Textination Newsline

from to
Zurücksetzen
6 Ergebnisse
Fadenähnliche Pumpen können in Kleidung eingewebt werden (c) LMTS EPFL
27.06.2023

Fadenähnliche Pumpen können in Kleidung eingewebt werden

Forscher der Ecole Polytechnique Fédérale de Lausanne (EPFL) haben faserähnliche Pumpen entwickelt, die es ermöglichen, Hochdruck-Fluidkreisläufe in Textilien einzuweben, ohne dass eine externe Pumpe benötigt wird. Weiche, stützende Exoskelette, thermoregulierende Kleidung und immersive Haptik können so von Pumpen angetrieben werden, die in den Geweben der Vorrichtungen selbst eingenäht sind.

Viele flüssigkeitsbasierte, tragbare Hilfstechnologien benötigen heute eine große und laute Pumpe, die unpraktisch - wenn nicht gar unmöglich - in die Kleidung integriert werden kann. Dies führt zu einem Widerspruch: Tragbare Geräte sind routinemäßig an untragbare Pumpen gebunden. Forscher des Soft Transducers Laboratory (LMTS) an der School of Engineering haben nun eine elegante und einfache Lösung für dieses Dilemma entwickelt.

Forscher der Ecole Polytechnique Fédérale de Lausanne (EPFL) haben faserähnliche Pumpen entwickelt, die es ermöglichen, Hochdruck-Fluidkreisläufe in Textilien einzuweben, ohne dass eine externe Pumpe benötigt wird. Weiche, stützende Exoskelette, thermoregulierende Kleidung und immersive Haptik können so von Pumpen angetrieben werden, die in den Geweben der Vorrichtungen selbst eingenäht sind.

Viele flüssigkeitsbasierte, tragbare Hilfstechnologien benötigen heute eine große und laute Pumpe, die unpraktisch - wenn nicht gar unmöglich - in die Kleidung integriert werden kann. Dies führt zu einem Widerspruch: Tragbare Geräte sind routinemäßig an untragbare Pumpen gebunden. Forscher des Soft Transducers Laboratory (LMTS) an der School of Engineering haben nun eine elegante und einfache Lösung für dieses Dilemma entwickelt.

„Wir präsentieren die weltweit erste Pumpe in Form einer Faser, also eines Schlauches, der seinen eigenen Druck und Durchfluss erzeugt“, so LMTS-Chef Herbert Shea. "Jetzt können wir unsere Faserpumpen direkt in Textilien und Kleidung einnähen und herkömmliche Pumpen hinter uns lassen." Die Forschungsergebnisse wurden in der Zeitschrift Science veröffentlicht.

Leicht, leistungsstark ... und waschbar
Sheas Labor hat eine lange Tradition in der zukunftsweisenden Fluidik. Im Jahr 2019 stellten sie die erste dehnbare Pumpe der Welt her.

„Diese Arbeit baut auf unserer vorherigen Generation von Soft-Pumpen auf“, erläutert Michael Smith, ein LMTS-Post-Doktorand und Hauptautor der Studie. „Das Faserformat ermöglicht es uns, leichtere und leistungsstärkere Pumpen herzustellen, die besser mit tragbarer Technologie kompat-bel sind.“

Die LMTS-Faserpumpen nutzen ein Prinzip namens Ladungsinjektion-Elektrohydrodynamik (EHD), um einen Flüssigkeitsstrom ohne bewegliche Teile zu erzeugen. Zwei schraubenförmige Elektroden, die in die Pumpenwand eingebettet sind, ionisieren und beschleunigen die Moleküle einer speziellen, nicht leitenden Flüssigkeit. Die Ionenbewegung und die Form der Elektroden erzeugen einen Netto-Fluidstrom, der geräuschlos und ohne Vibrationen arbeitet und nur ein handtellergroßes Netzteil und eine Batterie benötigt.

Um die einzigartige Struktur der Pumpe zu erreichen, entwickelten die Forscher ein neuartiges Herstellungsverfahren, bei dem Kupferdrähte und Polyurethanfäden um einen Stahlstab gewickelt und dann durch Hitze verschmolzen werden. Nachdem der Stab entfernt wurde, können die 2 mm dicken Fasern mit herkömmlichen Web- und Nähtechniken in Textilien integriert werden.

Die einfache Konstruktion der Pumpe hat eine Reihe von Vorteilen. Die benötigten Materialien sind preiswert und leicht verfügbar, der Herstellungsprozess lässt sich leicht skalieren. Da die Höhe des von der Pumpe erzeugten Drucks direkt mit ihrer Länge zusammenhängt, können die Schläuche auf die jeweilige Anwendung zugeschnitten werden, um die Leistung zu optimieren und gleichzeitig das Gewicht zu minimieren. Die robuste Konstruktion kann auch mit herkömmlichen Waschmitteln gereinigt werden.

Vom Exoskelett zur virtuellen Realität
Die Autoren haben bereits gezeigt, wie diese Faserpumpen in neuen und spannenden tragbaren Technologien eingesetzt werden können. So können sie beispielsweise heiße und kalte Flüssigkeiten durch Kleidungsstücke zirkulieren lassen, die in Umgebungen mit extremen Temperaturen oder in therapeutischen Umgebungen zur Behandlung von Entzündungen und sogar zur Optimierung sportlicher Leistungen eingesetzt werden.

„Diese Anwendungen erfordern ohnehin lange Schläuche, und in unserem Fall sind die Schläuche die Pumpe. Das bedeutet, dass wir sehr einfache und leichte Flüssigkeitskreisläufe herstellen können, die bequem und angenehm zu tragen sind“, erklärt Smith.

In der Studie werden auch künstliche Muskeln aus Stoff und eingebetteten Faserpumpen beschrieben, die als Antrieb für weiche Exoskelette verwendet werden könnten, um Patienten beim Bewegen und Gehen zu helfen.

Die Pumpe könnte sogar eine neue Dimension in die Welt der virtuellen Realität bringen, indem sie das Temperaturempfinden simuliert. In diesem Fall tragen die Nutzer einen Handschuh mit Pumpen, die mit heißer oder kalter Flüssigkeit gefüllt sind, so dass sie die Temperaturveränderungen als Reaktion auf den Kontakt mit einem virtuellen Objekt spüren können.

Aufgepumpt für die Zukunft
Die Forscher sind bereits dabei, die Leistung ihres Geräts zu verbessern. "Die Pumpen funktionieren bereits gut, und wir sind zuversichtlich, dass wir mit weiteren Arbeiten weitere Verbesserungen in Bereichen wie Effizienz und Lebensdauer erzielen können", sagt Smith. Es wurde bereits damit begonnen, die Produktion der Faserpumpen zu erhöhen, und das LMTS plant auch, sie in komplexere tragbare Geräte einzubauen.

„Wir sind überzeugt, dass diese Innovation die Wearable Technology entscheidend verändern wird“, sagt Shea.

Weitere Informationen:
EPFL Fasern Exoskelette wearables
Quelle:

Celia Luterbacher, School of Engineering | STI
Übersetzung: Textination

Die Plasma-Atmosphäre wird im Reaktor durch das charakteristische Leuchten und das Entladen von Blitzen deutlich sichtbar. © Fraunhofer IGB Die Plasma-Atmosphäre wird im Reaktor durch das charakteristische Leuchten und das Entladen von Blitzen deutlich sichtbar.
16.05.2023

Abwasserreinigung: Plasma gegen toxische PFAS-Chemikalien

Die gesundheitsschädlichen Chemikalien PFAS sind mittlerweile in vielen Böden und Gewässern nachweisbar. Die Beseitigung mit herkömmlichen Filtertechniken ist sehr aufwendig und kaum realisierbar. Forschende des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB setzen im Verbundprojekt AtWaPlas erfolgreich auf eine plasmabasierte Technologie. Kontaminiertes Wasser wird in einen kombinierten Glas- und Edelstahlzylinder eingeleitet und dort mit ionisiertem Gas – dem Plasma – behandelt. Das reduziert die Molekülketten von PFAS und ermöglicht so eine kostengünstige Beseitigung der toxischen Substanz.

Die gesundheitsschädlichen Chemikalien PFAS sind mittlerweile in vielen Böden und Gewässern nachweisbar. Die Beseitigung mit herkömmlichen Filtertechniken ist sehr aufwendig und kaum realisierbar. Forschende des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB setzen im Verbundprojekt AtWaPlas erfolgreich auf eine plasmabasierte Technologie. Kontaminiertes Wasser wird in einen kombinierten Glas- und Edelstahlzylinder eingeleitet und dort mit ionisiertem Gas – dem Plasma – behandelt. Das reduziert die Molekülketten von PFAS und ermöglicht so eine kostengünstige Beseitigung der toxischen Substanz.

Per- und polyfluorierte Alkylverbindungen, kurz: PFAS (engl.: per- and polyfluoroalkyl substances), haben viele Talente. Sie sind thermisch und chemisch stabil, dabei wasser-, fett- und schmutzabweisend. Dementsprechend findet man sie in vielen alltäglichen Produkten: Pizzakartons und Backpapier sind damit beschichtet, auch Shampoos und Cremes enthalten PFAS. In der Industrie finden sie Verwendung als Lösch- und Netzmittel. In der Landwirtschaft werden sie in Pflanzenschutzmitteln verwendet. Mittlerweile lassen sich Spuren von PFAS auch da nachweisen, wo sie nicht hingehören: im Boden, in Flüssen und im Grundwasser, in Lebensmitteln und im Trinkwasser. So gelangen die schädlichen Stoffe am Ende auch in den menschlichen Körper. Wegen ihrer chemischen Stabilität ist die Beseitigung dieser auch als »Ewigkeitschemikalien« bezeichneten Substanzen bisher mit vertretbarem Aufwand kaum möglich.

Das Verbundprojekt AtWaPlas soll das ändern. Das Akronym steht für Atmosphären-Wasserplasma-Behandlung. Das innovative Projekt wird derzeit am Fraunhofer IGB in Stuttgart gemeinsam mit dem Industriepartner HYDR.O. Geologen und Ingenieure GbR aus Aachen vorangetrieben. Ziel ist die Aufbereitung und Rückgewinnung PFAS-belasteter Wässer mittels Plasma-Behandlung.
Das Forschenden-Team um Dr. Georg Umlauf, Experte für funktionale Oberflächen und Materialien, macht sich dabei die Fähigkeit von Plasma zu Nutze, die Molekülketten von Substanzen anzugreifen. Erzeugt wird das elektrisch leitfähige Gas aus Elektronen und Ionen durch Anlegen von Hochspannung. »In unseren Versuchen mit Plasma ist es gelungen, die Molekülketten von PFAS im Wasser zu verkürzen. Das ist ein wichtiger Schritt hin zu einer effizienten Beseitigung dieser hartnäckigen Schadstoffe«, freut sich Umlauf.

Wasserkreislauf im Edelstahlzylinder
Für das Verfahren nutzen die Fraunhofer-Forschenden einen zylinderförmigen Aufbau. Im Inneren befindet sich ein Edelstahlrohr und dieses dient als Masse-Elektrode des Stromkreises. Ein äußeres Kupfernetz fungiert als Hochspannungselektrode und wird zur Innenseite hin durch ein Dielektrikum aus Glas abgeschirmt. Dazwischen bleibt ein winziger Spalt, der mit einem Luft-Gemisch gefüllt ist. Durch Anlegen von mehreren Kilovolt Spannung verwandelt sich dieses Luft-Gemisch in Plasma. Für das menschliche Auge wird es durch das charakteristische Leuchten und das Entladen in Form von Blitzen sichtbar.

Im Reinigungsprozess wird das mit PFAS kontaminierte Wasser am Boden des Stahltanks eingeleitet und nach oben gepumpt. Im Spalt zwischen den Elektroden fließt es nach unten und durchquert dabei die elektrisch aktive Plasma-Atmosphäre. Beim Entladen bricht das Plasma die PFAS-Molekülketten auf und verkürzt sie. Das Wasser wird in einem geschlossenen Kreislauf immer wieder durch den stählernen Reaktor und die Plasma-Entladezone im Spalt gepumpt, jedes Mal werden die PFAS-Molekülketten weiter reduziert bis zu einer vollständigen Mineralisierung. »Im Idealfall werden die schädlichen PFAS-Stoffe so gründlich beseitigt, dass sie in massenspektrometischen Messungen nicht mehr nachweisbar sind. Damit werden auch die strengen Regularien der Trinkwasserverordnung in Bezug auf die PFAS-Konzentration erfüllt«, sagt Umlauf.

Gegenüber herkömmlichen Methoden wie beispielsweise der Filterung mit Aktivkohle weist die am Fraunhofer IGB entwickelte Technologie einen entscheidenden Vorteil auf: »Aktivkohlefilter können die schädlichen Stoffe zwar binden, sie aber nicht beseitigen. Somit müssen die Filter regelmäßig ausgetauscht und entsorgt werden. Die AtWaPlas-Technologie dagegen kann die schädlichen Substanzen rückstandsfrei eliminieren und arbeitet dabei sehr effizient und wartungsarm«, erläutert Fraunhofer-Experte Umlauf.

Echte Wasserproben statt synthetischer Laborprobe
Um echte Praxisnähe zu gewährleisten, testen die Fraunhofer-Forschenden die Plasma-Reinigung gewissermaßen unter erschwerten Bedingungen. Konventionelle Testverfahren arbeiten mit perfekt sauberem Wasser und im Labor synthetisch angerührten PFAS-Lösungen. Das Forschenden-Team in Stuttgart dagegen verwendet echte Wasserproben, die aus PFAS-kontaminierten Gebieten stammen. Die Proben werden vom Projektpartner HYDR.O. Geologen und Ingenieure GbR aus Aachen zugeliefert. Das Unternehmen hat sich auf Altlastensanierung spezialisiert und führt daneben hydrodynamische Simulationen durch.

Die realen Wasserproben, mit denen Umlauf und sein Team arbeiten, enthalten daher neben PFAS auch weitere Partikel, Schwebstoffe und organische Trübungen. »Auf diese Weise stellen wir sicher, dass AtWaPlas seinen Reinigungseffekt nicht nur mit synthetischen Laborproben, sondern auch unter realen Bedingungen mit wechselnden Wasserqualitäten unter Beweis stellt. Zugleich können wir die Prozessparameter laufend anpassen und weiterentwickeln«, erklärt Umlauf.

Die Plasma-Methode lässt sich auch für den Abbau anderer schädlicher Substanzen einsetzen. Darunter fallen etwa Rückstände von Medikamenten im Abwasser, Pestizide und Herbizide, aber auch Industriechemikalien wie Cyanide. Daneben kommt AtWaPlas auch für die umweltschonende und kostengünstige Aufbereitung von Trinkwasser in mobilen Anwendungen infrage.

Das Verbundprojekt AtWaPlas startete im JuIi 2021. Nach den erfolgreichen Versuchsreihen im Technikums-Maßstab mit einem 5-Liter-Reaktor arbeitet das Fraunhofer-Team gemeinsam mit dem Verbundpartner daran, das Verfahren weiter zu optimieren. Georg Umlauf sagt: »Unser Ziel ist es jetzt, toxische PFAS durch verlängerte Prozesszeiten und mehr Umläufe im Tank vollständig zu eliminieren und die AtWaPlas-Technologie auch für die praktische Anwendung im größeren Maßstab verfügbar zu machen.« Zukünftig könnten entsprechende Anlagen auch als eigenständige Reinigungsstufe in Klärwerken aufgestellt werden oder in transportablen Containern auf kontaminierten Freilandflächen zum Einsatz kommen.

Quelle:

Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Vadim Zharkov: https://youtu.be/x9gCrhIPaPM
28.02.2023

Intelligente Beschichtung könnte Textilien zu Schutzkleidung machen

Präzise angewandte metall-organische Technologie erkennt und bindet giftige Gase aus der Luft

Eine dauerhafte Beschichtung auf Kupferbasis, die von Forschenden in Dartmouth entwickelt wurde, kann präzise in Gewebe integriert werden, um reaktionsfähige und wiederverwendbare Materialien wie Schutzausrüstungen, Umweltsensoren und intelligente Filter herzustellen, so eine aktuelle Studie.
 
Die Beschichtung reagiert auf das Vorhandensein giftiger Gase in der Luft, indem sie diese in weniger giftige Substanzen umwandelt, die im Gewebe eingeschlossen werden, berichtet das Team im Journal of the American Chemical Society.

Präzise angewandte metall-organische Technologie erkennt und bindet giftige Gase aus der Luft

Eine dauerhafte Beschichtung auf Kupferbasis, die von Forschenden in Dartmouth entwickelt wurde, kann präzise in Gewebe integriert werden, um reaktionsfähige und wiederverwendbare Materialien wie Schutzausrüstungen, Umweltsensoren und intelligente Filter herzustellen, so eine aktuelle Studie.
 
Die Beschichtung reagiert auf das Vorhandensein giftiger Gase in der Luft, indem sie diese in weniger giftige Substanzen umwandelt, die im Gewebe eingeschlossen werden, berichtet das Team im Journal of the American Chemical Society.

Die Ergebnisse beruhen auf einer leitfähigen metallorganischen Technologie bzw. einem Modell, das im Labor der korrespondierenden Autorin Katherine Mirica, außerordentliche Professorin für Chemie, entwickelt wurde. Dabei handelte es sich um eine einfache Beschichtung, die auf Baumwolle und Polyester aufgetragen werden konnte, um intelligente Textilien zu schaffen, die die Forscher SOFT = Self-Organized Framework on Textiles nannten (JACS 2017). In ihrer Arbeit zeigten sie, dass die SOFT-Smart-Stoffe giftige Substanzen in der Umgebung erkennen und binden können.

In der neuesten Studie fanden die Forscher heraus, dass sie - anstelle der einfachen Beschichtung, über die 2017 berichtet wurde - die Struktur mithilfe eines Kupfervorläufers präzise in Gewebe einbetten können, wodurch sie spezifische Muster erstellen und die winzigen Lücken und Löcher zwischen den Fäden effektiver ausfüllen können.

Die Forschenden stellten fest, dass die Modelltechnologie das Toxin Stickoxid effektiv in Nitrit und Nitrat sowie das giftige, brennbare Gas Schwefelwasserstoff in Kupfersulfid umwandelt. Wie sie weiter berichten, hält die Fähigkeit, giftige Stoffe abzufangen und umzuwandeln sowohl der Abnutzung oder dem normalen Abrieb wie auch Wasch- und Bügelvorgängen stand.
Die Vielseitigkeit und Haltbarkeit, die das neue Verfahren bietet, würde es ermöglichen, das Verfahren für spezifische Zwecke und an präziseren Stellen einzusetzen, beispielsweise als Sensor auf Schutzkleidung oder als Filter in einer bestimmten Umgebung, so Mirica.
 
„Die neue Abscheidungsmethode bedeutet, dass die elektronischen Textilien aufgrund ihrer Robustheit potenziell mit einer breiteren Palette von Systemen verbunden werden könnten“, sagte sie. „Dieser technologische Fortschritt ebnet den Weg für weitere Anwendungen der kombinierten Filtrations- und Sensorfähigkeiten des Gerüsts, die in biomedizinischen Bereichen und bei der Umweltsanierung von Nutzen sein könnten.“

Die Technik könnte auch eine kostengünstige Alternative zu Technologien sein, die teuer und nur begrenzt einsetzbar sind, da sie eine Energiequelle oder - wie etwa Katalysatoren in Autos - seltene Metalle benötigen, so Mirica.
 
„Hier verlassen wir uns auf eine in der Erde reichlich vorhandene Materie, um giftige Chemikalien zu ‚ent‘-giften, und zwar ohne Energiezufuhr von außen, so dass wir keine hohen Temperaturen oder elektrischen Strom benötigen, um diese Funktion zu erreichen“, sagte Mirica.

Co-Erstautor Michael Ko, beobachtete den neuen Prozess zunächst im Jahr 2018, als er versuchte, das metallorganische Gerüst auf kupferbasierten Dünnfilmelektroden abzuscheiden. Aber die Kupferelektroden wurden durch das Gerüst ersetzt.

„Er wollte es oben auf den Elektroden haben und nicht als deren Ersatz“, sagte Mirica. „Wir haben vier Jahre gebraucht, um herauszufinden, was passiert und welchen Nutzen es hat. Es ist ein sehr einfacher Prozess, aber die Chemie dahinter ist es nicht, und wir benötigten einige Zeit und zusätzliche Studierende und Mitarbeitende, um das zu verstehen.“

Das Team entdeckte, dass das metallorganische Gerüst über Kupfer „wächst“ und dieses durch ein Material ersetzt, das in der Lage ist, giftige Gase zu filtern und umzuwandeln. Ko und Co-Autor Lukasz Mendecki, ein Postdoktorand in der Mirica-Gruppe von 2017-18, untersuchten Methoden, um das Gerüstmaterial in bestimmten Designs und Mustern auf Gewebe aufzubringen.

Co-Erstautorin Aileen Eagleton, die ebenfalls der Mirica-Gruppe angehört, hat die Technik durch die Optimierung des Verfahrens zum Aufdrucken des metallorganischen Gerüsts auf Stoff fertiggestellt und untersucht, wie seine Struktur und Eigenschaften durch chemische Exposition und Reaktionsbedingungen beeinflusst werden.

Zukünftige Arbeiten werden sich auf die Entwicklung neuer multifunktionaler Gerüstmaterialien und die Skalierung des Verfahrens zur Einbettung der metallorganischen Beschichtungen in Gewebe konzentrieren, so Mirica.

Quelle:

Dartmouth / Textination

North Carolina State University
17.01.2023

Mit Stickerei kostengünstig Wearable Electronics produzieren

Durch das Aufsticken von stromerzeugenden Garnen auf Stoff konnten Forscher ein selbstversorgendes, numerisches Touchpad und Bewegungssensoren in Kleidung einbetten. Die Technik bietet eine kostengünstige, skalierbare Methode für die Herstellung von tragbaren Geräten.
„Unsere Technik verwendet Stickerei, was ziemlich einfach ist - man kann unsere Garne direkt auf den Stoff aufbringen“, so der Hauptautor der Studie, Rong Yin, Assistenzprofessor für Textiltechnik, Chemie und Wissenschaft an der North Carolina State University. „Bei der Herstellung des Gewebes muss keine Rücksicht auf die tragbaren Geräte genommen werden. Man kann die stromerzeugenden Garne erst nach der Herstellung des Kleidungsstücks integrieren.“
 

Durch das Aufsticken von stromerzeugenden Garnen auf Stoff konnten Forscher ein selbstversorgendes, numerisches Touchpad und Bewegungssensoren in Kleidung einbetten. Die Technik bietet eine kostengünstige, skalierbare Methode für die Herstellung von tragbaren Geräten.
„Unsere Technik verwendet Stickerei, was ziemlich einfach ist - man kann unsere Garne direkt auf den Stoff aufbringen“, so der Hauptautor der Studie, Rong Yin, Assistenzprofessor für Textiltechnik, Chemie und Wissenschaft an der North Carolina State University. „Bei der Herstellung des Gewebes muss keine Rücksicht auf die tragbaren Geräte genommen werden. Man kann die stromerzeugenden Garne erst nach der Herstellung des Kleidungsstücks integrieren.“
 
In der Studie, die in der Zeitschrift Nano Energy veröffentlicht wurde, testeten die Forscher mehrere Designs für stromerzeugende Garne. Um sie so haltbar zu machen, dass sie der Spannung und Biegung beim Sticken standhalten, verwendeten sie schließlich fünf handelsübliche Kupferdrähte, die mit einer dünnen Polyurethanbeschichtung versehen waren. Dann nähten sie sie mit einem anderen Material - PTFE - auf Baumwollgewebe.

„Dies ist eine kostengünstige Methode zur Herstellung von tragbarer Elektronik mit handelsüblichen Produkten“, so Yin. „Die elektrischen Eigenschaften unserer Prototypen waren mit denen anderer Designs vergleichbar, die auf demselben Mechanismus zur Stromerzeugung basieren“.
Die Forscher stützten sich auf eine Methode zur Stromerzeugung, die als „triboelektrischer Effekt“ bezeichnet wird und bei der Elektronen, die von zwei verschiedenen Materialien ausgetauscht werden, wie statische Elektrizität nutzbar gemacht werden. Sie stellten fest, dass das PTFE-Gewebe in Kontakt mit den polyurethanbeschichteten Kupferdrähten die beste Leistung in Bezug auf Spannung und Stromstärke erbrachte, verglichen mit anderen getesteten Gewebetypen, darunter Baumwolle und Seide. Sie testeten ebenfalls die Beschichtung der Stickerei-Muster mit Plasma, um den Effekt zu verstärken.

„In unserem Muster gibt es zwei Schichten - eine ist der leitende, mit Polyurethan beschichtete Kupferdraht, die andere ist PTFE, und dazwischen befindet sich eine Lücke", so Yin. "Wenn die beiden nichtleitenden Materialien miteinander in Kontakt kommen, verliert das eine Material Elektronen und das andere erhält Elektronen. Verbindet man sie miteinander, so entsteht ein Strom.”

Die Forscher testeten ihre Garne als Bewegungssensoren, indem sie sie mit dem PTFE-Gewebe auf Jeansstoff bestickten. Sie platzierten die Stickereien auf der Handfläche, unter dem Arm, am Ellbogen und am Knie, um die elektrischen Signale zu verfolgen, die bei der Bewegung einer Person entstehen. Außerdem befestigten sie den bestickten Stoff an der Innensohle eines Schuhs, um seine Verwendung als Schrittzähler zu testen. Dabei stellten sie fest, dass die elektrischen Signale variierten, je nachdem, ob die Person ging, lief oder sprang.
Schließlich testeten sie ihre Garne in einem textilbasierten Ziffernblock am Arm, den sie anfertigten, indem sie Zahlen auf ein Stück Baumwollstoff stickten und dieses auf einem Stück PTFE-Gewebe befestigten. Je nach Zahl, die die Person auf dem Tastenfeld drückte, wurden unterschiedliche elektrische Signale erzeugt.

„Man kann unsere Garne auf Kleidung sticken, und wenn man sich bewegt, wird ein elektrisches Signal erzeugt, und diese Signale können als Sensor verwendet werden“, sagte Yin. „Wenn wir die Stickerei in einen Schuh einnähen, erzeugt sie beim Laufen eine höhere Spannung als beim bloßen Gehen. Wenn wir Zahlen auf den Stoff gestickt haben und sie drücken, wird für jede Zahl eine andere Spannung erzeugt. Das könnte als Interface genutzt werden.”

Da Textilprodukte unweigerlich gewaschen werden, testeten sie die Haltbarkeit ihres Stickdesigns in einer Reihe von Wasch- und Reibungstests. Nach dem Waschen mit der Hand, dem Durchwaschen mit Waschmittel und dem Trocknen im Ofen, stellten sie keinen Unterschied oder einen leichten Anstieg der Spannung fest. Bei dem mit Plasma beschichteten Prototyp wurde eine schwächere, aber immer noch bessere Leistung im Vergleich zum Originalmuster festgestellt. Nach einem Abriebtest konnte festgehalten werden, dass sich die elektrische Ausgangsleistung nach 10.000 Scheuerzyklen nicht signifikant verändert hatte.

Für die Zukunft planen sie, ihre Sensoren mit anderen Geräten zu integrieren, um weitere Funktionen hinzuzufügen. „Der nächste Schritt ist die Integration dieser Sensoren in ein tragbares System“, so Yin.

Die Studie mit dem Titel " Flexible, durable and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction " wurde online in Nano Energy veröffentlicht. Zu den Koautoren gehören Yu Chen, Erdong Chen, Zihao Wang, Yali Ling, Rosie Fisher, Mengjiao Li, Jacob Hart, Weilei Mu, Wei Gao, Xiaoming Tao und Bao Yang. Die Finanzierung erfolgte durch die North Carolina State University über den NC State Faculty Research & Professional Development Fund und das NC State Summer REU-Programm.

Quelle:

North Carolina State University, Rong Yin, Laura Oleniacz

(c) Toray
23.11.2021

Toray Industries: Ein Konzept, um Leben zu verändern

Das im Januar 1926 gegründete japanische Chemieunternehmen Toray Industries, Inc. mit Firmensitz in Tokio ist bekannt als der weltweit größte Hersteller von Kohlenstofffasern auf PAN (Polyacrylnitril)-Basis. Doch das Gesamtportfolio umfasst weit mehr. Textination sprach mit Koji Sasaki, dem General Manager der Textile Division von Toray Industries, Inc., über innovative Produktlösungen, neue Verantwortungen und die besondere Rolle von Chemieunternehmen in der heutigen Zeit.

Toray Industries ist ein japanisches Unternehmen, das sich – 1926 als Produzent von Viskosegarnen entstanden – auf der Zielgerade zu seinem 100. Geburtstag befindet. Aktuell gehören zur Toray Gruppe 102 japanische Firmen und 180 in Übersee. Sie sind in 29 Ländern tätig. Welche Bedeutung hat der Geschäftsbereich Fasern und Textilien aktuell für Ihren Unternehmenserfolg?

Das im Januar 1926 gegründete japanische Chemieunternehmen Toray Industries, Inc. mit Firmensitz in Tokio ist bekannt als der weltweit größte Hersteller von Kohlenstofffasern auf PAN (Polyacrylnitril)-Basis. Doch das Gesamtportfolio umfasst weit mehr. Textination sprach mit Koji Sasaki, dem General Manager der Textile Division von Toray Industries, Inc., über innovative Produktlösungen, neue Verantwortungen und die besondere Rolle von Chemieunternehmen in der heutigen Zeit.

Toray Industries ist ein japanisches Unternehmen, das sich – 1926 als Produzent von Viskosegarnen entstanden – auf der Zielgerade zu seinem 100. Geburtstag befindet. Aktuell gehören zur Toray Gruppe 102 japanische Firmen und 180 in Übersee. Sie sind in 29 Ländern tätig. Welche Bedeutung hat der Geschäftsbereich Fasern und Textilien aktuell für Ihren Unternehmenserfolg?

Das Geschäft mit Fasern und Textilien ist zugleich Ausgangspunkt und Grundlage der heutigen Geschäftsentwicklung von Toray. Wir begannen 1926 mit der Produktion von Viskosegarnen und führten bereits 1940 eigene Forschung und Entwicklung im Bereich Nylonfasern durch. Und da neue Materialien meist auch neue Verarbeitungsmethoden erfordern, begann Toray früh damit, auch in eigene Verfahrenstechnologie zu investieren. So möchten wir einerseits unsere Umsätze steigern und andererseits die Anwendungsmöglichkeiten für unsere Materialien erweitern. Aus diesem Grund begann Toray auch, das Geschäft vom reinen Fasergeschäft auf Textilien und sogar Bekleidung auszuweiten. So sind wir in der Lage, besser auf die Bedürfnisse unserer Kunden einzugehen und gleichzeitig stets an der Spitze der Innovation zu bleiben.

Laufe der Jahrzehnte hat Toray viel Wissen in der Polymerchemie und der organischen Synthesechemie angesammelt – und dieses Know-how ist die Grundlage für fast alle unsere anderen Geschäftsvorhaben. Heute produzieren wir eine breite Palette fortschrittlicher Materialien und Produkte mit hoher Wertschöpfung in den Bereichen Kunststoffe, Chemikalien, Folien, Kohlefaserverbundwerkstoffe, Elektronik und Informationsmaterialien, Pharmazeutika, Medizin und Wasseraufbereitung. Fasern und Textilien sind jedoch nach wie vor unser wichtigstes Geschäftsfeld, auf das rund 40 % des Umsatzes des Unternehmens entfallen.

Welches Verständnis, welches Erbe ist Ihnen bis heute wichtig? Und wie leben Sie konkret im Textilbereich eine Unternehmensphilosophie, die Sie so formulieren "einen gesellschaftlichen Beitrag leisten durch die Schaffung neuer Werte mit innovativen Ideen, Technologien und Produkten (Contributing to society through the creation of new value with innovative ideas, technologies and products)"?

Toray hat immer wieder neue Materialien entwickelt, die es so in der Welt noch nie gegeben hat. Wir tun dies, indem wir uns auf unsere vier Kerntechnologien konzentrieren: Polymerchemie, organische synthetische Chemie, Biotechnologie und Nanotechnologie. Für den Textilbereich bedeutet dies, dass wir neue Polymerstrukturen, Spinntechnologien und Verarbeitungsmethoden einsetzen, um Garne mit noch nie dagewesenen Eigenschaften zu entwickeln. Dabei orientieren wir uns stets an den Bedürfnissen und Problemstellungen des Marktes und unserer Kunden.

Dieser Ansatz ermöglicht es uns, Textilien mit neuen Funktionen in unseren Alltag zu integrieren, die natürliche Fasern und Materialien nicht erreichen können. So bieten wir beispielsweise Sport- und Unterwäsche, die hervorragend Wasser absorbieren und sehr schnell trocknen, oder Regen- und Outdoor-Bekleidung mit ausgezeichneten wasserabweisenden Eigenschaften, die mit einem weniger voluminösen Innenfutter aufwarten kann. Weitere Beispiele sind antibakterielle Unterwäsche, Uniformen oder Innenausstattungen, die für ein hygienisches Umfeld sorgen und das Wachstum von geruchsverursachenden Bakterien beeinträchtigen. Die Menschen genießen jeden Tag die Annehmlichkeiten dieser innovativen Textilien, und wir hoffen, damit zu ihrem täglichen Komfort beitragen und ihr Leben in gewisser Weise verbessern zu können.

Im Jahr 2015 verabschiedeten die Vereinten Nationen 17 nachhaltige Entwicklungsziele – kurz Agenda 2030 genannt, die zum 01. Januar 2016 in Kraft trat. Den Ländern blieben 15 Jahre, um sie bis 2030 zu erreichen. In Ihrem Unternehmen gibt es eine TORAY VISION 2030 und eine TORAY SUSTAINABILITY VISION. Wie wenden Sie diese Grundsätze und Ziele auf das Textilgeschäft an? Welche Rolle spielt die Nachhaltigkeit für dieses Geschäftsfeld?

Nachhaltigkeit ist eines der wichtigsten Themen, denen sich die Welt heute gegenübersieht – nicht nur in der Textilbranche, sondern in allen Industriezweigen. Wir in der Toray-Gruppe sind davon überzeugt, mit unseren fortschrittlichen Materialien zur Lösung verschiedener Probleme in diesem Kontext beitragen zu können. Gleichzeitig bietet der Trend in Richtung Nachhaltigkeit interessante neue Geschäftsansätze. In unserer Nachhaltigkeitsvision haben wir vier Ziele festgelegt, die die Welt bis 2050 erreichen sollte. Und wir haben definiert, welche Probleme dafür angegangen werden müssen.

Wir müssen:

  1. Maßnahmen zur Bekämpfung des Klimawandels beschleunigen,
  2. bei der Nutzung von Ressourcen und in der Produktion nachhaltige, recyclingorientierte Lösungen realisieren,
  3. sauberes Wasser und saubere Luft bereitstellen und
  4. einen Beitrag leisten zu einer besseren medizinischen Versorgung und Hygiene für Menschen auf der ganzen Welt.

Wir werden diese Agenda vorantreiben, indem wir den Einsatz von Materialien, die auf Umweltprobleme reagieren, fördern und ausweiten. Im Textilbereich bieten wir zum Beispiel wärmende und kühlende Textilien an – indem sie in bestimmten Situationen Klimaanlagen oder Heizungen überflüssig machen, können sie dazu beitragen, Energiekosten zu senken. Wir stellen außerdem umweltfreundliche Textilien her, die auf bestimmte schädliche Stoffe wie Fluor verzichten, sowie Textilien aus Biomasse, bei denen anstelle von konventionellen petrochemischen Materialien pflanzliche Fasern zum Einsatz kommen. Auch recycelte Materialien, die Abfall reduzieren und eine effektive Nutzung von Ressourcen fördern, haben wir im Sortiment.

Die TORAY VISION 2030 wiederum ist unser mittelfristiger Strategieplan und betrachtet das Thema Nachhaltigkeit aus einem anderen Blickwinkel: Toray hat darin den Weg zu einem nachhaltigen und gesunden Unternehmenswachstum festgelegt. Dabei konzentrieren wir uns auf zwei große Wachstumsbereiche: Unser Green Innovation Business, das auf die Lösung von Umwelt-, Ressourcen- und Energieproblemen abzielt, und das Life Innovation Business, das sich auf die Verbesserung der medizinischen Versorgung, der öffentlichen Gesundheit, der persönlichen Sicherheit und letztlich einer längeren Lebenserwartung konzentriert.

Innovation by Chemistry lautet der Claim der Toray-Gruppe. In einer Welt, in der REACH und Fridays for Future die Spielräume der Chemieindustrie stark einengen, stellt sich die Frage, welchen Platz die Chemie in der Textilindustrie haben kann. Wie passen hier Chemie, Innovation und Nachhaltigkeit zusammen?

Die chemische Industrie befindet sich heute an einem Wendepunkt. Die Vorteile, die diese Industrie für die Zivilisation bringen kann, sind zwar nach wie vor enorm, aber zugleich treten Nachteile wie Ressourcenverschwendung und die negativen Auswirkungen auf Umwelt und Ökosysteme, immer deutlicher zu Tage. In Zukunft wird die chemische Industrie viel stärker im Sinne der Nachhaltigkeit arbeiten müssen – daran führt kein Weg vorbei.

Was Textilien betrifft, so gibt es unserer Meinung nach mehrere Möglichkeiten, synthetische Materialien in Zukunft nachhaltiger zu gestalten. Eine davon sind wie gesagt Materialien, die aus Pflanzen statt aus petrochemischen Rohstoffen hergestellt werden. Eine andere besteht darin, die Menge an Rohstoffen, die bei der Produktion verwendet werden, von vornherein zu reduzieren – dies kann zum Beispiel gelingen, indem Abfallstoffe aus Produktion oder Verkauf gesammelt und recycelt werden. Biologisch abbaubare Materialien, die die Auswirkungen von Abfallprodukten auf die Umwelt verringern, sind eine weitere Möglichkeit, die zu verfolgen es lohnt, ebenso wie die Reduzierung von umweltschädlichen Substanzen, die im Produktionsprozess verwendet werden. All diese Möglichkeiten prüfen wir bereits im synthetischen Textilien-Geschäft von Toray. Zugleich achten wir übrigens darauf, in unserer eigenen Produktion Energie zu sparen und den Einfluss auf die Umwelt möglichst gering zu halten.

Toray konzentriert sich im Segment Fasern & Textilien auf synthetische Fasern wie Nylon, Polyester und Acryl sowie andere Funktionsfasern. Auf dem Markt ist in den vergangenen Jahren ein deutlicher Trend zu cellulosischen Fasern zu beobachten, die auch als Alternativen zu synthetischen Produkten gehandelt werden. Wie sehen Sie diese Entwicklung – zum einen für das Unternehmen Toray, zum anderen unter dem Aspekt Nachhaltigkeit, den die cellulosischen Wettbewerber mit der nachwachsenden Rohstoffbasis für sich reklamieren?

Naturfasern, einschließlich Cellulosefasern und Wolle, sind insofern umweltfreundlich, als sie leicht recycelt werden können und nach der Entsorgung schnell biologisch abbaubar sind. Um ihre Umweltauswirkungen wirklich beurteilen zu können, müssen jedoch auch eine Reihe anderer Faktoren berücksichtigt werden: In erster Linie ist da die Frage der Beständigkeit: gerade weil Naturfasern natürlich sind, ist es schwierig, auf einen schnellen Anstieg der Nachfrage zu reagieren, und die Qualität ist aufgrund von Wetter- und anderen Faktoren nicht immer stabil.

Klimatische Veränderungen wie extreme Hitze, Dürre, Wind, Überschwemmungen und Kälteschäden können die Quantität und Qualität der Produktion von Naturfasern beeinträchtigen, so dass die Versorgung nicht immer gesichert ist. Um die Produktion hochzufahren, müssen nicht nur Flächen gerodet, sondern auch große Mengen an Wasser und Pestiziden eingesetzt werden, um diese zu bewirtschaften - all das ist schädlich für die Umwelt.

Synthetische Fasern hingegen sind Industrieprodukte, die in kontrollierten Fabrikumgebungen hergestellt werden. Das macht es einfacher, Schwankungen im Produktionsvolumen zu bewältigen und eine gleichbleibende Qualität zu gewährleisten. Darüber hinaus können bestimmte funktionelle Eigenschaften wie Widerstandsfähigkeit, Wasseraufnahme, schnelles Trocknen und anti-bakterielle Eigenschaften in das Material eingearbeitet werden, was dazu führen kann, dass Textilien länger im Gebrauch sind.

Synthetische Fasern und Naturfasern, einschließlich Cellulosefasern, haben also ihre eigenen Vor- und Nachteile – es gibt hier kein Allheilmittel, zumindest nicht im Moment. Wir glauben: Es ist wichtig, sicherzustellen, dass es Optionen gibt, die dem Bewusstsein und dem Lebensstil des Verbrauchers entsprechen. Dazu gehören Komfort im Alltag und Nachhaltigkeit gleichermaßen.

Inwiefern ist die Nachfrage nach recycelten Produkten gestiegen? Unter dem Markennamen &+™ bietet Toray eine Faser an, die aus recycelten PET-Flaschen hergestellt wird. Gerade bei der „Rohstoffbasis: PET-Flaschen“ können sich Probleme beim Weißgrad der Faser ergeben. Was unterscheidet Ihr Verfahren von dem anderer Unternehmen und inwiefern können Sie qualitativ mit neuen Fasern konkurrieren?

Bei der Herstellung der "&+"-Faser werden die gesammelten PET-Flaschen mit speziellen Wasch- und Filterverfahren von sämtlichen Fremdstoffen befreit. Durch diese Verfahren konnten wir nicht nur das Problem des Weißgrades der Fasern lösen – indem wir gefilterte, hoch reine recycelte Polyester späne verwenden, können wir auch sehr feine Fasern und Fasern mit einzigartigen Querschnitten herstellen. Mit unseren bewährten Verfahrenstechnologien können zudem bestimmte Texturen und Funktionen von Toray in die Faser eingebaut werden. Darüber hinaus enthält "&+" eine spezielle Substanz im Polyester, die eine Rückverfolgung des Materials auf die darin verwendeten recycelten PET-Flaschenfasern ermöglicht.

Wir glauben, dass diese Kombination aus Ästhetik, Nachhaltigkeit und Funktionalität die recycelte Polyester-faser "&+" wettbewerbsfähiger macht als die anderer Unternehmen. Und in der Tat haben wir festgestellt, dass die Zahl der Anfragen stetig zunimmt, da Unternehmen bereits in der Produktplanungsphase ein stärkeres Bewusstsein für Nachhaltigkeit entwickeln.

Wie wird Innovationsmanagement in der Textilabteilung von Toray gelebt, und auf welche Entwicklungen, an denen Toray in der letzten Zeit gearbeitet hat, sind Sie besonders stolz?

Die Textilabteilung besteht aus drei Unterabteilungen, die sich auf die Entwicklung und den Verkauf von Modetextilien (WOMEN'S & MEN'S WEAR FABRICS DEPT.), Sport- und Outdoor-Textilien (SPORTS WEAR & CLOTHING MATERIALS FABRICS DEPT.) und, speziell für Japan, Textilien für Uniformen in Schulen, Unternehmen und dem öffentlichen Sektor (UNIFORM & ADVANCED TEXTILES DEPT.) konzentrieren.

In der Vergangenheit entwickelte jede Abteilung ihre eigenen Materialien für ihre jeweiligen Märkte und Kunden. Im Jahr 2021 haben wir jedoch einen kollaborativen Raum für die Zusammenarbeit eingerichtet, um die Synergie zu erhöhen und Informationen über die in verschiedenen Bereichen entwickelten Textilien mit der gesamten Abteilung zu teilen. So können die Verkäufer ihren Kunden auch in anderen Abteilungen entwickelte Materialien anbieten und selbst Ideen für die Entwicklung neuer Textilien bekommen.

Ich glaube, dass die neue Struktur uns auch helfen wird, besser auf Veränderungen im Markt zu reagieren. Wir sehen zum Beispiel, dass die Grenzen zwischen Arbeitsbekleidung und Outdoor verschwimmen – Marken wie Engelbert Strauss sind ein gutes Beispiel für diesen Trend. Eine weitere Entwicklung, die sich unserer Meinung nach der Corona-Pandemie noch beschleunigen wird, ist die Betonung grüner Technologien und Materialien. Dies gilt für alle Textilbereiche, und wir müssen enger zusammenarbeiten, um hier ganz vorne mitzuspielen.

Welche Bedeutung haben in Ihren Forschungsvorhaben biobasierte Polyester? Wie schätzen Sie die künftige Bedeutung solcher Alternativen ein?

Ich glaube, dass diese Materialien in den kommenden Jahren eine große Rolle spielen werden. Polyester wird aus gereinigter Terephthalsäure (PTA) hergestellt, die wiederum aus Paraxylen (PX) und Ethylenglykol (EG) besteht. In einem ersten Schritt bieten wir bereits ein Material namens ECODEAR™ an, das Zuckerrohrmelasse-Abfällen als Rohmaterial für die EG-Herstellung verwendet.

Etwa 30 % dieser zumindest ansatzweise Bio-Polyesterfaser sind somit biologisch hergestellt, und das Material wird in großem Umfang für Sportbekleidung und Uniformen verwendet. Im nächsten Schritt arbeiten wir an der Entwicklung einer vollständig biobasierten Polyesterfaser, bei der auch der PTA-Bestandteil aus Biomasse-Rohstoffen, wie den nicht genießbaren Teilen von Zuckerrohr und Holzabfällen, gewonnen wird.

Bereits 2011 ist es uns gelungen, einen Prototyp einer solchen vollständig aus Biomasse hergestellten Polyesterfaser zu produzieren. Die Ausweitung der Produktion bei dem PX-Hersteller, mit dem wir zusammenarbeiten, hat sich jedoch als schwierig erwiesen. Derzeit stellen wir nur kleine Muster-Mengen her, aber wir hoffen, in den 2020er Jahren mit der Massenproduktion starten zu können.

Ursprünglich vom Garn kommend, inzwischen seit Jahrzehnten ein weltweit führender Produzent synthetischer Fasern, arbeiten Sie auch bis zum fertig konfektionierten Produkt. Die Palette reicht von Schutzkleidung gegen Staub und Infektionen bis zu smart textiles und Funktionstextilien, die biometrische Daten erfassen. Was planen Sie in diesen Segmenten?

Im Bereich der Schutzkleidung ist unsere Marke LIVMOA™ unser Vorzeige-Material. Es vereint hohe Atmungsaktivität, um Feuchtigkeit im Inneren der Kleidung zu reduzieren, mit blockierenden Eigenschaften, die Staub und andere Partikel von außen fernhalten. Das Textil eignet sich für eine Vielzahl von Arbeitsumgebungen, darunter auch Anwendungen mit hohem Staub- oder Fettaufkommen und sogar Reinräume. LIVMOA™ 5000, eine hochwertige Qualität, zeigt auch antivirale Eigenschaften und hilft, medizinisches Personal zu entlasten. Das Material bildet eine wirksame Barriere gegen Bakterien und Viren und ist beständig gegenüber hygroskopischem Druck. Durch die hohe Atmungsaktivität bietet es außerdem hohen Tragekomfort.

Unser smart textile heißt hitoe™. Bei diesem hochleit-fähigen Gewebe wird ein leitfähiges Polymer – also eine Polymerverbindung, die Elektrizität hindurchlässt – in das Nanofasergewebe eingearbeitet. hitoe™ ist ein leistungsfähiges Material zur Erfassung von Biosignalen, schwachen elektrischen Signalen, die wir unbewusst von unserem Körper aussenden. In Japan hat Toray Produkte für elektrokardiografische Messungen (EKGs) entwickelt, die den Sicherheits- und Wirksamkeitsstandards medizinischer Geräte entsprechen. Und 2016 haben wir bei den japanischen medizinischen Verwaltungsbehörden eine Anmeldung für die Registrierung eines Geräts mit hitoe™ als allgemeines Medizinprodukt eingereicht – dieser Registrierungsprozess ist nun abgeschlossen. Insgesamt erwarten wir, dass der Gesundheitssektor, insbesondere medizinische und pflegerische Anwendungen, wachsen wird – nicht zuletzt wegen zunehmender Infektionskrankheiten und ein wachsendes Gesundheitsbewusstsein unter der älteren Bevölkerung. Wir werden daher weiterhin neue Produkte für diesen Markt entwickeln und verkaufen.

Joseph Wilson Swan hat 1885 die Bezeichnung „artifical silk“ für die von ihm künstlich erzeugten Nitratcellulosefilamente einführt. Später wurden auch die auf Basis von Cellulose ersponnenen Kupfer-, Viskose- und Acetatfilamentgarne als Kunstseide bezeichnet. Toray hat eine neue innovative Spinntechnologie unter dem Namen NANODESIGN™ entwickelt, die die Kontrolle der Feinheit und Form der synthetischen Fasern auf Nanoebene ermöglicht. Damit sollen Funktionen, Ästhetik und Texturen entstehen, die es bisher nicht gab. Für welche Anwendungen wollen Sie diese Produkte einsetzen?

Bei der NANODESIGN™-Technologie wird das Polymer in eine Reihe mikroskopisch kleiner Ströme aufgespalten, die dann in einem bestimmten Muster zu einer neuen Faser rekombiniert werden. Durch eine äußerst präzise Steuerung des Polymerstroms können Feinheit und Querschnittsform der Faser viel genauer bestimmt werden, als es mit herkömmlichen Mikrofaser- und Nanofaser-Spinntechnologien bisher möglich war. Darüber hinaus ermöglicht diese Technologie die Kombination von drei oder mehr Polymertypen mit unterschiedlichen Eigenschaften in einer Faser – herkömmliche Technologien schaffen nur zwei Polymertypen. Diese Technologie ermöglicht es Toray daher, bei der Herstellung von Kunstfasern eine Vielzahl von Texturen und Funktionen festzulegen, die mit herkömmlichen Kunstfasern nicht möglich waren – und sogar die Textur und die Haptik von Naturfasern zu übertreffen. Kinari, unsere mit der NANODESIGN-Technologie entwickelte Kunstseide, ist hier ein Paradebeispiel, aber die Technologie birgt noch viele weitere Möglichkeiten – nicht zuletzt im Hinblick auf unsere Nachhaltigkeitsziele.

Was hat die zurückliegende Zeit der Pandemie für das das Textilgeschäft von Toray bisher bedeutet? Inwiefern war sie eine Belastung, in welchen Bereichen aber auch ein Innovationstreiber? Was erwarten Sie von den kommenden 12 Monaten?

Die Corona-Katastrophe hat sich dramatisch auf die Ergebnisse des Unternehmens ausgewirkt: Im Geschäftsjahr 2020 sanken der Gesamtumsatz von Toray um rund 10% auf 188,36 Milliarden Yen (ca. 1,44 Milliarden Euro) und der Betriebsgewinn um rund 28% auf 90,3 Milliarden Yen (ca. 690 Millionen Euro). Die Auswirkungen auf den Faser- und Textilbereich waren ebenfalls beträchtlich: Die Umsätze gingen um rund 13 % auf 719,2 Mrd. Yen (ca. 5,49 Mrd. Euro) zurück und das Betriebsergebnis um rund 39 % auf 36,6 Mrd. Yen (ca. 280 Mio. Euro).

Im Geschäftsjahr 2021 sieht es im Bereich Fasern und Textilien jedoch deutlich besser aus: Bislang hat das Segment die Ziele insgesamt übertroffen, auch wenn es in den einzelnen Bereichen und Anwendungen Schwankungen gibt. Im Zeitraum April bis Juni haben wir sogar wieder das Niveau von 2019 erreicht. Dies ist zum Teil auf den sich erholenden Sport- und Outdoor-Sektor zurückzuführen. Der Markt für Modebekleidung hingegen bleibt aufgrund der veränderten Lebensgewohnheiten, die Schließungen und Homeoffice mit sich gebracht haben, weiterhin schwierig. Wir sind der Meinung, dass eine vollständige Erholung des Geschäfts erst dann eintreten wird, wenn die Reise- und Freizeitbranche wieder das Vor-Corona-Niveau erreicht hat.

Eine andere Nebenwirkung der Pandemie, die wir sehr stark spüren, ist die wachsende Sorge über Umweltfragen und den Klimawandel. Infolgedessen hat die Nachfrage nach nachhaltigen Materialien auch im Bekleidungssegment zugenommen. Nachhaltigkeit wird in Zukunft für die Entwicklung und Vermarktung neuer Textilien in allen Marktsegmenten ein Muss sein. Andererseits wird sich immer die Frage stellen, wie nachhaltig ein Produkt wirklich ist, und Daten und Rückverfolgbarkeit werden immer wichtiger werden. In den kommenden Jahren wird die Textilabteilung diese Entwicklungen genau im Auge behalten und Materialien entwickeln, die den Bedürfnissen der Kunden entsprechen.

Zur Person:
Koji Sasaki stieß 1987 zu Toray. In seinen mehr als 30 Jahren im Unternehmen hatte er verschiedene Positionen inne, darunter eine vierjährige Amtszeit als Managing Director der Toray International Europe GmbH in Frankfurt von 2016 bis 2020. Seit 2020 ist Koji Sasaki für die Textilsparte von Toray verantwortlich und fungiert als amtierender Vorsitzender von Toray Textiles Europe Ltd. In diesen Funktionen beaufsichtigt er die Entwicklungs-, Verkaufs- und Marketingaktivitäten des Unternehmens im Bekleidungssegment, darunter die Bereiche Mode, Sport und Arbeits- oder Schuluniformen.

Das Interview führte Ines Chucholowius, Geschäftsführerin der Textination GmbH

EuroShop 2017 © Messe Duesseldorf / ctillmann
18.10.2016

EUROSHOP 2017 – „SCHAUFENSTERFIGUREN: ECHTE STIMMUNGSMACHER!“

  • Visuelles Marketing wird angesichts der E-Commerce-Konkurrenz für den stationären Handel wichtiger
  • Display Mannequins stehen dabei im Fokus
  • Emotionalität ist entscheidend
  • Auch Individualität und Flexibilität sind gefragt
  • Der Trend geht zu semi-abstrakten Figuren, wobei es regionale und Genre-Unterschiede gibt
  • Customized-Anteil steigt
  • Nachhaltigkeit bleibt nachhaltig Thema

 Die EuroShop zählt zu den Messen, die stets auch optisch reich an Highlights sind. Besonderen Hochgenuss bietet dabei naturgemäß die Visual Merchandising Halle, Ausstellungsort der Display Mannequins und Store Window Decorations. Im März 2017 ist es die Halle 11 des Düsseldorfer Messegeländes (statt bisher der Halle 4), die sich in eine POS-Erlebniswelt verwandeln wird. Viel Aufmerksamkeit dürfte ihr gewiss sein.

  • Visuelles Marketing wird angesichts der E-Commerce-Konkurrenz für den stationären Handel wichtiger
  • Display Mannequins stehen dabei im Fokus
  • Emotionalität ist entscheidend
  • Auch Individualität und Flexibilität sind gefragt
  • Der Trend geht zu semi-abstrakten Figuren, wobei es regionale und Genre-Unterschiede gibt
  • Customized-Anteil steigt
  • Nachhaltigkeit bleibt nachhaltig Thema

 Die EuroShop zählt zu den Messen, die stets auch optisch reich an Highlights sind. Besonderen Hochgenuss bietet dabei naturgemäß die Visual Merchandising Halle, Ausstellungsort der Display Mannequins und Store Window Decorations. Im März 2017 ist es die Halle 11 des Düsseldorfer Messegeländes (statt bisher der Halle 4), die sich in eine POS-Erlebniswelt verwandeln wird. Viel Aufmerksamkeit dürfte ihr gewiss sein. Denn angesichts der E-Commerce-Konkurrenz werden das visuelle Marketing und daraus resultierend ein emotionaler, individueller Auftritt für stationäre Einzelhändler immer wichtiger. „Das Bedürfnis der Konsumenten nach Emotionen wird das übergeordnete Thema der EuroShop werden“, ist nicht nur Andreas Gesswein überzeugt, CEO des Unternehmens Genesis Display aus Auetal.

Display Mannequins haben besonderes Potenzial, Stimmungen zu erzeugen. Nicht ohne Grund stellte der Düsseldorfer Gestalter für visuelles Marketing Domagoj Mrsic sie bei einer seiner Inszenierungen einst als „Superheroes“ dar, als Superman und Wonder Woman, Batman und Catwoman, Spiderman und Spiderwoman. Gut gemacht, sind Figuren in gewisser Weise wirklich Helden. Mit ihrem Aussehen, ihrer Haltung, Gestik und Mimik sind sie in der Lage, Schaufenstern und Instore-Dekorationen Leben einzuhauchen, als verkaufsförderndes Stimulans zu wirken oder zumindest Sympathie, Interesse und Neugier zu wecken. Wenn sie nicht gerade kopflos und abstrakt sind, geben sie Handelshäusern und Marken Profil und Gesicht. Mit der Macht ihrer Pose vermögen sie es Stellung zu beziehen, welche Zielgruppe angesprochen, welcher Modegrad und welches Preislevel bedient werden sollen. Zudem können sie, gerade wenn sie in Gruppen auftreten, dem Betrachter Geschichten erzählen. Unvergessen die Figurenserie „Ugly’s“ des niederländischen Anbieters Hans Boodt, die humorvoll Männer aus dem wahren Leben nachahmte, statt „Jungs“ mit wohlgeformten Waschbrettbäuchen abzubilden. Ein langer Schmächtiger war ebenso dabei wie ein kleiner Untersetzter, gekleidet in Liebestöter-Unterwäsche. „Die neue Generation der Mannequins wird mehr über die Marke aussagen. Sie wird dazu beitragen, mehr über die wesentlichen Werte der Brand zu kommunizieren und sie vom Wettbewerb abzusetzen“, sagt Jean-Marc Mesguich, CEO von Window France mit Sitz in Carros.

Das Angebotsspektrum der Figurenbranche ist breit: Neben Top-Model-Doubles umfasst es Plus-Size-Beautys, Europäer, Afrikaner und Asiaten, besagte Superheroes und lustige Normalos. Küssende Paare sind ebenso dabei wie Sumo-Ringer. Nach dem Motto „bloß nicht tierisch ernst“ kamen die Anbieter längst auch auf den Hund oder die Katze. Und sogar auf das Chamäleon, denn so manche Figur entpuppt sich als Verwandlungskünstler. „Cameleon“ zum Beispiel ist ein patentiertes Konzept von Window France: Hunderte von Augen und Lippen stehen zur Wahl, Wimpern lassen sich ankleben, Perücken auf- und absetzen, das Make-up variieren oder dank Magneten gleich das ganze Gesicht. Einem permanent neuen POS-Auftritt steht damit nichts im Wege. Dazu gesellen sich eine im Markt inzwischen riesige Farb- und Materialvielfalt: Oberflächen aus Samt und Gummi sind ebenso zu haben wie Metallic-Lackierungen oder Beton- und Kupfer-Optiken.

Angesichts dessen, was in den letzten Jahren alles präsentiert wurde, fragt man sich, was jetzt noch Neues kommen kann. Wobei das Gros von Modehandel und Markenindustrie schon die vorhandenen Möglichkeiten zuletzt nicht annähernd ausreizte. In den vergangenen Jahren wurden vor allem abstrakte Figuren nachgefragt. „Sie sind vielseitig einsetzbar und einfach zu handhaben, da zum Beispiel keine Perücken und kein Make-up gestylt werden müssen“, kennt Andreas Gesswein (Genesis Display) die Gründe und ergänzt: „Leichter zu kopieren sind sie allerdings auch und damit in jedem Preissegment erhältlich.“ In der Praxis geht Effizienz mitunter erkennbar vor Emotion. „Doch wenn Stores sich in ihrer Darstellung nicht unterscheiden, reizt es auch nicht, sie zu betreten“, macht Jean-Marc Mesguich deutlich (Window France). Und zur EuroShop 2017? Window France jedenfalls wird weit mehr als „aufregende Variationen des abstrakten Themas bereithalten“.

Es wird wieder Gesicht gezeigt

Fakt ist: Wie die Mode, die sie zur Schau tragen, unterliegen Display Figuren Trends. Ausgelöst durch den Wunsch nach mehr Differenzierung und Ausdruck nehmen die Branchenvertreter inzwischen eine Entwicklung hin zu semi-abstrakten Figuren wahr. „Es wird zumindest wieder ein Gesicht angedeutet. Die Figuren sind weniger neutral. Es wird erkennbar: Man möchte wieder ein Statement setzen und sich bekennen. Die Entwicklung geht hin zu mehr Profil und einer klareren Zielgruppenansprache“, berichtet Cornel Klugmann, Country-Manager der D-A-CH-Region bei Hans Boodt aus dem niederländischen Zwijndrecht. Monica Ceruti, zuständig für PR & Communication bei Almax aus Mariano Comense/Italien, stimmt zu: „Zwar ist die Nachfrage nach abstrakten Figuren nach wie vor hoch, doch die Tendenz geht eindeutig in Richtung stärkerer realistischer Züge. Dazu gehören Details wie die Applikation von Wimpern oder Perücken. Auch dynamische Posen werden wieder populärer.“ Andreas Gesswein (Genesis Display) bemerkt: „Insbesondere in der Luxusbranche ist eine verstärkte Nachfrage nach realistischeren Figuren mit Gesicht und emotionalem Ausdruck zu verzeichnen, wodurch sich die Marken wieder von der Masse abheben wollen.“ Ein Trend, den Jean-Marc Mesguich bestätigt: „Die Haute-Couture-Marken haben die Eierköpfe längst verbannt und gegen etwas ausgetauscht, das mehr Wirkung hat und dafür sorgt, dass die Menschen über die Brand sprechen.“ Er fügt hinzu: „Die zunehmende Entwicklung, Mode online anzusehen pusht den Einzelhandel und die Marken, attraktivere Fenster zu gestalten und ihre Displays regelmäßiger auszutauschen.“

Die Zeit der konturlosen „Eierköppe“ scheint also vorbei. Und darüber hinaus? „Die Anmutung wird wertiger. Weiß und Grau lösen dunklere Töne ab, glossy ersetzt matt und es sind anspruchsvolle Looks mit mehr Ausstrahlung gefragt“, so Cornel Klugmann (Hans Boodt). Monica Ceruti (Almax) sieht überdies viel Potenzial für „handhandcrafted Looks“. Dazu gehören Büsten mit oder ohne Arme, bei denen die Materialien zwischen den einzelnen Bestandteilen, wie Podest, Torso oder Kopf, variieren und Holz- sowie metallische Oberflächen den Ton angeben. Sabrina Ciofi aus dem Design Office von La Rosa aus Palazzolo Milanese/Italien fasst die „großen Zukunftsthemen“ so zusammen: „Gefragt sind hohe Produktqualität, richtiger Preis, maximaler Kundenservice und hohe Produkt-Flexibilität beziehungsweise Vielseitigkeit.“ Eine Aussage, die länderübergreifend Gültigkeit haben dürfte. Ansonsten sagt sie trotz aller Globalisierung: „Es gibt so viele Trends, wie es Märkte gibt.“ Monica Ceruti (Almax) konkretisiert: „In Europa und den USA sind die Unterschiede nicht gravierend. Im Mittleren Osten hingegen sind aus religiösen und kulturellen Gründen zum Beispiel weiterhin Figuren ohne realistische Züge gefragt, das gilt insbesondere für die weiblichen Display Mannequins.“

Individueller wird günstiger

Generell steigt der Anteil der Customized Figuren, berichten die Produzenten. Diese Display Mannequins werden ganz nach Kundenwunsch individuell gestaltet und exklusiv gefertigt. Auf diese Weise können sich Handelsunternehmen und Marken sichtbar vom Wettbewerb differenzieren und konsequent ihrer CI folgen. Bei Hans Boodt zum Beispiel liegt der Customized-Anteil, so heißt es, bei mittlerweile 75 Prozent. Und er dürfte dank kostensenkender Prozessoptimierung weiter steigen. Die Niederländer haben, ebenso wie auch Window France,  die 3D-Drucktechnologie für sich und ihre Kunden entdeckt. Wurden Prototypen bis dato aufwändig von Bildhauern aus Ton modelliert, so werden diese nun zeit- und kostensparend „gedruckt“. „Das Verfahren ist zugleich noch detailgetreuer und lebensechter als zuvor“, ist Cornel Klugmann (Hans Boodt) begeistert. Grafikdesigner kreieren am Bildschirm die gewünschten Figuren, variabel lassen sich dabei die Details konfigurieren, dann werden die Dateien an den Drucker übergeben, der sie 1:1 in die Tat umsetzt. „Wir können deutlich schneller auf Trends reagieren und letztlich auch mehr neue Kollektionen pro Jahr kreieren“, fügt Klugmann weitere Vorteile an. Jean-Marc Mesguich (Window France) ergänzt: „Dank 3D können wir Mannequins kreieren, die wirklich präzise mit dem Image jeder einzelnen Marke korrespondieren, um zugleich perfekt im Gleichklang mit dem Publikum zu sein. Das ist eine bedeutende Evolution in der Rolle, die Figuren spielen.“

Neben der Prozessoptimierung bleibt Nachhaltigkeit nachhaltig wichtig für die Branche. „Die Modebranche ist inzwischen sehr sensibilisiert, was dieses Thema angeht und es ist wichtig, dass auch ihre Zulieferer entsprechende Kriterien einhalten“, ist Monica Ceruti (Almax) über zeugt. Ähnlich sehen es die anderen befragten Marktteilnehmer. Aus Sicht von La Rosa, deren Mannequins ausnahmslos in Italien designt und produziert werden, ist Nachhaltigkeit ein Qualitäts-Bestandteil. Die Italiener haben nach eigenen Angaben den gesamten Lebenszyklus ihrer Figuren analysiert, um den ökologischen Fußabdruck zu minimieren. Nahezu die Hälfte des Polystyrols, das sie zur Produktion einsetzen, sei inzwischen recycelt, wodurch u.a. in erheblichem Umfang Rohöl und Kohlendioxid-Emissionen eingespart würden. La Rosa nimmt seine Produkte zudem nach dem Gebrauch zurück und führt sie dem Materialkreislauf wieder zu. Der Produktionsbetrieb arbeite zudem zum Beispiel mit einem CO2-Abscheider, die Kühltürme nutzen Brauchwasser, Energie liefert der eigene Photovoltaik-Park. Andreas Gesswein (Genesis Display) betont ebenfalls die Bedeutung der Thematik: „Unsere Kunden bauen auf Vertrauen, Ehrlichkeit und partnerschaftliche Zusammenarbeit. Da gehört es sich, bei der Nachhaltigkeit Nachweise zu erbringen und nicht nur die Werbetexte von anderen abzuschreiben. In Zusammenarbeit mit Dupont Tate and Lyle BioProducts haben wir den Anteil an Biomasse in unseren Figuren in den letzten Jahren noch weiter erhöht, genauso wie wir alle Materialien, Verpackungen und Transportwege ständig auf Nachhaltigkeit prüfen, verbessern und ausbauen.“ Einen interessanten Weg beschreitet auch Hans Boodt. Das Unternehmen prüft aktuell, ob sich nicht auch Ocean Plastic, also der Plastikmüll der Weltmeere, als Produktionsrohstoff einsetzen lässt.

Die EuroShop als Zukunftschance

Der Markt der Display Figuren ist und bleibt kräftig in Bewegung – auf Angebots- und Nachfrageseite. „Es gibt die Kunden, die ihre Figuren günstig über das Internet beziehen und jene, die an Top-Qualität, professioneller Beratung und ganzheitlichen Visual-Merchandising-Konzepten interessiert sind“, erläutern Andreas Gesswein (Genesis Display) und Cornel Klugmann (Hans Boodt). Wem sie mehr Erfolg zutrauen, dürfte klar sein. Andreas Gesswein: „Die Herausforderungen sind enorm. Gerade das Jahr 2016 hat dem Modehandel sehr viel abverlangt, auch in Asien und den USA. Die Unternehmen stehen vor einem veränderten Markt und Käuferverhalten. Die EuroShop 2017 wird daher vielleicht eine der wichtigsten seit ihrer Gründung sein.“ Jean-Marc Mesguich, (Window France) betont: „Ich denke, dass es elementar wichtig ist, auf der EuroShop präsent zu sein. Für beide: Aussteller und Kunden. Beiden Parteien bietet die Plattform eine verlässliche Möglichkeit, Sichtweisen auszutauschen und sie unterstützt dabei, gemeinsam den Weg vorwärts zu beschreiten. Wir sind aktuell an einem Wendepunkt im Markt, daher bekommt dies für jeden von uns einen nochmals höheren Stellenwert.“ Auch Cornel Klugmann legt den Vertretern des Handels einen Messebesuch nahe: „Unsere Innovationskraft ist die Chance für die Zukunft.“
 
Die EuroShop 2017 ist für Fachbesucher von Sonntag, 05. März 2017, bis Donnerstag, 09. März 2017, täglich von 10.00 bis 18.00 Uhr geöffnet. Die Tageskarte kostet 70,- Euro (50,-- Euro im Online-Vorverkauf (e-Ticket),  die 2-Tageskarte 90,-- Euro (70,-- Euro im OVV) und die Dauerkarte 150,-- Euro (130,-- Euro im OVV). Die Eintrittskarten beinhalten die kostenlose Hin- und Rückfahrt zur EuroShop mit VRR-Verkehrsmitteln (Verkehrsverbund-Rhein-Ruhr).