From the Sector

Reset
4 results
(c) FET
FET’s Director of Technology, Mark Smith and new R&D Manager, Dr Jonny Hunter
17.05.2023

FET strengthens its technical team

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has strengthened its technical team with the appointment of Dr Jonny Hunter as Research & Development Manager. Hunter brings a wealth of academic credentials to the department, including a Master’s in Medicinal and Biological Chemistry and a PhD in Sustainable Chemistry. This academic background is complemented by over 10 years’ R&D experience in industry, including FMCG and, in particular, medical devices, which encompasses wound care, the medical device manufacturing process and regulatory environment.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has strengthened its technical team with the appointment of Dr Jonny Hunter as Research & Development Manager. Hunter brings a wealth of academic credentials to the department, including a Master’s in Medicinal and Biological Chemistry and a PhD in Sustainable Chemistry. This academic background is complemented by over 10 years’ R&D experience in industry, including FMCG and, in particular, medical devices, which encompasses wound care, the medical device manufacturing process and regulatory environment.

FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications, so the above research and industrial sectors have great relevance to the company’s focus on the international stage. A significant market for FET’s meltspinning equipment is medical devices, so in-house expertise in this area is a vital commodity. FET is also at the forefront of innovation to promote and develop sustainable fibres, so technical knowhow in sustainability is also essential. In this, Jonny Hunter has considerable experience and has in the past lead a number of innovation projects in sustainable chemistry and management.

This fresh input of knowledge and experience will benefit FET’s customers in their own drive for sustainable innovation in fibre technology. Mark Smith, the previous R&D Manager, is taking a short sabbatical and will be returning in a more strategic role as FET’s Director of Technology, so his continued presence will further contribute to FET’s breadth of technical expertise.

FET has also expanded in a number of other departments to reflect the rapid growth in sales over recent years. Mike Urey is the new Sales Engineer, bringing a wide industrial experience and strengthening all aspects of business development. Three new mechanical and electronic engineers and a new appointment in the design department all combine to take the company forward and sustain growth.

Source:

Fibre Extrusion Technology Ltd (FET)

(c) FET
Business Secretary Grant Shapps discusses FET’s wet spinning system with Mark Smith, FET R&D Manager
16.12.2022

FET extrusion system features in UK Business Secretary’s visit

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

“R&D investment is a critical way to turbocharge Britain’s growth. Growing an economy fit for the future means harnessing the full potential of advanced materials, making science fiction a reality by supporting projects from regenerative medicine to robots developing new recycling capabilities, right across the country. Today’s £95 million investment will do just that, bringing together the brightest minds across our businesses and institutions to help future-proof sectors from healthcare to nuclear energy.”

The Henry Royce Institute was established in 2015 with an initial £235 million government investment through the Engineering and Physical Sciences Research Council and the latest £95 million sum represents the second phase of the investment.

Opportunities being investigated by Royce include lightweight materials and structures, biomaterials and materials designed for reuse, recycling and remanufacture. Advanced materials are critical to the UK future in various industries, such as health, transport, energy, electronics and utilities.

Photo: FET
FET-103 Monofilament meltspinning system
10.10.2022

RHEON LABS: Fibre with unique strain-rate sensitive characteristics

RHEON LABS, a fast-growing materials technology company based in Battersea, London, has completed an extensive 6 month trial with FET, a world leader in laboratory and pilot meltspinning equipment. Backed by a £173,000 grant from Innovate UK for feasibility studies, RHEON LABS has further developed its RHEON™ technology, a reactive polymer that dynamically stiffens when subjected to force. The technology can control energy of any amplitude or frequency, from small vibrations to forces at ballistic-speeds and therefore has a wide range of applications.
 
This Innovate UK Smart Grant-backed project aims to develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. Creating a fibre with unique strain-rate sensitive properties will be a world first. It will enable the creation of a 'breakthrough-generation' of stretch textiles that can actively absorb, dampen and control energy during movement, rather than simply acting as a spring.

RHEON LABS, a fast-growing materials technology company based in Battersea, London, has completed an extensive 6 month trial with FET, a world leader in laboratory and pilot meltspinning equipment. Backed by a £173,000 grant from Innovate UK for feasibility studies, RHEON LABS has further developed its RHEON™ technology, a reactive polymer that dynamically stiffens when subjected to force. The technology can control energy of any amplitude or frequency, from small vibrations to forces at ballistic-speeds and therefore has a wide range of applications.
 
This Innovate UK Smart Grant-backed project aims to develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. Creating a fibre with unique strain-rate sensitive properties will be a world first. It will enable the creation of a 'breakthrough-generation' of stretch textiles that can actively absorb, dampen and control energy during movement, rather than simply acting as a spring.

For close-fitting activewear and sports bras, the ability to actively control muscle mass or soft tissue movement during exercise will be a game-changing advancement. It will allow brands to engineer garments that relax during everyday use but actively stiffen during exercise for improved support and performance.
The Innovate UK grant was awarded under the category of Hyper-Viscoelastic Fibre Extrusion for Textile Manufacture. Fibre Extrusion Technology Limited (FET) enabled the customer trials at its bespoke Fibre Development Centre in Leeds, England using its in-house FET-103 Monofilament meltspinning facilities, in harness with RHEON and FET technical operatives. The next phase will be to upscale the trials of preferred materials on RHEON’s own new FET-103 meltspinning line, with FET’s continued support and expertise on hand.
 
Creating a fibre with unique strain-rate sensitive characteristics could be as radical a change in the market as the initial introduction of stretch fibre with the launch of Lycra™. The textiles would have a multitude of beneficial properties and would provide significantly less compression in the garment than conventional materials, substantially improving user comfort, support and performance.

Source:

DAVID STEAD PROJECT MARKETING LTD

(c) FET
FET-100 Series Melt Spinning System
13.03.2022

FET gearing up for Techtextil 2022

With just 3 months to go before Techtextil Frankfurt, UK company Fibre Extrusion Technology Limited (FET), is looking forward to exhibiting at this trade show once again. Techtextil attracts international blue-chip companies at the cutting edge of technology, seeking innovative solutions to technical challenges, so this event represents an ideal opportunity to demonstrate how FET can help achieve their goals.

FET is an acknowledged leader in laboratory and pilot meltspinning equipment for a vast range of applications, such as precursor materials used in high value technical textiles, sportswear, medical devices and specialised novel fibres from exotic and difficult to process polymers. Where melt spinning solutions are not suitable, FET provides a viable alternative with pilot and small scale production wet spinning systems.

However, FET will also showcase at Techtextil its more recent laboratory scale spunbond system, which enables client development of nonwoven fabrics in a number of formats and polymers. FET already has a number of spunbond systems in the field, including composite systems which utilise both spunbond and meltspun functions.

With just 3 months to go before Techtextil Frankfurt, UK company Fibre Extrusion Technology Limited (FET), is looking forward to exhibiting at this trade show once again. Techtextil attracts international blue-chip companies at the cutting edge of technology, seeking innovative solutions to technical challenges, so this event represents an ideal opportunity to demonstrate how FET can help achieve their goals.

FET is an acknowledged leader in laboratory and pilot meltspinning equipment for a vast range of applications, such as precursor materials used in high value technical textiles, sportswear, medical devices and specialised novel fibres from exotic and difficult to process polymers. Where melt spinning solutions are not suitable, FET provides a viable alternative with pilot and small scale production wet spinning systems.

However, FET will also showcase at Techtextil its more recent laboratory scale spunbond system, which enables client development of nonwoven fabrics in a number of formats and polymers. FET already has a number of spunbond systems in the field, including composite systems which utilise both spunbond and meltspun functions.

A major theme to be highlighted on the FET stand is Sustainability. The FET range of laboratory and pilot extrusion lines is ideally suited for both process and end product development of sustainable materials.

FET has successfully processed almost 30 different polymer types in multifilament, monofilament and non-woven formats, collaborating with specialist companies worldwide to promote greater sustainability through innovative manufacturing processes.

Source:

DAVID STEAD PROJECT MARKETING LTD for FET