Textination Newsline

from to
Zurücksetzen
23 Ergebnisse
Chemiker entwickelt Kunststoffalternativen aus Proteinen und Kleiderresten Foto: Challa Kumar, emeritierter Professor für Chemie, in seinem Labor. (zur Verfügung gestelltes Foto)
21.12.2023

Chemiker entwickelt Kunststoffalternativen aus Proteinen und Kleiderresten

Challa Kumar hat Methoden zur Herstellung neuartiger kunststoffähnlicher Materialien aus Proteinen und Textilien entwickelt.

Jedes Jahr fallen weltweit 400 Millionen Tonnen Plastikmüll an. Zwischen 19 und 23 Millionen Tonnen dieses Plastikmülls gelangen in aquatische Ökosysteme, der Rest landet im Boden. Weitere 92 Millionen Tonnen Textilabfälle werden zusätzlich jährlich erzeugt.

Challa Kumar, emeritierter Chemieprofessor, war es leid, dass die Menschen immer mehr Giftmüll in die Umwelt pumpen und fühlte sich gezwungen, etwas zu tun. Für den Chemiker bedeutete dies, sein Fachwissen für die Entwicklung neuer, nachhaltiger Materialien einzusetzen.

Challa Kumar hat Methoden zur Herstellung neuartiger kunststoffähnlicher Materialien aus Proteinen und Textilien entwickelt.

Jedes Jahr fallen weltweit 400 Millionen Tonnen Plastikmüll an. Zwischen 19 und 23 Millionen Tonnen dieses Plastikmülls gelangen in aquatische Ökosysteme, der Rest landet im Boden. Weitere 92 Millionen Tonnen Textilabfälle werden zusätzlich jährlich erzeugt.

Challa Kumar, emeritierter Chemieprofessor, war es leid, dass die Menschen immer mehr Giftmüll in die Umwelt pumpen und fühlte sich gezwungen, etwas zu tun. Für den Chemiker bedeutete dies, sein Fachwissen für die Entwicklung neuer, nachhaltiger Materialien einzusetzen.

„Jeder sollte darüber nachdenken, wo immer er kann, auf fossilen Brennstoffen basierende Materialien durch natürliche zu ersetzen, um unserer Zivilisation zu helfen zu überleben", sagt Kumar. „Das Haus brennt, wir können nicht warten. Wenn das Haus brennt und man beginnt, einen Brunnen zu graben, dann wird das nicht funktionieren. Es ist an der Zeit, das Haus zu löschen.“

Kumar hat zwei Technologien entwickelt, die Proteine bzw. Textilien verwenden, um neue Materialien zu schaffen. Die Technology Commercialization Services (TCS) der UConn haben für beide Technologien vorläufige Patente angemeldet.

Inspiriert von der Fähigkeit der Natur, eine Vielzahl funktioneller Materialien zu konstruieren, entwickelten Kumar und sein Team eine Methode zur Herstellung stufenlos steuerbarer, ungiftiger Materialien.

„Die Chemie ist das Einzige, was uns in die Quere kommt“, so Kumar. „Wenn wir die Proteinchemie verstehen, können wir Proteinmaterialien herstellen, die so stark wie ein Diamant oder so weich wie eine Feder sind.“

Die erste Innovation ist ein Verfahren zur Umwandlung natürlich vorkommender Proteine in kunststoffähnliche Materialien. Kumars Student, Ankarao Kalluri '23 Ph.D., arbeitete an diesem Projekt.

Proteine haben „reaktive Gruppen“ auf ihrer Oberfläche, die mit Substanzen reagieren können, mit denen sie in Berührung kommen. Kumar und sein Team nutzten sein Wissen über die Funktionsweise dieser Gruppen, um Proteinmoleküle durch eine chemische Verbindung miteinander zu verknüpfen.

Bei diesem Prozess entsteht ein sogenannter Dimer - ein Molekül, das aus zwei Proteinen besteht. Anschließend wird das Dimer mit einem anderen Dimer zu einem Tetramer verbunden, und so weiter, bis ein großes 3D-Molekül entsteht. Dieser 3D-Aspekt der Technologie ist einzigartig, da die meisten synthetischen Polymere lineare Ketten aufweisen.

Dank dieser innovativen 3D-Struktur kann sich das neue Polymer wie ein Kunststoff verhalten. Genau wie die Proteine, aus denen es besteht, kann sich das Material dehnen, seine Form verändern und falten. So kann das Material mit Hilfe der Chemie für eine Vielzahl von spezifischen Anwendungen maßgeschneidert werden.

Da Kumars Material aus Proteinen und einer biologisch verbindenden Chemikalie besteht, kann es im Gegensatz zu synthetischen Polymeren biologisch abgebaut werden, so wie es pflanzliche und tierische Proteine natürlich tun.

„Die Natur baut Proteine ab, indem sie die Amidbindungen in ihnen aufspaltet“, sagt Kumar. „Sie verfügt über Enzyme, die diese Art von Chemie beherrschen. Wir haben die gleichen Amidbindungen in unseren Materialien. Die gleichen Enzyme, die in der Biologie arbeiten, sollten also auch bei diesem Material funktionieren und es auf natürliche Weise abbauen.“

Im Labor stellte das Team fest, dass sich das Material innerhalb weniger Tage in saurer Lösung zersetzt. Jetzt untersuchen sie, was passiert, wenn sie dieses Material im Boden vergraben, was das Los vieler Post-Consumer-Kunststoffe ist.

Sie haben gezeigt, dass das Material auf Proteinbasis eine Vielzahl von kunststoffähnlichen Produkten bilden kann, darunter Kaffeetassendeckel und dünne transparente Folien. Es könnte auch zur Herstellung von feuerfesten Dachziegeln oder höherwertigen Materialien wie Autotüren, Raketenspitzen oder Herzklappen verwendet werden.

Die nächsten Schritte für diese Technologie bestehen darin, ihre mechanischen Eigenschaften, wie Festigkeit oder Flexibilität, sowie ihre Toxizität weiter zu testen.

„Ich denke, wir brauchen ein soziales Bewusstsein dafür, dass wir keine toxischen Substanzen in die Umwelt bringen dürfen“, sagt Kumar. „Das geht einfach nicht. Wir müssen damit aufhören. Und wir können auch keine Materialien verwenden, die aus fossilen Brennstoffen stammen.“

Kumars zweite Technologie beruht auf einem ähnlichen Prinzip, verwendet aber nicht nur Proteine, sondern solche, die mit Naturfasern, insbesondere Baumwolle, verstärkt sind.

„Durch die sich schnell verändernde Modeindustrie entsteht jedes Jahr eine Menge Textilabfall“, sagt Kumar. „Warum sollten wir diese Abfälle nicht nutzen, um nützliche Materialien herzustellen - Abfall in Wohlstand umzuwandeln.“

Genau wie die kunststoffähnlichen Proteinmaterialien (Proteios, abgeleitet von den griechischen Originalwörtern) erwartet Kumar, dass die aus Proteinen und Naturfasern hergestellten Verbundmaterialien biologisch abbaubar sind, ohne toxische Abfälle zu produzieren.

Im Labor hat Kumars ehemaliger Student, der Doktorand Adekeye Damilola, viele Objekte aus Protein-Gewebe-Verbundstoffen hergestellt, darunter kleine Schuhe, Tische, Blumen und Stühle. Dieses Material enthält Textilfasern, die als Bindemittel für die Proteine dienen, und nicht die Vernetzungschemikalien, die Kumar für die proteinbasierten Kunststoffe verwendet.

Die Querverbindung verleiht dem neuartigen Material die Festigkeit, die es braucht, um dem Gewicht standzuhalten, das beispielsweise auf einem Stuhl oder Tisch lastet. Die natürliche Affinität zwischen Fasern und Proteinen ist der Grund, warum es so schwierig ist, Lebensmittelflecken aus der Kleidung zu entfernen. Die gleiche Anziehungskraft sorgt für starke Materialien aus Proteinfasern.

Kumars Team hat zwar bisher nur mit Baumwolle gearbeitet, geht aber davon aus, dass sich andere Fasermaterialien wie Hanffasern oder Jute aufgrund ihrer inhärenten, jedoch ähnlichen chemischen Eigenschaften wie Baumwolle auch so verhalten würden.

„Das Protein haftet auf natürliche Weise an der Oberfläche des Materials“, sagt Kumar. „Wir nutzten diese Erkenntnis, um zu sagen: 'Hey, wenn es sich so fest an Baumwolle bindet, warum machen wir dann nicht ein Material daraus? Und es funktioniert, es funktioniert erstaunlich."

Mit der Unterstützung von TCS sucht Professor Kumar derzeit nach Industriepartnern, um diese Technologien auf den Markt zu bringen. Für weitere Informationen wenden Sie sich bitte an Michael Invernale unter michael.invernale@uconn.edu.

Weitere Informationen:
Polymere Kunststoffe Naturfasern Baumwolle
Quelle:

Anna Zarra Aldrich '20 (CLAS), Büro des Vizepräsidenten für Forschung

06.11.2023

Wandlungsfähige Stoffe aus formverändernden Fasern

Die kostengünstige FibeRobo, die mit bestehenden Textilherstellungstechniken kompatibel ist, könnte für adaptive Funktionsbekleidung oder Kompressionskleidung verwendet werden.

Forscher des MIT und der Northeastern University haben eine Flüssigkristall-Elastomerfaser entwickelt, die ihre Form als Reaktion auf thermische Reize verändern kann. Die Faser, die mit bestehenden Textilherstellungsmaschinen vollständig kompatibel ist, könnte zur Herstellung von sich wandelnden Textilien verwendet werden, z. B. für eine Jacke, die bei sinkenden Temperaturen stärker isoliert, um den Träger warm zu halten.

Stellen Sie sich vor, Sie bräuchten nicht mehr für jede Jahreszeit einen Mantel, sondern eine Jacke, die ihre Form dynamisch verändert, so dass sie bei sinkenden Temperaturen isolierender wird und Sie warmhält.

Die kostengünstige FibeRobo, die mit bestehenden Textilherstellungstechniken kompatibel ist, könnte für adaptive Funktionsbekleidung oder Kompressionskleidung verwendet werden.

Forscher des MIT und der Northeastern University haben eine Flüssigkristall-Elastomerfaser entwickelt, die ihre Form als Reaktion auf thermische Reize verändern kann. Die Faser, die mit bestehenden Textilherstellungsmaschinen vollständig kompatibel ist, könnte zur Herstellung von sich wandelnden Textilien verwendet werden, z. B. für eine Jacke, die bei sinkenden Temperaturen stärker isoliert, um den Träger warm zu halten.

Stellen Sie sich vor, Sie bräuchten nicht mehr für jede Jahreszeit einen Mantel, sondern eine Jacke, die ihre Form dynamisch verändert, so dass sie bei sinkenden Temperaturen isolierender wird und Sie warmhält.

Eine von einem interdisziplinären Team von MIT-Forschern entwickelte programmierbare Antriebsfaser könnte diese Vision eines Tages Wirklichkeit werden lassen. Die als FibeRobo bezeichnete Faser zieht sich bei einem Temperaturanstieg zusammen und kehrt sich dann selbst um, wenn die Temperatur sinkt - ohne eingebettete Sensoren oder andere feste Komponenten.

Die kostengünstige Faser ist voll kompatibel mit Textilherstellungstechniken, einschließlich Webmaschinen, Stickereien und industriellen Strickmaschinen, und kann kontinuierlich kilometerweise produziert werden. Dies könnte es Designern ermöglichen, eine breite Palette von Stoffen für unzählige Anwendungen mit Antriebs- und Sensorfunktionen auszustatten.

Die Fasern können auch mit einem leitfähigen Faden kombiniert werden, der als Heizelement wirkt, wenn elektrischer Strom durch ihn fließt. Auf diese Weise werden die Fasern durch Elektrizität aktiviert, was dem Nutzer eine digitale Kontrolle über die Form des Textils ermöglicht. So könnte ein Stoff beispielsweise seine Form auf der Grundlage digitaler Informationen, wie den Messwerten eines Herzfrequenzsensors, verändern.

„Wir verwenden Textilien für alles. Wir bauen Flugzeuge aus Faserverbundwerkstoffen, wir kleiden die Internationale Raumstation mit einem Strahlenschutzgewebe aus, wir verwenden sie für individuelle Bekleidung und Funktionsbekleidung. Vieles in unserer Umwelt ist anpassungsfähig und reaktionsfähig, aber das, was am anpassungsfähigsten und reaktionsfähigsten sein muss - Textilien - ist völlig träge“, sagt Jack Forman, Doktorand in der Tangible Media Group des MIT Media Lab, der auch am Center for Bits and Atoms tätig ist, und Hauptautor einer Arbeit über die aktivierende Faser.

An dem Papier arbeiten 11 weitere Forscher des MIT und der Northeastern University mit, darunter seine Berater Professor Neil Gershenfeld, der das Center for Bits and Atoms leitet, und Hiroshi Ishii, der Jerome B. Wiesner Professor of Media Arts and Sciences und Leiter der Tangible Media Group. Die Forschungsergebnisse werden auf dem ACM Symposium on User Interface Software and Technology vorgestellt.

Sich verwandelnde Materialien
Die MIT-Forscher wollten eine Faser, die sich geräuschlos bewegen und ihre Form drastisch verändern kann und gleichzeitig mit den üblichen Textilherstellungsverfahren kompatibel ist. Um dies zu erreichen, verwendeten sie ein Material, das als Flüssigkristall-Elastomer (LCE) bekannt ist.

Ein Flüssigkristall besteht aus einer Reihe von Molekülen, die wie eine Flüssigkeit fließen können, aber wenn sie sich absetzen, stapeln sie sich zu einer periodischen Kristallanordnung. Die Forscher bauen diese Kristallstrukturen in ein Elastomernetzwerk ein, das dehnbar ist wie ein Gummiband.

Wenn sich das LCE-Material erwärmt, geraten die Kristallmoleküle aus ihrer Ausrichtung und ziehen das Elastomernetzwerk zusammen, wodurch sich die Faser zusammenzieht. Wenn die Hitze weggenommen wird, kehren die Moleküle in ihre ursprüngliche Ausrichtung zurück und das Material erhält seine ursprüngliche Länge, erklärt Forman.

Durch sorgfältiges Mischen von Chemikalien zur Synthese der LCE können die Forscher die endgültigen Eigenschaften der Faser steuern, z. B. ihre Dicke oder die Temperatur, bei der sie aktiviert wird.

Sie perfektionierten eine Präparationstechnik, mit der LCE-Fasern hergestellt werden können, die bei hautverträglichen Temperaturen aktiviert werden können, so dass sie sich für tragbare Stoffe eignen.

"Es gibt viele Knöpfe, an denen wir drehen können. Es war eine Menge Arbeit, dieses Verfahren von Grund auf neu zu entwickeln, aber letztendlich gibt es uns viel Freiheit für die entstehende Faser", fügt er hinzu.

Die Forscher stellten jedoch fest, dass die Herstellung von Fasern aus LCE-Harz ein heikler Prozess ist. Bestehende Techniken führen oft zu einer verschmolzenen Masse, die sich nicht abspulen lässt.

Die Forscher untersuchen auch andere Möglichkeiten zur Herstellung funktioneller Fasern, wie z. B. die Einarbeitung von Hunderten von mikroskopisch kleinen digitalen Chips in ein Polymer, die Verwendung eines aktivierten Fluidiksystems oder die Einbeziehung von piezoelektrischem Material, das Schallschwingungen in elektrische Signale umwandeln kann.

Faserherstellung
Forman baute eine Maschine mit 3D-gedruckten und lasergeschnittenen Teilen und einfacher Elektronik, um die Herausforderungen bei der Herstellung zu meistern. Er baute die Maschine zunächst im Rahmen des Graduiertenkurses MAS.865 (Rapid-Prototyping of Rapid-Prototyping Machines: How to Make Something that Makes [almost] Anything).

Zu Beginn wird das dicke und zähflüssige LCE-Harz erhitzt und dann langsam durch eine Düse wie bei einer Klebepistole gepresst. Wenn das Harz austritt, wird es sorgfältig mit UV-Lichtern ausgehärtet, die auf beide Seiten der langsam extrudierenden Faser leuchten. Ist das Licht zu schwach, trennt sich das Material und tropft aus der Maschine, ist es jedoch zu hell, können sich Klumpen bilden, was zu unebenen Fasern führt.

Dann wird die Faser in Öl getaucht, um ihr eine gleitfähige Beschichtung zu verleihen, und erneut ausgehärtet, diesmal mit voll aufgedrehtem UV-Licht, wodurch eine starke und glatte Faser entsteht. Schließlich wird die Faser auf eine Spule aufgewickelt und in Pulver getaucht, damit sie leicht in die Maschinen für die Textilherstellung gleiten kann.

Von der chemischen Synthese bis zur fertigen Spule dauert der Prozess etwa einen Tag und ergibt etwa einen Kilometer gebrauchsfertige Faser. „Am Ende des Tages will man keine Diva-Faser. Man möchte eine Faser, die sich bei der Arbeit mit ihr in das Ensemble der Materialien einfügt - eine Faser, mit der man wie mit jedem anderen Fasermaterial arbeiten kann, die aber eine Menge aufregender neuer Möglichkeiten bietet“, sagt Forman.

Die Entwicklung einer solchen Faser erforderte eine Menge „trial and error“ sowie die Zusammenarbeit von Forschern mit Fachwissen in vielen Disziplinen, von der Chemie über den Maschinenbau und die Elektronik bis hin zum Design. Die so entstandene Faser mit dem Namen FibeRobo kann sich um bis zu 40 Prozent zusammenziehen, ohne sich zu krümmen, sie kann bei hautverträglichen Temperaturen aktiviert werden (die hautverträgliche Version der Faser zieht sich um bis zu 25 Prozent zusammen) und sie kann mit einer kostengünstigen Anlage für 20 Cent pro Meter hergestellt werden, was etwa 60-mal billiger ist als handelsübliche formverändernde Fasern. Die Faser kann sowohl in industrielle Näh- und Strickmaschinen als auch in nicht-industrielle Verfahren wie Handwebstühle oder manuelles Häkeln integriert werden, ohne dass eine Prozessänderung erforderlich ist.

Die MIT-Forscher haben mit FibeRobo mehrere Anwendungen demonstriert, darunter einen adaptiven Sport-BH, der durch Stickerei hergestellt wird und sich strafft, wenn die Trägerin mit dem Training beginnt. Sie verwendeten auch eine industrielle Strickmaschine, um eine Kompressionsweste für den Hund von Forman, der Professor heißt, herzustellen. Die Jacke wird über ein Bluetooth-Signal von Formans Smartphone aktiviert und „umarmt“ den Hund. Kompressionswesten werden üblicherweise verwendet, um die Trennungsangst eines Hundes zu lindern, wenn sein Besitzer nicht zu Hause ist.

In Zukunft wollen die Forscher die chemischen Komponenten der Faser so anpassen, dass sie recycelbar oder biologisch abbaubar ist. Darüber hinaus wollen sie den Prozess der Polymersynthese vereinfachen, so dass auch Nutzer ohne Nasslaborerfahrung ihn selbst durchführen können.

Forman ist gespannt auf die FibeRobo-Anwendungen, die andere Forschungsgruppen auf der Grundlage dieser frühen Ergebnisse entwickeln. Langfristig hofft er, dass FibeRobo zu einem Produkt wird, das man wie ein Garnknäuel im Bastelladen kaufen kann und mit dem sich leicht veränderliche Stoffe herstellen lassen.

„LCE-Fasern erwachen zum Leben, wenn sie in Funktionstextilien integriert werden. Es ist besonders faszinierend zu beobachten, wie die Autoren kreative Textildesigns mit einer Vielzahl von Web- und Strickmustern entwickelt haben“, sagt Lining Yao, der Cooper-Siegel Associate Professor of Human Computer Interaction an der Carnegie Mellon University, der jedoch nicht an dieser Arbeit beteiligt war.

Diese Forschungsarbeit wurde zum Teil durch das William Asbjornsen Albert Memorial Fellowship, das Dr. Martin Luther King Jr. Visiting Professor Program, Toppan Printing Co., Honda Research, Chinese Scholarship Council und Shima Seiki unterstützt. Zum Team gehörten Ozgun Kilic Afsar, Sarah Nicita, Rosalie (Hsin-Ju) Lin, Liu Yang, Akshay Kothakonda, Zachary Gordon und Cedric Honnet am MIT sowie Megan Hofmann und Kristen Dorsey an der Northeastern University.

Quelle:

MIT und Northeastern University

Chemikalienschutzanzüge Foto: Pixabay, Alexander Lesnitsky
31.07.2023

DITF: Neues Konzept für Chemikalienschutzanzüge

Ein neu entwickeltes Konzept für Chemikalienschutzanzüge soll den Einsatz für den Träger komfortabler und sicherer machen. Neue Materialien und ein verbessertes Design erhöhen den Tragekomfort. Integrierte Sensorik überwacht die Vitalfunktionen.
 
Bei Gefährdungen durch chemische, biologische oder radioaktive Stoffe schützen Chemikalienschutzanzüge (CSA) Menschen vor körperlichem Kontakt. CSA bestehen aus Atemgerät, Kopfschutz, Tragegestellen und dem Anzug selbst. So kommt ein Gewicht von rund 25 kg zusammen. Der Aufbau aus einem mehrfach beschichteten Gewebe macht die CSA steif und sorgt für erhebliche Einschränkungen in der Bewegungsfreiheit. Die Einsatzkräfte sind dadurch einer signifikanten physischen Belastung ausgesetzt. Aus diesem Grund ist die gesamte Einsatzdauer bei Verwendung eines CSA auf 30 Minuten beschränkt.

Ein neu entwickeltes Konzept für Chemikalienschutzanzüge soll den Einsatz für den Träger komfortabler und sicherer machen. Neue Materialien und ein verbessertes Design erhöhen den Tragekomfort. Integrierte Sensorik überwacht die Vitalfunktionen.
 
Bei Gefährdungen durch chemische, biologische oder radioaktive Stoffe schützen Chemikalienschutzanzüge (CSA) Menschen vor körperlichem Kontakt. CSA bestehen aus Atemgerät, Kopfschutz, Tragegestellen und dem Anzug selbst. So kommt ein Gewicht von rund 25 kg zusammen. Der Aufbau aus einem mehrfach beschichteten Gewebe macht die CSA steif und sorgt für erhebliche Einschränkungen in der Bewegungsfreiheit. Die Einsatzkräfte sind dadurch einer signifikanten physischen Belastung ausgesetzt. Aus diesem Grund ist die gesamte Einsatzdauer bei Verwendung eines CSA auf 30 Minuten beschränkt.

In einem Verbundvorhaben mit verschiedenen Firmen, Instituten und Berufsfeuerwehren wird derzeit daran gearbeitet, sowohl den textilen Materialverbund als auch die Hartkomponenten und Verbindungselemente zwischen beiden neu zu gestalten. Das Ziel ist ein sogenannter „AgiCSA“, der für die Einsatzkräfte aufgrund der leichteren und flexibleren Konstruktion deutlich mehr Komfort bietet. Das Teilvorhaben der DITF fokussiert sich einerseits auf die Entwicklung eines individuell anpassbareren, körpernahen Anzugs, andererseits auf die Integration von Sensoren, die der Online-Überwachung wichtiger Körperfunktionen der Einsatzkraft dienen.
               
Unterstützung bekamen die DITF zum Projektbeginn von der Feuerwehr Esslingen. Sie stellte einen heute standardmäßig zum Einsatz kommenden Komplett-CSA zur Verfügung. Dieser konnte an den DITF auf seine Trageeigenschaften getestet werden. Dabei untersuchen die Denkendorfer Forscher, an welchen Stellen Optimierungsbedarf für verbesserten ergonomischen Tragkomfort besteht.

Ziel ist die Konstruktion eines chemikalien- und gasdichten Anzugs, der relativ eng am Körper anliegt. Es stellte sich schnell heraus, dass man sich vom bisherigen Konzept der Verwendung von Geweben als textilem Grundmaterial lösen und in Richtung elastischer Maschenwaren denken musste. Bei der Umsetzung kamen den Forschern neuere Entwicklungen im Bereich der Maschentechnologie in Form von Abstandsgewirken zu Hilfe. Durch die Verwendung von Abstandstextilien lassen sich viele Anforderungen, die an das Grundsubstrat gestellt werden, sehr gut erfüllen.

Abstandstextilien weisen eine voluminöse, elastische Struktur auf. Aus einer Vielzahl verwendbarer Fasertypen und dreidimensionaler Konstruktionsmerkmale wurde für den neuen CSA ein 3 mm dickes Abstandstextil aus einem Polyester-Polfaden und einer flammhemmenden Fasermischung aus Aramid und Viskose ausgewählt. Dieses Textil wird beidseitig mit Fluor- bzw. Butylkautschuk beschichtet. Dadurch erhält das Textil eine Barrierefunktion, die das Eindringen giftiger Flüssigkeiten und Gase verhindert. Die Beschichtung erfolgt durch ein neu entwickeltes Sprühverfahren am fertig konfektionierten Anzug. Der Vorteil dieses Verfahrens im Gegensatz zum bisher üblichen Beschichtungsprozess ist, dass die gewünschte Elastizität des Anzugs erhalten bleibt.

Eine weitere Neuheit ist die Integration eines schräg verlaufenden Reißverschlusses. Dieser erleichtert das An- und Ausziehen des Schutzanzugs. Während dies bislang nur mit Hilfe einer weiteren Person möglich war, kann der neue Anzug prinzipiell von der Einsatzkraft alleine angelegt werden. Vorbild für das neue Design sind moderne Trockenanzüge mit schräg verlaufendem, gasdichtem Reißverschluss.   

In den neuen AgiSCA sind zudem Sensoren integriert, die die Übertragung und Überwachung der Vital- und Umgebungsdaten der Einsatzkraft wie auch deren Ortung via GPS-Daten erlaubt. Diese Zusatzfunktionen unterstützen die Einsatzsicherheit erheblich.

Für die Hartkomponenten - den Helm sowie die Rückentrage für die Pressluftversorgung - werden leichte carbonfaserverstärkte Verbundmaterialien der Firma Wings and More GmbH & Co. KG verwendet.

Erste Demonstratoren sind verfügbar und stehen den Projektpartnern zu Prüfzwecken zur Verfügung. Die Kombination von aktueller Textiltechnologie, Leichtbaukonzepten und IT-Integration in Textilien hat in diesem Projekt zu einer umfassenden Verbesserung eines hochtechnologisierten Produkts geführt.

BMBF-Projekt „Entwicklung eines Chemikalienschutzanzuges mit erhöhter Beweglichkeit für effizientere Einsatzkonzepte durch erhöhte Autonomie der Einsatzkräfte (AgiCSA)“
Das Vorhaben greift die Ziele des Rahmenprogramms der Bundesregierung „Forschung für die zivile Sicherheit 2018-2023 und der Fördermaßnahme „KMU-innovativ: Forschung für die zivile Sicherheit“ vom 3. Juli 2018 auf.

Weitere Informationen:
Chemikalienschutzanzug DITF Projekt
Quelle:

DITF Deutsche Institute für Textil- und Faserforschung

Abtrennen von Mikroplastik Foto: H & M Foundation
22.05.2023

Schallwellen filtern Mikroplastik aus Abwässern

Die vom Hong Kong Research Institute of Textiles and Apparel (HKRITA) mit Unterstützung der H&M Foundation entwickelte Technologie kann mithilfe von Schallwellen Mikroplastik aus dem Abwasser herausfiltern. Acousweep ist eine Plug-and-Play- Anwendung. Sie lässt sich leicht transportieren und an jede Abwasseranlage anschließen. Wenn die Technologie im industriellen Maßstab eingesetzt wird, wird sie einen erheblichen Einfluss auf den nachhaltigen Fußabdruck der Modeindustrie haben.
 

Die vom Hong Kong Research Institute of Textiles and Apparel (HKRITA) mit Unterstützung der H&M Foundation entwickelte Technologie kann mithilfe von Schallwellen Mikroplastik aus dem Abwasser herausfiltern. Acousweep ist eine Plug-and-Play- Anwendung. Sie lässt sich leicht transportieren und an jede Abwasseranlage anschließen. Wenn die Technologie im industriellen Maßstab eingesetzt wird, wird sie einen erheblichen Einfluss auf den nachhaltigen Fußabdruck der Modeindustrie haben.
 
Die Verschmutzung durch Mikroplastik ist ein weltweites Problem und stellt eine Gefahr für Ökosysteme, Tiere und Menschen dar. Mikroplastik stammt aus einer Vielzahl von Quellen, u. a. aus größerem Plastikmüll, der sich in immer kleinere Teile auflöst, oder aus Mikroperlen in Gesundheits- und Kosmetikprodukten oder Reinigungsmitteln wie Zahnpasta. Nach Angaben der Europäischen Umweltagentur stammt die Hauptquelle der Verschmutzung der Ozeane durch Mikroplastik, etwa 16 % bis 35 % weltweit, aus synthetischen Textilien.

Professorin Christine Loh, leitende Entwicklungsstrategin am Institute for the Environment, The Hong Kong University of Science and Technology, teilt die Ansicht, dass diese Technologie großes Potenzial hat.
Mikroplastik sind nach der Definition des Umweltprogramms der Vereinten Nationen (UNEP) und der Europäischen Union (EU) in der Regel winzige Kunststoffteile oder -partikel mit einem Durchmesser von weniger als 5 mm. Die neue Technologie kann Mikroplastikfasern mit einer Länge von mehr als 20 μm trennen, was 250-mal kleiner ist als die typische Größe. Im Gegensatz zu bestehenden Filtrationsverfahren ermöglicht das System eine kontinuierliche Wasseraufbereitung und eine einfache Sammlung von Mikroplastikfasern dank seiner akustischen Technik der Manipulation.

Acousweep nutzt schwingende akustische Wellen in einer speziell geformten Kammer, um Mikroplastikfasern physikalisch aufzufangen und effektiv vom Abwasser zu trennen. Der gesamte Prozess beruht auf einer rein physikalischen Sammlung und Trennung. Es werden keine chemischen, lösungsmittelhaltigen oder biologischen Zusatzstoffe benötigt. Das separierte Mikroplastik tropft in einen Sammeltank zur weiteren Behandlung, z. B. zum Recycling.

Das bestehende Aufbereitungssystem im Labormaßstab hat eine Kapazität von ca. 100 Litern Wasser pro Stunde und kann auf industrielle Anlagengrößen hochskaliert werden. Das System kann in einem Container mit einer Verarbeitungskapazität von 5.000 bis zu 10.000 Litern Wasser pro Stunde installiert werden. Es ist leicht transportabel und ermöglicht den Anschluss an bestehende Abwasserauslässe von Kläranlagen.
 
Verfahren zur Abtrennung von Mikroplastikfasern:

  1. An einem Ende der Kammer befindet sich ein Wandler, der eine schwingende Schallwelle mit Ultraschall-Frequenzen erzeugt. Am anderen Ende befindet sich ein Reflektor, von dem die Schallwellen reflektiert werden und stehende Wellen bilden.
  2. Wenn stehende Wellen auf die Teilchen in einer Flüssigkeit einwirken, werden die Teilchen durch akustische Strahlungswirkung festgehalten.
  3. Die stehenden Wellen übertragen dann die eingeschlossenen Partikel auf die Reflektorseite; danach konzentrieren sich die Partikel an der Spitze des Reflektors.
  4. An der Spitze befindet sich ein Nadelventil, das von einem sensorischen System gesteuert wird, das dort die Konzentration der Mikroplastikfasern überwacht. Wenn die Konzentration ausreichend hoch ist, öffnet das Sensorsystem das Nadelventil und lässt die Mikroplastikfasern in einen Auffangbehälter tropfen.
  5. Der Sammelbehälter kann mit einer hohen Temperatur betrieben werden, um das Wasser zu entfernen, so dass die Fasern agglomerieren und eine große Masse bilden, die bei einer anschließenden Aufbereitung leicht behandelt werden kann.

Die grüne Technologie hat in Hongkong gerade einen großen Sprung nach vorn gemacht. Acousweep wird der Bekleidungsindustrie und anderen Branchen helfen, eine äußerst schädliche Form der Verschmutzung zu stoppen. HKRITA hat eine neue Technik zur Beseitigung von Mikroplastik mit Hilfe eines schallwellenbasierten Systems entwickelt, das verhindert, dass es ins Meer gelangt und von Meeresbewohnern aufgenommen wird, die in der Nahrungskette sogar vom Menschen verschluckt werden können. Acousweep hat das Zeug dazu, die Industrie zu revolutionieren.
Professorin Christine Loh, leitende Entwicklungsstrategin am Umwelt-Institut der Universität für Wissenschaft und Technologie in Hongkong

 

Quelle:

The Hong Kong Research Institute of Textiles and Apparel (HKRITA); H & M Foundation

Foto Pixabay
21.03.2023

3D-gedruckte Einlagen messen Sohlendruck direkt im Schuh

  • Für Sport und Physiotherapie

Forschende der ETH Zürich, der Empa und der EPFL entwickeln eine 3D-gedruckte Einlagesohle mit integrierten Sensoren, die das Messen des Sohlendrucks im Schuh und damit während beliebiger Aktivitäten erlaubt. Dies hilft Athletinnen oder Patienten, Leistungs- und Therapiefortschritte zu bestimmen.

Im Spitzensport entscheiden manchmal Sekundenbruchteile zwischen Sieg und Niederlage. Um ihre Leistungen zu optimieren, nutzen Sportlerinnen und Sportler deshalb unter anderem massgefertigte Einlagesohlen. Aber auch Menschen mit Schmerzen des Bewegungsapparates greifen auf Einlagen zurück, um ihre Beschwerden zu bekämpfen.

  • Für Sport und Physiotherapie

Forschende der ETH Zürich, der Empa und der EPFL entwickeln eine 3D-gedruckte Einlagesohle mit integrierten Sensoren, die das Messen des Sohlendrucks im Schuh und damit während beliebiger Aktivitäten erlaubt. Dies hilft Athletinnen oder Patienten, Leistungs- und Therapiefortschritte zu bestimmen.

Im Spitzensport entscheiden manchmal Sekundenbruchteile zwischen Sieg und Niederlage. Um ihre Leistungen zu optimieren, nutzen Sportlerinnen und Sportler deshalb unter anderem massgefertigte Einlagesohlen. Aber auch Menschen mit Schmerzen des Bewegungsapparates greifen auf Einlagen zurück, um ihre Beschwerden zu bekämpfen.

Um solche Einlagen exakt anzupassen, müssen Fachleute zuerst ein Druckprofil der Füsse erstellen. Dazu müssen Sportler oder Patientinnen barfuss über druckempfindliche Matten gehen, wo sie ihren individuellen Fussabdruck hinterlassen. Aufgrund dieses Druckprofils erstellen Orthopädinnen und Orthopäden dann in Handarbeit individuell passende Einlagen. Optimierungen und Anpassungen brauchen aber Zeit. Weiterer Nachteil: Die druckempfindlichen Matten lassen nur Messungen in einem begrenzten Raum zu, aber nicht während des Trainings oder Outdoor-Aktivitäten.

Nun könnte aber eine Erfindung eines Forschungsteams der ETH Zürich, der Empa und der EPFL die Situation deutlich verbessern: Die Forschenden fabrizierten nämlich mittels 3D-Druck eine massgeschneiderte Einlagesohle mit integrierten Drucksensoren. Damit kann der Fusssohlendruck direkt im Schuh bei verschiedenen Aktivitäten gemessen werden.

«Man kann anhand der ermittelten Druckmuster erkennen, ob jemand geht, läuft, eine Treppe hochsteigt oder gar eine schwere Last am Rücken trägt. Dann verlagert sich der Druck nämlich mehr auf die Ferse», erklärt Co-Projektleiter Gilberto Siqueira, Oberassistent an der Empa und am Labor für komplexe Materialien der ETH Zürich. Mühsame Mattentests sind damit passé. Die Erfindung wurde vor kurzem in der Fachzeitschrift Scientific Reports vorgestellt.

Ein Gerät, mehrere Tinten
Dabei ist aber nicht nur die Benutzung, sondern auch die Herstellung der Einlagesohlen einfach. Samt den integrierten Sensoren und Leiterbahnen werden sie in nur einem Arbeitsgang und nur auf einem 3D-Drucker hergestellt, einem sogenannten Extruder. Zum Drucken verwenden die Forschenden verschiedene Tinten, deren Rezepturen sie eigens für diese Anwendung entwickelt haben. So nutzen die Materialwissenschaftler als Grundlage der Einlagesohle ein Gemisch aus Silikon und Zellulose-Nanopartikeln.

Auf diese erste Schicht drucken sie dann mit einer leitfähigen silberhaltigen Tinte die Leiterbahnen, und auf diese an einzelnen Stellen – mit russhaltiger Tinte – die Sensoren. Die Verteilung der Sensoren ist dabei nicht zufällig: Sie werden genau dort platziert, wo der Fusssohlendruck am stärksten ist. Um die Leiterbahnen und die Sensoren zu schützen, überziehen die Forschenden diese mit einer weiteren Silikonschicht.

Eine anfängliche Schwierigkeit bestand darin, eine gute Haftung der unterschiedlichen Materialschichten zu erzielen. Die Forschenden behandelten deshalb die Oberfläche der Silikonschichten mit einem heissen Plasma.

Die Sensoren sind sogenannte Piezoelemente, die mechanischen Druck in elektrische Signale umwandeln. Sie messen Normal- und Scherkräfte. Die Forschenden haben auch eine Schnittstelle zum Auslesen der generierten Daten in die Sohle eingebaut.

Laufdaten bald drahtlos auslesen
Tests zeigten den Forschenden, dass die additiv gefertigte Einlage gut funktioniert. «Mit einer Datenanalyse können wir also tatsächlich verschiedene Aktivitäten identifizieren, je nachdem, welche Sensoren wie stark angesprochen haben», sagt Projektleiter Siqueira.

Im Moment brauchen er und seine Kolleginnen und Kollegen noch eine Kabelverbindung, um die Daten auszulesen. Seitlich der Einlage haben sie einen Kontakt eingebaut. Einer der nächsten Entwicklungsschritte werde sein, eine drahtlose Verbindung zu schaffen. «Das Auslesen der Daten stand bisher jedoch nicht im Vordergrund unserer Arbeit», betont der Forscher.

Eine solche 3D-gedruckte Einlagesohle mit integrierten Sensoren könnte künftig von Sportlerinnen und Sportlern oder auch in der Physiotherapie genutzt werden, etwa um Trainings- oder Therapiefortschritte zu messen. Auf den Messdaten basierend können dann Trainingspläne angepasst und mittels 3D-Druck permanente Schuheinlagen mit unterschiedlich harten und weichen Zonen fabriziert werden.

Obwohl Siqueira das Marktpotenzial für ihre Entwicklung besonders im Spitzensport als gross einschätzt, hat sein Team bislang noch keine Schritte in Richtung Kommerzialisierung unternommen.

An der Entwicklung der Einlagesohle waren Forschende der Empa, der ETH Zürich und der EPFL beteiligt. EPFL-Forscher Danick Briand koordinierte das Projekt und seine Gruppe steuerte die Sensoren bei, die ETH- und Empa-Forschenden die Entwicklung der Tinten und die Druckplattform. Am Projekt beteiligt waren auch das Universitätsspital Lausanne CHUV und die Orthopädiefirma Numo. Gefördert wurde das Projekt im Rahmen der «Strategic Focus Area» Advanced Manufacturing des ETH-Bereichs.

Quelle:

Peter Rüegg, ETH Zürich

Foto Pixabay
16.11.2022

Grüne Chemie verwandelt Gesichtsmasken in Ethernet-Kabel

Wissenschaftler der Universität Swansea haben Pionierarbeit geleistet und ein Verfahren entwickelt, bei dem der in weggeworfenen Gesichtsmasken enthaltene Kohlenstoff in hochwertige einwandige Kohlenstoff-Nanoröhren (CNT) umgewandelt wird, die anschließend zur Herstellung von Ethernet-Kabeln mit Breitbandqualität verwendet werden.
 
Die Studie, die in der Fachzeitschrift Carbon Letters veröffentlicht wurde, beschreibt, wie diese neue grüne Chemie eingesetzt werden könnte, um Materialien, die sonst weggeworfen würden, wiederzuverwerten und in hochwertige Materialien für konkreten Einsatzzwecke umzuwandeln. Die mit dieser Technik hergestellten CNT haben das Potenzial, nicht nur in Ethernet-Kabeln verwendet zu werden, sondern auch bei der Herstellung von leichten Batterien, die in Elektroautos und Drohnen zum Einsatz kommen.

Wissenschaftler der Universität Swansea haben Pionierarbeit geleistet und ein Verfahren entwickelt, bei dem der in weggeworfenen Gesichtsmasken enthaltene Kohlenstoff in hochwertige einwandige Kohlenstoff-Nanoröhren (CNT) umgewandelt wird, die anschließend zur Herstellung von Ethernet-Kabeln mit Breitbandqualität verwendet werden.
 
Die Studie, die in der Fachzeitschrift Carbon Letters veröffentlicht wurde, beschreibt, wie diese neue grüne Chemie eingesetzt werden könnte, um Materialien, die sonst weggeworfen würden, wiederzuverwerten und in hochwertige Materialien für konkreten Einsatzzwecke umzuwandeln. Die mit dieser Technik hergestellten CNT haben das Potenzial, nicht nur in Ethernet-Kabeln verwendet zu werden, sondern auch bei der Herstellung von leichten Batterien, die in Elektroautos und Drohnen zum Einsatz kommen.

Professor Alvin Orbaek White vom Forschungsinstitut für Energiesicherheit (ESRI) der Universität Swansea:
„Einweg-Gesichtsmasken sind eine wirkliche Katastrophe für das Recyclingsystem, da sie riesige Mengen an Plastikmüll erzeugen - ein Großteil davon landet in unseren Ozeanen. Im Rahmen der Studie haben wir festgestellt, dass der Kohlenstoff im Inneren der Gesichtsmaske als ziemlich gutes Ausgangsmaterial für die Herstellung hochwertiger Materialien wie CNTs verwendet werden kann.“

„CNTs sind sehr begehrt, weil sie herausragende physikalische Eigenschaften besitzen und in der industriellen Herstellung sehr viel teurer sind. Mit dieser Studie haben wir also gezeigt, dass wir sehr hochwertige Materialien herstellen können, indem wir CNTs aus eigentlich wertlosen Gesichtsmaskenabfällen verarbeiten.“

Das Team untersuchte ebenfalls die mit diesem Verfahren verbundenen Energiekosten und kam zu dem Schluss, dass die Technik nicht nur im Hinblick auf den Ressourcenverbrauch umweltfreundlich ist, sondern auch in Bezug auf die Erzeugung eines Produktwert im Gegensatz zur Abfallerzeugung. Darüber hinaus war das mit den CNTs hergestellte Ethernet-Kabel von guter Qualität und entsprach den Übertragungsgeschwindigkeiten der Kategorie 5, wobei es die in den meisten Ländern, einschließlich des Vereinigten Königreichs, für das Breitband-Internet festgelegten Richtwerte leicht übertraf.

Professor Orbaek White:
„Die Verwendung von CNT-Folien in Batterien anstelle von Metallfolien hat geringere Auswirkungen auf die Umwelt, da die Verwendung von Kohlenstoff die Notwendigkeit von Bergbau- und Förderaktivitäten ausgleicht. Diese Arbeit ist von entscheidender Bedeutung, da sie nicht nur zu einer Kreislaufwirtschaft beiträgt, sondern auch skalierbar und für die industrielle Verarbeitung geeignet ist und im Kern eine grüne Chemie darstellt.“

Quelle:

Swansea University

Foto: Performance Days
18.10.2022

Eco Award & Performance Award für innovative Winterstoffe 24/25

  • Jury vergibt zwei Awards für herausragende Stoff-Innovationen

Die nächsten PERFORMANCE DAYS finden vom 3. bis 4. November 2022 im MOC Ordercenter in München statt. Besucher können die Veranstaltung auch digital verfolgen. Dank der neuen Plattform The Loop stehen Interessenten ganzjährig online alle wichtigen Informationen, aktuelle Trends, die neuen Materialinnovationen und erweiterte Tools zur Verfügung. Im Fokus des kuratierten PERFORMANCE FORUMs stehen auch im Winter die Gewinner der beiden Awards. In diesem Jahr vergab die Jury neben einem PERFORMANCE AWARD auch einen ECO PERFORMANCE AWARD.
 
Nachhaltig & innovativ: die Award-Gewinner der Saison Winter 2024/25
Im Rahmen der Winterausgabe der PERFORMANCE DAYS werden in den einzelnen Kategorien die Stoff-Highlights plus Accessoire-Trends für die Wintersaison 2024/25 im PERFORMANCE FORUM gezeigt.

  • Jury vergibt zwei Awards für herausragende Stoff-Innovationen

Die nächsten PERFORMANCE DAYS finden vom 3. bis 4. November 2022 im MOC Ordercenter in München statt. Besucher können die Veranstaltung auch digital verfolgen. Dank der neuen Plattform The Loop stehen Interessenten ganzjährig online alle wichtigen Informationen, aktuelle Trends, die neuen Materialinnovationen und erweiterte Tools zur Verfügung. Im Fokus des kuratierten PERFORMANCE FORUMs stehen auch im Winter die Gewinner der beiden Awards. In diesem Jahr vergab die Jury neben einem PERFORMANCE AWARD auch einen ECO PERFORMANCE AWARD.
 
Nachhaltig & innovativ: die Award-Gewinner der Saison Winter 2024/25
Im Rahmen der Winterausgabe der PERFORMANCE DAYS werden in den einzelnen Kategorien die Stoff-Highlights plus Accessoire-Trends für die Wintersaison 2024/25 im PERFORMANCE FORUM gezeigt.
Besonders auffällig war in diesem Jahr einerseits der hohe Innovations- und Qualitätsgrad vieler eingereichter Stoffe, anderseits, nicht zuletzt aufgrund des diesjährigen Focus Topics, die nachhaltige Komponente. „Wir wollen es unseren Besuchern ermöglichen, die beste Entscheidung in punkto Materialauswahl zu treffen, auch in Bezug auf CO2-Neutralität und am Ende auch in puncto textiler Kreislauffähigkeit,“ so Marco Weichert, CEO PERFORMANCE DAYS.  
 
Der Weg zur CO2-Neutralität bleibt dennoch ein weiter. Generell setzen Hersteller, wenn möglich, vermehrt auf den Einsatz von Naturfasern, wie Tencel™ oder andere Pflanzenfasern – die meisten von ihnen weisen auch bei der Herstellung eine niedrige CO2-Bilanz auf. Das Thema Recycling zeigt viele neue Facetten und weist spannende Strömungen auf. Das Portfolio reicht vom Recycling von marinem Abfall, wie u.a. alte Bojen, Plastikmüll oder Fischernetzen, bis hin zum Wiederverwerten von Abfällen aus der Automobil- und Computerbranche, wie u.a. alte Autoreifen oder Computerchips. Natürliche Färbemethoden gewinnen zudem immer mehr an Bedeutung, ebenso wie das Zurückführen von Stoffen in den textilen Kreislauf.

Im Marketplace haben Besucher die Möglichkeit, über 19.000 Produkte der Aussteller zu sichten, darunter auch die Stoff-Highlights der einzelnen Kategorien des PERFORMANCE FORUMs. Um dem Besucher die Stoffe in Haptik, Design und Struktur so realitätsgetreu wie möglich digital präsentieren zu können, wurde das PERFORMANCE FORUM mit neuartiger 3D-Technik ausgestattet, darunter innovative Tools wie 3D Bilder, Videoanimationen und U3MA Dateien zum Download.

Auch für die Wintersaison 2024/25 hat die Jury zwei Awards für herausragende Stoffe vergeben – so präsentiert sich neben dem PERFORMANCE AWARD WINNER, der an Long Advance Int. Co Ltd. geht, auch ein ECO PERFORMANCE AWARD WINNER, der an Pontetorto Spa vergeben wurde.

ECO AWARD WINNER geht an „9203M“ von Pontetorto Spa: High-Performance trotz maximaler Nachhaltigkeit
Der Stoff ist eine Mischung aus 23 % Hanf, 69 % recyceltem Polyester und 9 % recyceltem Elasthan. Zudem weist das Material bei der Herstellung einen geringen CO2 -Fußabdruck auf und setzt auf eine geringe Ausschüttung an Mikroplastik in die Umwelt. „9203M“ gehört zur Tecnostretch-Bio-Reihe von Pontetorto, der einen hervorragenden 4-Wege-Stretch mit bester Elastizität vorweist. Zudem garantiert er schnelles Trocknen und optimale Atmungsaktivität. Das Polyestergarn wird durch mechanisches Recycling von Plastikflaschen hergestellt. Hanf, die wasserabweisendste unter den Naturfasern, ermöglicht ein schnelles Trocknen und bietet optimalen Komfort. Hanf gilt als extrem nachhaltige Naturfaser, da sie von einer antibakteriellen Pflanze stammt, die während ihres Wachstums keine Pestizide oder chemischen Düngemittel benötigt und zudem extrem wenig Wasser zum Wachstum verbraucht.

PERFORMANCE AWARD für “LPD22015-Y4E” von Long Advanced Int. Co. Ltd.: Perfektes Recycling für optimale Performance
Der Mono-Componenten 2 Lagen Stoff ist eine Mischung aus 45 % Polyester mechanical stretch und 55 % recyceltem Polyester aus recycleten Textilien, laminiert mit einer PET Membran und einem Gewicht von 147 Gramm. Das Besondere am „LPD 22015-Y4E“ ist das Wiederverwerten von Stoffresten und Schnittabfällen. Müll wird damit wieder in den textilen Kreislauf zurückgeführt, um neues Garn zu spinnen. Hersteller müssen in Zukunft darauf achten, dass Stoff recycelt werden kann. Das Produzieren von Müll wird damit um 30% reduziert im Vergleich zu herkömmlichen Verfahren. Zudem lobte die Jury den Griff und die außergewöhnliche Optik des Materials.  

Das gesamte PERFORMANCE FORUM inklusive der beiden Awards kann am 26. und 27. Oktober live in Portland, Oregon auf der Messe gesichtet werden und am 3. und 4. November in München auf der PERFORMANCE DAYS Messe. Ab sofort sind alle innovativen Materialien auch online im Marketplace des PERFORMANCE DAYS Loop zu finden mit der Möglichkeit, direkt beim Aussteller kostenfreie Samples zu bestellen.

Grafik: Pixabay
11.01.2022

Innovationsnetzwerk FIMATEC startet in die zweite Förderphase

Das Netzwerk für die Entwicklung von faserbasierten Werkstofftechnologien für Anwendungen in der Medizin und im Sport wird für weitere zwei Jahre aus Mitteln des Zentralen Innovationsprogramm Mittelstand (ZIM) gefördert.

Einen entsprechenden Antrag hat das Bundesministerium für Wirtschaft und Energie (BMWi) im Dezember 2021 bewilligt. Damit werden bis Juni 2023 weiterhin Fördermittel für die Entwicklung von innovativen Funktionsfasern, smarten Textilien und anwendungsoptimierten Faserverbundmaterialien zur Verfügung gestellt und die technologische Wettbewerbsfähigkeit und Innovationskraft von kleinen und mittleren Unternehmen (KMU) gestärkt.

Das Netzwerk für die Entwicklung von faserbasierten Werkstofftechnologien für Anwendungen in der Medizin und im Sport wird für weitere zwei Jahre aus Mitteln des Zentralen Innovationsprogramm Mittelstand (ZIM) gefördert.

Einen entsprechenden Antrag hat das Bundesministerium für Wirtschaft und Energie (BMWi) im Dezember 2021 bewilligt. Damit werden bis Juni 2023 weiterhin Fördermittel für die Entwicklung von innovativen Funktionsfasern, smarten Textilien und anwendungsoptimierten Faserverbundmaterialien zur Verfügung gestellt und die technologische Wettbewerbsfähigkeit und Innovationskraft von kleinen und mittleren Unternehmen (KMU) gestärkt.

Hierfür bündelt das Innovationsnetzwerk FIMATEC Kompetenzen aus unterschiedlichen ingenieurs- und naturwissenschaftlichen Fachrichtungen mit kleinen und mittelständischen Herstellern und Dienstleistern aus den Zielbranchen in Medizin und Sport (z. B. Orthopädie, Prothetik, Chirurgie, Smarte Textilien) sowie Akteuren der Textil- und Kunststoffbranche zusammen. 

Diese interdisziplinäre Zusammensetzung aus industriellen Partnern sowie anwendungsnahen Forschungseinrichtungen erhöht die Wettbewerbsfähigkeit und ermöglicht den Akteuren, ihre technischen Forschungs- und Entwicklungsvorhaben schnell und zielgerichtet zu realisieren. Im Mittelpunkt für die gemeinsamen F&E-Vorhaben der Unternehmen und Forschungseinrichtungen stehen die Entwicklung innovativer Materialien und effizienter Fertigungstechnologien.        
          
Faserbasierte Materialien sind aus vielen Anwendungen in der Medizin und im Sport nicht mehr wegzudenken. Als reine Faser, verarbeitet zum Textil oder als Faserverbundkunststoff bieten sie eine nahezu beliebige Vielfalt zur Einstellung von Eigenschafts- und Funktionsprofilen. Dabei steigen die Anforderungen an Funktionsumfang, Leistungsfähigkeit und Wirtschaftlichkeit stetig, sodass ein großes Potential für Innovationen vorhanden ist. Die Entwicklungen werden dabei zum einen durch neue Materialien und Fertigungsverfahren, zum anderen durch innovative Anwendungen getrieben. Produkte mit neuen und überlegenen Funktionen schaffen einen technologischen Vorsprung gegenüber der internationalen Konkurrenz und ermöglichen höhere Verkaufserlöse. Darüber hinaus führen effiziente Verfahren, anwendungsoptimierte Materialien oder auch die Funktionsintegration in die Grundstruktur textiler Werkstoffe perspektivisch zu geringeren Produktionskosten und verbesserten Vermarktungsmöglichkeiten.
Für Entwicklungen in diesem Kontext haben sich die Partner im Innovationsnetzwerk fimatec zusammengeschlossen und bündeln so ihre Kompetenzen. Innerhalb des Netzwerkes werden auf diese Weise zu den nachfolgenden Themenbereichen gemeinsam innovative Materialien und Verfahren entwickelt und in zukunftsweisenden Produkten und Dienstleistungen erprobt:

  • Funktionsfasern
    Innovative Fasermaterialien mit integrierten Funktionalitäten.    
  • Preforming
    Hochgradig lastpfadoptimierte Faserorientierungen für komplexe Faserverbundbauteile.    
  • Smarte Textilien
    Textilbasierte Sensorik und Aktorik.
  • Hybride Werkstoff- und Fertigungstechnologien
    Anwendungsoptimierte Bauteile durch technologieübergreifende Lösungsansätze.    
  • Faserverbundwerkstoffe
    Intelligente Matrixsysteme und funktionsoptimierte Fasermaterialien.    
  • Faserverstärkter 3D-Druck
    Hochqualitative additive Fertigungsverfahren für die effiziente Herstellung individualisierter Produkte.

 
17 Netzwerkpartner forschen an faserbasierten Werkstoffen für Medizin- und Sporttechnik
Aktuell sind zehn Unternehmen und sieben Forschungseinrichtungen an FIMATEC beteiligt. Interessierte Unternehmen und Forschungseinrichtungen sowie potenzielle Anwender können weiterhin an dem Kooperationsnetzwerk oder F&E-Projekten partizipieren. Im Zuge der Mitgliedschaft werden die Partner aktiv bei der Identifizierung und Initiierung von Innovationsprojekten sowie der Sicherstellung von Finanzierungen durch Fördermittelakquise unterstützt.

Ziel des bereits bewilligten Projektes „CFKadapt“ ist die Entwicklung eines thermoformbaren Faser-Kunststoff-Verbundmaterials für optimal adaptierbare orthopädische Hilfsmittel wie Prothesen und Orthesen. Im Projekt „Modul3Rad“ wollen die Projektpartner ein modulares Leichtbau-Rahmensystem für den Aufbau von nutzerfreundlichen, alltagstauglichen Therapiedreirädern für schwer- und schwerstbehinderte Kinder entwickeln. Drei weitere Kooperationsvorhaben sind bereits in der Planung.

Der Technologie- und Wissenstransfer ermöglicht insbesondere kleinen und mittelständischen Unternehmen (KMU) den Zugang zu technologischer Spitzenforschung, besonders diesen bleibt der Zugang zu Innovationen oftmals aufgrund des Fehlens eigener Forschungsabteilungen versagt. Die IWS GmbH hat das Netzwerkmanagement für FIMATEC übernommen und unterstützt die Partner von der ersten Idee über die Suche nach passenden Projektpartnern bis zur Ausarbeitung und Koordination von Förderanträgen. Angestrebt wird eine Förderung durch das Zentrale Innovationsprogramm Mittelstand (ZIM), das Unternehmen in Kooperation mit Forschungseinrichtungen Fördermöglichkeiten für eine breite Palette an technischen Innovationsvorhaben bietet.

FIMATEC-Netzwerkpartner
all ahead composites GmbH | Veitshöchheim | www.bike-ahead-composites.de
Altropol Kunststoff GmbH | Stockelsdorf | www.altropol.de
Diondo GmbH | Hattingen | www.diondo.com
Mailinger innovative fiber solutions GmbH | Sontra | www.mailinger.de
Sanitätshaus Manfred Klein GmbH & Co. KG | Stade | www.klein-sanitaetshaus.de
STREHL GmbH & Co KG | Bremervörde | www.rehastrehl.de
WESOM Textil GmbH | Olbersdorf | www.wesom-textil.de
Faserinstitut Bremen e.V. (FIBRE) | www.faserinstitut.de
E.F.M. GmbH | Olbersdorf | www.efm-gmbh.de
REHA-OT Lüneburg Melchior und Fittkau GmbH | Olbersdorf | www.rehaot.de
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM | Bremen | www.ifam.fraunhofer.de
Leibniz-Institut für Polymerforschung Dresden e.V. (IPF) | www.ipfdd.de
Institut für Polymertechnologien Wismar e.V. (IPT) | www.ipt-wismar.de
Institut für Verbundwerkstoffe GmbH | Kaiserslautern | www.ivw.uni-kl.de
Assoziierte Netzwerkpartner
9T Labs AG | Zürich, Schweiz | www.9tlabs.com
Fachhochschule Nordwestschweiz, Institut für Kunststofftechnik (FHNW) | www.fhnw.ch
KATZ - Kunststoff Ausbildungs- und Technologie-Zentrum | Aarau, Schweiz | www.katz.ch

Quelle:

Textination / IWS Innovations- und Wissensstrategien GmbH

Foto: pixabay
04.01.2022

EU Projekt: Kreislaufwirtschaft und innovatives Recycling von Textilien

Das dreijährige im Rahmen des Programms Horizon 2020 EU-finanzierte Projekt SCIRT steht für "System Circularity & Innovative Recycling of Textiles" und wird von VITO, einer unabhängigen flämischen Forschungsorganisation im Bereich Cleantech und nachhaltige Entwicklung, koordiniert.

Ziel des Projekts ist die Darstellung eines vollständigen Textil-zu-Textil-Recyclingsystems für ausrangierte Kleidung - oder Post-Consumer-Textilien - unter Einbeziehung aller Akteure der Wertschöpfungskette und mit Schwerpunkt auf dem Recycling von Naturfasern, Kunstfasern und Fasermischungen. Um dieses Ziel zu erreichen, hat sich das Projekt vier Hauptziele gesetzt.

Das dreijährige im Rahmen des Programms Horizon 2020 EU-finanzierte Projekt SCIRT steht für "System Circularity & Innovative Recycling of Textiles" und wird von VITO, einer unabhängigen flämischen Forschungsorganisation im Bereich Cleantech und nachhaltige Entwicklung, koordiniert.

Ziel des Projekts ist die Darstellung eines vollständigen Textil-zu-Textil-Recyclingsystems für ausrangierte Kleidung - oder Post-Consumer-Textilien - unter Einbeziehung aller Akteure der Wertschöpfungskette und mit Schwerpunkt auf dem Recycling von Naturfasern, Kunstfasern und Fasermischungen. Um dieses Ziel zu erreichen, hat sich das Projekt vier Hauptziele gesetzt.

  • Bereitstellung einer geschlossenen Recyclinglösung für Alttextilien.
  • Anregung und Förderung eines bewussten Designs und einer bewussten Produktionspraxis.
  • Schaffung neuer Geschäftsmöglichkeiten durch Förderung der textilen Wertschöpfungskette.
  • Bewusstsein für die ökologischen und sozialen Auswirkungen des Kleidungskaufs schaffen.

Das Projekt SCIRT, an dem 18 Partner aus fünf Ländern beteiligt sind, wurde Mitte 2021 virtuell gestartet, um das Problem des Abfalls und der Wiederverwertbarkeit von Kleidungsstücken anzugehen, eine der größten Herausforderungen für die Modeindustrie von heute.

Während sich Bekleidungsmarken ehrgeizige Ziele setzen und versprechen, recycelte Fasern in ihre Produkte einzubauen, stapeln sich die ausrangierten Textilien rund um den Globus in Hülle und Fülle. Obwohl es so den Anschein hat, dass Angebot und Nachfrage für diesen Teil der Kreislaufwirtschaft im Einklang stehen, werden laut einem 2017 veröffentlichten Bericht der Ellen MacArthur Foundation weniger als 1 % des Textilabfalls zu neuen Textilfasern recycelt. Dieser winzige Prozentsatz deutet auf ein größeres Problem hin: Die Verwirklichung der Kreislaufwirtschaft in der Modeindustrie ist nicht nur eine Frage von Angebot und Nachfrage, sondern der Verbindung zwischen beiden. Es mangelt an Wissen über die technologische, wirtschaftliche und ökologische Machbarkeit des Recyclings von Fasermischungen, und es besteht die Notwendigkeit, die Qualität und die Kosten von Recyclingprozessen mit den Anforderungen von Textilunternehmen und Modemarken in Einklang zu bringen.

SCIRT wird Lösungen entwickeln, um systemische Innovationen für ein stärker kreislauforientiertes Bekleidungssystem zu unterstützen und diese Lücke zwischen Angebot und Nachfrage zu schließen. Um die Nachfrageseite der Gleichung anzugehen, wird SCIRT ein umfassendes Textil-zu-Textil-Recycling-System für aus-rangierte Kleidung, auch bekannt als Post-Consumer-Textilien, demonstrieren, das die Akteure der gesamten Wertschöpfungskette einbezieht und sich auf das Recycling von Natur- und Kunstfasern sowie Fasermischungen konzentriert. Mit Unterstützung von technischen Partnern und Forschungsinstituten werden die Bekleidungsmarken Decathlon, Petit Bateau, Bel & Bo, HNST und Xandres sechs verschiedene repräsentative Kleidungsstücke aus recycelten Post-Consumer-Fasern entwickeln, prototypisieren und produzieren. Dazu gehören formelle und legere Kleidung, Sportbekleidung, Unterwäsche und Uniformen. Dabei wird SCIRT den Schwerpunkt auf Qualität und Kosteneffizienz legen, um das Vertrauen des Marktes zu gewinnen und die breite Verwendung von Post-Consumer-Recyclingfasern zu fördern.

Aus einer nichttechnologischen Perspektive wird SCIRT unterstützende strategische Maßnahmen und Instrumente entwickeln, um den Übergang zu einem Kreislaufsystem für Bekleidung zu erleichtern. Dazu gehören ein Konzept für ein ökologisch moduliertes System der erweiterten Herstellerverantwortung (EPR) und ein True-Cost-Modell zur Quantifizierung der Kreislaufwirtschaft und zur Erhöhung der Transparenz der Wertschöpfungskette. Besondere Aufmerksamkeit wird auch der Verbraucherperspektive gewidmet. Zu diesem Zweck werden Citizen Labs, die Verbraucher an verschiedenen europäischen Standorten einbeziehen, sowie eine breitere Online-Engagement-Plattform entwickelt, um die Bevölkerung während des gesamten Projekts einzubeziehen, um so die Wahrnehmungen, Motivationen und Emotionen zu verstehen, die ihr Verhalten in Bezug auf den Kauf, die Nutzung und die Entsorgung von Textilien bestimmen.

In den nächsten drei Jahren werden die SCIRT-Projektpartner daran arbeiten, die derzeitigen technologischen, wirtschaftlichen, sozioökonomischen und regulatorischen Hindernisse für das Textilrecycling zu überwinden, um eine echte, dauerhafte Kreislaufwirtschaft für die Bekleidungsindustrie zu schaffen.

2021:
Das SCIRT-Projekt läuft an, und die Partner ermitteln den aktuellen Stand in den Bereichen Bekleidungsdesign, -produktion und -recycling, Herausforderungen und Markttrends sowie die Bedürfnisse der Interessengruppen.

2022:
Entwicklung und Erprobung eines Faser-zu-Faser-Systems zur Herstellung recycelter Garne und Fasern, die frei von schädlichen Substanzen sind.

2023:
Formelle Kleidung, Freizeitkleidung, Sportbekleidung, Unterwäsche und Uniformen werden unter Einsatz der entwickelten optimierten Garne entworfen und hergestellt.

Partners

  • Modeunternehmen: Bel&Bo, HNST, Decathlon, Xandres, Petit Bateau
  • Forschungseinrichtungen: VITO, CETI, Prospex Institute
  • Universitäten: BOKU, TU Wien, ESTIA
  • Akteure der Branche: Altex, AVS Spinning - A European Spinning Group (ESG) Company, Valvan
  • KMUs: Circular.fashion, FFact
  • Non-profit Organisationen: Flanders DC, IID-SII

 

ALTEX
ALTEX ist ein in Deutschland ansässiges Textilrecyclingunternehmen, das mit Hilfe modernster Maschinen Textilabfälle zu neuen, hochwertigen Produkten recycelt. Zu den Produkten gehören unter anderem Reißfasern, Naturfasern, Kunstfasern und Fasermischungen.

Bel & Bo
Bel&Bo ist ein belgisches Familienunternehmen mit rund 95 Einzelhandelsgeschäften in ganz Belgien. Sein Ziel ist es, farbenfrohe, modische und nachhaltig produzierte Kleidung für Männer, Frauen und Kinder zu einem erschwinglichen Preis anzubieten.

CETI
Das Europäische Zentrum für innovative Textilien (CETI) ist eine gemeinnützige Organisation, die sich der Entwicklung, Erprobung und Prototypisierung innovativer textiler Materialien und Produkte durch private und gemeinschaftliche Forschungs- und Entwicklungsprojekte widmet.

circular.fashion
circular.fashion bietet Software für Kreislauf-Design, intelligente Textilsortierung und Kreislauf-Recycling, einschließlich der Circular Design Software und der circularity.ID®, sowie Schulungen und praktische Unterstützung für Modemarken an.

Decathlon
Mit mehr als 315 Geschäften in Frankreich und 1.511 auf der ganzen Welt ist Decathlon seit 1976 ein innovatives Unternehmen, das sich zum Hauptakteur für sportliche Menschen entwickelt hat. Das Unternehmen setzt sich für die Reduzierung der Umweltauswirkungen durch eine Reihe von Maßnahmen ein.

ESG
Die European Spinning Group (ESG) ist ein Textilkonzern mit Sitz in Belgien, der eine Reihe von Garnen anbietet, die mit einer hochtechnologischen Open-End-Spinnerei für verschiedene Anwendungen hergestellt werden, z. B. für Heimtextilien, Mode und technische Textilien.

ESTIA
ESTIA ist ein französi-sches Institut, das seit 20 Jahren Aus- und Weiterbildungen im Bereich der industriellen Technologien anbietet. Seit 2017 hat ESTIA ein Programm, das sich auf neue Materialien und disruptive Prozesse in der Mode- und Textilindustrie konzentriert.

FFACT
FFact ist eine Gruppe von Unternehmensberatern, die die Umsetzung von Nachhaltigkeit aus unternehmerischer Sicht erleichtert und Fakten in nützliche Managementinformationen umsetzt. FFact hat seinen Sitz in den Niederlanden und Belgien.

Flanders DC
Die Flanders District of Creativity, eine gemeinnützige Organisation mit Sitz in Belgien, informiert, coacht, fördert und inspiriert kreative Unternehmer in verschiedenen Branchen, einschließlich der Modeindustrie, die ihr Unternehmen aufbauen oder erweitern möchten.

HNST
HNST ist eine belgische Circular-Denim-Marke, die gebrauchte Jeans zurückgewinnt und in der EU zu neuen Stoffen recycelt. So entstehen haltbare und zu 100 % recycelbare Jeans, die 82 % weniger Wasser verbrauchen und 76 % weniger Kohlendioxid ausstoßen als herkömmliche Jeans.

Petit Bateau
Petit Bateau ist eine französische Bekleidungsmarke, die sich auf Strickwaren spezialisiert hat. Als vertikales Unternehmen führt Petit Bateau sein eigenes Stricken, Färben, Konfektionieren und Ladenmanagement mit der Unterstützung von 3.000 Mitarbeitern durch.

Prospex Institute
Das Prospex-Institut hat sich zum Ziel gesetzt, die Beteiligung von Bürgern und Interessenvertretern an einem gesellschaftlich relevanten Entscheidungsdialog und an der Entwicklung zu fördern, indem es mit Theoretikern und Praktikern in Belgien und im Ausland zusammenarbeitet.

IID-SII
Das Institut für nachhaltige Innovation ist ein französischer gemeinnütziger Verband mit Sitz in Paris. Das IID-SII wurde von LGI, einem französischen KMU, initiiert und hat die Aufgabe, als Denkfabrik für nachhaltige Innovationen zu fungieren, um die Einführung neuer Lösungen zu unterstützen.

TU Wien
Die TU Wien ist eine offene wissenschaftliche Einrichtung, an der seit 200 Jahren unter dem Motto "Technik für Menschen" geforscht, gelehrt und gelernt wird. Einer ihrer Forschungsschwerpunkte liegt in den Bereichen Recyclingtechnologie und Faserinnovation

BOKU
Die Forschung am Institut für Umweltbiotechnologie der BOKU in Wien konzentriert sich auf die Nutzung von Enzymen als leistungsstarke Biokatalysatoren für die Verarbeitung von Biomaterialien im Rahmen von Recyclinganwendungen.

Valvan
Valvan Baling Systems verfügt über 30 Jahre Erfahrung in der Entwicklung und dem Bau von maßgeschneiderten Maschinen und ist spezialisiert auf Ballenpressen und Sortieranlagen für Faserhersteller, Sammler, Sortierer und Recycler von Textilien.

VITO
VITO, eine führende unabhängige europäische Forschungs- und Technologieorganisation in den Bereichen Cleantech und nachhaltige Entwicklung, zielt darauf ab, den Übergang zu einer nachhaltigen Gesellschaft durch die Entwicklung nachhaltiger Technologien zu beschleunigen.

Xandres
Xandres ist eine Marke, die von und für Frauen inspiriert ist. Sie ist in einer hoch angesehenen Modetradition verwurzelt, von Qualität getrieben und für das Leben, das Frauen heute führen, geschaffen. Xandres bietet innovative Designs mit Rücksicht auf Luxus und Umwelt.

(c) PERFORMANCE DAYS
16.11.2021

PERFORMANCE DAYS 2021: Hybride Veranstaltung im Dezember

Vom 1. bis 2. Dezember 2021 trifft sich die Branche wieder live auf dem Messegelände in München. Fachbesucher, Brancheninsider und Experten dürfen sich auf einen persönlichen Austausch, intensives Networking, spannende Stoffinnnovationen und andere Programm-Highlights freuen. Die Messe wird unter strenger Einhaltung der aktuellen offiziellen Hygienevorschriften in enger Kooperation mit der Messe München stattfinden. Die als Hybridveranstaltung geplante PERFORMANCE DAYS bietet zusätzlich die Möglichkeit, das Angebot digital zu verfolgen.

Vom 1. bis 2. Dezember 2021 trifft sich die Branche wieder live auf dem Messegelände in München. Fachbesucher, Brancheninsider und Experten dürfen sich auf einen persönlichen Austausch, intensives Networking, spannende Stoffinnnovationen und andere Programm-Highlights freuen. Die Messe wird unter strenger Einhaltung der aktuellen offiziellen Hygienevorschriften in enger Kooperation mit der Messe München stattfinden. Die als Hybridveranstaltung geplante PERFORMANCE DAYS bietet zusätzlich die Möglichkeit, das Angebot digital zu verfolgen.

Live in München: PERFORMANCE DAYS in Halle A6
In der Halle A6 auf dem Gelände der Neuen Messe München erwartet Fachbesucher ein Portfolio aus Ausstellern, die in München ihre neuen Funktionstextilien und Stoffinnovationen für die kommende Wintersaison Winter 2023/24 zeigen. Aussteller, die nicht vor Ort ihre Highlights präsentieren können, sind zudem über die digitale Plattform PERFORMANCE DAYS LOOP während der Messe erreichbar. Im Rahmen des neuerarbeiteten Konzepts „Remote Booths“ finden Fachbesucher erstmals auch Kollektionen von Ausstellern, die nicht in München sein können. Interaktiver Austausch per Chat, Anruf oder Video-Call ist vorgesehen.

Als Liveveranstaltung sind zwei weitere PERFORMANCE DAYS-Messen geplant: Die Functional Fabric Fair by PERFORMANCE DAYS in Portland, Oregon, USA vom 17. bis 18. November 2021 und die Functional Textiles Shanghai by PERFORMANCE DAYS vom 6. bis 7. Dezember 2021. Registrierungen sind möglich unter www.functionalfabricfair.com und www.functionaltextilesshanghai.com.

PERFORMANCE FORUM gemeinsam mit USA-Messe
Eine ausgewählte Experten-Jury hat sich im Vorfeld der PERFORMANCE FORUMS wieder zwei Tage über die Stoffinnovationen der Saison Winter 23/24 ausgetauscht. Um eine Rundum-Marktübersicht zu gewährleisten, wird das PERFORMANCE FORUM erstmals zusammen mit der USA-Messe in Portland die Highlights kuratieren. So werden bei der nächsten Messe nicht nur die Neuheiten der Münchner Aussteller zu sehen sein, sondern auch die Highlights der Portland-Messe. Das diesjährige Focus Topic in Kooperation mit der Vaude Academy wird sich mit dem Thema „The Sustainable Future of Nylon“ und einer eigens dafür ausgewählten Material-Auswahl an Stoffen beschäftigen. Zudem wird im Rahmen der Wintermesse die „sustain & innovate“ Nachhaltigkeitkonferenz, die in enger Kooperation mit der SAZsport organisiert wird, das Thema mit Rednern, Webinaren und Diskussionsrunden intensiv durchleuchten. Das Programm wird live von der Messe übertragen und ist damit für alle auch digital verfolgbar sein.

Eco Award und Performance Award für innovative Winterstoffe 23/24
In diesem Jahr vergab die Jury neben einem PERFORMANCE AWARD auch einen ECO PERFORMANCE AWARD. Im Rahmen der Winterausgabe der PERFORMANCE DAYS werden in den einzelnen Kategorien die Stoff-Highlights plus Accessoire-Trends für Wintersaison 2023/24 im PERFORMANCE FORUM gezeigt. Zu den bekannten Segmenten gesellt sich im Winter erstmals die Rubrik Schuhe & Taschen, ebenso wird die renommierte Lifestyle-Kategorie unter dem neuen Titel „Function Meets Fashion“ fortgeführt. Besonders auffällig war in diesem Jahr der hohe Innovations- und Qualitätsgrad vieler eingereichter Stoffe.

„Der Zusammenschluss der beiden PERFORMANCE FOREN unserer Messen in München und Portland hat zu einem deutlichen Plus an Qualität und Innovation geführt. Aufgrund der neuen Partnerschaft konnten nicht nur neue, spannende Hersteller dazugewonnen werden, auch ergab sich generell bei der Beteiligung ein deutlicher Zuwachs“, so Marco Weichert, CEO der PERFORMANCE DAYS.

Naturstoffe wie Bio-Baumwolle, Wolle oder Leinen bleiben gefragt. Dazu kom-men deutlich mehr Pflanzenfasern wie Hanf, Coconutshell, Bambus oder Fasern, die aus Ananas- bzw. Bananenblättern gewonnen werden. Der zusätzliche Einsatz von Rizinusöl, Zink oder Ingwer unterstützt die antibakterielle Wirkung, sorgt für bessere Atmungsaktivität, optimales Temperaturmanagement und macht den Stoff weich, leicht und hautverträglich. Das Thema Recycling zeigt vie-le neue Facetten und weist spannende Strömungen auf. Das Portfolio reicht vom Recycling von marinem Abfall, wie u.a. alte Bojen, Plastikmüll oder Fischernetzen, bis hin zum Wiederverwerten von Abfällen aus der Automobil- und Computerbranche, wie u.a. alte Autoreifen oder Computerchips. Natürliche Färbemethoden gewinnen zudem immer mehr an Bedeutung, ebenso wie das Zurückführen von Stoffen in den textilen Kreislauf.

Im Marketplace haben Besucher die Möglichkeit über 13.000+ Produkte der Aussteller zu sichten, darunter auch die Stoff-Highlights der einzelnen Kategorien des PERFORMANCE FORUMS. Um dem Besucher die Stoffe in Haptik, Design und Struktur so realitätsgetreu wie möglich digital präsentieren zu können, wurde das PERFORMANCE FORUM mit neuartiger 3D-Technik ausgestattet, darunter innovative Tools wie 3D Bilder, Videoanimationen und U3M Dateien zum Download.

Neben dem PERFORMANCE AWARD WINNER, der an drielease/Optimer geht, präsentiert sich ein ECO PERFORMANCE AWARD WINNER, verliehen an Long Advance.

Komplett neuer Look: drirelease setzt mit der Innovation Dricomfort Geo auf eine Mischung aus 6 % Lycra, 44 % Polyester und 50 % recyceltem Polyester. Die Verarbeitung der unterschiedlichen Fasern im Strickprozess in Kombination mit dem Dricomfort GEO-Finishing machen das wendefähige Interlock-Gewebe einzigartig.

Aufgrund eines speziellen Jacquard-Strickverfahrens, das für die Verarbeitung des recycelten Polyester-Garns verwendet wird, sind einzigartige, neue Muster- und Strickdesigns möglich. Das Material überzeugt durch Leichtigkeit und Vielseitigkeit. Die GEO-Technologie sorgt für ein optimales Management der Körpertemperatur. Die anpassungsfähige Technologie sorgt für eine ausgezeichnete Wärmeregulierung durch effizientes Wärmemanagement und verbesserten Feuchtigkeitstransport, um Komfort und Leistung zu optimieren. Darüber liefert GEO einen UV-Schutz bis zu 50+.

Neue Recyclingvariante: Long Advance zeigt mit LNT-21191-Z4C ein Post Consumer Nylon, der sich einer neuen Form des Recyclings öffnet. Der Stoff, der aus 7 % Elastan und 93 % recyceltem Polyamid via Mass Balance besteht, bringt neue Facetten beim Thema Recycling ins Spiel. BASF nutzt ab sofort recycelte Reifenabfälle und verarbeitet sie zu einer neuen Faser. Durch die Wiederverwertung wird der Bedarf an synthetischen Stoffen reduziert, um so den Ersatz erdölbasierter Kunststoffe durch Kunststoffe aus nachwachsenden Rohstoffen zu fördern.

Foto: Pixabay
12.10.2021

Unternehmen krisensicher aufstellen: Resilienz als erweitertes Sicherheitskonzept

Unternehmen sind heutzutage mit zahlreichen Risiken konfrontiert. Nicht zuletzt die Pandemie hat gezeigt, wie Krisen Firmen existenziell bedrohen können. Mit dem Tool FReE des Fraunhofer-Instituts für Kurzzeitdynamik, Ernst-Mach-Institut, EMI, erhalten Unternehmen ein Werkzeug, mit dem sie ihre Resilienz berechnen können, um für kommende Krisenszenarien gewappnet zu sein.
 

Unternehmen sind heutzutage mit zahlreichen Risiken konfrontiert. Nicht zuletzt die Pandemie hat gezeigt, wie Krisen Firmen existenziell bedrohen können. Mit dem Tool FReE des Fraunhofer-Instituts für Kurzzeitdynamik, Ernst-Mach-Institut, EMI, erhalten Unternehmen ein Werkzeug, mit dem sie ihre Resilienz berechnen können, um für kommende Krisenszenarien gewappnet zu sein.
 
Unsere Welt ist hoch komplex und störanfällig: Naturkatastrophen, Cyberattacken, Stromausfälle, Terrorangriffe, Pandemien und andere Krisenszenarien können die Existenz von Unternehmen gefährden. Wie anfällig die deutsche Wirtschaft hierzulande ist, hat die Coronapandemie gezeigt: Nach Angaben des Statistischen Bundesamts ist sie 2020 nach zehn Jahren des Wachstums in eine tiefe Rezession geraten, insbesondere im zweiten Quartal 2020 hatte die Wirtschaftsleistung einen historischen Einbruch erlitten. Auf die Pandemie werden weitere Krisen folgen. Die klassischen Methoden der Risikoanalyse und des Risikomanagements, die nur erwartbare Risiken ins Kalkül ziehen, reichen nicht aus, um Unternehmen ausreichend vor großen Schäden zu schützen.

»Oftmals berücksichtigen Firmen nur, was am wahrscheinlichsten passieren könnte, anstatt den Blick für mögliche Krisenszenarien zu schärfen«, sagt Daniel Hiller, Geschäftsfeldleiter Sicherheit und Resilienz am Fraunhofer EMI in Freiburg. Um Organisationen und Unternehmen sicher auf Krisen vorzubereiten, etabliert er mit seinem Team Resilienz als neues Sicherheitskonzept. Ein Ergebnis der Forschungsarbeiten sind das Online-Tool Fraunhofer Resilience Evaluator FReE und die Software KMU-Lagebild, die Firmen befähigen, die eigene Resilienz zu bemessen, zu bewerten und eine Resilienzanalyse vor, während und nach einem disruptiven Ereignis vorzunehmen.
 
Fünf-Phasen-Konzept »Prepare, Prevent, Protect, Respond und Recover«
Das Online-Tool FReE bietet die Möglichkeit, Resilienz strategisch zu planen, das abstrakte Konzept in das eigene Unternehmen zu implementieren und auf Managementebene anwendbar zu machen. FReE orientiert sich an dem Fünf-Phasen-Konzept »Prepare, Prevent, Protect, Respond und Recover«.

Die Software umfasst einen Katalog mit 68 Fragen, die sich an die fünf Resilienzphasen anlehnen. Durch Beantworten der Fragen erhält man erste Informationen, die für die Bewertung von Resilienz erforderlich sind. Die fünf Phasen folgen einem chronologischen Ablauf, der mit einem Was-Wäre-Wenn-Szenario beginnt. In dieser Prepare-Phase bereiten sich Unternehmen auf disruptive Situationen vor, um in der Prevent-Phase mit vorbeugenden Maßnahmen Schaden abzuwenden.

»Ein Aluminiumverarbeitender Betrieb etwa könnte sein Gelände mit Sicherheitszäunen und -kameras schützen, da bekannt ist, dass nachts häufig eingebrochen und Aluminium gestohlen wird«, veranschaulicht Hiller die ersten beiden Phasen mit einem klassischen Beispiel. Ziel der Protect-Phase ist es, sich zu schützen, beispielsweise wichtige Infrastrukturen oder Gebäude durch zusätzliche Betonschichten oder Mauern intakt zu halten. Konnte die Katastrophe nicht vermieden werden, greift die Respond-Phase. Nun gilt es, Ursache und Ausmaß des Schadens schnell zu ermitteln und hoch kritische Versorgungsfunktionen aufrechtzuerhalten. Nach dem Störfall sollte man durch systematisches Lernen die Lehren aus der Krise ziehen, um künftige Risiken besser abwehren zu können und in einem zyklischen iterativen Prozess seine Resilienz zu verbessern – Learn & Adapt bezeichnen die Forscher diese Phase.
 
FReE führt den Nutzer durch den Fragebogen, der chronologisch vor, während und nach einer Disruption gegliedert ist und die Belange aller Unternehmensbereiche abdeckt. Dazu gehören etwa Personal, Finanzen, Infrastruktur und Technik. Das Tool bietet die Möglichkeit, bei der Auswertung nach Bereichen zu filtern. »Ein Controller beispielsweise kann sich ausschließlich die Ergebnisse anzeigen lassen, die die Finanzen betreffen«, so Hiller. Die Fragen können wie folgt lauten: »Gibt es im Fall einer Disruption einen Katastrophenmanager? Über welche Kompetenzen und Befugnisse verfügt diese Person?« oder »Welche finanziellen Reserven sind für Notfälle eingeplant?« Die Auswertung wird im Spinnennetzdiagramm dargestellt, wobei das schlechteste Ergebnis bei null Prozent im Fadenkreuz liegt.

FReE liegt in drei Versionen vor: die kostenlose webbasierte Quick-Version umfasst 15 Fragen. Die Vollversion mit dem kompletten Katalog von 68 Fragen erhalten Interessierte auf Projektbasis. Das begleitende Beratungsprojekt baut auf der kostenpflichtigen Version auf. Hier entwickeln Hiller und sein Team gemeinsam mit den Unternehmen geeignete Maßnahmen, um die Resilienz zu stärken und Schwachstellen zu beseitigen. Darüber hinaus lässt sich FReE durch erweiterte Fragestellungen an die Bedarfe von Branchen anpassen. Die Quick-Version ist bereits bei zahlreichen KMU im Einsatz, Updates auf die Vollversion sind geplant.

Projekt KMU Lagebild
Während FReE Firmen in die Lage versetzt, die eigene Resilienz selbst einzuschätzen, werden sie im Projekt KMU Lagebild dabei begleitet, eine umfassende Resilienzbewertung vorzunehmen. Die Forscherinnen und Forscher modellieren alle Abläufe und Prozesse anhand der vorliegenden Daten am Computer. Mithilfe der Einspielung fiktiver Störszenarien wird sichtbar, wie das System darauf reagiert und welche Gegenmaßnahmen ergriffen werden müssen. »Indem man sich nicht nur die Frage nach den wahrscheinlichsten Disruptionen stellt, sondern nach den möglichen Störfällen, weitet man seinen Blick auf Risiken. Darüber hinaus zeichnen sich resiliente Unternehmen durch eine hohe Anpassungsfähigkeit und Flexibilität aus«, resümiert Hiller.

Prototyping-Kit für vielfältige E-Textiles © Textile Prototyping Lab
14.09.2021

Art meets Science: Prototyping Lab für textile Elektronik

Wer bei Forschungslaboren nur an Schutzanzüge und Reinräume denkt, hat nicht ganz recht: Seit April sind in dem neuen Textile Prototyping Lab (TPL) im Berliner Fraunhofer IZM auch Schnittmuster, Nähte und Mannequins nichts Ungewöhnliches. Mit dem TPL gibt es nun einen Ort, an dem kreative High-Tech-Textilien entstehen und der sich bereits in der Gestaltung vom Stil üblicher Forschungslabore abgrenzt. Als kollaboratives Projekt mit der Kunsthochschule Berlin Weißensee wird hier textilintegrierte Elektronik für verschiedenste Anwendungsbereiche von Architektur bis Medizin erstellt.

Wer bei Forschungslaboren nur an Schutzanzüge und Reinräume denkt, hat nicht ganz recht: Seit April sind in dem neuen Textile Prototyping Lab (TPL) im Berliner Fraunhofer IZM auch Schnittmuster, Nähte und Mannequins nichts Ungewöhnliches. Mit dem TPL gibt es nun einen Ort, an dem kreative High-Tech-Textilien entstehen und der sich bereits in der Gestaltung vom Stil üblicher Forschungslabore abgrenzt. Als kollaboratives Projekt mit der Kunsthochschule Berlin Weißensee wird hier textilintegrierte Elektronik für verschiedenste Anwendungsbereiche von Architektur bis Medizin erstellt.

Seit der Eröffnung steht das Labor Designer*innen und Produktentwickelnden zur Verfügung, um individuelle Visionen im Bereich E-Textiles prototypisch umzusetzen. Dabei sind die Möglichkeiten nahezu unbegrenzt: Von Schnittstellen zwischen Textil und Elektronik bis hin zur Erprobung von Prozessketten können Teile oder sogar das gesamte Labor frei genutzt werden. Zusätzlich zur reinen Entwicklungs- und Aufbauarbeit können die Räumlichkeiten mit wenig Aufwand umgebaut und für Workshops oder Ausstellungen umfunktioniert werden.

Malte von Krshiwoblozki, der das Projekt am Fraunhofer IZM wissenschaftlich begleitet, nennt weitere Vorteile: „Nicht nur die modularen Arbeitsplätze und die Meeting-Area sind für gemeinsame Projektarbeiten attraktiv. Besonders der Maschinenpark bietet eine große Bandbreite für Interessierte. Der Arbeitsbereich ‚Nähen und Sticken‘ ist beispielsweise mit mehreren Nähmaschinen sowie einer computergesteuerten Stickmaschine ausgestattet. Er wird somit zum zentralen Punkt für das TPL, da die Textilveredelung mit kleinformatigen Maschinen im Fokus der Arbeiten dieses Labors steht.“ Ein weiterer Arbeitsbereich deckt mit einem Lasercutter und einem Schneideplotter das „Schneiden & Trennen“ ab. Hinzu kommen mehrere Pressen und Laminiergeräte, eine Lötstation sowie ein 3D-Drucker.

Im TPL können sich auch Einsteiger*innen im Bereich der E-Textiles versuchen und ihr Wissen erweitern: Außerordentlich hilfreich ist dabei das am Fraunhofer IZM entwickelte Prototyping-Kit, welches eine Serie von elektronischen Modulen, LEDs und Sensoren beinhaltet, die händisch genauso wie maschinell aufgestickt werden können.

„Für besonders langlebige Elektroniktextilien kann auch der von den Forschenden des Fraunhofer IZM entwickelte und aufgebaute Textilbonder in kooperativen Projekten des Textile Prototyping Lab genutzt werden. Die vielseitigen Module des Prototyping-Kits sind bewusst so ausgelegt, dass eine Integration ins Textil nicht nur mit klassischen textilen Technologien wie dem Sticken während der Prototyping-Phase erfolgen kann, sondern auch für anschließende industriellere Umsetzungen per Textilbonder. Ganz nach dem Motto ,Sharing is Caring‘ und dem Prinzip der Interdisziplinarität stehen wir am Fraunhofer IZM bei der Realisierung der Textilprojekte mit Rat und Tat zur Seite, sodass die Ideen der Kunstschaffenden mit weiteren Technologien angereichert werden können“, sagt Malte von Krshiwoblozki.

Die Zusammenarbeit zwischen der Kunsthochschule Berlin Weißensee und dem Fraunhofer IZM hat schon vor der Eröffnung des Labors Entwicklungen hervorgebracht, die Kunst und Forschung revolutionär verbinden. So entstand beispielsweise in Kooperation mit dem Designer Stefan Diez eine Lichtschiene aus einem weichen und leitfähigen Textilgurt. Für das Bildungs-Projekt Touch Tomorrow der Hans Riegel Stiftung wurde eine interaktive Jacke entwickelt, die über Armbewegungen die Farbe integrierter LEDs steuern kann. Das Team des Textile Prototyping Lab freut sich auf kommende, spannende und agile Umsetzungen und ist offen für Projektideen von Start-ups, KMU sowie Partnern aus der Industrie.

Quelle:

Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

(c) Fraunhofer ITWM
27.07.2021

Simulationssoftware TexMath - Technische Textilien realitätsnah simulieren

Von Hochleistungstextilien bis hin zu Kompressions- und Sportbekleidung: Das modulare Softwareprogramm »TexMath« des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM ermöglicht sowohl die Simulation mechanischer Materialeigenschaften als auch die Optimierung textiler Produkte.

Von Hochleistungstextilien bis hin zu Kompressions- und Sportbekleidung: Das modulare Softwareprogramm »TexMath« des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM ermöglicht sowohl die Simulation mechanischer Materialeigenschaften als auch die Optimierung textiler Produkte.

Eine beschleunigte Entwicklung und ein optimiertes Design technischer Textilien bei gleichzeitiger Reduzierung von Experimenten? Die Nachfrage für Techniken, die dies realisieren können, ist besonders in Bereichen wie der Sport-, Medizin- und Bekleidungsindustrie groß. Das Team »Technische Textilien« der Abteilung »Strömungs- und Materialsimulation« des Fraunhofer ITWM hat sich dieser Herausforderung angenommen und erforscht Simulationsmethoden, die eine effiziente Vorhersage des textilen Verhaltens bei Streckung, Schub, Biegung, Torsion oder Kompression ermöglicht. Auch die Faltenbildung unter Ausdehnung sowie Schrumpfung von Garnen oder kritische Scherwinkel können während des gesamten Herstellungsprozesses simuliert werden.

Die von ihnen entwickelte Simulationssoftware »TexMath« sorgt dafür, dass Prozessketten in der Produktion vorab an neue Materialien anpassbar werden. Komplizierte Muster und Schichten können mithilfe der Software abgebildet werden und ein direkter Anschluss an die Textilmaschine erfolgen. Gewünschte Web-, Strick- und Wirkprodukte werden mit der Software genau berechnet und deren Materialeigenschaften simuliert. Zusätzlich zu der Bewertung eines bestimmten Textil-Designs mithilfe von Simulation bieten die Tools auch die Optimierung der Leistungsmerkmale für verschiedene Designvarianten. Das Ziel der Software ist es, so Teamleiterin Dr. Julia Orlik, »das Design nach Produkteigenschaften und Zielkriterien« zu realisieren.

TexMath besteht aus mehreren Komponenten: »MeshUp«, »FibreFEM« und »FIFST«. Jede der in TexMath enthaltenen Komponenten hat ihren spezifischen Einsatzbereich. Darüber hinaus verfügen die Tools sowohl untereinander über Schnittstellen als auch über Verbindungen zu der Software »GeoDict®« der Fraunhofer-Ausgründung Math2Market auf, womit beispielsweise strömungsmechanische Simulationen an den Textilien durchgeführt werden können.

Ein Anwendungsbereich der TexMath Software ist die Optimierung von Kompressionstextilien für den medizinischen Bereich oder für den Sport. Für optimale Wirksamkeit kommt es hier ganz besonders auf Passgenauigkeit des Materials an. So kann der Strickvorgang beispielsweise zur Anfertigung einer Bandage mit vordefinierten Kompressionseigenschaften mit TexMath simuliert und dadurch das optimale Gestrick ausgelegt werden.

Diese virtuelle Bandage wird daraufhin in einer weiteren Simulation belastet und einem virtuellen Arm oder Bein angezogen. Dank TexMath wird mithilfe des berechneten Druckprofils eine vorab Bewertung der Kompressionseigenschaften der Bandage sowie auch die direkte Ansteuerung der Strickmaschine gemäß des optimalen Designs möglich.

»Mit TexMath lassen sich auch Abstandstextilien, wie sie beispielsweise für das Obermaterial von Sportschuhen und für die Herstellung von Hochleistungstextilien genutzt werden, designen und vorab struktur- und strömungsmechanisch optimieren«, nennen Dr. Julia Orlik und Abteilungsleiter Dr. Konrad Steiner weitere Einsatzbereiche der Software.

Das neu entwickelte Eingabeinterface ist besonders benutzerfreundlich. Die Textil-Klasse (Gestrick, Gewirke, Gewebe und Abstandgewirke) lässt sich unkompliziert einstellen. Die neue grafische Oberfläche erlaubt eine einfache und schnelle Konfiguration.

MeshUp zur Strukturgenerierung von Webmustern und Maschen
Gestricke und Gewebe werden mit Hilfe von Strick- bzw. Webmaschinen produziert. Jedem Textil liegt eine Bindungspatrone zugrunde, die in die Maschine eingelesen wird bzw. in der Maschine fest vordefiniert ist. MeshUp ist das Softwaremodul von TexMath, in dem Bindungspatronen für diverse Gewebe, Gewirke und Gestricke mit verschiedenen Bindungstypen, dem Fadenverlauf und allen Kontaktstellen zwischen verschiedenen Garnen erzeugt, grafisch abbildet und für weitere Simulationen in TexMath mit FISFT und FiberFEM in entsprechende Eingabeformate übersetzt werden. Darüber hinaus stellt MeshUp die Geometrie auch als Volumendaten (Voxelformat) für Berechnungstools wie GeoDict und FeelMath zur Verfügung.

FiberFEM zur Berechnung effektiver mechanischer Eigenschaften einer periodischen Textilstruktur
Mit FiberFEM können gewebte und geflochtene Textilien, Abstandsgewebe, Gelege sowie Fachwerke hinsichtlich ihrer effektiven mechanischen Materialeigenschaften berechnet und optimiert werden. Ein spezielles Merkmal von FiberFEM ist, dass neben Zug- und Schubeigenschaften auch effektive Biege- und Torsionseigenschaften von Textilien anhand ihrer textilen Struktur und der Garneigenschaften bestimmt werden können.

Als Eingangsgrößen benötigt FiberFEM neben der Mikrostrukturbeschreibung aus MeshUp die Faserquerschnittsgeometrie, sowie mechanische Fasereigenschaften wie Zugsteifigkeit und Reibung. Als Output werden die effektiven mechanischen Textilgrößen berechnet. Neben der Berechnung der effektiven mechanischen Materialeigenschaften für bereits existierende gewebte oder gestrickte Textilien für technische und medizinische Anwendungen, bietet der Ansatz auch das Potential zur gezielten Auslegung und Optimierung neuer Textilien mit vorgegebenem mechanischem Eigenschaftsprofil.

So kann das Relaxationsverhalten eines Textils aus dem Web- bzw. Strickmuster und den Garnrelaxationszeiten für viskoelastische Garne ermittelt werden. Auch Reibungskoeffizienten zwischen den Garnen werden berücksichtigt und werden direkt in die Simulation der effektiven Eigenschaften einbezogen bzw. aus der experimentellen Validierung mit dem Gewebe identifiziert.

FIFST zur Berechnung der Deformation und Belastung von Textilien
Das Model FIFST ist spezialisiert für dynamische Simulationen von Gestricken, sehr dehnbaren Geweben und Gewirken. So kann beispielsweise der Strickprozess simuliert, das Abziehen von der Strickmaschine, die Schrumpfung auf ein entspanntes Textil und auch die Wiederbelastung beim Anziehen berechnet werden. Somit kann auch das Design des Gestricks an vorgegebene Spannungsprofile angepasst werden und eine individualisierte Maschinensteuerung zur Produktion personalisierter Textilien oder produktspezifischer Designs ist möglich.

Die numerische Umsetzung nutzt die Finite-Element-Methode mit nichtlinearen Balken-Elementen, die für die Kontaktprobleme um eine zusätzliche interne Variable – das Gleiten von Fäden an Kontaktknoten – erweitert wurde. Das Reibungsgesetz ist mit dem Euler-Eutelwein-Modell umgesetzt, das um einen zusätzlichen Adhäsionsterm modelltechnisch ausgebaut wurde. Die Adhäsion erlaubt somit auch unterschiedliche Vorspannung in den jeweiligen Maschen. Die elastische Energie wird dabei direkt aus den Garn-Kraft-Dehnungskurven berechnet.  

Ein wichtigstes Alleinstellungsmerkmal von FIFST ist die spezielle Technologie der Zugehörigkeit mehrerer Elemente zu bestimmten Threads und deren Anordnung im Thread sowie das gleichzeitig Kontaktgleiten an Million von Knotenpunkten. Somit ermöglicht FIFST multiskalige Simulation von großen gestrickten oder gewebten Schalenbauteilen unter Berücksichtigung der lokalen Textilstruktur.

Eine weitere Funktionalität der Software ist, virtuell Textilien über eine im STL-Format gegebene Oberflächentriangulierung zu ziehen. Im Video wird gewebte Maske (gestrickt ist ebenfalls möglich) in der Ebene an 6 Punkten ausgedehnt und gegen die Gesichtsoberfläche gezogen. Ihre Knoten werden auf das Gesicht projiziert und gleiten auf der Oberfläche weiter, bis die Maske komplett anliegt. Wenn man Reibeigenschaften von Garnen am Gesicht kennt, kann man weitere Faltungsbildung untersuchen und auch sie gezielt beeinflussen. Als weiteres Optimierungspotential erlaubt FIFST Porengrößen von angezogenem Textil auf besonders gewölbten Oberflächenstellen zu minimieren, die durch Erhöhung der Vorspannung in Garnen oder eine Modifizierung des Lappingdiagramms bzw. der Bindepatrone erreicht werden kann.


Für eine Testversion wenden Sie sich bitte an das

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Fraunhofer-Platz 1
67663 Kaiserslautern

Telefon: +49 631 31600-4342

texmath@itwm.fraunhofer.de    

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Foto: pixabay
06.07.2021

»Waste4Future«: Vom Abfall zum Rohstoff - Kunstoff-Recycling

Fraunhofer Institute ebnen neue Wege

Eine nachhaltige Gesellschaft mit klimaneutralen Prozessen benötigt erhebliche Anpassungen in den Wertschöpfungsketten, die nur durch Innovationen möglich werden. Sieben Einrichtungen der Fraunhofer-Gesellschaft bündeln im Leitprojekt »Waste4Future« ihre Kompetenzen, um neue Lösungen für dieses Ziel zu entwickeln, von der Rohstoffbasis über die Stoffströme und Verfahrenstechnik bis zum Ende des Lebenszyklus eines Produkts. Insbesondere wollen sie die Energie- und Ressourceneffizienz beim Einsatz von Kunststoffen erhöhen und somit den Weg ebnen für eine Chemieindustrie, die weniger fossile Rohstoffe benötigt und weniger Emissionen verursacht.

Fraunhofer Institute ebnen neue Wege

Eine nachhaltige Gesellschaft mit klimaneutralen Prozessen benötigt erhebliche Anpassungen in den Wertschöpfungsketten, die nur durch Innovationen möglich werden. Sieben Einrichtungen der Fraunhofer-Gesellschaft bündeln im Leitprojekt »Waste4Future« ihre Kompetenzen, um neue Lösungen für dieses Ziel zu entwickeln, von der Rohstoffbasis über die Stoffströme und Verfahrenstechnik bis zum Ende des Lebenszyklus eines Produkts. Insbesondere wollen sie die Energie- und Ressourceneffizienz beim Einsatz von Kunststoffen erhöhen und somit den Weg ebnen für eine Chemieindustrie, die weniger fossile Rohstoffe benötigt und weniger Emissionen verursacht.

Ohne Kunststoffe wie Polyethylen (PE), Polypropylen (PP) oder Polystyrol (PS), die derzeit fast durchweg aus fossilen Rohstoffen hergestellt werden, wären viele Alltagsprodukte und moderne Technologien undenkbar. Der im Kunststoff enthaltene Kohlenstoff ist dabei eine wichtige Ressource für die chemische Industrie. Wenn es gelingt, solche kohlenstoffhaltigen Bestandteile in Abfällen besser zu erkennen, besser zu verwerten und daraus wieder hochwertige Ausgangsmaterialien für die Industrie herzustellen, kann der Kohlenstoff im Kreislauf gehalten werden. Das reduziert nicht nur den Bedarf an fossilen Ressourcen, sondern auch die Umweltverschmutzung mit CO2-Emissionen und Plastikmüll. Zugleich verbessert sich die Versorgungssicherheit der Industrie, weil eine zusätzliche Kohlenstoffquelle erschlossen wird.

Im Leitprojekt »Waste4Future« sollen deshalb neue Möglichkeiten für das Recycling von Kunststoffen geschaffen werden, um den darin enthaltenen Kohlenstoff als »grüne« Ressource für die Chemieindustrie bereitzustellen. »Wir bahnen somit den Weg für eine Kohlenstoff-Kreislaufwirtschaft, in der aus Kunststoffabfällen wertvolle neue Basismoleküle gewonnen und Emissionen weitgehend vermieden werden: Der Abfall von heute wird zur Ressource von morgen«, sagt Dr.-Ing. Sylvia Schattauer, stellvertretende Leiterin des Fraunhofer-Instituts für Mikrostruktur von Werkstoffen und Systemen IMWS, das die Federführung für das Projekt hat. »Mit dem Know-how der beteiligten Institute wollen wir zeigen, wie das umfassende Recycling von kunststoffhaltigen Abfällen ohne Verlust von Kohlenstoff durch ineinandergreifende, vernetzte Prozesse möglich und schlussendlich auch wirtschaftlich ist.« Ergebnis des bis Ende 2023 laufenden Projekts sollen innovative Recyclingtechnologien für komplexe Abfälle sein, mit denen sich hochwertige Rezyklate gewinnen lassen.

Konkret geplant ist die Entwicklung eines ganzheitlichen, entropiebasierten Bewertungsmodells, das die bis dato prozessgeführte Recyclingkette zu einer stoffgeführten Kette reorganisiert (Entropie = Maß für die Unordnung eines Systems). Eine neuartig geführte Sortierung erkennt, welche Materialien und insbesondere welche Kunststofffraktionen im Abfall enthalten sind. Aufbauend auf dieser Analyse wird der Gesamtstrom getrennt und für die entstehenden Teilströme dann zielgerichtet entschieden, welcher Weg des Recyclings für diese spezifische Abfallmenge der technisch, ökologisch und ökonomisch sinnvollste ist. Was mittels werkstofflichen Recyclings nicht weitergenutzt werden kann, steht für chemisches Recycling zur Verfügung, stets mit dem Ziel des maximal möglichen Erhalts von Kohlenstoffverbindungen. Die thermische Verwertung kunststoffhaltiger Abfälle am Ende der Kette ist damit eliminiert.

Die Herausforderungen für Forschung und Entwicklung sind beträchtlich. Dazu gehören die komplexe Bewertung sowohl von Inputmaterialien als auch von Rezyklaten nach ökologischen, ökonomischen und technischen Kriterien. Das werkstoffliche Recycling gilt es zu optimieren, Verfahren und Technologien für die Schlüsselstellen der stofflichen Nutzung von Kunststofffraktionen müssen etabliert werden. Außerdem ist geeignete Sensorik zu entwickeln, die Materialien im Sortiersystem zuverlässig identifizieren kann. Dabei kommen auch Methoden des maschinellen Lernens zum Einsatz, und es wird eine Verknüpfung mit einem digitalen Zwilling angestrebt, der die Eigenschaften der prozessierten Materialien repräsentiert.

Für die Entwicklung der entsprechenden Lösungen stehen die beteiligten Institute im engen Austausch mit Unternehmen aus der chemischen Industrie und Kunststoffverarbeitung, der Abfallwirtschaft, dem Recycling-Anlagenbau und dem Recycling-Anlagenbetrieb, um zielgerichtet den Bedarf der Industrie zu berücksichtigen und somit die Chancen auf eine schnelle Umsetzung der erzielten Ergebnisse zu erhöhen.

Am Fraunhofer-Leitprojekt »Waste4Future« sind folgende Einrichtungen beteiligt:

  • Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS (Federführung)
  • Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP
  • Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS
  • Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB
  • Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR
  • Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF
  • Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV
Foto: pixabay
11.05.2021

Wenn Ananasblätter zur nachhaltigen Alternative für Leder werden

  • Spanische Unternehmerin Carmen Hijosa für den Preis Europäischer Erfinderpreis 2021 des Europäischen Patentamts (EPA) nominiert
  • Entwicklung eines Verfahrens, das Ananasblätter in eine weiche, haltbare und vielseitige Textilie verwandelt
  • Umweltfreundliche Alternative unterstützt die Landwirtschaft und ist bei führenden internationalen Modefirmen gefragt

Wie das Europäische Patentamt (EPA) mitteilte, ist spanische Unternehmerin Carmen Hijosa für den Europäischen Erfinderpreise 2021 als Finalistin in der Kategorie „KMU“ (Kleine und mittlere Unternehmen) nominiert worden. Sie hat eine Lederalternative und gleichermaßen innovative Textilie aus den Fasern von Ananasblättern entwickelt, die aus einer Abfallressource hergestellt wird und im Vergleich zur Herstellung von Rindsleder die Umwelt weniger belastet.

  • Spanische Unternehmerin Carmen Hijosa für den Preis Europäischer Erfinderpreis 2021 des Europäischen Patentamts (EPA) nominiert
  • Entwicklung eines Verfahrens, das Ananasblätter in eine weiche, haltbare und vielseitige Textilie verwandelt
  • Umweltfreundliche Alternative unterstützt die Landwirtschaft und ist bei führenden internationalen Modefirmen gefragt

Wie das Europäische Patentamt (EPA) mitteilte, ist spanische Unternehmerin Carmen Hijosa für den Europäischen Erfinderpreise 2021 als Finalistin in der Kategorie „KMU“ (Kleine und mittlere Unternehmen) nominiert worden. Sie hat eine Lederalternative und gleichermaßen innovative Textilie aus den Fasern von Ananasblättern entwickelt, die aus einer Abfallressource hergestellt wird und im Vergleich zur Herstellung von Rindsleder die Umwelt weniger belastet. Ihre natürliche Lederalternative unterstützt Landwirte und Genossenschaften auf den Philippinen und ist auch bei großen internationalen Modemarken gefragt.

Die Gewinner des jährlichen Innovationspreises des EPA werden am 17. Juni 2021 ab 19 Uhr im Rahmen einer Galaveranstaltung bekannt gegeben, die in diesem Jahr als digitales Event für ein weltweites Publikum neu konzipiert wurde.

Vom Ananasblattabfall zur natürlichen Textilie
Konventionelle Lederproduktion ist umstritten: Für die Aufzucht von Schlachtvieh werden erhebliche Ressourcen verbraucht, der chemikalienlastige Gerbungsprozess birgt das Risiko der Umweltverschmutzung, und die Arbeitsbedingungen in den Gerbereien sind oft nicht gut. Auch synthetische Lederalternativen wie PVC (Polyvinylchlorid) seien mit schwerwiegenden Auswirkungen auf die Umwelt und Gesundheitsrisiken für Menschen verbunden, so das Europäische Patentamt.

Hijosa erlebte die Realität der globalen Lederproduktion aus erster Hand, als sie 1993 als Textildesign-Beraterin für die Weltbank auf den Philippinen arbeitete. Die negativen ökologischen und sozialen Auswirkungen der lokalen Lederproduktion brachten sie dazu, eine nachhaltige Textilie zu entwickeln, die für den Export geeignet ist und die Rohstoffe auf den Philippinen sowie die traditionellen Fähigkeiten der Menschen dort besser nutzt. „Ananasblattfasern sind sehr stark, fein und biegsam und werden auf den Philippinen seit 300 Jahren in traditionell handgewebten Textilien verwendet“, erklärt Hijosa. „Ich überlegte also, was wäre, wenn ich aus diesen Ananasblattfasern ein Gewebe herstellen würde, das Ähnlichkeit mit Leder hat – ein Gewebe aus Fasern?'“

Im Rahmen eines zwölfjährigen Forschungs- und Entwicklungsprozesses arbeitete sie daran, das Geflecht der Kollagenfasern von Leder nachzubilden. Während dieser Zeit schloss sie mehrere Textilstudiengänge ab, gründete 2013 in London ein Unternehmen und refinanzierte ihr Haus, um weiter zu forschen und ihre Promotion abzuschließen. Am Ende dieses Prozesses stand die erfolgreiche Entwicklung und Perfektionierung einer Textilie namens Piñatex. Das Material wird produziert, indem die Zellulosefasern von den Blättern abgezogen und zunächst Fasern in Textilqualität hergestellt werden. Diese werden dann zu einer nicht gewebten Netztextilie verarbeitet, die weiter veredelt und zu einer Lederalternative erweicht wird.

Das Rohmaterial, das die Grundlage für Hijosas Textilie bildet, ist ein Nebenprodukt der Ananasernte auf den Philippinen. Die Nutzung einer Ressource, die ansonsten weggeworfen würde, bietet den Landwirten ein zusätzliches Einkommen. Diese Abfallressource hat erhebliches Potenzial, da die zehn größten Ananas produzierenden Länder der Welt genug Blätter erzeugen, um potenziell mehr als 50 Prozent der weltweiten Lederproduktion durch das Material von Hijosa zu ersetzen. Piñatex benötigt zudem viel weniger Wasser als Textilien wie Baumwolle, die mehr als 20.000 Liter Wasser pro Kilogramm beansprucht. Zudem werden bei der Herstellung weniger Chemikalien und weniger CO2 verbraucht als bei der Lederproduktion.

Innovation bietet Verbrauchern mehr nachhaltige Optionen
2011 meldete Hijosa ein Patent für das Material und seine Herstellung an, bevor sie 2013 Ananas Anam als Start-up gründete, um Piñatex kommerziell zu vermarkten. Dieser Teil des Prozesses war für sie entscheidend: „Das geistige Eigentum spielte eine zentrale Rolle dabei, die Finanzierung sowie Zukunft des Produkts und seines Marktpotenzials zu sichern.“ Hijosa ist weiterhin Chief Creative & Innovation Officer ihres Unternehmens und federführend für Neuentwicklungen im Bereich pflanzlicher, abfallbasierter Textilien verantwortlich. Ihre Pionierarbeit hat das Unternehmen als Marktführer zu einem Zeitpunkt positioniert, wo es seitens der Verbraucher immer mehr Bedarf für nachhaltigere Angebote gibt.

Von 2013 bis 2019 hat sich der Umsatz von Hijosas Unternehmen jedes Jahr in etwa verdoppelt und ist 2020 im Vergleich zum Vorjahr um 40 Prozent gewachsen. Die Firma beschäftigt an ihrem Londoner Standort rund zehn Mitarbeiter und arbeitet mit Fabriken auf den Philippinen und in Spanien sowie mit dem größten philippinischen Ananasanbaukollektiv zusammen, zu dem 700 Familien gehören, die durch die Lieferung von Abfallblättern von einem zusätzlichen Einkommen profitieren. Piñatex wird derzeit von fast 3.000 Marken in 80 Ländern genutzt. Es findet sich in unterschiedlichen Produkten – von Turnschuhen über Jacken, Autoinnenausstattungen und Handtaschen bis zum Bestandteil einer rein veganen Hotelsuite der Welt.

Weitere pflanzliche Alternativen zu Leder, die bereits existieren oder in der Entwicklung sind, basieren auf den unterschiedlichsten Rohstoffen von Apfelkernen bis hin zu Pilzen und unterstreichen den Trend zu Textilien auf Pflanzen- und Abfallbasis. Der kombinierte globale Ledermarkt (tierisch und synthetisch) wurde 2017 auf 374 Milliarden Euro geschätzt. Obwohl echtes Leder immer knapper und damit teurer wird, zeigt die Prognose für den Gesamtmarkt bis 2025 ein jährliches Wachstum von 5,40 Prozent. Die jüngsten Vulkanausbrüche in der Nähe ihrer Fabriken auf den Philippinen und pandemiebedingte Einschränkungen haben Hijosas Produktion vorübergehend verlangsamt. Dennoch sagt die Unternehmerin, dass die Aussichten für das Unternehmen weiterhin positiv bleiben, da immer mehr Verbraucher nachhaltiger konsumieren möchten.

 

Dr. Carmen Hijosa
… wurde am 17. März 1952 in Salas in der spanischen Region Asturien geboren. Mit 19 Jahren zog sie nach Irland und war dort 1977 Mitbegründerin der Luxusledermanufaktur Chesneau Leather Goods. Als Designdirektorin gehörten High-End-Abnehmer wie Harrods zu ihren Kunden. Nachdem sie das Unternehmen 15 Jahre lang geleitet hatte, begann sie in den 1990er-Jahren als Beraterin im Bereich Textilien für die Weltbank sowie an Forschungsinstituten in Deutschland und Irland an EU-finanzierten Projekten zu arbeiten und brachte ihr Fachwissen im Bereich Textildesign so in Entwicklungsmärkte. 1993 wurde sie von der Weltbank als Beraterin für die philippinische Lederindustrie beauftragt. Die negativen Auswirkungen dieser Industrie auf Umwelt und Gesellschaft veranlassten sie, eine nachhaltige Alternative zu entwickeln – einen Lederersatz aus Ananasblättern. Von 2009 bis 2014 promovierte Hijosa im Bereich Textilien am Royal College of Art in London und entwickelte ihren Textilprototyp weiter. Im Jahr 2013 gründete sie das Unternehmen Ananas Anam Ltd., um die Lederalternative zu kommerzialisieren. Carmen Hijosa ist Inhaberin eines europäischen Patentes (EP2576881), das 2018 erteilt wurde.

Über den Europäischen Erfinderpreis
Der Europäische Erfinderpreis gilt als einer der renommiertesten Innovationspreise Europas. Er wurde 2006 vom EPA ins Leben gerufen und zeichnet einzelne Erfinder und Erfinderteams aus, deren wegweisende Innovationen Antworten auf einige der größten Herausforderungen unserer Zeit geben. Die Finalisten und Gewinner werden von einer unabhängigen Jury bestehend aus internationalen Experten aus Wirtschaft, Politik, Wissenschaft, Akademie und Forschung ausgewählt. Sie prüft die Vorschläge hinsichtlich ihres Beitrags zum technischen Fortschritt, zur gesellschaftlichen Entwicklung, zum wirtschaftlichen Wohlstand und zur Schaffung von Arbeitsplätzen in Europa. Der Preis wird in fünf Kategorien (Industrie, Forschung, KMU, Nicht-EPO Staaten und Lebenswerk) verliehen. Der Gewinner des Publikumspreises wird von der Öffentlichkeit aus den 15 Finalisten über ein Online-Voting ermittelt.

Gesucht: Start-ups mit Ideen für die Textilpflege © Foto: Messe Frankfurt Exhibition GmbH / Jens Liebchen
09.02.2021

Gesucht: Start-ups mit Ideen für die Textilpflege

Ob 24h-Belieferung, Statusverfolgung, grüne Verpackung, Textilrecycling oder innovative Reinigungstechnik: Neue Dienstleistungen haben das Potenzial, das Geschäft von Textilreinigungen und Wäschereien zu revolutionieren. Die Messe Frankfurt lädt deshalb Start-ups ein, sich mit ihren Produkten und Ideen auf der Texcare International zu präsentieren. Das weltweit wichtigste Event für die Textilpflege vom 27. November bis 1. Dezember 2021 in Frankfurt am Main bietet jungen Unternehmer:innen hervorragende Möglichkeiten, ihre Innovationen in den Markt zu tragen.

Ob 24h-Belieferung, Statusverfolgung, grüne Verpackung, Textilrecycling oder innovative Reinigungstechnik: Neue Dienstleistungen haben das Potenzial, das Geschäft von Textilreinigungen und Wäschereien zu revolutionieren. Die Messe Frankfurt lädt deshalb Start-ups ein, sich mit ihren Produkten und Ideen auf der Texcare International zu präsentieren. Das weltweit wichtigste Event für die Textilpflege vom 27. November bis 1. Dezember 2021 in Frankfurt am Main bietet jungen Unternehmer:innen hervorragende Möglichkeiten, ihre Innovationen in den Markt zu tragen.

Die Ansprüche von privaten Verbrauchern und gewerblichen Kunden an die Textilpflege sind enorm: Schnelligkeit, ständige Verfügbarkeit, transparente Kommunikation und nachhaltige Lösungen werden immer mehr vorausgesetzt. Johannes Schmid-Wiedersheim, Leiter der Texcare International bei der Messe Frankfurt sagt dazu: „Start-ups spielen eine wichtige Rolle, wenn es darum geht, die Digitalisierung und Nachhaltigkeit in der Textilpflege voranzutreiben. Oft gelingt es ihnen, wissenschaftliche Forschungsergebnisse oder Trends aus anderen Servicebranchen schnell in nützliche Produkte zu übertragen. Um das zu unterstützen, wollen wir auf der Texcare International junge, agile Unternehmen gezielt fördern und bieten ihnen ein attraktives Start-up-Paket an.“

Digitale Plattformen bieten Textilreinigern und Wäschern die Möglichkeit, ihr Angebot online zeitgemäß zu vermarkten. Was diese Plattformen so bedeutend macht, fasst Daniel Dalkowski, Geschäftsführer der Europäischen Forschungsvereinigung Innovative Textilpflege (EFIT), zusammen: „Digitale Plattformen gehören sicherlich zu den wichtigsten Errungenschaften der letzten Zeit, nicht nur wegen ihrer Anzahl, sondern auch weil sie Nachahmer in der Branche selbst gefunden haben. Die Innovation liegt hier in der Zusammenführung von Bestellung, flexibler Logistik und Abrechnung in einer Smartphone-App oder einer Online-Plattform.“

Mit ihren Robotiklösungen und Ansätzen zur künstlichen Intelligenz unterstützen junge IT-Unternehmen die Textilpflege auf dem Weg zur Smart Laundry. Wie Maschinen- und Anlagenbauer selbst von Start-ups profitiert haben, weiß Elgar Straub, Geschäftsführer VDMA Textile Care, Fabric and Leather Technologies: „Im Maschinenbau spielen Start-ups eine Rolle, die sich mit technischen Lösungen über alle Branchen hinweg beschäftigen, wie z.B. die virtuelle Inbetriebnahme von Maschinen oder die Optimierung der Prozesskette in der Produktion.“

Aber auch in anderen Disziplinen warten die Firmengründer mit ihren Ideen auf. Vor dem Hintergrund der Plastikmülldebatte gibt es beispielsweise zahlreiche Start-ups, die biologisch abbaubare Verpackungsmaterialien anbieten. Zudem sind auch im Textilrecycling Start-ups aktiv, die unter anderem gebrauchte Berufskleidung oder Wäsche aufbereiten und so zur Circular Economy beitragen. Und wie sieht es in Zukunft aus? Eines ist für die Experten gewiss: Künstliche Intelligenz und Automatisierung bieten sicherlich viel Potenzial für „Branchen-Outsider“ mit wirklichen Innovationen auf den Markt zu treten. Große Chancen auf Erfolg haben auch Verbesserungen in der Logistikkette von Wäschereien und Textilreinigungen.

Markteinstieg auf der Texcare International
Die Texcare International vom 27. November bis 1. Dezember 2021 bietet jungen Unternehmen hervorragende Möglichkeiten, um ihre Services bekannt zu machen und mit etablierten Unternehmen in Kontakt zu treten. Das Start-up-Paket der Messe Frankfurt beinhaltet einen schlüsselfertigen Stand.

Die Voraussetzungen zur Teilnahme:

  • Die Unternehmensgründung liegt nicht länger als zehn Jahre zurück. (Stichtag: 27.11.2021)
  • Das Start-up beschäftigt max. zehn Mitarbeiter.
  • Der Jahresumsatz beträgt nicht mehr als eine Millionen Euro (netto).
  • Das Jungunternehmen ist Anbieter für innovative Produkte oder Dienstleistungen speziell für die Textilpflegebranche.

Das Produktangebot der Texcare International umfasst Maschinen und Anlagen, Wasch- und Reinigungssubstanzen, IT und Logistiklösungen sowie Berufsbekleidung und Wäsche.

Weitere Informationen:
texcare Start-ups Startup
Quelle:

Messe Frankfurt Exhibition GmbH

pixabay: stock exchange2 (c) pixabay
27.10.2020

Mittelstand: Hohe Verschuldung, sinkende Profite und Finanzierungslücke durch Covid-19

  • Europäische Mittelständler weisen nach dem Corona-Schock eine sehr hohe Verschuldung, eine zum Teil erheblich verschlechterte Profitabilität und eine nicht ausreichende Kapitalisierung auf  
  • Insbesondere kleine und mittelständische Unternehmen (KMU) in Frankreich und Italien geht die Covid-19-Pandemie an die Substanz
  • Der deutsche Mittelstand ist im Vergleich zu seinen europäischen Pendants bisher relativ gut durch die Krise gekommen
  • Bereits vor der Krise 20% "Zombies" bei italienischen KMU, in Frankreich 11%, Deutschland 10%  

Insbesondere in Frankreich und Italien geht die Covid-19-Pandemie kleinen und mittelständischen Unternehmen (KMU) an die Substanz: Ihnen fehlen aktuell Finanzmittel in Höhe von schätzungsweise insgesamt rund 100 Milliarden Euro - trotz der umfangreichen Konjunkturpakete und nach Ausschluss von sogenannten "Zombie"-Unternehmen.

  • Europäische Mittelständler weisen nach dem Corona-Schock eine sehr hohe Verschuldung, eine zum Teil erheblich verschlechterte Profitabilität und eine nicht ausreichende Kapitalisierung auf  
  • Insbesondere kleine und mittelständische Unternehmen (KMU) in Frankreich und Italien geht die Covid-19-Pandemie an die Substanz
  • Der deutsche Mittelstand ist im Vergleich zu seinen europäischen Pendants bisher relativ gut durch die Krise gekommen
  • Bereits vor der Krise 20% "Zombies" bei italienischen KMU, in Frankreich 11%, Deutschland 10%  

Insbesondere in Frankreich und Italien geht die Covid-19-Pandemie kleinen und mittelständischen Unternehmen (KMU) an die Substanz: Ihnen fehlen aktuell Finanzmittel in Höhe von schätzungsweise insgesamt rund 100 Milliarden Euro - trotz der umfangreichen Konjunkturpakete und nach Ausschluss von sogenannten "Zombie"-Unternehmen. Auch in Deutschland fehlen KMU rund drei Milliarden Euro (Mrd. EUR) an Finanzmitteln zu einer ausreichenden Rekapitalisierung. Angesichts der fehlenden 70 Mrd. EUR in Italien und etwa 29 Mrd. EUR in Frankreich stehen die hiesigen Mittelständler allerdings weitaus besser da. Zu diesem Schluss kommt eine aktuelle Analyse des weltweit führenden Kreditversicherers Euler Hermes.

"Europäische Mittelständler weisen eine sehr hohe Verschuldung auf, eine erheblich verschlechterte Profitabilität und eine nicht ausreichende Kapitalisierung", sagt Ron van het Hof, CEO von Euler Hermes in Deutschland, Österreich und der Schweiz. "Das ist mittelfristig eine denkbar schlechte Kombination für die Zahlungsfähigkeit dieser Unternehmen. Insbesondere in Italien und Frankreich spitzt sich die Lage durch Covid-19 zunehmend zu, auch wenn die zahlreichen Konjunkturpakete zumindest eine kurzfristige Liquiditätskrise vermieden haben. Der deutsche Mittelstand hat sich abermals als relativ robust erwiesen und ist im Vergleich zu seinen europäischen Pendants bisher relativ gut durch die Krise gekommen."

Auch hierzulande ist die Verschuldung durch zahlreiche Liquiditätsmaßnahmen gestiegen. Insbesondere in Frankreich aber ist sie im Verhältnis zum Bruttoinlandsprodukt (81% des BIP) fast doppelt so hoch als in Deutschland (43% des BIP). In Italien ist die Verschuldung mit 65% des BIP ebenfalls überdurchschnittlich hoch im europäischen Vergleich (Durchschnitt: 63%).

Bei Profitabilität sind französische KMU Schlusslicht in Europa
"Französische Mittelständler sind in Europa zudem in puncto Profitabilität inzwischen Schlusslicht, noch hinter Italien", sagt Ana Boata, Leiterin Makroökonomie bei Euler Hermes. "Die Profitabilität französischer KMU ist seit Jahresbeginn um 7 Prozentpunkte (pp) drastisch gesunken im Vergleich zu -0,6 pp in Deutschland. In Italien dürfte die Profitabilität nach unseren Schätzungen ebenfalls um bis zu 3pp[1] gesunken sein. Die Eigenkapitalquote ist in Italien mit 33% die niedrigste und damit deutlich unterhalb der 40%, die in der Regel als adäquat gelten. In Italien besteht demnach der größte Bedarf an zusätzlichen Finanzmitteln für eine Rekapitalisierung."

In Frankreich liegt die Eigenkapitalquote der KMU bei 37%, in Deutschland mit 39% nur knapp unterhalb der empfohlenen Kapitalausstattung. Bei der Analyse haben die Volkswirte die Unternehmen bereits herausgerechnet, die schon vor der Covid-19-Pandemie praktisch nicht überlebensfähig waren.

"Ein Großteil der Mittelständler erweist sich auch in der aktuellen Krise als sehr robust, insbesondere in Deutschland, sagt Van het Hof. "Diese Tatsache, darf aber auch nicht darüber hinwegtäuschen, dass es in ihrem Schatten in Europa zahlreiche Zombie-Unternehmen gibt - auch schon vor der Covid-19-Pandemie. In Italien waren beispielsweise schon vor der Krise rund ein Fünftel der Mittelständler wirtschaftlich eigentlich gar nicht mehr lebensfähig, in Frankreich (11%) und Deutschland (10%) waren es nur etwa halb so viele. Allerdings dürfte sich die Anzahl mit der aktuellen Krise sprunghaft erhöht haben, ebenso wie der Finanzierungsbedarf der KMUs. Besonders eng wird es für die Unternehmen und Branchen, die vor der Krise kaum Puffer hatten."

In Deutschland war die Eigenkapitalquote vor der Pandemie in der Transportbranche besonders niedrig: In der Schifffahrt lag sie bei rund 32%, in der Luftfahrt bei 29%. Mit Covid-19 hat sich die bestehende Finanzierungslücke nochmals vergrößert. In Frankreich und Italien hatten Unternehmen im Hotel- und Gastgewerbe sowie im Maschinenbau und Handel besonders schlechte Ausgangspositionen und daher jetzt den größten Kapitalbedarf.

Die vollständige Studie finden Sie hier: https://ots.de/lYcKea 

[1] Für Deutschland und Frankreich liegen aktuell Zahlen bis H1 2020 vor, in Italien nur für Q1 2020. Der Rückgang bei der Profitabilität um bis zu 3pp in Italien ist eine Expertenschätzung.

Euler Hermes ist weltweiter Marktführer im Kreditversicherungsgeschäft und anerkannter Spezialist für Kaution und Garantien, Inkasso sowie Schutz gegen Betrug oder politische Risiken. Über das unternehmenseigene Monitoring-System verfolgt und analysiert Euler Hermes täglich die Insolvenzentwicklung von mehr als 80 Millionen kleiner, mittlerer und multinationaler Unternehmen. Insgesamt umfassen die Expertenanalysen Märkte, auf die 92% des globalen Bruttoinlandsprodukts (BIP) entfallen.
 

Hinweise bezüglich zukunftsgerichteter Aussagen finden Sie im Anhang.

Weitere Informationen:
Covid-19 KMU Euler Hermes Finanzkrise
Quelle:

Euler Hermes Deutschland

Kompostierbare Agrartextilien mit einstellbarer Nutzungsdauer Foto: Pixabay
30.06.2020

Kompostierbare Agrartextilien mit einstellbarer Nutzungsdauer

In dem Innovationsprojekt „AgriTex“ setzt sich die WESOM Textil GmbH gemeinsam mit dem Faserinstitut Bremen e.V. und dem Institut für Polymer- und Produktionstechnologien e.V. zum Ziel, ein kompostierbares technisches Textil zu entwickeln, das unter anderem in der Landwirtschaft zum Einsatz kommen soll. Das Projekt wird über drei Jahre aus Mitteln des Zentralen Innovationsprogramm Mittelstand (ZIM) gefördert und hat ein Fördervolumen von rund 570.000 Euro. Ein entsprechender Antrag wurde vom Bundesministerium für Wirtschaft und Energie (BMWi) im April 2020 bewilligt.
 

In dem Innovationsprojekt „AgriTex“ setzt sich die WESOM Textil GmbH gemeinsam mit dem Faserinstitut Bremen e.V. und dem Institut für Polymer- und Produktionstechnologien e.V. zum Ziel, ein kompostierbares technisches Textil zu entwickeln, das unter anderem in der Landwirtschaft zum Einsatz kommen soll. Das Projekt wird über drei Jahre aus Mitteln des Zentralen Innovationsprogramm Mittelstand (ZIM) gefördert und hat ein Fördervolumen von rund 570.000 Euro. Ein entsprechender Antrag wurde vom Bundesministerium für Wirtschaft und Energie (BMWi) im April 2020 bewilligt.
 
Kunststoffe sind nicht mehr aus dem Alltag wegzudenken und kommen in den unterschiedlichsten Bereichen zum Einsatz. Gleichzeitig stellt die Umweltverschmutzung durch Plastikmüll eines der größten globalen Probleme unserer Zeit dar. Zwar gibt es für die sinnvolle und umweltverträgliche Entsorgung von Kunststoffen bereits verschiedene Möglichkeiten, z.B. das Recycling oder auch die thermische Verwertung. Allerdings kann nicht immer gewährleistet werden, dass die Abfälle auch in die entsprechenden Entsorgungswege eingebracht werden können. Beispielsweise in der Landwirtschaft kann selbst bei sachgemäßem Gebrauch eine Freisetzung nicht immer verhindert werden oder eine Rückführung ist anwendungsbedingt nicht möglich. Biologisch abbaubare Kunststoffe können beitragen, dieses Problem zu lösen, doch verrotten viele der heutigen Produkte nur sehr langsam, da ansonsten die erforderliche Stabilität und Robustheit nicht gewährleistet werden kann.
     
Die Zielsetzung der Projektpartner mit dem Projekt "AgriTex" ist es, ein innovatives, biologisch abbaubares Textil für Anwendungen in der Landwirtschaft zu entwickeln. Das Textil hält einerseits während der Nutzung höchsten mechanischen und witterungsbedingten Anforderungen stand, verrottet andererseits nach Ablauf einer vorher definierten Nutzungsdauer schnell unter natürlichen Bedingungen in der Umwelt oder auf dem Kompost. Ermöglicht wird dieses Zwei-Phasen-Verhalten durch eine neuartige Bikomponentenfaser aus dem biologisch abbaubaren Kunststoff PLA. Die neue Technologie soll anhand eines Hagelschutznetzes für den Obstanbau entwickelt und erprobt werden. Hagelschutznetze sind erheblichen Belastungen durch verschiedene Witterungsbedingungen ausgesetzt und müssen in der Regel nach wenigen Saisons ausgetauscht werden. Die fachgerechte Entsorgung der alten Netze stellt dabei einen erheblichen Kostenfaktor für die landwirtschaftlichen Betriebe dar. Durch "AgriTex" können die Netze zukünftig kostenneutral mit anderen biologischen Abfällen kompostiert werden. Darüber hinaus verbleiben ungewollt freigesetzte Netzbestandteile, die sich z.B. durch Stürme oder Wildschäden aus dem Netzaufbau lösen, nicht mehr langfristig in der Umwelt und die Belastung der Ökosysteme durch Kunststoffmüll wird effektiv verhindert. Die ökologischen und ökonomischen Vorteile der neuen Technologie sind dabei nicht nur im Obstanbau gefragt, sondern werden zukünftig auch für viele andere Anwendungen in der Landwirtschaft, dem Landschaftsbau oder auch der Fischerei interessant sein.

Die Idee zum Projekt „AgriTex“ entstand im Rahmen des Innovationsnetzwerks PREVON - Production Evolution Network, das über das Zentrale Innovationsprogramm Mittelstand (ZIM) gefördert wird. Im Zuge der Mitgliedschaft werden die Partner aktiv bei der Realisierung von F&E-Projekten sowie der Sicherstellung der Finanzierung unterstützt.

Weitere Informationen:
Agrartextilien AgriTex
Quelle:

IWS Innovations- und Wissensstrategien GmbH

Lifestyle Collection Area: Outdoor als Lebensstil (c) Messe Friedrichshafen | OutDoor Show | www.outdoor-show.de
12.06.2018

LIFESTYLE COLLECTION AREA: OUTDOOR ALS LEBENSSTIL

  • Area zeigt Lifestyle-Trends aus den Bereichen Bekleidung, Schuhe und Accessoires und bringt Gleichgesinnte zusammen

Outdoor, Alltag und Lifestyle - Athleisure Wear und Urban Fashion sind weder aus den Städten noch aus dem Outdoor-Markt wegzudenken. Das umfassende Wachstumsthema Urban Lifestyle ist auch auf der OutDoor vom 17. bis 20 Juni 2018 Trendthema. In der Lifestyle Collection-Area zeigen die Aussteller, dass Outdoor mehr ist als nur draußen in der Natur zu sein. Es ist vielmehr ein Lebenstil, ein Mindset, das Verantwortung vor der Natur, Internationalität und einen lebenswerten Modestil verbindet. Neben der Präsenz von Outdoor-Produkten werden die Lifestyle-Trends aus den Bereichen Bekleidung, Schuhe und Accessoires für die Fachbesucher in all ihren Facetten präsentiert. Auch Start-Ups und Newcomer haben die Area für sich entdeckt.

  • Area zeigt Lifestyle-Trends aus den Bereichen Bekleidung, Schuhe und Accessoires und bringt Gleichgesinnte zusammen

Outdoor, Alltag und Lifestyle - Athleisure Wear und Urban Fashion sind weder aus den Städten noch aus dem Outdoor-Markt wegzudenken. Das umfassende Wachstumsthema Urban Lifestyle ist auch auf der OutDoor vom 17. bis 20 Juni 2018 Trendthema. In der Lifestyle Collection-Area zeigen die Aussteller, dass Outdoor mehr ist als nur draußen in der Natur zu sein. Es ist vielmehr ein Lebenstil, ein Mindset, das Verantwortung vor der Natur, Internationalität und einen lebenswerten Modestil verbindet. Neben der Präsenz von Outdoor-Produkten werden die Lifestyle-Trends aus den Bereichen Bekleidung, Schuhe und Accessoires für die Fachbesucher in all ihren Facetten präsentiert. Auch Start-Ups und Newcomer haben die Area für sich entdeckt.

Cheeki stellt hochwertige Edelstahlflaschen her und wagt den Sprung nach Europa. Die australische Firma ist erstmals auf der OutDoor in der Lifestyle-Area präsent. "Das passt zu uns, weil unsere Produkte nicht nur für den Weg zur Arbeit, zur Schule, für ein Picknick oder Sport sind und auch nicht nur zum Wandern oder Camping, sondern einen Lifestyle verkörpern", erklärt Simon Karlik, Director von Cheeki. Für Karlik sind die Trinkbehälter eine Lebenseinstellung. Das zeigt auch der Produktkatalog: Mit Cheeki-Flaschen kann man gegen die Plastikmüllberge vorgehen. Sie sind ein individuelles Statement gegen die Vermüllung der Meere. Cheeki ist Mindset - eine bestimmte Geisteshaltung, eine Art zu leben.

Der schwedische Hersteller Icebug zählt zu den langjährigen OutDoor-Ausstellern und präsentiert sich 2018 jedoch erstmals bewusst im Lifestyle-Areal. Deutschland-Chef Mathias Basedow sieht den traditionellen Outdoor-Look über dem Zenit: "Running, Camping, Klettern - das alles ist Lifestyle, man will aber nicht mehr unbedingt so aussehen, als wäre man gerade auf einer Expedition unterwegs. Wir brauchen auf Handels- und Markenseite nun also Vorreiter, die sich designtechnisch vom Status quo lösen, ohne die Performance zu opfern." Der Schuhersteller will diese Herausforderung annehmen und zeigt ein cleanes, stilvolles, skandinavisches Design bei den neuen Sneakern mit Performance.

Das Produkt und die Funktion sind auch im urbanen Umfeld wichtig, aber es steht noch für mehr: Das Mindset und die Mentalität, die dahinter steckt. Dazu zählt auch das Thema Nachhaltigkeit. So baut beispielsweise Hersteller Steinkauz auf Naturmaterialien als Funktionsträger. Loden, Wollfilz und Waxcotton. "Loden hat nicht nur großartige Klimaeigenschaften, sondern ist auch noch nachwachsend und als Naturprodukt biologisch abbaubar", argumentiert Markus Holthausen, CEO von Waldkauz/Steinkauz. Entscheidend für ihn: "Loden trifft einen wichtigen Nerv unseres heutigen Umweltbewusstseins und man kann sich auch außerhalb der Trekkingtour damit sehen lassen. Deshalb gehören wir in den Lifestyle-Bereich."

Lebenseinstellung Outdoor heißt auch immer Cross-Over. Nicht für jeden Auftritt ein eigenes Produkt, keine spezielle "Verkleidung" für jede gesellschaftliche Rolle. Cavida präsentiert auf der OutDoor ihre ausgefallenen Wave Hawaii Ponchos. "Sie wurden speziell für Outdoor konzipiert, aber lassen sich natürlich auch zu Hause, im Hallenbad oder der Sauna einsetzen. Mit unseren stylischen Designs treffen wir offensichtlich den Nerv der Zeit", sagt Geschäftsführer Carsten Raphael. Outdoor, Alltag und Lifestyle gilt auch für die Sonnenbrillen von Slastik, die ebenfalls zu Cavida gehören. Raphael sieht sie als "außergewöhnlich stylisch" und "richtungsweisend". "Auch hier werden wir deutliche Aufmerksamkeit erregen."

Die Lifestyle-Area auf der OutDoor will bewusst keine großen Flächenstände. "Das würde die Idee der Lifestyle-Area konterkarieren", erklärt Projektleiter Dirk Heidrich. "Kleine Stände, ein eigenständiger Standbau und die Möglichkeit für Neuaussteller, Start-Ups oder auch langjährige OutDoor-Aussteller, zu experimentieren und dabei maximale Aufmerksamkeit zu bekommen." Und so ist die Lifestyle-Area eine Ausstellung innerhalb der OutDoor. Von hochwertiger Funktionsbekleidung, über Rucksäcke, Zelte, Schlafsäcke und jede Menge Accessoires findet sich alles in dem Bereich - aber mit Stil und Verantwortung. Outdoor als Lifestyle. Die Geschichten hinter den Produkten stellen die Aussteller am Montag, 18. Juni um 17 Uhr beim Networking-Event "Tell us your story" in der Lifestyle Collection-Area vor.

Das Jubiläum der 25. OutDoor findet von Sonntag, 17. bis Mittwoch, 20. Juni 2018 statt und ist nur für den Fachhandel geöffnet. Weitere Informationen unter: www.outdoor-show.de und www.facebook.com/OutDoor.Show/.

BANGLADESCH STELLT LEDERINDUSTRIE NEU AUF Foto: Pixabay
20.02.2018

BANGLADESCH STELLT LEDERINDUSTRIE NEU AUF

  • Produktion und Exporte im Aufschwung 
  • Umweltprobleme und andere Herausforderungen bleiben

Die Lederindustrie in Bangladesch berichtet von steigenden Exporten und einer wachsenden Nachfrage im Inland. Der Standort punktet mit niedrigen Arbeitskosten und der Verfügbarkeit von Leder. Zu viele Gerbereien belasten allerdings noch die Umwelt. Die Branchenstruktur der Hersteller von Lederwaren und Schuhen reicht von veraltet bis modern. Internationale, exportorientierte Betriebe zeigen den Weg.

  • Produktion und Exporte im Aufschwung 
  • Umweltprobleme und andere Herausforderungen bleiben

Die Lederindustrie in Bangladesch berichtet von steigenden Exporten und einer wachsenden Nachfrage im Inland. Der Standort punktet mit niedrigen Arbeitskosten und der Verfügbarkeit von Leder. Zu viele Gerbereien belasten allerdings noch die Umwelt. Die Branchenstruktur der Hersteller von Lederwaren und Schuhen reicht von veraltet bis modern. Internationale, exportorientierte Betriebe zeigen den Weg.

Bangladeschs Lederindustrie ist nach der Bekleidungsindustrie der zweitgrößte Exportzweig des Schwellenlandes. Der Großteil der Ausfuhren entfiel im Finanzjahr 2016/17 (1. Juli 2016 bis 31. Juni 2017) mit 537 Millionen US-Dollar (US$) auf Lederschuhe (Vorjahr 495 Millionen US$), gefolgt von Lederwaren 464 Millionen US$ (388 Millionen US$). Die Ausfuhren von Lederschuhen legten in der zweiten Jahreshälfte 2017 nochmals um 9 Prozent zu und die von Lederwaren lagen auf demselben Niveau wie im Vorjahreszeitraum.

Die Exporte von Leder dagegen lagen 2016/17 bei 233 Millionen US$ (279 Millionen US$) und fielen in der zweiten Jahreshälfte 2017 um 29 Prozent. Hauptgrund ist geringere Nachfrage in China nach Leder. Stattdessen wird dieses zunehmend in Bangladesch zu fertigen Produkten für Kunden aus dem In- und Ausland weiterverarbeitet.

Potenziale noch nicht ausgeschöpft
Das Handelsministerium möchte die gesamten Exporte bis 2021 auf 5 Milliarden US$ vervierfachen. Es hat mit dieser Aufgabe einen Rat beauftragt, den Bangladesh Leather Sector Business Promotion Council. Dieser soll mit geeigneten Maßnahmen sowohl die Herstellungsmengen als auch die Verarbeitungstiefe im Lande erhöhen. Lederherstellung und -verarbeitung verfügen über Potenziale, denn sie könnten die erfolgreiche Entwicklung der heimischen Textil- und Bekleidungsindustrie durchaus wiederholen.

Internationale Investitionen sind ausdrücklich willkommen. Ausländische Investoren können eine Tochtergesellschaft in eigener Hand gründen sowie Förderungen und Steuerbefreiungen beantragen. Acht Exportförderzonen (Export Processing Zone) und weitere Sonderwirtschaftszone bieten viele rechtliche und technische Vorteile, meint die Investitionsbehörde Bangladesh Investment Development Authority.

Der Verband der exportierenden Lederwaren- und Schuhhersteller (Leathergoods and Footwear Manufacturers & Exporters Association of Bangladesh, LFMEAB) berichtet, dass Unternehmen aus Taiwan, China, Südkorea und Japan zunehmend in die Branche investieren. Sie verlagern unter anderem Fertigungen aus China nach Bangladesch.

Ausländische Direktinvestitionen in Bangladeschs Lederindustrie
(Bestand Juni 2016 in Mio. US$)
Ursprungsland Bestand 2016
Taiwan 76
Niederlande 37
Hongkong 26
Korea (Rep.) 17
Gesamt 192

Quelle: Zentralbank

Im Finanzjahr 2016/17 flossen gemäß der Zentralbank brutto 82 Millionen US$ an ausländischen Direktinvestitionen in die Lederindustrie (Vorjahr 48 Millionen US$). Taiwan war mit Abstand der größte Investor mit 50 Millionen US$ (14 Millionen US$).

Auch frühere Investoren verweisen auf eine erfolgreiche Entwicklung. Die deutsche Firma Picard Lederwaren hat beispielsweise 1997 ein Joint Venture gegründet und produziert inzwischen monatlich 32.000 Ledertaschen und 40.000 Kleinlederwaren.

Geprüfte Hersteller von Lederwaren
Wichtigste Abnehmer von Lederwaren und Schuhen sind die EU, Japan und die USA. Die EU und Japan erheben auf Importe aus Bangladesch im Rahmen ihrer Präferenzsysteme für Entwicklungsländer in der Regel weder Quoten noch Einfuhrzölle.

Die exportorientierten Lederwarenhersteller fertigen meist auf einem von den Kunden geforderten technischen Niveau. Dazu gehören Zertifizierungen und Prüfungen. Der Fachverband LFMEAB setzt sich für die Einhaltung von branchenüblichen Standards bei seinen 150 Mitgliedsfirmen ein. Auch die Europäische Union unterstützt mit ihrem Projekt ECOLEBAN eine nachhaltige, ressourceneffiziente Entwicklung des Ledersektors. Mehrere Gerbereien und Lederfabriken halten nachweislich die Arbeits- und Sozialstandards der UN-Organisation ILO und den ISO Standard 14001 für Umweltmanagementsysteme ein.

Mit steigenden Anforderungen und Mengen werden die lederverarbeitenden Unternehmen auch mehr hochwertige Materialien wie Sohlen und Accessoires importieren. Auch ihre Maschinen und Ausrüstungen stammen aus dem Ausland.

Problematische Bedingungen in der Lederherstellung
Das Leder wird allerdings unter problematischen Bedingungen hergestellt. Das Agrarland verfügt über einen Bestand von etwa 24 Millionen Rindern und damit über circa 1,7 Prozent des weltweiten Bestandes. Die Fleischwirtschaft verarbeitet auch Büffel und Ziegen in größeren Mengen. Tiere leiden bei unsachgemäßen Schlachtungen. Moderne Prozesse in der Schlachtung und fortschrittliche Verarbeitungsschritte könnten die Qualität in der Lederherstellung verbessern.

Die Zahl der Gerbereien wird auf über 200 geschätzt, die jährlich ungefähr 29 Millionen Quadratmeter Leder herstellen, davon entfallen zwei Drittel auf Leder aus Rinderhäuten. Die Branche steht in einem schlechten Ruf, die Situation in vielen Betrieben wird von unabhängigen Stellen bemängelt. In den meisten Betrieben sind Prozesse und Geräte für Arbeitssicherheit, Schutz der Umwelt nicht vorhanden. Kinder arbeiten nach Berichten von Beobachtern in dürftig kontrollierten Fabriken.

Dramatisch ist die Situation in Hazaribagh. Das Oberste Gericht entschied bereits 2003, dass die circa 150 Kleingerbereien aus diesem Wohnviertel in Dhaka in einen Alternativstandort umziehen sollen. Die öffentliche Firma Bangladesh Small and Cottage Industries Corp. wurde beauftragt, dafür den Lederindustriepark Savar Tannery Park in einem nördlichen Außenbezirk von Dhaka aufzubauen. Der vollständige Umzug in das neue Ledercluster in Savar hat sich seitdem immer wieder verzögert.

Nach Angaben des Fachverbandes Bangladesh Tanners Association ist der Umzug in den Savar Lederindusriepark erfolgt. Die dortige zentrale Kläranlage funktioniert dem Vernehmen nach allerdings noch nicht vollständig. Die Gerbereien verschmutzen also auch dort die Umwelt. Medien berichten zudem von Gerbereiaktivitäten in Hazaribagh.

Mehr Fachkräfte benötigt
Die Zahl der lederverarbeitenden Betriebe wurde in einer letzten Untersuchung von 2013 auf 3.500 geschätzt. Die Hersteller entwickeln für den Inlandsmarkt eigene Designs und einige wollen international ihre eigenen Marken platzieren.

Aber das Tempo der Ausbildung von Fachkräften hält nicht mit der Industrialisierung der Branche mit. Gerbereien und Lederindustrie beschäftigen direkt und indirekt ungefähr 75.000 Mitarbeiter. Ihre Kenntnisse und Fähigkeiten beruhen oft auf traditionellen Verfahren und kurzen Einweisungen.

Der Bedarf an Fachpersonal wird auf 60.000 geschätzt. Ein Exzellenzzentrum widmet sich seit 2009 deren Ausbildung. Das Centre of Excellence for Leather Skill Bangladesh (COEL) hat seitdem circa 15.000 Personen an Maschinen und im Design ausgebildet oder geschult. Zwei Hochschulen bilden Ingenieure in der Fachrichtung aus. Die Universität in Dhaka hat ein Institut für Ledertechnik (Institute of Leather Engineering and Technology) etabliert und die Khulna University of Engineering verfügt über eine Abteilung für Ledertechnik.

Das Handelsministerium und der Verband LFMEAB organisierten im November 2017 die erste Ausgabe der Fachmesse BLLISS (Bangladesh Leatherfootwear & Leathergoods International Sourcing Show). Die Veranstalter konnten den Beschaffungsmarkt präsentieren und wollen die Veranstaltung jährlich fortführen. Der Branchentreff zog 30 Aussteller und 20.000 Besucher an. Die nächste Ausgabe wird vom 22. - 24. November 2018 in Verbindung mit der Ledertechnikmesse Leathertech (http://www.leathertechbangladesh.com) stattfinden.

Kontaktadressen

Bezeichnung Internetadresse Anmerkungen
Leathergoods and Footwear Manufacturers & Exporters Association of Bangladesh http://www.lfmeab.org Verband der exportierenden Hersteller von Lederwaren
Bangladesh Tanners Association http://www.tannersbd.com Verband der Gerbereien
Centre of Excellence for Leather Skill Bangladesh Limited http://coelbd.com Aus- und Fortbildungsinstitut
EU-Projekt ECOLEBAN (2014 bis 2018) https://www.ecoleban.com Unterstützung von KMUs in der Lederin-dustrie bei der Einführung von Umweltmanagementsystemen und Ecolabelling