den winzige Kanäle eingearbeitet sind. Die Spidroin-Vorläuferlösung wird an einem Ende platziert und dann mit Hilfe von Unterdruck zum anderen Ende gezogen. Während die Spidroine durch die mikrofluidischen Kanäle fließen, sind sie präzisen Veränderungen der chemischen und physikalischen Umgebung ausgesetzt, die durch das Design des mikrofluidischen Systems ermöglicht werden. Unter den richtigen Bedingungen bauten sich die Proteine selbst zu Seidenfasern mit ihrer charakteristischen komplexen Struktur auf.

Um die richtigen Bedingungen zu finden, experimentierten die Wissenschaftler und konnten schließlich die Wechselwirkungen zwischen den verschiedenen Bereichen des mikrofluidischen Systems optimieren. Unter anderem entdeckten sie, dass es nicht funktionierte, die Proteine mit Kraft durchzudrücken. Nur wenn sie Unterdruck einsetzten, um das Spidroin so zu ziehen, dass es sich auflöst, konnten kontinuierliche Seidenfasern mit der korrekten Ausrichtung der β-Faltblätter entstehen.

„Es war überraschend, wie robust das mikrofluidische System war, sobald die verschiedenen Bedingungen festgelegt und optimiert waren“, sagt der leitende Wissenschaftler Ali Malay, einer der Koautoren der Studie. „Der Aufbau der Fasern erfolgte spontan, extrem schnell und in hohem Maße reproduzierbar. Wichtig ist, dass die Fasern die ausgeprägte hierarchische Struktur aufwiesen, die in natürlichen Seidenfasern zu finden ist.“

Die künstliche Herstellung von Seidenfasern mit dieser Methode könnte zahlreiche Vorteile mit sich bringen. Sie könnte nicht nur dazu beitragen, die negativen Auswirkungen der derzeitigen Textilherstellung auf die Umwelt zu verringern, sondern die biologisch abbaubare und biokompatible Beschaffenheit der Spinnenseide macht sie ideal für biomedizinische Anwendungen wie Nahtmaterial und künstliche Bänder.

„Im Idealfall wollen wir eine Wirkung in der realen Welt erzielen“, sagt Numata. „Um dies zu erreichen, müssen wir unsere Faserproduktionsmethode skalieren und zu einem kontinuierlichen Prozess machen. Außerdem werden wir die Qualität unserer künstlichen Spinnenseide anhand verschiedener Metriken bewerten und auf dieser Grundlage weitere Verbesserungen vornehmen.“

Quelle:

RIKEN Center for Sustainable Resource Science, Japan

Foto: Walmart Inc.
15.01.2024

Was ist eine virtuelle Umkleide? Vorzüge und Pioniere

Eines der Hauptprobleme beim Online-Shopping ist, dass Verbraucher Produkte nicht anfassen, fühlen und erleben kann. Dieses Problem ist bei Modeprodukten noch schwieriger, da die richtige Passform für die Kaufentscheidung auschlaggebend ist. Die virtuelle Umkleide (Virtual Fitting Room, VFR), eine Technologie, die es den Verbrauchern ermöglicht, Größe und Passform zu testen, ohne die Kleidung anprobieren zu müssen, räumt mit dieser Sorge auf.

Was ist eine virtuelle Umkleide (VFR)?
Eine virtuelle Umkleide (VFR) ist eine Funktion, die das Outfit eines Kunden anzeigt und visualisiert, ohne dass er die Artikel physisch anprobieren und anfassen muss. VFR nutzt erweiterte Realität (Augmented Reality, AR) und künstliche Intelligenz (KI). Bei der Verwendung von AR für virtuelle Umkleiden scannt eine Webcam die Körperform der Kunden und erstellt ein 360-Grad-3D-Modell auf der Grundlage ihrer Körperform.

Eines der Hauptprobleme beim Online-Shopping ist, dass Verbraucher Produkte nicht anfassen, fühlen und erleben kann. Dieses Problem ist bei Modeprodukten noch schwieriger, da die richtige Passform für die Kaufentscheidung auschlaggebend ist. Die virtuelle Umkleide (Virtual Fitting Room, VFR), eine Technologie, die es den Verbrauchern ermöglicht, Größe und Passform zu testen, ohne die Kleidung anprobieren zu müssen, räumt mit dieser Sorge auf.

Was ist eine virtuelle Umkleide (VFR)?
Eine virtuelle Umkleide (VFR) ist eine Funktion, die das Outfit eines Kunden anzeigt und visualisiert, ohne dass er die Artikel physisch anprobieren und anfassen muss. VFR nutzt erweiterte Realität (Augmented Reality, AR) und künstliche Intelligenz (KI). Bei der Verwendung von AR für virtuelle Umkleiden scannt eine Webcam die Körperform der Kunden und erstellt ein 360-Grad-3D-Modell auf der Grundlage ihrer Körperform.

KI unterstützt VFR außerdem durch die Verwendung von Algorithmen und maschinellem Lernen, um ein 3D-Ganzkörpermodell eines vor der Kamera stehenden Käufers zu erstellen. Eine Kombination aus AR- und KI-Technologie ermöglicht es, Artikel auf Echtzeitbildern als Live-Video zu platzieren, sodass Kunden die Größe, den Stil und die Passform der Produkte, die sie kaufen möchten, überprüfen können.

Die Kunden können Kleidung und Schuhe zu Hause anprobieren, ohne ein Geschäft zu besuchen. Dazu müssen sie zunächst sicherstellen, dass sich die richtigen Einstellungen auf ihrem Telefon finden. Dann laden sie die mobilen Anwendungen einer Marke mit der Funktion VFR herunter oder besuchen die Websites von Bekleidungsmarken, die diese Funktion unterstützen, und laden dann ein Foto ihrer Körperform hoch. Bei einigen Marken können die Kunden einen Avatar mit ihrer Körperform erstellen, um die Modeartikel virtuell zu testen, anstatt ein Foto von sich selbst hochzuladen.

Welchen Nutzen hat der Einsatz einer virtuellen Umkleide für Modehändler?

  • Bietet ein bequemes Einkaufserlebnis
    Eine Studie der National Retail Federation aus dem Jahr 2020 hat ergeben, dass 97 % der Verbraucher einen Einkauf abgebrochen oder die Suche nach dem gewünschten Artikel unterbrochen haben, weil der Vorgang zu umständlich war.
    Die befragten Käufer gaben nicht nur an, dass das persönliche Einkaufen unbequem ist, sondern dass sie das Online-Shopping als noch unbequemer empfinden.
    Mit der VFR entfallen all diese Vorgänge. Die Kunden können in eine virtuelle Umkleide gehen und schnell sehen, wie die Kleidung aussieht, ohne sich umziehen zu müssen.
     
  • Überwindet die Grenzen des Online-Shoppings
    Im Jahr 2017 bevorzugten 62 % der Kunden den Einkauf in physischen Bekleidungsgeschäften, weil sie dort die Produkte sehen, anfassen, fühlen und erleben konnten. Dies war ein großes Problem, das das Online-Shopping nicht lösen konnte.
    VFR löst dieses Problem effektiv. Laut einem Retail Perceptions Report gaben etwa 40 % der Käufer an, dass sie bereit wären, mehr zu bezahlen, wenn sie das Produkt durch AR-Technologie erleben könnten. Durch die Integration neuer Technologien macht VFR das Einkaufen zum Vergnügen und bietet den Kunden ein personalisiertes Einkaufserlebnis, das mehr Menschen in die Online-Kanäle locken kann.
     
  • Reduziert die Rücksendequote
    Hohe Rücksendequoten bereiten den Modemarken große administrative Probleme. Außerdem drohen sie die Gewinne der Modemarken zu schmälern, wenn sie kostenlose Rücksendungen anbieten. 30 % der Rücksendungen beim Einkauf von Mode im elektronischen Handel sind auf den Kauf von Produkten in zu kleinen Größen zurückzuführen, weitere 22 % auf den Kauf von Produkten in zu großen Größen.
    Mit der VFR wird dieses Problem jedoch verringert. Ob im Geschäft oder online, Menschen können Passform und Größe von Artikeln überprüfen, ohne sie selbst tragen zu müssen.

Welche Marken nutzen bereits die VFR-Technologie?
Gucci

Gucci ist die erste Luxusmarke, die VFR einsetzt. Sie hat sich mit Snapchat zusammengetan, um eine AR-Kampagne zur Schuhanprobe zu starten. Dabei wurde eine virtuelle Linse erstellt, die eine digitale Version des Schuhs auf dem Fuß des Käufers überlagert, wenn dieser mit einer Handykamera fotografiert wird.

Zusammen mit dem "Shop Now"-Button, der die Kunden zum Online-Shop führt, erreichte Gucci 18,9 Millionen Snapchat-Nutzer und meldete einen positiven Return on Ad Spend (ROAS), eine Marketing-Kennzahl, die den Umsatz aller für die Kampagne ausgegebenen Werbegelder misst.

Otero Menswear
Otero Menswear ist eine Marke, die sich auf Bekleidung für Männer unter 1,78 m (5'10") konzentriert. Otero hat seinen Online-Shop um die VFR-Software erweitert, um seinen Kunden perfekt passende Größen anbieten zu können. Zunächst werden den Kunden vier kurze Fragen zu ihrer Größe, Beinlänge, Taillenumfang und ihrem Körpertyp gestellt. Dann wird ein virtueller Avatar angeboten, der den Antworten entspricht. Anhand dieses Avatars können die Kunden dann sehen, wie die Otero-Kleidung in verschiedenen Größen an ihnen aussehen würde.

Walmart
Im Mai 2021 kündigte Walmart die Übernahme von Zeekit, einer Plattform für virtuelle Umkleiden, an, um den Kunden während der Pandemie ein verbessertes und soziales Einkaufserlebnis bieten zu können.

Wenn Kunden Bilder von sich selbst hochladen und ihre Körpermaße eingeben, erstellt Zeekit einen virtuellen Körper, den die Kunden dann entsprechend anziehen können. Kunden stellen einfach ihre Fotos ein oder wählen virtuelle Modelle auf der Plattform aus, die am besten zu ihrer Größe, ihrem Körper und ihrem Hautton passen. Sie können ihre virtuelle Kleidung sogar mit anderen teilen, um verschiedene Meinungen einzuholen. Durch die Übernahme von VFR bietet Walmart seinen Kunden ein umfassendes und soziales Erlebnis beim digitalen Einkaufen.

Laut einer Studie von Valuates Reports wird erwartet, dass der Umsatz des globalen Marktes für virtuelle Umkleiden bis 2025 auf 6,5 Millionen Dollar ansteigen wird. Durch die Einführung der VFR werden die Verbraucher in der Lage sein, die Bequemlichkeit einer modernen Einkaufsumgebung zu erleben. Gleichzeitig können Modehändler ihren Online-Umsatz steigern und die Rücksendequote senken, indem sie ihren Kunden mithilfe der VFR-Technologie ein personalisiertes Online-Einkaufserlebnis bieten.

Quelle:

Heekyeong Jo und B. Ellie Jin
Dieser Artikel wurde ursprünglich von Mitgliedern des Wilson College of Textiles' Fashion Textile and Business Excellence Cooperative veröffentlicht

Bäckerei Pexels auf Pixabay
08.01.2024

BakeTex: Textile Backunterlage hilft Bäckereien beim Energiesparen

Die anhaltende Energiekrise bringt das Bäckerhandwerk mehr und mehr an seine Grenzen. Allerorts müssen Bäckereien schließen, weil sie die stark gestiegenen Kosten für Strom und Gas nicht mehr aufbringen können. Der Einsatz energieeffizienter Backöfen und die Optimierung der Produktionsprozesse sind wichtige Bausteine, die helfen, Energie einzusparen. Forscher des Fraunhofer-Anwendungszentrums für Textile Faserkeramiken TFK in Münchberg haben jetzt einen weiteren Baustein entwickelt: eine textile Backunterlage.
 
In Bäckereien werden standardmäßig Bleche als Unterlage für die Backware in Kombination mit Backpapier oder Mehl eingesetzt, was nicht nur zu hohen Mengen an Abfall, sondern auch zu gesundheitlichen Beeinträchtigungen (Bäckerasthma) führt. Die Backbleche sind zudem schwer und erhöhen durch ihre Masse den Energieverbrauch im Ofen, da sie bei jedem Backvorgang mit aufgeheizt werden müssen.

Die anhaltende Energiekrise bringt das Bäckerhandwerk mehr und mehr an seine Grenzen. Allerorts müssen Bäckereien schließen, weil sie die stark gestiegenen Kosten für Strom und Gas nicht mehr aufbringen können. Der Einsatz energieeffizienter Backöfen und die Optimierung der Produktionsprozesse sind wichtige Bausteine, die helfen, Energie einzusparen. Forscher des Fraunhofer-Anwendungszentrums für Textile Faserkeramiken TFK in Münchberg haben jetzt einen weiteren Baustein entwickelt: eine textile Backunterlage.
 
In Bäckereien werden standardmäßig Bleche als Unterlage für die Backware in Kombination mit Backpapier oder Mehl eingesetzt, was nicht nur zu hohen Mengen an Abfall, sondern auch zu gesundheitlichen Beeinträchtigungen (Bäckerasthma) führt. Die Backbleche sind zudem schwer und erhöhen durch ihre Masse den Energieverbrauch im Ofen, da sie bei jedem Backvorgang mit aufgeheizt werden müssen.

Vor diesem Hintergrund hatte die Bayerische Forschungsstiftung im Jahr 2021 ein Forschungsprojekt bewilligt, in dem eine Alternative zu herkömmlichen Backblechen entwickelt werden sollte und das 2023 erfolgreich abgeschlossen werden konnte. Projektpartner waren das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK aus Münchberg, die Fickenschers Backhaus GmbH aus Münchberg und die Weberei Wilhelm Zuleeg GmbH aus Helmbrechts.

Ziel des Projekts war es, eine energiesparende, schadstofffreie und wiederverwendbare textile Backunterlage mit integrierter Antihaftwirkung für den Einsatz in industriellen Bäckereien zu entwickeln. Leichtgewichtige und hitzebeständige Textilien bieten das Potenzial, die Vorheiztemperatur im Backofen zu senken und somit den Energieverbrauch zu reduzieren.
 
In einem ersten Schritt wurde daher ein dünnes para-Aramidgewebe aus Langstapelfasergarn mit 120 g/m² gefertigt und auf einen metallischen Rahmen gespannt. „Für die Webbindung hat sich die Dreherbindung als besonders geeignet erwiesen. Ihre charakteristische Gitterstruktur gewährleistet, dass das Textil nicht nur leicht, sondern auch luftdurchlässig ist“, so Silke Grosch vom Fraunhofer-Anwendungszentrum TFK.

„Außerdem kann sich das Gewebe durch das Fixieren der Fäden beim Waschen nicht verziehen und bleibt für lange Zeit formstabil“. Eine vollflächige Silikonbeschichtung sorgt schließlich dafür, dass die Backware an der Backunterlage nicht anhaftet. Dadurch kann auf das bislang notwendige Backpapier und die Mehlschicht verzichtet werden. Damit am Ende die Brötchen genauso rösch und braun aus dem Ofen kommen wie bei einem Standardblech, muss lediglich das Backprogramm angepasst werden. Ein wesentlicher Vorteil der textilen Backunterlage besteht weiterhin darin, dass sie faltbar ist und damit platzsparend gelagert werden kann.  
Im Zuge der vierten industriellen Revolution (Industrie 4.0) wird die Backunterlage mit intelligenten Zusatzfunktionen ausgestattet sein. Zum einen können die Produktionsdaten im Backbetrieb mittels RFID-Chips oder QR-Codes ermittelt werden, zum anderen können Backwaren über ein individuelles Branding gezielt beworben werden.

Prof. Dr. Frank Ficker, Leiter des Fraunhofer-Anwendungszentrums TFK resümiert: „Mit der textilen Backunterlage haben wir gemeinsam mit unseren Projektpartnern ein zeitgemäßes und ressourcenschonendes Produkt entwickelt, das sich durch geringes Gewicht und hohe Flexibilität auszeichnet. Zusammen mit den möglichen Energieeinsparungen wird es dadurch für viele Bäckereibetriebe interessant.“

Das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg ist spezialisiert auf die Entwicklung, Herstellung und Prüfung textiler keramischer Komponenten. Es gehört zum Fraunhofer-Zentrum für Hochtemperatur-Leichtbau HTL in Bayreuth, eine Einrichtung des Fraunhofer-Instituts für Silicatforschung ISC mit Hauptsitz in Würzburg.

Quelle:

Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK

Verbesserte Fertigungsmethode für Wundverschlüsse (c) Wilson College of Textiles
03.01.2024

Verbesserte Fertigungsmethode für Wundverschlüsse

Wenn Sie schon einmal genäht wurden oder einen chirurgischen Eingriff hatten, haben Sie vielleicht eine Wundnaht erhalten. Das sind die Fäden, die zum Schließen von Wunden oder zum Zusammenfügen von Gewebe zu anderen Zwecken verwendet werden.

Aber wussten Sie, dass es verschiedene Arten von Nahtmaterial gibt, die sich auf Ihre Erfahrungen beim Arzt oder Chirurgen auswirken können?

So können beispielsweise „barbed sutures“ (chirurgisches Nahtmaterial mit Widerhaken) die Zeit, die Sie auf dem Operationstisch verbringen, verkürzen und die Wahrscheinlichkeit chirurgischer Komplikationen verringern. Diese Art von Naht hat ihre Wurzeln im amerikanischen Forschungsdreieck der drei Universitäten North Carolina State University, Duke University und University of North Carolina at Chapel Hill, sie wird von Studenten und Lehrkräften des Wilson College of Textiles weiterentwickelt.

Wenn Sie schon einmal genäht wurden oder einen chirurgischen Eingriff hatten, haben Sie vielleicht eine Wundnaht erhalten. Das sind die Fäden, die zum Schließen von Wunden oder zum Zusammenfügen von Gewebe zu anderen Zwecken verwendet werden.

Aber wussten Sie, dass es verschiedene Arten von Nahtmaterial gibt, die sich auf Ihre Erfahrungen beim Arzt oder Chirurgen auswirken können?

So können beispielsweise „barbed sutures“ (chirurgisches Nahtmaterial mit Widerhaken) die Zeit, die Sie auf dem Operationstisch verbringen, verkürzen und die Wahrscheinlichkeit chirurgischer Komplikationen verringern. Diese Art von Naht hat ihre Wurzeln im amerikanischen Forschungsdreieck der drei Universitäten North Carolina State University, Duke University und University of North Carolina at Chapel Hill, sie wird von Studenten und Lehrkräften des Wilson College of Textiles weiterentwickelt.

Dr. Gregory Ruff, ein landesweit anerkannter plastischer Chirurg, erfand den innovativen Verschluss erstmals 1991 in Chapel Hill, North Carolina.

„Ich habe darüber gegrübelt, dass wir Wunden mit einer Schlaufe und einem Knoten zusammennähen, und wenn man sie zu fest zusammenbindet, kann das die Durchblutung einschränken und das Gewebe in der Schlaufe zerstören“, erinnert sich Dr. Ruff. Ich habe weiter über Tiere nachgedacht, und mir kam der Stachelschweinkiel in den Sinn. Und das Aha-Erlebnis war: ‚Was wäre, wenn wir einen Stachel auf der einen Seite der Wunde anbringen und einen anderen auf der anderen Seite der Wunde, so dass es keine Schlaufe gibt: Die Stacheln gehen rein, aber sie kommen nicht wieder raus?‘“

Wie der Name schon sagt, haben Widerhaken-Nähte kleine Fortsätze, die aus ihnen herausschießen und sich im Gewebe verankern können: Denken Sie an Stacheldraht oder einen Angelhaken. Diese „Stacheln“ oder Widerhaken ermöglichen es dem Nahtmaterial, sich selbst zu verankern. Da kein Knoten zur Sicherung der Naht erforderlich ist, erfolgt der Verschluss schneller, und das Fehlen von Knoten und einschnürenden Schlingen fördert die Heilung. Zudem können Chirurgen dadurch auch mehr Operationen terminieren.

Bald nach seinem Aha-Erlebnis gründete Dr. Ruff sein eigenes Unternehmen, Quill Medical, um diese Widerhaken-Nähte herzustellen. Er verfügte zwar über das medizinische Fachwissen und einen soliden Geschäftspartner, doch suchte Dr. Ruff jemanden, der ihn in Bezug auf die Materialzusammensetzung des Nahtmaterials beraten konnte. Die biomedizinische Textilforschungsgruppe des Wilson College unter der Leitung von Professor Martin King erwies sich schnell als der geeignete Partner.

In den Laboren des Wilson College führten Kings Doktoranden eine Reihe von Tests mit Ruffs Nahtmaterial in verschiedenen Gewebetypen (wie Haut, Muskeln usw.) durch. Einer dieser Studenten, Nilesh Ingle, fand heraus, dass die Widerhaken am besten funktionierten, wenn ihre Winkel speziell auf die Art des zu nähenden Gewebes zugeschnitten waren.

Jahre danach baut einer von Kings derzeitigen Doktoranden auf diesen Forschungsergebnissen auf.

Herausforderungen verstehen und innovative Lösungen anbieten
Fast drei Jahrzehnte nach der Erfindung der Widerhaken-Naht verwenden die meisten Chirurgen trotz der von Forschern und Chirurgen dokumentierten Vorteile immer noch herkömmliche Nähte. Aber wieso?

Karuna Nambi Gowri, Doktorandin der Faser- und Polymerwissenschaften in Kings Forschungsgruppe, nennt dafür zwei Gründe. Der erste Grund ist der Widerstand gegen Veränderungen. Die meisten praktizierenden Chirurgen haben den Umgang mit Nahtmaterial gelernt, bevor chirurgisches Nahtmaterial mit Widerhaken auf breiter Front verfügbar wurde.

Das zweite Hindernis für die Verwendung von solchen Widerhakenfäden ist ihre Beschaffung. Widerhaken-Nähte sind in der Regel sowohl teuer als auch schwer zu beschaffen. Das liegt daran, dass das derzeitige Verfahren zu ihrer Herstellung (mechanisch und mit Klingen) sowohl zeitlich als auch ressourcenmäßig ineffizient ist.

Hier setzt die Forschung von Nambi Gowri in der Forschungsgruppe für biomedizinische Textilien des Wilson College an. Sie entwickelt eine schnellere und billigere Methode zur Herstellung von Nahtmaterial mit Widerhaken in der gleichen Qualität.

„Wenn ich mit einem Laser arbeite, ist die Herstellungszeit im Vergleich zu einer mechanischen Widerhakentechnik ziemlich kurz“, so Nambi Gowri.

Der Wechsel von einer mechanischen Methode zu einer Lasermethode hat einen weiteren Vorteil. „Die Manipulation des Widerhakennahtmaterials selbst ist mit einem Laser einfacher“, betont sie.

Mit anderen Worten: Der Einsatz des Lasers ermöglicht es Nambi Gowri, die von früheren Forschern vorgeschlagenen individuellen Widerhakengeometrien oder -winkel in kommerziellem Maßstab anzuwenden. Mit diesen maßgeschneiderten Geometrien kann das Nahtmaterial mit Widerhaken für die Art des Gewebes, das es verbinden soll, optimiert werden.

Neben dem neuen Verfahren entwickelt Nambi Gowri auch ein neues Nahtmaterial. „Ich bin die erste, die Catgut-Nähte mit Widerhaken untersucht hat“, erklärt sie.

Catgut war eines der ersten Materialien, die zur Herstellung von Nahtmaterial verwendet wurden. Der Faden wird aus Gewebe hergestellt, das dem Magen eines Tieres entnommen wird. Während die Industrie von diesem Material zugunsten synthetischer Polymere abgerückt ist, sieht Nambi Gowri das Potenzial von Catgut für Widerhaken-Nähte, da es sich schnell abbaut.

„Dies sind nützliche externe Wundverschlüsse“, sagt sie. „Da unser Körper so viel Kollagen enthält und Catgut zu 90 % aus Kollagen besteht, ist es ein geeigneteres Polymer, das in menschlichem Gewebe verwendet werden kann."

Praktische Erfahrungen prägen die Forschung
In der Zwischenzeit hat Nambi Gowri praktische Erfahrungen gesammelt, die sie in ihre Forschung einfließen lässt, indem sie alle Widerhakennähte herstellt, die bei den Mikro-Facelift-Operationen von Dr. Ruff verwendet werden.

Die Operation selbst wird durch die Form und die Materialzusammensetzung des Nahtmaterials ermöglicht: Poly-4-hydroxybutyrat (P4HB). Dieses Polymer ist in unserem Körper bereits natürlich vorhanden, so dass Nahtmaterial aus P4HB mit der Zeit auf natürliche und sichere Weise vom Körper aufgenommen wird. Das bedeutet, dass die Patienten nach der Operation keinen Termin für die Entfernung des Nahtmaterials vereinbaren müssen.

P4HB bietet außerdem die perfekte Kombination aus Festigkeit und Elastizität, um das Gesichtsgewebe zu stabilisieren, bis die Wunde verheilt ist. Die Widerhaken hingegen ermöglichen es, die Naht zu platzieren und sicher in der Haut zu verankern, ohne dass große Schnitte erforderlich sind.

„Die Haut strafft sich sofort“, sagt Dr. Ruff über das Verfahren, das Patienten aus dem ganzen Land anzieht. „Ich muss also keine Haare entfernen und keine Narbe am Haaransatz hinterlassen.“

“Diese Fäden sind weltweit nicht im Handel erhältlich. Um Nahtmaterial mit Widerhaken in unterschiedlicher Größe zuverlässig und einheitlich für den Einsatz in der klinischen Praxis mechanisch zu verarbeiten, braucht man also Geschick, Erfahrung und Kenntnisse in der Qualitätskontrolle“, sagt Professor King über die Arbeit von Nambi Gowri.

Dadurch hat Karuna ein praktisches Verständnis für die Nähte gewonnen, die sie zu verbessern hofft. Ihr Wissen über Fasern und Polymere habe dabei eine Schlüsselrolle gespielt, um alle Aspekte ihrer Forschung anzugehen.

„Alle analytischen Techniken, die für die Charakterisierung von Nahtmaterial verwendet werden - wie die Bestimmung mechanischer Eigenschaften und die Messung der Zugfestigkeit - stammen eigentlich aus meinem Wissen über Textilien“, sagt sie. „Ich wende meine Kenntnisse in der Polymerchemie an, um sicherzustellen, dass der Laser nicht dazu führt, dass das Nahtmaterial degradiert, schmilzt oder thermische Schäden erleidet.“

Wie geht es weiter?
Nambi Gowri arbeitet an der Patentierung ihrer Entwürfe und ist zuversichtlich, dass sie mit ihrer Dissertation nach ihrem Abschluss im Bereich Forschung und Entwicklung (F&E) erfolgreich sein wird.

In der Zwischenzeit hat sie bereits herausgefunden, wie ihre Forschung einen breiteren Nutzen haben kann.

„Dr. Dan Duffy, DVM, ein Chirurg am NC State College für Veterinärmedizin, ist ebenfalls an der Verwendung von Widerhaken-Nähten interessiert, um gerissene und kaputte Sehnen bei seinen Tieren zu behandeln, aber er hält die Kosten für den Kauf von kommerziellen Widerhaken-Nähten für unerschwinglich. Wir müssen also zusammenarbeiten", sagt King. „Karuna als Retterin!“

Quelle:

North Carolina State University, Sarah Stone

Neue leitfähige Faser auf Baumwollbasis für Smart Textiles entwickelt Foto: Dean Hare, WSU Photo Services
29.12.2023

Neue leitfähige Faser auf Baumwollbasis für Smart Textiles entwickelt

Ein einzelner Faserstrang, der an der Washington State University entwickelt wurde, hat die Flexibilität von Baumwolle und die elektrische Leitfähigkeit eines Polymers namens Polyanilin.

Das neu entwickelte Material zeigt gutes Potenzial für tragbare E-Textiles. Die WSU-Forscher testeten die Fasern mit einem System, das eine LED-Lampe mit Strom versorgte, und einem anderen, das Ammoniakgas aufspürte. Ihre Ergebnisse veröffentlichten sie in der Zeitschrift „Carbohydrate Polymers“.

„Wir haben eine Faser aus zwei Schichten: eine Schicht ist die herkömmliche Baumwolle, die flexibel und stark genug für den täglichen Gebrauch ist, und die andere Seite ist das leitfähige Material", sagt Hang Liu, Textilwissenschaftlerin an der WSU und Autorin der Studie.

„Die Baumwolle kann das leitfähige Material tragen, das die gewünschte Funktion erfüllen kann.“

Ein einzelner Faserstrang, der an der Washington State University entwickelt wurde, hat die Flexibilität von Baumwolle und die elektrische Leitfähigkeit eines Polymers namens Polyanilin.

Das neu entwickelte Material zeigt gutes Potenzial für tragbare E-Textiles. Die WSU-Forscher testeten die Fasern mit einem System, das eine LED-Lampe mit Strom versorgte, und einem anderen, das Ammoniakgas aufspürte. Ihre Ergebnisse veröffentlichten sie in der Zeitschrift „Carbohydrate Polymers“.

„Wir haben eine Faser aus zwei Schichten: eine Schicht ist die herkömmliche Baumwolle, die flexibel und stark genug für den täglichen Gebrauch ist, und die andere Seite ist das leitfähige Material", sagt Hang Liu, Textilwissenschaftlerin an der WSU und Autorin der Studie.

„Die Baumwolle kann das leitfähige Material tragen, das die gewünschte Funktion erfüllen kann.“

Die Idee ist, solche Fasern als Sensoraufnäher mit flexiblen Schaltkreisen in die Kleidung zu integrieren, auch wenn es noch weiterer Entwicklung bedarf. Diese Aufnäher könnten Teil der Uniformen von Feuerwehrleuten, Soldaten oder Arbeitern sein, die mit Chemikalien umgehen, um gefährliche Expositionen zu erkennen. Andere Anwendungen sind Gesundheitsüberwachungen oder Sporthemden, die mehr können als die derzeitigen Fitnessmonitore.

„Es gibt bereits einige intelligente Wearables, wie z. B. intelligente Uhren, die die Bewegung und die menschlichen Vitalparameter überwachen können, aber wir hoffen, dass in Zukunft auch die Alltagskleidung diese Funktionen erfüllen kann“, so Liu. „Mode ist nicht nur Farbe und Stil, wie viele Leute denken: Mode ist Wissenschaft.“

In dieser Studie arbeitete das WSU-Team daran, die Herausforderungen beim Mischen des leitfähigen Polymers mit Baumwollzellulose zu meistern. Polymere sind Stoffe mit sehr großen Molekülen, die ein sich wiederholendes Muster aufweisen. In diesem Fall verwendeten die Forscher Polyanilin, auch bekannt als PANI, ein synthetisches Polymer mit leitenden Eigenschaften, das bereits in Anwendungen wie der Herstellung von Leiterplatten verwendet wird.

Polyanilin ist zwar von Natur aus leitfähig, aber spröde und kann daher nicht zu einer Faser für Textilien verarbeitet werden. Um dieses Problem zu bewältigen, lösten die WSU-Forscher Baumwollzellulose aus recycelten T-Shirts in einer Lösung und das leitfähige Polymer in einer anderen Lösung auf. Diese beiden Lösungen wurden dann zusammengeführt, und das Material wurde zu einer Faser extrudiert.

Das Ergebnis zeigte eine gute Grenzflächenbindung, was wiederum bedeutet, dass die Moleküle der verschiedenen Materialien durch Dehnung und Biegung zusammenbleiben würden.

Die richtige Mischung an der Schnittstelle zwischen Baumwollzellulose und Polyanilin zu erzielen, sei ein schwieriger Balanceakt, so Liu.

„Wir wollten, dass diese beiden Lösungen so zusammenwirken, dass sich die Baumwolle und das leitfähige Polymer bei Kontakt bis zu einem gewissen Grad vermischen und sozusagen zusammenkleben, aber wir wollten nicht, dass sie sich zu sehr vermischen, da sonst die Leitfähigkeit beeinträchtigt würde“, sagte sie.

Weitere WSU-Autoren dieser Studie waren der Hauptautor Wangcheng Liu sowie Zihui Zhao, Dan Liang, Wei-Hong Zhong und Jinwen Zhang. Diese Forschung wurde von der National Science Foundation und dem Walmart Foundation Project unterstützt.

Quelle:

Sara Zaske, WSU News & Media Relations

Chemiker entwickelt Kunststoffalternativen aus Proteinen und Kleiderresten Foto: Challa Kumar, emeritierter Professor für Chemie, in seinem Labor. (zur Verfügung gestelltes Foto)
21.12.2023

Chemiker entwickelt Kunststoffalternativen aus Proteinen und Kleiderresten

Challa Kumar hat Methoden zur Herstellung neuartiger kunststoffähnlicher Materialien aus Proteinen und Textilien entwickelt.

Jedes Jahr fallen weltweit 400 Millionen Tonnen Plastikmüll an. Zwischen 19 und 23 Millionen Tonnen dieses Plastikmülls gelangen in aquatische Ökosysteme, der Rest landet im Boden. Weitere 92 Millionen Tonnen Textilabfälle werden zusätzlich jährlich erzeugt.

Challa Kumar, emeritierter Chemieprofessor, war es leid, dass die Menschen immer mehr Giftmüll in die Umwelt pumpen und fühlte sich gezwungen, etwas zu tun. Für den Chemiker bedeutete dies, sein Fachwissen für die Entwicklung neuer, nachhaltiger Materialien einzusetzen.

Challa Kumar hat Methoden zur Herstellung neuartiger kunststoffähnlicher Materialien aus Proteinen und Textilien entwickelt.

Jedes Jahr fallen weltweit 400 Millionen Tonnen Plastikmüll an. Zwischen 19 und 23 Millionen Tonnen dieses Plastikmülls gelangen in aquatische Ökosysteme, der Rest landet im Boden. Weitere 92 Millionen Tonnen Textilabfälle werden zusätzlich jährlich erzeugt.

Challa Kumar, emeritierter Chemieprofessor, war es leid, dass die Menschen immer mehr Giftmüll in die Umwelt pumpen und fühlte sich gezwungen, etwas zu tun. Für den Chemiker bedeutete dies, sein Fachwissen für die Entwicklung neuer, nachhaltiger Materialien einzusetzen.

„Jeder sollte darüber nachdenken, wo immer er kann, auf fossilen Brennstoffen basierende Materialien durch natürliche zu ersetzen, um unserer Zivilisation zu helfen zu überleben", sagt Kumar. „Das Haus brennt, wir können nicht warten. Wenn das Haus brennt und man beginnt, einen Brunnen zu graben, dann wird das nicht funktionieren. Es ist an der Zeit, das Haus zu löschen.“

Kumar hat zwei Technologien entwickelt, die Proteine bzw. Textilien verwenden, um neue Materialien zu schaffen. Die Technology Commercialization Services (TCS) der UConn haben für beide Technologien vorläufige Patente angemeldet.

Inspiriert von der Fähigkeit der Natur, eine Vielzahl funktioneller Materialien zu konstruieren, entwickelten Kumar und sein Team eine Methode zur Herstellung stufenlos steuerbarer, ungiftiger Materialien.

„Die Chemie ist das Einzige, was uns in die Quere kommt“, so Kumar. „Wenn wir die Proteinchemie verstehen, können wir Proteinmaterialien herstellen, die so stark wie ein Diamant oder so weich wie eine Feder sind.“

Die erste Innovation ist ein Verfahren zur Umwandlung natürlich vorkommender Proteine in kunststoffähnliche Materialien. Kumars Student, Ankarao Kalluri '23 Ph.D., arbeitete an diesem Projekt.

Proteine haben „reaktive Gruppen“ auf ihrer Oberfläche, die mit Substanzen reagieren können, mit denen sie in Berührung kommen. Kumar und sein Team nutzten sein Wissen über die Funktionsweise dieser Gruppen, um Proteinmoleküle durch eine chemische Verbindung miteinander zu verknüpfen.

Bei diesem Prozess entsteht ein sogenannter Dimer - ein Molekül, das aus zwei Proteinen besteht. Anschließend wird das Dimer mit einem anderen Dimer zu einem Tetramer verbunden, und so weiter, bis ein großes 3D-Molekül entsteht. Dieser 3D-Aspekt der Technologie ist einzigartig, da die meisten synthetischen Polymere lineare Ketten aufweisen.

Dank dieser innovativen 3D-Struktur kann sich das neue Polymer wie ein Kunststoff verhalten. Genau wie die Proteine, aus denen es besteht, kann sich das Material dehnen, seine Form verändern und falten. So kann das Material mit Hilfe der Chemie für eine Vielzahl von spezifischen Anwendungen maßgeschneidert werden.

Da Kumars Material aus Proteinen und einer biologisch verbindenden Chemikalie besteht, kann es im Gegensatz zu synthetischen Polymeren biologisch abgebaut werden, so wie es pflanzliche und tierische Proteine natürlich tun.

„Die Natur baut Proteine ab, indem sie die Amidbindungen in ihnen aufspaltet“, sagt Kumar. „Sie verfügt über Enzyme, die diese Art von Chemie beherrschen. Wir haben die gleichen Amidbindungen in unseren Materialien. Die gleichen Enzyme, die in der Biologie arbeiten, sollten also auch bei diesem Material funktionieren und es auf natürliche Weise abbauen.“

Im Labor stellte das Team fest, dass sich das Material innerhalb weniger Tage in saurer Lösung zersetzt. Jetzt untersuchen sie, was passiert, wenn sie dieses Material im Boden vergraben, was das Los vieler Post-Consumer-Kunststoffe ist.

Sie haben gezeigt, dass das Material auf Proteinbasis eine Vielzahl von kunststoffähnlichen Produkten bilden kann, darunter Kaffeetassendeckel und dünne transparente Folien. Es könnte auch zur Herstellung von feuerfesten Dachziegeln oder höherwertigen Materialien wie Autotüren, Raketenspitzen oder Herzklappen verwendet werden.

Die nächsten Schritte für diese Technologie bestehen darin, ihre mechanischen Eigenschaften, wie Festigkeit oder Flexibilität, sowie ihre Toxizität weiter zu testen.

„Ich denke, wir brauchen ein soziales Bewusstsein dafür, dass wir keine toxischen Substanzen in die Umwelt bringen dürfen“, sagt Kumar. „Das geht einfach nicht. Wir müssen damit aufhören. Und wir können auch keine Materialien verwenden, die aus fossilen Brennstoffen stammen.“

Kumars zweite Technologie beruht auf einem ähnlichen Prinzip, verwendet aber nicht nur Proteine, sondern solche, die mit Naturfasern, insbesondere Baumwolle, verstärkt sind.

„Durch die sich schnell verändernde Modeindustrie entsteht jedes Jahr eine Menge Textilabfall“, sagt Kumar. „Warum sollten wir diese Abfälle nicht nutzen, um nützliche Materialien herzustellen - Abfall in Wohlstand umzuwandeln.“

Genau wie die kunststoffähnlichen Proteinmaterialien (Proteios, abgeleitet von den griechischen Originalwörtern) erwartet Kumar, dass die aus Proteinen und Naturfasern hergestellten Verbundmaterialien biologisch abbaubar sind, ohne toxische Abfälle zu produzieren.

Im Labor hat Kumars ehemaliger Student, der Doktorand Adekeye Damilola, viele Objekte aus Protein-Gewebe-Verbundstoffen hergestellt, darunter kleine Schuhe, Tische, Blumen und Stühle. Dieses Material enthält Textilfasern, die als Bindemittel für die Proteine dienen, und nicht die Vernetzungschemikalien, die Kumar für die proteinbasierten Kunststoffe verwendet.

Die Querverbindung verleiht dem neuartigen Material die Festigkeit, die es braucht, um dem Gewicht standzuhalten, das beispielsweise auf einem Stuhl oder Tisch lastet. Die natürliche Affinität zwischen Fasern und Proteinen ist der Grund, warum es so schwierig ist, Lebensmittelflecken aus der Kleidung zu entfernen. Die gleiche Anziehungskraft sorgt für starke Materialien aus Proteinfasern.

Kumars Team hat zwar bisher nur mit Baumwolle gearbeitet, geht aber davon aus, dass sich andere Fasermaterialien wie Hanffasern oder Jute aufgrund ihrer inhärenten, jedoch ähnlichen chemischen Eigenschaften wie Baumwolle auch so verhalten würden.

„Das Protein haftet auf natürliche Weise an der Oberfläche des Materials“, sagt Kumar. „Wir nutzten diese Erkenntnis, um zu sagen: 'Hey, wenn es sich so fest an Baumwolle bindet, warum machen wir dann nicht ein Material daraus? Und es funktioniert, es funktioniert erstaunlich."

Mit der Unterstützung von TCS sucht Professor Kumar derzeit nach Industriepartnern, um diese Technologien auf den Markt zu bringen. Für weitere Informationen wenden Sie sich bitte an Michael Invernale unter michael.invernale@uconn.edu.

Weitere Informationen:
Polymere Kunststoffe Naturfasern Baumwolle
Quelle:

Anna Zarra Aldrich '20 (CLAS), Büro des Vizepräsidenten für Forschung

Konzeptualisierung eines Laufschuhs aus einem Metamaterial. KI-generiert mit DALL-E (Visualisierung: ETH Zürich) Konzeptualisierung eines Laufschuhs aus einem Metamaterial. KI-generiert mit DALL-E (Visualisierung: ETH Zürich)
18.12.2023

KI für sicherere Fahrradhelme und bessere Schuhsohlen

Forschende haben eine künstliche Intelligenz so trainiert, dass sie die Struktur sogenannter Metamaterialien mit den gewünschten mechanischen Eigenschaften für verschiedene Anwendungsfälle entwerfen kann.

Forschende haben eine künstliche Intelligenz so trainiert, dass sie die Struktur sogenannter Metamaterialien mit den gewünschten mechanischen Eigenschaften für verschiedene Anwendungsfälle entwerfen kann.

  • ETH-Forschende haben mit Hilfe von künstlicher Intelligenz Metamaterialien entworfen, die ungewöhnliche oder außerordentliche Reaktionen auf komplexe Belastungen zeigen.
  • Ihr neues KI-Tool entschlüsselt die wesentlichen Merkmale der Mikrostruktur eines Metamaterials und sagt sein Verformungsverhalten präzise voraus.
  • Das Tool findet nicht nur optimale Mikrostrukturen, sondern umgeht auch zeitaufwändige technische Simulationen.

Fahrradhelme, die die Energie eines Aufpralls absorbieren, Laufschuhe, die jedem Schritt einen zusätzlichen Schub geben, oder Implantate, die die Eigenschaften von Knochen imitieren. Metamaterialien machen solche Anwendungen möglich. Ihre innere Struktur ist das Ergebnis eines sorgfältigen Designprozesses, wonach 3D-Drucker die generierten Strukturen mit optimierten Eigenschaften herstellen können. Forschende unter der Leitung von Dennis Kochmann, Professor für Mechanik und Materialforschung am Departement für Maschinenbau und Verfahrungstechnik der ETH Zürich, haben neuartige KI-Tools entwickelt. Diese umgehen den zeitaufwändigen und auf Intuition basierenden Designprozess von Metamaterialien und sagen stattdessen Strukturen mit außergewöhnlichen Eigenschaften schnell und automatisiert vorher. Ein Novum ist, dass diese Tools auch für große (sogenannte nichtlineare) Belastungen anwendbar sind, zum Beispiel wenn ein Helm bei einem Aufprall große Kräfte absorbiert.

Kochmanns Team gehört zu den Pionieren bei der Entwicklung kleiner zellulärer Strukturen (vergleichbar mit dem Gebälk in Fachwerkhäusern), um Metamaterialien mit besonderen Eigenschaften zu erschaffen. «Wir entwerfen zum Beispiel Metamaterialien, die sich wie Flüssigkeiten verhalten: schwer zu komprimieren, aber leicht zu verformen. Oder Metamaterialien, die in alle Richtungen schrumpfen, wenn sie in einer Richtung komprimiert werden», erklärt Kochmann.

Effiziente, optimale Materialgestaltung
Die Gestaltungsmöglichkeiten scheinen endlos. Das volle Potenzial von Metamaterialien hat die Wissenschaft allerdings noch lange nicht ausgeschöpft, da der Designprozess oft auf Erfahrung und Trial- and-Error beruht. Zudem können kleine Anpassungen in der Struktur zu großen Veränderungen der Eigenschaften führen.

In ihrer jüngsten Arbeit erkundeten die ETH-Forschenden mithilfe von KI systematisch die zahlreichen Designs und mechanischen Eigenschaften von zwei Metamaterialarten. Ihre Berechnungstools können auf Knopfdruck optimale Strukturen für gewünschte Verformungen vorhersagen. Hierzu verwendeten die Forschenden große Datensätze des Verformungsverhaltens realer Strukturen. Mit diesen trainierten sie ein KI-Modell, das die Daten nicht nur reproduziert, sondern auch neue Strukturen generieren und optimieren kann. Durch den Einsatz einer Methode, die als «Variational Autoencoder» bekannt ist, lernt die KI die wesentlichen Merkmale einer Struktur aus der großen Menge an Designparametern und wie sie zu bestimmten Eigenschaften führen. Sie nutzt anschließend dieses Wissen, um einen Metamaterial-Entwurf zu erstellen, sobald die Forschenden die gewünschten Eigenschaften und Anforderungen angeben.

Bausteine zusammensetzen
Li Zheng, eine Doktorandin in Kochmanns Gruppe, trainierte ein KI-Modell auf Basis eines Datensatzes von einer Million Strukturen und ihrer simulierten Verformung. «Stellen Sie sich eine riesige Kiste mit Legosteinen vor – man kann sie auf unzählige Arten anordnen und lernt mit der Zeit Designprinzipien. Ähnlich geht unsere KI vor, allerdings wesentlich effizienter. Sie setzt die Bausteine von Metamaterialien zusammen, um ihnen eine bestimmte Weichheit oder Härte zu verleihen», sagt Zheng. Im Gegensatz zu früheren Ansätzen, bei denen Forschende einen Katalog von Bausteinen als Grundlage für das Design verwendeten, können sie mit der neuen KI-Methode Bausteine fast beliebig hinzufügen, entfernen oder verschieben. Zusammen mit Sid Kumar, Assistenzprofessor an der TU Delft und ehemaliges Mitglied von Kochmanns Team, zeigten sie in einer kürzlich veröffentlichten Studie, dass das KI-Modell über das hinausgehen kann, wofür es trainiert wurde, und Strukturen vorhersagen kann, die leistungsfähiger sind als alles bisher Generierte.

Von Videos lernen
Jan-Hendrik Bastek, der ebenfalls Doktorand in Kochmanns Gruppe ist, verfolgte einen anderen Ansatz, um ähnliches zu erreichen. Er verwendete eine Methode, die Videodiffusion heißt und auch bei der KI-basierten Videogenerierung benutzt wird: Tippt man «ein Elefant fliegt über Zürich» ein, generiert die KI ein realistisches Video des Tieres, das über der Fraumünsterkirche kreist. Bastek trainierte sein KI-System mit 50’000 Videosequenzen von sich verformenden 3D-druckbaren Metamaterial-Strukturen. «Ich kann der KI die gewünschte Verformung vorgeben und sie produziert ein Video der optimalen Materialstruktur sowie deren vollständige Verformungsreaktion», erklärt Bastek. Bisherige Ansätze haben sich meist darauf beschränkt, ein einziges Bild der optimalen Struktur vorherzusagen. Durch die Nutzung von Videos des gesamten Verformungsprozesses, erhöht sich die Genauigkeit deutlich in solch komplexen Szenarien.

Große Vorteile für Fahrradhelme und Schuhsohlen
Die ETH-Wissenschaftler:innen haben ihre KI-Tools Forschenden auf dem Gebiet der Metamaterialien frei zur Verfügung gestellt. Somit werden sie hoffentlich zum Entwurf vieler neuer und ungewöhnlicher Materialien führen. Die Tools eröffnen neue Wege für die Entwicklung von Schutzausrüstungen wie Fahrradhelmen und für weitere Anwendungen von Metamaterialien von der Medizintechnik bis hin zu weichen Robotern. Sogar Schuhsohlen können so gestaltet werden, dass sie beim Laufen Stöße besser absorbieren oder beim Auftreten einen Schub nach vorne geben. Wird die KI die manuelle Entwicklung von Materialien vollständig ersetzen? «Nein», lacht Kochmann. «Gut eingesetzt kann KI ein hocheffizienter und fleißiger Helfer sein, aber man muss ihr die richtigen Anweisungen geben und sie richtig trainieren – und das erfordert wissenschaftliche Grundlagen und ingenieurwissenschaftliches Knowhow.»

Quelle:

ETH Zürich

JUMBO-Textil Produktion © JUMBO-Textil GmbH & Co. KG
28.11.2023

Interview JUMBO-Textil: „Führung heißt bei uns Teamentwicklung.“

JUMBO-Textil steht mit seinen hochwertigen technischen Schmaltextilien für Hightech – egal ob gewebt, geflochten oder gewirkt. Als Elastic-Spezialist und Lösungspartner entwickelt und produziert das Unternehmen individuelle Innovationen für Kunden weltweit. Das 70 Personen umfassende starke Team muss so vielfältig und flexibel sein wie die Produkte, die es konzipiert. Textination sprach mit dem  Wirtschaftsingenieur Carl Mrusek über die aktuellen Herausforderungen für Familienunternehmen. Carl Mrusek, seit einem knappen Jahr Chief Sales Officer (CSO) in der Textation Group GmbH & Co KG, zu der JUMBO-Textil gehört, verantwortet neben anderen Aufgabenbereichen auch die strategische Unternehmensentwicklung.

 

JUMBO-Textil steht mit seinen hochwertigen technischen Schmaltextilien für Hightech – egal ob gewebt, geflochten oder gewirkt. Als Elastic-Spezialist und Lösungspartner entwickelt und produziert das Unternehmen individuelle Innovationen für Kunden weltweit. Das 70 Personen umfassende starke Team muss so vielfältig und flexibel sein wie die Produkte, die es konzipiert. Textination sprach mit dem  Wirtschaftsingenieur Carl Mrusek über die aktuellen Herausforderungen für Familienunternehmen. Carl Mrusek, seit einem knappen Jahr Chief Sales Officer (CSO) in der Textation Group GmbH & Co KG, zu der JUMBO-Textil gehört, verantwortet neben anderen Aufgabenbereichen auch die strategische Unternehmensentwicklung.

 

„In einem Familienunternehmen sind Traditionen das Fundament, Innovationen der Weg nach vorne“, sagt man. Das Image familiengeführter Unternehmen hat sich in den letzten Jahren deutlich gewandelt – altmodische Wertvorstellungen und überholte Wirtschaftskonzepte sind einer starken Firmenkultur, hohem regionalen Verantwortungsgefühl und nachhaltigem Planen gewichen. Wie verknüpft JUMBO-Textil seine Unternehmenswerte und Traditionen mit einem zeitgemäßen Führungsstil?

Carl Mrusek: Als Familienunternehmen besteht eine enge Bindung der Mitarbeiter*innen an das Unternehmen und umgekehrt, die Kontinuität der menschlichen Beziehungen ist wichtig und wertvoll. Bei JUMBO-Textil hat darüber hinaus vor allem eines Tradition: zeitgemäße Unternehmensführung, und zwar sowohl technisch und fachlich als auch mit Blick auf Führungsstil und Werte. Denn gerade in einem Familienunternehmen, das ja oft über Jahrzehnte von derselben Person geführt wird, ist es entscheidend, Unternehmenswerte und Führungsstil zu hinterfragen und Wandel zu fördern. Ein Unternehmen, das seit bald 115 Jahren international erfolgreich agiert, muss anpassungsfähig sein. Auf Veränderungen schnell zu reagieren, sie sogar vorauszusehen und entsprechend voranzugehen, das ist für uns Kern klugen wirtschaftlichen Handelns. Die Spezialisierung hin zu Elastics in den 20er-Jahren des letzten Jahrhunderts ist ein Beispiel für die vorausschauende Veränderungskraft, aber auch die strategisch wichtige Hinwendung zu technischen Textilien in den 70er-Jahren. Aus der jüngsten Zeit ließe sich das Zusammengehen mit der vombaur GmbH & Co. KG unter das Dach der Textation Group nennen.

Das Wichtigste in jedem Unternehmen sind seine Mitarbeiter*innen. Mit überkommenen Traditionen und Arbeitsweisen würden wir sie nicht gewinnen und halten können. Bei uns steht nicht die Unternehmensleitung im Zentrum, sondern der gemeinsame Erfolg, und der ist in einer komplexen Welt in der Regel das Ergebnis einer gelungenen Zusammenarbeit und nicht einer Ansage des Chefs. Führung heißt – klar – strategische Ziele setzen und verfolgen, heißt heute aber auch: Teamentwicklung. Die besten Menschen zu finden, zusammenzubringen und für das Ziel zu motivieren.

 

Team-Gedanke und Leitbild-Entwicklung: Wie gelingt Ihnen das bei JUMBO-Textil? 

Carl Mrusek: Im Team! JUMBO-Textil hat seine Führungsebene gezielt verbreitert. Neben dem Geschäftsführer, unserem CEO Andreas Kielholz, arbeiten hier der Chief Operational Officer Patrick Kielholz, der Chief Financial Officer Ralph Cammerath, der Chief Technology Officer Dr. Sven Schöfer und ich selbst als Chief Sales Officer. Das zeigt, dass wir vom Kooperationsgedanken überzeugt sind: Auch an der Unternehmensentwicklung und in strategischen Fragen arbeiten wir gemeinsam. Genauso in den einzelnen Teams – in organisatorischen Fachteams oder in interdisziplinären Projektteams. Die Aufgaben, für die wir zuständig sind, mögen unterschiedlich sein, aber jede ist gleich wichtig.

 

Deshalb auch starten Sie die Vorstellung der Ansprechpartner*innen auf Ihrer Website mit dem Junior Sales Manager? Und die Vertreter der C-Ebene stehen am Ende?

Carl Mrusek: Ja. Alle JUMBO-Textil-Köpfe sind für uns der Kopf des Unternehmens. Alle JUMBO-Textil-Gesichter repräsentieren das Unternehmen. Das spiegelt sich auch an der Reihenfolge der Ansprechpartner*innen auf der Website wider. Die Besucher*innen sollen hier schnell die Person finden, die ihnen weiterhelfen kann, und nicht erfahren, wer das Unternehmen leitet. Dafür gibt es das Impressum. (lacht)

 

Wie sehen das Leitbild von JUMBO-Textil und seine Vision für die Zukunft aus, und was muss sich verändern, um die Vision zu erreichen?

Carl Mrusek: Wir arbeiten aktuell an der strategischen Ausrichtung der Textation Group, zu der die JUMBO-Textil GmbH & Co. KG sowie die vombaur GmbH & Co. KG gehören. In diesem Zusammenhang haben wir die Unternehmensvision und -mission der Gruppe erarbeitet und unser Leitbild aktualisiert. Dies dient als Fundament für die Strategieentwicklung und gelingt nur dann nachhaltig, wenn Mitarbeiter*innen über Umfragen und Workshops in diesem Prozess eingebunden sind. Ich möchte noch nicht zu viel verraten, aber so viel steht bereits: Starke Teams, die richtigen Personen am richtigen Platz, Verantwortungsübernahme auf allen Ebenen, Nachhaltigkeit als Grundlage für Innovation – das werden die vier Eckpfeiler sein. Daran lässt sich bereits ablesen: Um unsere Vision zu erreichen, können wir nicht einen Schalter umlegen. Wir müssen stets veränderungsfreudig bleiben, immer wieder neu – von der Produktentwicklung bis zur Personalgewinnung. Aber das hat bei uns ja wie gesagt Tradition.

 

JUMBO-Textil ist kein Branchenspezialist, sondern bündelt Kompetenzen für anspruchsvolle Hightech-Schmaltextilien. Wer hat bei herausfordernden Kundenprojekten das Sagen – entscheiden Sie im Team oder eher top-down, wo ist die Verantwortung für einen Auftrag angesiedelt?

Carl Mrusek: Wir entscheiden im Team darüber, welche Projekte wir realisieren bzw. mit welcher Priorisierung sie angegangen werden. Dabei gibt die Unternehmensstrategie die „Stoßrichtung“ vor. Neben der vertrieblichen spielt auch die entwicklungsseitige Betrachtung von neuen Projekten eine entscheidende Rolle. Ich stimme mich deshalb intensiv mit Dr. Sven Schöfer (CTO) und seinem Team ab, da hier die technische Entwicklung und Umsetzung unserer Produkte im Fokus steht. Die Projektbearbeitung ist final immer eine Teamleistung von Vertrieb und Entwicklung in enger Zusammenarbeit mit der Produktion.

 

Zwischen übertariflichen Vergütungen, einer 4-Tage-Woche und der vielbeschworenen Work-Life-Balance – in der aktuellen Situation auf dem Arbeitsmarkt sind eher die Unternehmen in der Bewerbersituation als umgekehrt. Was tun Sie, um als Arbeitgeber für neue Kollegen und Kolleginnen attraktiv zu bleiben? Und wie halten Sie die Einsatzfreude Ihrer Fachkräfte auf gleichbleibend hohem Niveau?

Carl Mrusek: Ein wichtiger Ansatz bei uns ist die Ausbildung. Junge Menschen auszubilden und ihnen während der Ausbildung zu beweisen: JUMBO-Textil ist dein Place-to-be. Wir beginnen also bereits durch unsere Schulbesuche und Schulpraktika mit der Fachkräftegewinnung. Als hochmodernes Unternehmen bieten wir ein attraktives Gehaltsniveau und ein angenehmes und gesundes Arbeitsumfeld.

Bewerber*innen möchten heute darüber hinaus oft auch ihre Arbeitsform und ihre Arbeitszeiten individuell und flexibel gestalten, aus ganz unterschiedlichen Gründen. Mit modernen Arbeitsmodellen und dank unserer laufenden Digitalisierungsfortschritte unterstützen wir sie dabei, wo immer es möglich ist. Außerdem möchten die Menschen für ein Unternehmen arbeiten, mit dem sie sich identifizieren können. Umwelt- und Klimaschutz sind unseren Mitarbeiter*innen und Bewerber*innen ebenso wichtig wie Sozialstandards in unserer Lieferkette. Dass wir uns mit unserer Nachhaltigkeitsstrategie ehrgeizige Ziele gesetzt haben und sie mit fest terminierten Schritten konsequent verfolgen – unsere klimaneutrale Energiegewinnung ist ein konkretes bereits realisiertes Beispiel –, dass wir unsere Geschäftspartner mit Nachdruck dazu aktivieren, die Menschen- und Arbeitnehmerrechte zu beachten und uns zum Code of Conduct der deutschen Textil- und Modeindustrie bekennen, all das hilft uns deshalb auch bei der Personalgewinnung.

 

Was größere, kapitalintensivere Unternehmen teilweise durch Finanzmittel wettmachen können, muss der Mittelstand – insbesondere in Krisensituationen – durch Agilität und Anpassungsfähigkeit stemmen. Inwiefern spiegeln sich diese Anforderungen auch in Ihrer Organisationsstruktur und dem Anforderungsprofil für Beschäftigte wider?

Carl Mrusek: Genau, das ist der Vorteil, den Familienunternehmen gegenüber großen Konzernen mitbringen und ausspielen können: Wir können schnell entscheiden und wenn nötig tagesaktuell reagieren. Die Hierarchien sind flach, Abstimmungsprozesse kurz. Ein spannender Vorschlag muss nicht erst durch Agenturen schick aufbereitet und über etliche Ebenen abgestimmt werden, bis er durch die Geschäftsführung abgesegnet ist und umgesetzt werden kann. Das Okay kann auch sofort beim Mittagessen kommen: „Super Idee, das machen wir.“ In einem Konzern scheitert das schon daran, dass nur die wenigsten Mitarbeiter*innen die Chance haben, mit der Geschäftsleitung an einem Tisch zu Mittag zu essen. – Wobei wir dabei nur im Ausnahmefall über das Geschäft sprechen. Meistens dreht es sich in der Pause um Familie, Wetter, Sport- und Freizeitpläne, Mittagsthemen eben. – Wir brauchen dafür verantwortungsvolle und veränderungsbereite Teamplayer. Menschen, die auf Augenhöhe mit anderen zusammenarbeiten, sich mit Schwung und Kompetenz für das Unternehmen und seine Ziele einsetzen und Lust auf Neues haben.

 

Um aktuelle und potenzielle Mitarbeitende begeistern zu können, braucht es inzwischen deutlich mehr als Obstkorb und Fitnessstudio. Sinnstiftend zu arbeiten, sich an einer klimafreundlichen Transformation zu beteiligen, ist vielen Menschen besonders wichtig. Was macht JUMBO-Textil konkret, um SDGs nicht nur in einem Statement zu zitieren, sondern im Unternehmensalltag zu leben?

Carl Mrusek: Wir haben uns ein konkretes Klima-Ziel gesetzt: Bis 2035 arbeiten wir in unserer Zentrale in Verwaltung und Produktion klimaneutral. Realistische Schritte wurden hierfür definiert. Ein wichtiges Zwischenziel haben wir schon erreicht: In unserer Zentrale in Sprockhövel nutzen wir ausschließlich Öko-Strom aus Sonne, Wind und Wasser. Die noch unvermeidlichen Emissionen für unsere Wärmegewinnung gleichen wir mit CO2-Kompensationsleistungen aus. Außerdem entwickeln wir immer mehr Produkte aus recyclebaren und recycelten Materialien. Unsere Fahrzeugflotte wird aktuell auf rein elektrisch bzw. hybrid angetriebene Modelle umgestellt.

 

Diversifikation und Internationalisierung sind heutzutage Bestandteil jeder Unternehmensstrategie. Doch was bedeuten diese Begriffe für den Führungsstil eines Mittelständlers in Sprockhövel? Bauen Sie bewusst interdisziplinäre internationale Teams auf?

Carl Mrusek: Wir leben in einer hyperdiversen Gesellschaft. Das bildet sich auch in unserem Unternehmen ab. Unsere Teams setzen sich, ganz ohne dass wir das steuern müssten, aus Menschen mit unterschiedlichen internationalen Hintergründen zusammen. Auch die Altersstruktur ist inzwischen sehr durchmischt. Die unterschiedlichen Perspektiven sehen wir als Gewinn, als Chance und Erfolgsfaktor. Wir – und das bedeutet letztlich unsere Kunden und deren Projekte – profitieren von der Vielzahl der Blickwinkel, die in unsere Lösungen einfließen. Der Frauenanteil ist – wie bei vielen Unternehmen im Bereich technischer Textilien – in manchen Teams noch etwas unausgewogen. Doch er steigt erfreulicherweise kontinuierlich an.

 

Generationenwechsel und Nachfolgeplanung sind Kernthemen familiengeführter Unternehmen. Wie wichtig ist JUMBO-Textil die Professionalisierung seiner Führungsriege, und inwiefern ist das Unternehmen offen für externe Fachkräfte und Manager?

Carl Mrusek: Ein Unternehmen, das sich externen Fach- und Führungskräften gegenüber verschließt, verschließt sich damit auch eine Tür zum Erfolg. Das wäre töricht. Die enge Bindung, persönliche Kontinuität und Flexibilität eines familiengeführten Unternehmens, die Leidenschaft und Innovationslust eines Start-ups und die Solidität und Finanzkraft eines Konzerns – all das versuchen wir bei JUMBO-Textil zu verbinden und auszubalancieren. Mit Patrick Kielholz als COO ist die nächste Generation der Familie in der Führungsebene ebenso vertreten wie der externe Blick und die Vielfalt der Perspektiven durch die weiteren neuen Mitglieder im C-Level. Die Textation Group, zu der mit Kevin Kielholz auch der Bruder von Patrick Kielholz gehört, stützt das Unternehmen und ermöglicht es, größer zu denken und zu agieren, als mittelständische Familienunternehmen es sonst oft tun. JUMBO-Textil ist Elastic-Spezialist. Und was unser Produkt auszeichnet, das zeichnet uns auch als Organisation aus. Wir umspannen die Vorteile des Familienunternehmens ebenso wie die des Start-ups und des Konzerns. Wenn ich das Bild der Elastizität hier nutzen darf und es nicht überstrapaziere. (lacht)

Berndt Köll am Stubaier Gletscher: Erste Feldversuche zeigten überzeugende Ergebnisse. (c) Lenzing AG
22.11.2023

Gletscherschutz neu gedacht: Vlies aus biologisch abbaubaren Fasern

Schutz von Schnee und Eis: Cellulosische LENZING™ Fasern sorgen für nachhaltigen Erhalt von Gletschermasse.

Schutz von Schnee und Eis: Cellulosische LENZING™ Fasern sorgen für nachhaltigen Erhalt von Gletschermasse.

In Feldversuchen auf österreichischen Gletschern werden Vliese aus cellulosischen LENZING™ Fasern für die Abdeckung von Gletschermasse genutzt. Diese zeigen vielversprechende Ergebnisse und bieten eine nachhaltige Lösung zum Gletscherschutz. Bisher verwendete, erdölbasierte Vliese können negative Umweltfolgen wie etwa Mikroplastikverschmutzung nach sich ziehen.
 
Geotextilien werden bereits vielfach genutzt, um Schnee und Eis auf Gletschern vor der Schmelze zu bewahren. Mit dem Einsatz von Vliesen aus biologisch abbaubaren LENZING™ Fasern gelingt nun eine nachhaltige Wende. Lenzing - Geotextilien zeigten in Österreich bereits Erfolge beim Schutz der von der Klimaerwärmung stark gefährdeten Gletscher. Durch das Abdecken von Gletschermasse wird dessen Schmelze verlangsamt und gemildert. Die verwendeten Vliese wurden bisher aus erdölbasierten Fasern hergestellt. Nach dem Sommer zurückbleibendes Mikroplastik fließt über die Bäche ins Tal und kann durch kleine Organismen und Tierchen in die Nahrungskette gelangen.

Nachhaltig von der Herstellung bis zur Weiterverwendung
Eine innovative und nachhaltige Lösung für den Schutz von Schnee und Eis gelingt nun mithilfe von Vliesen, die aus Fasern der Marke LENZING™ gefertigt werden. „LENZING™ Fasern werden aus erneuerbaren, verantwortungsvoll bewirtschafteten Holzquellen gewonnen und in einem umweltfreundlichen Verfahren hergestellt. Dank ihres botanischen Ursprungs sind sie in der Lage, sich abzubauen und nach ihrer Verwendung in die Natur zurückzukehren“, erklärt Berndt Köll, Business & Innovation Manager bei Lenzing.
 
Bei einem Feldversuch am Stubaier Gletscher wurde die Abdeckung eines kleinen Bereichs mit dem neuen Material erstmals getestet. Das Ergebnis überzeugte: Vier Meter Eismasse konnte vor der Schmelze bewahrt werden. Aufgrund des Erfolgs wird das Projekt nun ausgeweitet. Es starteten bereits in diesem Jahr Feldversuche auf allen österreichischen, touristisch genutzten Gletschern.
 
„Wir freuen uns über die positiven Resultate und sehen das Projekt als zukunftsfähige Lösung für den Gletscherschutz – und das nicht nur in Österreich, sondern über die Landesgrenzen hinaus“, so Berndt Köll weiter. Der nachhaltige Gedanke soll sich auch nach dem Einsatz der Vliese fortsetzen: Anschließend an den Gebrauch könnten die Geotextilien wieder recycelt und schließlich zur Herstellung von Garn für Textilprodukte verwendet werden.

Ausgezeichnet mit dem BIO TOP Award
Der nachhaltige Gletscherschutz und dessen Ergebnisse überzeugen auch die Jury aus Branchenexpert:innen des BIO TOP Award, einem bedeutenden Preis für Holz- und Materialinnovationen in der Schweiz. Im Rahmen dessen werden neuartige Projekte im Bereich biobasierter Hölzer und Materialien gefördert und unterstützt. Bei der Preisverleihung am 20. September 2023 wurde die nachhaltige Lösung der Geotextilien aus LENZING™ Fasern mit dem Award ausgezeichnet.

Quelle:

Lenzing AG

LED-Kleid verbindet 3D-Druck und futuristische Mode Fotos von Natalie Cartz , Model Perpetua Sermsup Smith, Make-Up Artist Yaying Zheng
20.11.2023

LED-Kleid verbindet 3D-Druck und futuristische Mode

  • Die Designerin Anouk Wipprecht kooperiert mit Chromatic 3D Materials und entwickelt ein leuchtendes, bewegungsaktiviertes Display.

Chromatic 3D Materials, ein Unternehmen für 3D-Drucktechnologie, und die niederländische Hightech-Modedesignerin Anouk Wipprecht haben ein neues futuristisches 3D-gedrucktes Kleid vorgestellt, das über LEDs auf seine Umgebung reagiert. Das bewegungsaktivierte Design ist eines der ersten Kleidungsstücke der Welt, bei dem Elektronik direkt in 3D-gedruckte Elastomere eingebettet ist. Es veranschaulicht, wie die Zukunft des kreativen Schaffens und der sozialen Interaktion aussehen könnten, wenn der Mensch weiter mit der Technologie verschmilzt. Wipprechts Entwurf wurde auf der Formnext, der Veranstaltung zum 3D-Druck in Deutschland, präsentiert.

  • Die Designerin Anouk Wipprecht kooperiert mit Chromatic 3D Materials und entwickelt ein leuchtendes, bewegungsaktiviertes Display.

Chromatic 3D Materials, ein Unternehmen für 3D-Drucktechnologie, und die niederländische Hightech-Modedesignerin Anouk Wipprecht haben ein neues futuristisches 3D-gedrucktes Kleid vorgestellt, das über LEDs auf seine Umgebung reagiert. Das bewegungsaktivierte Design ist eines der ersten Kleidungsstücke der Welt, bei dem Elektronik direkt in 3D-gedruckte Elastomere eingebettet ist. Es veranschaulicht, wie die Zukunft des kreativen Schaffens und der sozialen Interaktion aussehen könnten, wenn der Mensch weiter mit der Technologie verschmilzt. Wipprechts Entwurf wurde auf der Formnext, der Veranstaltung zum 3D-Druck in Deutschland, präsentiert.

Wipprechts avantgardistisches Design verdeutlicht das Potenzial der 3D-Drucktechnologie und des Chroma-Flow 70™-Materials von Chromatic für die kommerzielle Nutzung. Die Designerin verwendete 3D-Druck, um fast 75 flexible LED-Kuppeln ohne Klebstoff oder Nähte auf dem Stoff des Kleides zu befestigen. Diese Fähigkeit könnte zur Herstellung von innovativer Laufbekleidung, Taschen, Schuhen und anderen Produkten genutzt werden, z. B. für die Innenausstattung von Fahrzeugen und in der Luft- und Raumfahrt, für Outdoor-Freizeitausrüstung und persönliche Schutzausrüstung.

Das besondere Kleidungsstück demonstriert auch die Flexibilität der Materialien von Chromatic. Im Gegensatz zu anderen 3D-gedruckten Materialien, die in der Regel spröde und hart sind, besteht das Kleid aus ChromaFlow 70™, einem biegsamen, hitzebeständigen Material, das sich um mehr als das Vierfache seiner Länge dehnen kann, ohne zu reißen. Durch diese Flexibilität eignet es sich zum Hinzufügen weicher und nahtloser struktureller, funktionaler und ästhetischer Elemente, die für Intim- und Freizeitkleidung, Sport- und Badebekleidung und andere Kleidungsstücke geeignet sind, bei denen Komfort, Silhouette und Haltbarkeit von entscheidender Bedeutung sind.

„Die Verwendung der 3D-Materialien von Chromatic für den Druck bietet zahlreiche Optionen für die Modeindustrie. Für Designer wie mich, die Elektronik in ihre Kreationen einbauen, bietet es eine einzigartige Möglichkeit, elektronische Teile in den Druckprozess einzubetten und zu sichern", sagt Anouk Wipprecht. "Dies ist mein bisher tragbarstes - und waschbarstes - 3D-gedrucktes Kleid! Da die Elektronik eingeschlossen ist, erlaubt mir das Material, meine LED-Lichter zu streuen, und das Elastomer ist sowohl flexibel als auch stark - und lässt sich daher hervorragend mit Stoffen verbinden.“

„Diese Zusammenarbeit ist mehr als eine Partnerschaft - sie ist eine Vision, die zum Leben erwacht. Indem wir die Genialität von Anouk Wipprecht mit unserem innovativen 3D-Druck verbinden, setzen wir einen Präzedenzfall für die Zukunft der Mode. Wir begeben uns auf eine Reise, die die grenzenlose Integration von Technologie und Kunst verstärkt und Türen für unendliche Möglichkeiten und Anwendungen in der Textil- und Modeindustrie öffnet", sagt Cora Leibig, Gründerin und CEO von Chromatic 3D Materials.

Quelle:

Chromatic 3D Materials

Seide liefert die Bausteine zur Transformation der modernen Medizin Foto: Jenna Schad
31.10.2023

Seide liefert die Bausteine zur Transformation der modernen Medizin

Forscher an der Tufts-Universität nutzen Seidenproteine zur Herstellung von Handschuhen, die Viren erkennen, chirurgischen Schrauben, die sich im Körper auflösen, und anderen biomedizinischen Materialien der nächsten Generation

Etwa eine Meile nordwestlich des Tufts-Campus in Medford/Somerville befindet sich im vierten Stock einer umgebauten Wollfabrik ein Schrein für Seide. Glasvasen mit Seidenraupenkokons und gewaschenen Seidenfasern stehen kunstvoll auf einem Regal gegenüber einer bunten Zeichnung des Lebenszyklus von Bombyx mori, dem domestizierten Seidenspinner. Weiter innen grenzen weitere Kokons in Wandvitrinen an eine große Nahaufnahme von Seidenfasern, und auf Displays sind Dutzende von Prototypen aus Seide zu sehen, darunter intelligente Stoffe, Biosensoren, ein Helm, der bei einem Aufprall die Farbe wechselt, und potenzielle Ersatzstoffe für Materialien wie Leder, Kunststoff und Spanplatten.

Forscher an der Tufts-Universität nutzen Seidenproteine zur Herstellung von Handschuhen, die Viren erkennen, chirurgischen Schrauben, die sich im Körper auflösen, und anderen biomedizinischen Materialien der nächsten Generation

Etwa eine Meile nordwestlich des Tufts-Campus in Medford/Somerville befindet sich im vierten Stock einer umgebauten Wollfabrik ein Schrein für Seide. Glasvasen mit Seidenraupenkokons und gewaschenen Seidenfasern stehen kunstvoll auf einem Regal gegenüber einer bunten Zeichnung des Lebenszyklus von Bombyx mori, dem domestizierten Seidenspinner. Weiter innen grenzen weitere Kokons in Wandvitrinen an eine große Nahaufnahme von Seidenfasern, und auf Displays sind Dutzende von Prototypen aus Seide zu sehen, darunter intelligente Stoffe, Biosensoren, ein Helm, der bei einem Aufprall die Farbe wechselt, und potenzielle Ersatzstoffe für Materialien wie Leder, Kunststoff und Spanplatten.

Das Einzige, was fehlt, sind die Seidenraupen selbst, aber Fiorenzo Omenetto, der Direktor von Silklab und Frank C. Doble Professor of Engineering an der Tufts University, sagte, dass sie bald eintreffen werden. Das Labor baut ein Terrarium, in dem Besucher die Tiere besichtigen können.
„Wir werden ein Fest der Seidenraupen und Motten veranstalten“, so Omenetto.

Seide wird schon seit Tausenden von Jahren gezüchtet und geerntet. Am bekanntesten ist sie für den widerstandsfähigen, schimmernden Stoff, der aus ihren Fasern gewebt werden kann, aber sie wird auch seit langem in der Medizin zum Verbinden von Verletzungen und Nähen von Wunden verwendet. Im Silklab bauen Omenetto und seine Kollegen auf dem Erbe der Seide auf und beweisen, dass diese uralte Faser zur Entwicklung der nächsten Generation biomedizinischer Materialien beitragen könnte.
 
Die Raupen von Seidenspinnern, auch Seidenraupen genannt, stoßen einen einzigen klebrigen Seidenstrang aus ihrem Maul aus, um Cocons zu bilden, die von Seidenbauern zur Herstellung von Seidengarn geerntet werden. Im Kern besteht Seide aus einer Mischung von zwei Proteinen: Fi-Broin, das die Struktur der Faser bildet, und Sericin, das sie zusammenhält. Mit ein paar Handgriffen im Labor können Tufts-Forscher das Sericin entfernen und die Fasern auflösen, so dass sich ein trockener Kokon in eine mit Fibroin gefüllte Flüssigkeit verwandelt.

„Die Natur baut Strukturproteine, die sehr robust und sehr widerstandsfähig sind“, erläutert Omenetto. „Ihre Bausteine sind diese Fibroinproteine, die im Wasser schwimmen. Daraus kann man alles bauen, was man will.“

Beginnend mit Lieferungen getrockneter Kokons von Seidenfarmen konnten Omenetto und seine Kollegen Gele, Schwämme, klare, plastikähnliche Folien, bedruckbare Tinten, Feststoffe, die wie Bernstein aussehen, eintauchbare Beschichtungen und vieles mehr herstellen.

„Jedes der Materialien, die man herstellt, kann all diese verschiedenen Funktionen enthalten, und ein Tag hat nur 24 Stunden“, sagt Omenetto lachend. „Deshalb schlafe ich auch nicht.“

Biokompatibel und biologisch abbaubar
Als Omenetto vor fast zwei Jahrzehnten an die Tufts-Universität kam, konzentrierte sich seine Forschung auf Laser und Optik - Seide stand nicht auf dem Plan. Doch ein zufälliges Gespräch mit David Kaplan, dem Stern Family Professor of Engineering und Vorsitzenden der Abteilung Biomedizintechnik, brachte ihn auf einen neuen Weg.

Kaplan, der seit Anfang der 90er Jahre mit Seide arbeitet, entwarf ein Seidengerüst, das bei der Wiederherstellung der Hornhaut eines Menschen helfen sollte, indem es Zellen zwischen den Schichten wachsen ließ. Er brauchte eine Möglichkeit, um sicherzustellen, dass die wachsenden Zellen ausreichend mit Sauerstoff versorgt werden, und zeigte Omenetto das kleine, transparente Blatt, der sofort von dem Material fasziniert war. Omenetto konnte mit den Lasern seines Labors winzige Löcher in Kaplans Seidenhornhaut setzen. Schnell folgten weitere Kooperationen.
„Seitdem haben wir ununterbrochen zusammengearbeitet“, sagte Kaplan.

Eine dieser Forschungsrichtungen ist es, Wege zu finden, um Seide für die Reparatur und das Nachwachsen von Knochen, Blutgefäßen, Nerven und anderem Gewebe zu nutzen. Seide ist biokompatibel, d. h. sie schadet dem Körper nicht und lässt sich auf vorhersehbare Weise abbauen. Mit der richtigen Vorbereitung können Seidenmaterialien die notwendige Festigkeit und Struktur bieten, während der Körper heilt.

„Man kann die Seide so bearbeiten und formen, wie man sie braucht, und sie wird das erforderliche Format beibehalten, während das native Gewebe in die Lücke hineinwächst und das Seidenmaterial abgebaut wird“, sagte Kaplan. „Schließlich ist es zu 100 Prozent verschwunden, und man hat wieder sein normales Gewebe.“

Ein Teil dieser Arbeit wurde bereits von der US-amerikanischen Food and Drug Administration freigegeben. Ein Unternehmen namens Sofregen, das aus der Forschung von Kaplan und Omenetto hervorgegangen ist, verwendet ein injizierbares Gel auf Seidenbasis, um beschädigte Stimmbänder wieder zu reparieren, also das Gewebe, das den Luftstrom reguliert und uns beim Sprechen hilft.
Die stabilen Seidenstrukturen können ihre Größe, Form und Funktion über Jahre hinweg beibehalten, bevor sie sich abbauen. Aber in einigen Fällen, z. B. bei chirurgischen Schrauben und Platten, die für schnell wachsende Kinder bestimmt sind, wäre dieses Tempo zu langsam. Die Forscher mussten einen Weg finden, um die Zeit zu beschleunigen, in der sich dichtes Seiden-Biomaterial abbaut. Sie setzten der Seide ein körpereigenes Enzym zu, um den Abbauprozess zu beschleunigen. Die Idee ist, dass das Enzym trocken und inaktiv in der Seidenvorrichtung sitzt, bis die Struktur in einem Menschen eingesetzt wird, und dass dann die Vorrichtung hydratisiert und das Enzym aktiviert wird, um das Material schneller zu zersetzen.

„Wir können genau die richtige Menge an Enzymen zugeben, damit eine Schraube in einer Woche, einem Monat oder einem Jahr verschwindet“, so Kaplan. „Wir haben die volle Kontrolle über den Prozess.“
Gegenwärtig arbeiten Kaplan und sein Labor an anderen kleinen, abbaubaren medizinischen Geräten, die dazu beitragen würden, die Zahl der Operationen, die Patienten benötigen, zu verringern. So werden beispielsweise bei chronischen Ohrinfektionen häufig Ohrschläuche implantiert, die dann operativ entfernt werden müssen. Kaplan und seine Kollegen haben Ohrschläuche aus Seide entwickelt, die sich von selbst abbauen und sogar Antibiotika enthalten können.

„Als jemand, dessen Tochter sechs Operationen am Ohr hinter sich hat, weiß ich, wie hilfreich dies sein kann“, so Kaplan.

Quelle:

Laura Castañón, Tufts University, Massachusetts USA

Vom MIT zum Burning Man: Der Living Knitwork Pavilion Credit Irmandy Wicaksono
24.10.2023

Vom MIT zum Burning Man: Der Living Knitwork Pavilion

Vor der gewaltigen und surrealen Kulisse der Black Rock Desert in Nevada findet alljährlich der Burning Man statt, der die flache, karge Wüste in einen riesigen Spielplatz für künstlerischen und kreativen Ausdruck verwandelt. Die "Burners" kommen hierher, um die flüchtige Black Rock City, die die Teilnehmer jedes Jahr aufs Neue errichten, zu erleben und mitzugestalten. Mit ihren zahllosen Kunstinstallationen und Performances ist die Black Rock City ein temporäres Zuhause für kreative Köpfe aus der ganzen Welt.

Vor der gewaltigen und surrealen Kulisse der Black Rock Desert in Nevada findet alljährlich der Burning Man statt, der die flache, karge Wüste in einen riesigen Spielplatz für künstlerischen und kreativen Ausdruck verwandelt. Die "Burners" kommen hierher, um die flüchtige Black Rock City, die die Teilnehmer jedes Jahr aufs Neue errichten, zu erleben und mitzugestalten. Mit ihren zahllosen Kunstinstallationen und Performances ist die Black Rock City ein temporäres Zuhause für kreative Köpfe aus der ganzen Welt.

Unter den großformatigen Kunstwerken befand sich in diesem Jahr der Living Knitwork Pavilion, ein ungewöhnliches architektonisches Werk, das aus gestrickten Textilien und einem Holzgitter gefertigt wurde. Die Installation wurde von einem Forscherteam des MIT Media Lab und der MIT School of Architecture and Planning unter der Leitung der Doktorandin Irmandy Wicaksono entwickelt und gebaut und mit dem Black Rock City Honorarium 2023 ausgezeichnet. Für das Team war es ein äußerst anspruchsvolles und erfüllendes Projekt, das viele neue Erkenntnisse und Überraschungen bot. Zu erleben, wie die Installation mitten in der Wüste entstanden ist und erstrahlt, war wirklich magisch.

Im Living Knitwork Pavilion sind 12 modulare Stoffbahnen, die so genannten Knitwork Petals (gestrickte Blütenblätter), durch einen zentralen Turm miteinander verbunden. Die gesamte Installation bildet eine zwölfeckige pyramidenförmige Schattenstruktur, die 18 Fuß hoch und 26 Fuß breit ist und an ein Tipi erinnert. Die Stoffe wurden mit Hilfe von digitalem Strickmaschinen und einer Sammlung von funktionellen und herkömmlichen Garnen, einschließlich photochromer, leuchtender und leitfähiger Garne, entwickelt. Wicaksono ließ sich von den komplizierten Textilmustern und Tempelschnitzereien in Indonesien inspirieren und nutzte die Spannung zwischen gestrickten Polyester- und Spandexgarnen, um textile Texturmuster oder Reliefs zu schaffen. Die Verschmelzung von parametrischen und handgefertigten Motiven verwandelt das "Living Knitwork" in ein erzählerisches Kunstwerk, das sowohl die Ehrfurcht vor der alten Kunst als auch eine Vision für die Zukunft widerspiegelt. Diese Reliefs voller Symbole und Illustrationen stellen 12 Geschichten der Zukunft dar - von Solarpunk-Städten und Bio-Maschinen-Schnittstellen bis hin zur Tiefsee und Weltraumforschung.

Burning Man und die Black Rock Wüste sind für ihre Kletteren-thusiasten und starken Winde bekannt. Da solche Windböen dazu führen können, dass sich Stoffe wie Segel verhalten und eine erhebliche Kraft ausüben, entwarf das Team eine Struktur, die das Körpergewicht vieler Kletterer tragen und Windgeschwindigkeiten von bis zu 70 mph standhalten kann.

Die fertige Mittelstruktur des Pavillons besteht aus einem asymptotischen Gittergeflecht aus Holz- und Verbindungselementen, das für die statische Festigkeit optimiert ist und gleichzeitig den Materialverbrauch minimiert. Die gestrickten Blütenblätter, die mit einer doppelt gestrickten Struktur und Netzöffnungen integriert und durch das Schmelzen von Garnen thermogeformt wurden, sorgen für strukturelle Stabilität. Maßgeschneiderte Kanäle für Seile und Kabel wurden ebenfalls in das Strickdesign integriert, um sicherzustellen, dass jedes Gewebe und jede elektrische Komponente sicher verankert und geschützt ist, ohne die ästhetische Gestaltung zu beeinträchtigen. Der Living Knitwork Pavillon, der dieses Jahr Windstärken von bis zu 36 mph ausgesetzt war, blieb während der gesamten Burning Man-Veranstaltung standhaft und bewies damit seine Widerstandsfähigkeit unter extremen Wüstenbedingungen.

Zur Unterstützung von Burning Man's Anliegen einer nachhaltigeren Kunst, nutzte der Living Knitwork Pavillon die additive Fertigung von digitalem Stricken. Diese Methode ermöglichte die Herstellung individueller, mehrschichtiger Textilien, die sowohl ästhetisch als auch funktional sind, während gleichzeitig der Verbrauch von Rohstoffen und Abfall minimiert wurde. Das Team verwendete für seine Stoffe recycelte Materialien, wobei 60 Prozent der Garne aus recycelten Plastikflaschen stammen. Der Pavillon wird außerdem vollständig mit Batterieenergie und Solarzellen betrieben. Das Team arbeitete mit der Solar Library zusammen, einem skulpturalen Solarpanel, das Energie an andere Kunstwerke auf der Playa verteilt, um Generatoren und Lärm zu vermeiden und gleichzeitig die Nutzung erneuerbarer Energiequellen zu fördern.

Tagsüber dient der Living Knitwork Pavilion als Schattenspender und gemeinschaftlichee Raum für Meditati-on und Entdeckungen. Wenn sich die Sonne im Laufe des Tages weiterbewegt, werden verborgene, verschlüsselte Textilmuster und visuelle Erfahrungen durch Photochromie und leuchtendes Glühen enthüllt. Wenn die Dämmerung über der Wüste hereinbricht, vollzieht der Pavillon eine Metamorphose und beleuchtet seine Umgebung durch ein beeindruckendes Licht- und Audiosystem. Durch ein verteiltes Netzwerk von Antennen, die in die zentrale Struktur und in jedes gestrickte Blütenblatt eingebettet sind, wollte das Team letztlich eine persönliche Erfahrung schaffen, die es individuellen und kollektiven Bewegungen und Aktivitäten ermöglicht, das Gesamtambiente des Raums zu beeinflussen, einschließlich Klang und Beleuchtung

Während des gesamten Burning Man fanden im Pavillon auch Pop-up-Events statt, von Yoga-Sitzungen über Tanzvorführungen und Live-Musik bis hin zu einer Hochzeitszeremonie. Leider wurde die Black Rock Desert in den letzten beiden Tagen der Veranstaltung von einem heftigen Regenschauer heimgesucht - eine Seltenheit für diese Veranstaltung. Diese klimatische Wendung wirkte sich jedoch positiv auf den Pavillon aus, da die Textiloberfläche von dem angesammelten Staub befreit wurde und ihre leuchtend blaue Farbe wieder auflebte.

Das Ergebnis dieses umfassenden Projekts ist eine Zusammenarbeit, die Grenzen zwischen den Disziplinen überschreitet. Das Forschungsteam möchte Communities zusammenbringen und die bemerkenswerten Möglichkeiten aufzeigen, die sich ergeben, wenn Architektur, Technologie und Textilkunst zusammenkommen.

The interdisciplinary group behind the Living Knitwork Pavilion includes researchers from across the Media Lab, the MIT Center for Bits and Atoms, and the Department of Architecture: Irmandy Wicaksono, Sam Chin, Alfonso Parra Rubio, Nicole Bakker, Erik Strand, Gabriela Advincula, Manaswi Mishra, Age van der Mei, Judyta Cichoka, Tongge Yu, and Angelica Zhang.  

 

Quelle:

Massachusetts Institute of Technology MIT News

offshore windpark Nicholas Doherty, unsplash
17.10.2023

Recyclinglösung für Faserverbundwerkstoffe durch Pyrolyse

Nach 20 bis 30 Jahre haben Windenergieanlagen ihre Lebensdauer erreicht. Anschließend werden sie abgebaut und dem Recyclingverfahren zugeführt. Allerdings ist das Recycling der Faserverbundwerkstoffe, insbesondere aus dickwandigen Rotorblattteilen, bislang unzureichend. Stand der Technik ist die thermische oder mechanische Verwertung. Für einen nachhaltigen und ganzheitlichen Recyclingprozess bündelt ein Forschungskonsortium unter der Leitung des Fraunhofer IFAM ihr Know-how, um die eingesetzten Fasern durch Pyrolyse zurückzugewinnen. Eine anschließende Oberflächenbehandlung und Qualitätsprüfung der Rezyklate ermöglichen die erneute industrielle Anwendung.

Nach 20 bis 30 Jahre haben Windenergieanlagen ihre Lebensdauer erreicht. Anschließend werden sie abgebaut und dem Recyclingverfahren zugeführt. Allerdings ist das Recycling der Faserverbundwerkstoffe, insbesondere aus dickwandigen Rotorblattteilen, bislang unzureichend. Stand der Technik ist die thermische oder mechanische Verwertung. Für einen nachhaltigen und ganzheitlichen Recyclingprozess bündelt ein Forschungskonsortium unter der Leitung des Fraunhofer IFAM ihr Know-how, um die eingesetzten Fasern durch Pyrolyse zurückzugewinnen. Eine anschließende Oberflächenbehandlung und Qualitätsprüfung der Rezyklate ermöglichen die erneute industrielle Anwendung.

Windenergieanlagen lassen sich bereits heute zu sehr großen Teilen sauber recyceln. Bei den Rotorblättern steht das Recycling jedoch erst am Anfang. Aufgrund der Nutzungsdauer von ca. 20 Jahren sind in den kommenden Jahren und Jahrzehnten steigende Rotorblattmengen zu erwarten, die einer möglichst hochwertigen Verwertung zugeführt werden müssen. Im Jahr 2000 wurden beispielsweise ca. 6.000 Windenergieanlagen in Deutschland errichtet, die jetzt einem nachhaltigen Recyclingverfahren zugeführt werden müssen. Insgesamt waren im Jahr 2022 allein in Deutschland etwa 30.000 Windenergieanlagen an Land und auf See mit einer Leistung von 65 Gigawatt im Einsatz. [1]

Da die Windenergie die wichtigste Säule für eine klimaneutrale Stromversorgung ist, hat sich die Bundesregierung zum Ziel gesetzt, den Ausbau bis 2030 mit größeren und moderneren Anlagen weiter zu steigern. Die Offshore-Rotorblätter werden länger, der Anteil an eingesetzten Kohlenstofffasern wird weiter steigen – und somit auch die Abfallmengen. Zudem ist für die Zukunft zu erwarten, dass der bestehende Materialmix in den Rotorblättern zunimmt und zum Recycling genaue Kenntnisse über den Aufbau der Komponenten noch wichtiger werden. Dies unterstreicht die Dringlichkeit, insbesondere für das Recycling der dickwandigen Faserverbundwerkstoffe in den Rotorblättern, nachhaltige Aufbereitungsverfahren zu entwickeln.

 
Ökonomische und ökologische Recyclinglösung für Faserverbundwerkstoffe in Sicht
Rotorblätter der jetzt zum Recycling anstehenden Windenergieanlagen setzen sich mit über 85 Gewichtsprozent aus glas- und kohlefaserverstärkten Duroplasten (GFK/CFK) zusammen. Ein großer Anteil dieser Materialien befindet sich im Flansch- und Wurzelbereich sowie innerhalb der faserverstärkten Gurte als dickwandige Laminate mit Wandstärken von bis zu 150 mm. Die Erforschung des hochwertigen stofflichen Faserrecyclings als Endlosfaser ist nicht zuletzt wegen des Energiebedarfs zur Kohlenstofffaserproduktion von besonderer Bedeutung. Hier setzt das vom Bundesministerium für Wirtschaft und Klimaschutz geförderte Projekt »Pyrolyse dickwandiger Faserverbundwerkstoffe als Schlüsselinnovation im Recyclingprozess für Rotorblätter von Windenergieanlagen« – kurz »RE SORT« – an. Ziel des Projektteams ist das vollständige Recycling mittels Pyrolyse.

Voraussetzung für eine hochwertige Verwertung der Faserverbundwerkstoffe ist die Trennung der Fasern von der zumeist duroplastischen Matrix. Die Pyrolyse ist für diesen Prozess zwar ein geeignetes Verfahren, konnte sich aber bislang nicht durchsetzen. Innerhalb des Projekts untersuchen und entwickeln die Projektpartner daher Pyrolysetechnologien, die das Recycling von dickwandigen Faserverbundstrukturen wirtschaftlich ermöglichen und sich von den heute üblichen Verwertungsverfahren für Faserverbundwerkstoffe technisch unterscheiden. Dabei werden sowohl eine quasikontinuierliche Batch- als auch die Mikrowellen-Pyrolyse betrachtet.

Bei der Batch-Pyrolyse, die innerhalb des Vorhabens entwickelt wird, handelt es sich um einen Pyrolyseprozess, in dem die duroplastische Matrix dicker Faserverbundbauteile durch externe Erhitzung in ölige und vor allem gasförmige Kohlenwasserstoffverbindungen langsam zersetzt wird. Bei der Mikrowellenpyrolyse erfolgt die Energiezufuhr durch die Absorption von Mikrowellenstrahlung, sodass es zu einer inneren schnellen Wärmeentwicklung kommt. Die quasikontinuierliche Batch-Pyrolyse als auch die Mikrowellenpyrolyse erlauben die Abscheidung von Pyrolysegasen bzw. – ölen. Die geplante Durchlauf-Mikrowellenpyrolyse ermöglicht zudem den Erhalt und die Wiederverwendung der Fasern in ihrer gesamten Länge.

 
Wie die Kreislaufwirtschaft gelingt – ganzheitliche Verwertung der gewonnenen Recyclingprodukte
In einem nächsten Schritt werden die Oberflächen der zurückgewonnenen Rezyklatfasern mittels atmosphärischer Plasmen und nasschemischer Beschichtungen aufbereitet, um einer erneuten industriellen Anwendung zugeführt werden zu können. Anhand von Festigkeitsuntersuchungen lässt sich schließlich entscheiden, ob die Rezyklatfasern erneut in der Windenergie oder beispielsweise im Automobilbau oder im Sportartikelbereich Einsatz finden.

Die in der Batch- und Mikrowellenpyrolyse gewonnenen Pyrolyseöle und Pyrolysegase werden bezüglich der Nutzbarkeit als Rohstoff für die Polymersynthese (Pyrolyseöle) oder als Energiequelle zur energetischen Nutzung in Blockheizkraftwerken (BHKW) (Pyrolysegase) bewertet.

Sowohl die quasikontinuierliche Batch-Pyrolyse als auch die Durchlauf-Mikrowellenpyrolyse versprechen einen wirtschaftlichen Betrieb und eine maßgebliche Verringerung des ökologischen Fußabdrucks bei der Entsorgung von Windenergieanlagen. Daher stehen die Chancen für eine technische Umsetzung und Verwertung der Projektergebnisse sehr gut, sodass mit diesem Projekt ein entscheidender Beitrag zum Erreichen der Nachhaltigkeits- und Klimaziele der Bundesregierung geleistet werden kann.

Quelle:

Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM

Ein kurzer Check mit dem Smartphone und der integrierten Spektralanalyse erkennt das Gewebe des Kleidungsstücks. Foto: © Fraunhofer IPMS. Ein kurzer Check mit dem Smartphone und der integrierten Spektralanalyse erkennt das Gewebe des Kleidungsstücks.
10.10.2023

Kleider-Check mit Smartphone, KI und Infrarot-Spektroskopie

Fraunhofer-Forschende haben ein ultrakompaktes Nah-Infrarot-Spektrometer entwickelt, das sich für die Analyse und Bestimmung von Textilien eignet. Durch die Kombination von Bildgebung, speziellen KI-Algorithmen (KI, Künstliche Intelligenz) und Spektroskopie lassen sich auch Mischgewebe zuverlässig erkennen. Die Technologie könnte das Recycling von Altkleidern optimieren und eine sortenreine Trennung von Altkleidern ermöglichen. Eine miniaturisierte Variante des Systems passt sogar in Smartphones. Dadurch könnten sich für Konsumenten zahlreiche neue Anwendungen im Alltag ergeben – vom Kleider-Check beim Shopping bis zur Prüfung auf Plagiate.

Fraunhofer-Forschende haben ein ultrakompaktes Nah-Infrarot-Spektrometer entwickelt, das sich für die Analyse und Bestimmung von Textilien eignet. Durch die Kombination von Bildgebung, speziellen KI-Algorithmen (KI, Künstliche Intelligenz) und Spektroskopie lassen sich auch Mischgewebe zuverlässig erkennen. Die Technologie könnte das Recycling von Altkleidern optimieren und eine sortenreine Trennung von Altkleidern ermöglichen. Eine miniaturisierte Variante des Systems passt sogar in Smartphones. Dadurch könnten sich für Konsumenten zahlreiche neue Anwendungen im Alltag ergeben – vom Kleider-Check beim Shopping bis zur Prüfung auf Plagiate.

Infrarot-Spektrometer sind leistungsstarke Messinstrumente, wenn es darum geht, organische Materialien zerstörungsfrei zu analysieren. Jetzt hat das Fraunhofer-Institut für Photonische Mikrosysteme IPMS in Dresden ein Spektralanalyse-System entwickelt, das Textilgewebe analysiert und erkennt. Auch Mischgewebe erkennt das System zuverlässig. Die Anwendungsmöglichkeiten reichen vom Materialcheck beim Kauf über das korrekte Reinigen der Kleidung bis hin zum nachhaltigen und sortenreinen Recycling. Das Spektrometer ist so klein, dass es sich in ein Smartphone integrieren lässt.

Um die nötige Zuverlässigkeit und Präzision bei der Bestimmung von Textilien zu erreichen, setzen die Fraunhofer-Forschenden auf die Nah-Infrarot-Spektroskopie (NIR). Das System arbeitet mit Wellenlängen zwischen 950 und 1900 Nanometer, also nah am sichtbaren Spektralbereich. Vorteile der Nah-Infrarot-Technik sind die einfache Handhabung und die vielfältigen Einsatzgebiete. »Wir kombinieren NIR-Spektroskopie mit Bildgebung und KI und erreichen so eine höhere Genauigkeit bei der Erkennung und Bewertung von Objekten«, erklärt Dr. Heinrich Grüger, wissenschaftlicher Mitarbeiter der Abteilung Sensorische Mikromodule am Fraunhofer IPMS.

So funktioniert die Textilanalyse
Im ersten Schritt wird ein Bild des Kleidungsstücks mit einem herkömmlichen Kameramodul aufgenommen. Die KI wählt aus den Bildinformationen des Textilgewebes einen prägnanten Punkt, der vom Spektralanalyse-Modul untersucht werden soll. Das vom Stoff reflektierte Licht wird vom Spektrometer-Modul erfasst. Dort dringt es durch einen Eintrittsspalt, wird mit einem Kollimations-Spiegel in parallele Lichtstrahlen gebracht und über einen Scanner-Spiegel auf ein Gitter gelenkt. Je nach Ein- und Austrittswinkel teilt das Gitter die Lichtstrahlen in verschiedene Wellenlängen auf. Das vom Gitter reflektierte Licht wird über den Scanner-Spiegel auf einen Detektor geleitet, der das Licht als elektrisches Signal erfasst. Dann digitalisiert ein A/D-Wandler (Analog-Digital) die Signale, die schließlich im Signalprozessor ausgewertet werden. Das so entstehende spektrometrische Profil des Textilgewebes verrät durch Abgleich mit einer Referenzdatenbank, um welche Fasern es sich handelt. »Das optische Auflösungsvermögen liegt bei 10 Nanometer. Durch die hohe Auflösung kann das NIR-Spektrometer mithilfe von KI auch Mischgewebe wie etwa Kleidungsstücke aus Polyester und Baumwolle bestimmen«, sagt Grüger. Mit einer Fläche von 10 mal 10 und einer Höhe von 6,5 Millimeter ist das System so kompakt, dass man es problemlos in ein handelsübliches Smartphone integrieren könnte.

Recycling von Altkleidern
Eine wichtige Anwendung für das KI-gesteuerte Spektrometer sieht Grüger vor allem im Recycling. Nach Angaben des Statistischen Bundesamts wurden 2021 bei den privaten Haushalten in Deutschland rund 176 200 Tonnen Textil- und Bekleidungsabfälle gesammelt. Durch die NIR-Spektroskopie könnte das Recycling optimiert und der Altkleiderberg reduziert werden. Altkleiderverwerter hätten dann die Möglichkeit, Kleidung besser und schneller zu sortieren. Textilien, die noch intakt sind, gehen beispielsweise in den Second-Hand-Handel. Beschädigte Textilien werden sortenrein recycelt und die darin enthaltenen Fasern wie Leinen, Seide, Baumwolle oder Lyocell wiederverwendet. Hoffnungslos verschmutzte Textilwaren würden thermisch verwertet oder beispielsweise zu Dämmmatten verarbeitet. Die Spektroskopie-Technik erledigt das Bestimmen und Sortieren der Textilien genauer und deutlich schneller als ein Mensch.

Wird die NIR-Spektroskopie in ein Smartphone integriert, könnten auch Konsumenten von der Technik des Fraunhofer-Instituts profitieren. Beim Kauf von Kleidern zeigt ein schneller Check mit dem Smartphone, ob der teure Seidenschal auch wirklich aus Seide ist und das exklusive Kleid des Modelabels nicht vielleicht doch ein Plagiat, das sich durch eine andere Gewebemischung verrät. Und sollte einmal das Etikett mit den Reinigungshinweisen nicht mehr lesbar sein, hilft das Smartphone via Textilscanner, das Gewebe zu identifizieren und damit den passenden Waschgang einzustellen.

Lebensmittel-Check und Dermatologie
Für die Forschenden aus dem Fraunhofer IPMS sind auch Anwendungen außerhalb des Textilbereichs denkbar. Mit Spektrometer ausgestattete Smartphones können beim Kauf von Lebensmitteln wie Gemüse und Obst Auskunft über die Qualität geben. Außerdem wäre es denkbar, die Technik für die Untersuchung der Haut einzusetzen. Ein schneller Scan mit dem Handy-Spektrometer könnte besonders trockene oder fettige Stellen identifizieren. Selbst Anwendungen in der medizinischen Diagnose etwa bei der Untersuchung von Stellen auf der Haut, bei denen der Verdacht auf ein Melanom besteht, ließen sich realisieren, hier allerdings mit fachärztlicher Unterstützung.

Bei der Entwicklung kommt dem Fraunhofer-Team jahrzehntelange Erfahrung mit dem Bau von NIR-Spektrometern in MEMS-Technik (Micro-Electro-Mechanical Systems) zugute. »Über die Jahre ist es uns gelungen, die großen Spektroskopie-Geräte aus dem Labor mit MEMS-Technologie so zu verkleinern, dass sie auch für den mobilen Einsatz geeignet sind«, sagt Grüger. Er hatte bereits im Jahr 2000 gemeinsam mit dem heutigen Institutsleiter Prof. Harald Schenk das Scanning-Grating-Spektrometer erfunden, das noch heute als Einstieg in die MEMS-Spektroskopie gilt.

Quelle:

Fraunhofer-Institut für Photonische Mikrosysteme