From the Sector

Reset
260 results
Professor Dr.-Ing. Markus Milwich Photo: DITF
Professor Dr.-Ing. Markus Milwich.
19.03.2024

Markus Milwich represents "Lightweight Design Agency for Baden-Württemberg"

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

The use of lightweight materials in combination with new production technologies will significantly reduce energy consumption in transportation, the manufacturing industry and the construction sector. Resources can be saved through the use of new materials. As a cross-functional technology, lightweight construction covers entire value chain from production and use to recycling and reuse.

The aim of the state government is to establish Baden-Württemberg as a leading provider of innovative lightweight construction technologies in order to strengthen the local economy and secure high-quality jobs.

Among others, the "Lightweight Construction Alliance Baden-Württemberg" will continue the nationally renowned "Lightweight Construction Day", which acts as an important source of inspiration for a wide range of lightweight construction topics among business and scientific community.

Professor Milwich, an expert with many years of experience and an excellent network beyond the State's borders, has been recruited for this task. In his role, Milwich also represents the state of Baden-Württemberg on the Strategy Advisory Board of the Lightweight Construction Initiative of the Federal Ministry for Economic Affairs and Climate Action, which supports the cross functional-technology and efficient transfer of knowledge between the various nationwide players in lightweight construction and serves as a central point of contact for entrepreneurs nationwide for all relevant questions.

From 2005 to 2020, Professor Milwich headed the Composite Technology research at the DITF, which was integrated into the Competence Center Polymers and Fiber Composites in 2020. He is also an honorary professor at Reutlingen University, where he teaches hybrid materials and composites. "Lightweight design is an essential aspect for sustainability, environmental and resource conservation. I always showcase this in research and teaching and now also as a representative of the lightweight construction community in Baden-Württemberg," emphasizes Professor Milwich.

Source:

Deutsche Institute für Textil- und Faserforschung

Freudenberg showcases sustainable solutions at Techtextil 2024 (c) Freudenberg Performance Materials
Freudenberg´s sustainable carrier material for green roofs on urban buildings is made from renewable resources
15.03.2024

Freudenberg showcases sustainable solutions at Techtextil 2024

Freudenberg Performance Materials (Freudenberg) is showcasing solutions for the automotive, building, apparel, filtration and packaging industries at this year’s Techtextil in Frankfurt am Main from April 23 – 26.

Sustainable nonwoven for car seats
One innovation highlight at Techtextil is a novel Polyester nonwoven material for car seat padding. Also available as a nonwoven composite with PU foam, it is not only easier for car seat manufacturers to handle during the mounting process, but also ensures better dimensional stability as well as providing soft and flexible padding. It has a minimum 25 percent recycled content, for example, by reusing nonwoven clippings and waste, and is fully recyclable. Full supply chain transparency enables customers to trace and verify the content of the nonwoven and thus ensures a responsible production process. The Freudenberg experts will also be presenting several other nonwoven solutions made of up to 80 percent recycled materials that can be used in car seat manufacturing.

Freudenberg Performance Materials (Freudenberg) is showcasing solutions for the automotive, building, apparel, filtration and packaging industries at this year’s Techtextil in Frankfurt am Main from April 23 – 26.

Sustainable nonwoven for car seats
One innovation highlight at Techtextil is a novel Polyester nonwoven material for car seat padding. Also available as a nonwoven composite with PU foam, it is not only easier for car seat manufacturers to handle during the mounting process, but also ensures better dimensional stability as well as providing soft and flexible padding. It has a minimum 25 percent recycled content, for example, by reusing nonwoven clippings and waste, and is fully recyclable. Full supply chain transparency enables customers to trace and verify the content of the nonwoven and thus ensures a responsible production process. The Freudenberg experts will also be presenting several other nonwoven solutions made of up to 80 percent recycled materials that can be used in car seat manufacturing.

Biocarrier for green roofs
Freudenberg is showcasing a sustainable carrier material for green roofs on urban buildings at the trade fair. The carrier is made from polylactide, i.e. from renewable resources. When filled with soil, it provides a strong foothold to root systems, enabling the growth of lightweight sedum blankets that can be rolled out to provide instant green roofs. These roofs not only help counter urban heat, they also improve stormwater management and regulate indoor temperatures.

From textile waste to padding
The company extended its circular thermal wadding product range with the release of comfortemp® HO 80xR circular, a wadding made from 70 percent recycled polyamide from discarded fishing nets, carpet flooring and industrial plastic. Because polyamide 6, also known as nylon, retains its performance characteristics after multiple recycling processes, the fibers can be used again and again to manufacture performance sporting apparel, leisurewear and luxury garments.

Packaging solutions with various sustainability benefits
Freudenberg is also showcasing products for sustainable packaging and filtration solutions. The long-lasting Evolon® technical packaging series is a substitute for disposable packaging used in the transport of sensitive industrial items such as automotive parts. The material is made from up to 85 percent recycled PET. A further highlight at Techtextil are Freudenberg’s fully bio-based solutions for manufacturing dessicant bags. The binder-free material based on bio-fibers is also industrially compostable.
In addition, the experts will be giving trade fair visitors an insight into Freudenberg’s filtration portfolio.

Source:

Freudenberg Performance Materials

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024 (c) FUSE GmbH
26.02.2024

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

The STOLL Business Unit will be focussing on thermoplastic materials. Several knit to shape parts with a textile outer surface and a hardened inner surface will be on display. The double-face products can be made from different types of yarn and do not need to be back-moulded for use as side door panels or housing shells, for example. In addition, the ready-to-use design saves on waste and yarn material.

DITF: Biopolymers from bacteria protect technical textiles Photo: DITF
Charging a doctor blade with molten PHA using a hot-melt gun
23.02.2024

DITF: Biopolymers from bacteria protect technical textiles

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

These biopolymers have the advantage that they can be produced in anything from small laboratory reactors to large production plants. The most promising biopolymers include polysaccharides, polyamides from amino acids and polyesters such as polylactic acid or polyhydroxyalkanoates (PHAs), all of which are derived from renewable raw materials. PHAs is an umbrella term for a group of biotechnologically produced polyesters. The main difference between these polyesters is the number of carbon atoms in the repeat unit. To date, they have mainly been investigated for medical applications. As PHAs products are increasingly available on the market, coatings made from PHAs may also be increasingly used in technical applications in the future.

The bacteria from which the PHAs are obtained grow with the help of carbohydrates, fats and an increased CO2 concentration and light with suitable wavelength.

The properties of PHA can be adapted by varying the structure of the repeat unit. This makes polyhydroxyalkanoates a particularly interesting class of compounds for technical textile coatings, which has hardly been investigated to date. Due to their water-repellent properties, which stem from their molecular structure, and their stable structure, polyhydroxyalkanoates have great potential for the production of water-repellent, mechanically resilient textiles, such as those in demand in the automotive sector and for outdoor clothing.

The DITF have already carried out successful research work in this area. Coatings on cotton yarns and fabrics made of cotton, polyamide and polyester showed smooth and quite good adhesion. The PHA types for the coating were both procured on the open market and produced by the research partner Fraunhofer IGB. It was shown that the molten polymer can be applied to cotton yarns by extrusion through a coating nozzle. The molten polymer was successfully coated onto fabric using a doctor blade. The length of the molecular side chain of the PHA plays an important role in the properties of the coated textile. Although PHAs with medium-length side chains are better suited to achieving low stiffness and a good textile handle, their wash resistance is low. PHAs with short side chains are suitable for achieving high wash and abrasion resistance, but the textile handle is somewhat stiffer.

The team is currently investigating how the properties of PHAs can be changed in order to achieve the desired resistance and textile properties in equal measure. There are also plans to formulate aqueous formulations for yarn and textile finishing. This will allow much thinner coatings to be applied to textiles than is possible with molten PHAs.

Other DITF research teams are investigating whether PHAs are also suitable for the production of fibers and nonwovens.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

nominees Graphic: nova Institut
19.01.2024

Nominated Innovations for Cellulose Fibre Innovation of the Year 2024 Award

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

In addition, the ever-growing sectors of cellulose-based nonwovens, packaging and hygiene products offer conference participants insights beyond the horizon of traditional textile applications. Sustainability and other topics such as fibre-to-fibre recycling and alternative fibre sources are the key topics of the Cellulose Fibres Conference, held in Cologne, Germany, on 13 and 14 March 2024 and online. The conference will showcase the most successful cellulose-based solutions currently on the market or those planned for the near future.

The nominees:

The Straw Flexi-Dress: Design Meets Sustainability – DITF & VRETENA (DE)
The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry – Honext Material (ES)
HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, it is verified in the Product Environmental Footprint.

LENZING™ Cellulosic Fibres for Glacier Protection – Lenzing (AT)
Glaciers are now facing an unprecedented threat from global warming. Synthetic fibre-based geotextiles, while effective in slowing down glacier melt, create a new environmental challenge: microplastics contaminating glacial environments. The use of such materials contradicts the very purpose of glacier protection, as it exacerbates an already critical environmental problem. Recognizing this problem, the innovative use of cellulosic LENZING™ fibres presents a pioneering solution. The Institute of Ecology, at the University of Innsbruck, together with Lenzing and other partners made first trials in 2022 by covering small test fields with LENZING™ fibre-based geotextiles. The results were promising, confirming the effectiveness of this approach in slowing glacier melt without leaving behind microplastic.

The RENU Jacket – Advanced Recycling for Cellulosic Textiles – Pangaia (UK) & Evrnu (US)
PANGAIA LAB was born out of a dream to reduce barriers between people and the breakthrough innovations in material science. In 2023, PANGAIA LAB launched the RENU Jacket, a limited edition product made from 100% Nucycl® – a technology that recycles cellulosic textiles by breaking them down to their molecular building blocks, and reforming them into new fibres. This process produces a result that is 100% recycled and 100% recyclable when returned to the correct waste stream – maintaining the strength of the fibre so it doesn’t need to be blended with virgin material.
Through collaboration with Evrnu, the PANGAIA team created the world’s first 100% chemically recycled denim jacket, replacing a material traditionally made from 100% virgin cotton. By incorporating Nucycl® into this iconic fabric construction, dyed with natural indigo, the teams have demonstrated that it’s possible to replace ubiquitous materials with this innovation.

Textiles Made from Easy-to-dye Biocelsol – VTT Technical Research Centre of Finland (FI)
One third of the textile industry’s wastewater is generated in dyeing and one fifth in finishing. But the use of chemically modified Biocelsol fibres reduces waste water. The knitted fabric is made from viscose and Biocelsol fibres and is only dyed after knitting. This gives the Biocelsol fibres a darker shade, using the same amount of dye and no salt in dyeing process. In addition, an interesting visual effect can be achieved. Moreover, less dye is needed for the darker colour tone in the finished textile and the possibility to use the salt-free dyeing is more environmentally friendly.
These special properties of man-made cellulosic fibres will reassert the fibres as a replacement for the existing fossil-based fibres, thus filling the demand for more environmentally friendly dyeing-solutions in the textile industry. The functionalised Biocelsol fibres were made in Finnish Academy FinnCERES project and are produced by wet spinning technique from the cellulose dope containing low amounts of 3-allyloxy-2-hydroxypropyl substituents. The functionality formed is permanent and has been shown to significantly improve the dyeability of the fibres. In addition, the functionalisation of Biocelsol fibres reduces the cost of textile finishing and dyeing as well as the effluent load.

A New Generation of Bio-based and Resource-efficient Fibre – TreeToTextile (SE)
TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn't exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

More information:
Nova Institut nova Institute
Source:

nova Institut

Graphic Toray
20.12.2023

Recycled carbon fiber: When a Boeing 787 turns into a Lenovo ThinkPad

Toray Industries, Inc. announced the successful development of recycled carbon fiber (rCF) derived from the production process of the Boeing 787 components using Toray’s advanced carbon fiber, TORAYCA™. The rCF, which is based on pyrolysis recycling process, has been integrated into the Lenovo ThinkPad X1 Carbon Gen 12 as reinforcement filler for thermoplastic pellets. Toray and Lenovo will continue to collaborate to expand the usage of rCF in other Lenovo products.

Toray rCF is the outcome of Boeing and Lenovo’s shared commitment to minimize their environmental impact. Boeing’s objective is to reduce solid waste going to landfill and produce recyclable materials, while Lenovo has been exploring materials to reduce the carbon footprint of their products. Toray rCF connects these visions by repurposing Toray’s high-performance carbon fiber from the Boeing aircraft production process into Lenovo’s ultra-light laptop PC.

Toray Industries, Inc. announced the successful development of recycled carbon fiber (rCF) derived from the production process of the Boeing 787 components using Toray’s advanced carbon fiber, TORAYCA™. The rCF, which is based on pyrolysis recycling process, has been integrated into the Lenovo ThinkPad X1 Carbon Gen 12 as reinforcement filler for thermoplastic pellets. Toray and Lenovo will continue to collaborate to expand the usage of rCF in other Lenovo products.

Toray rCF is the outcome of Boeing and Lenovo’s shared commitment to minimize their environmental impact. Boeing’s objective is to reduce solid waste going to landfill and produce recyclable materials, while Lenovo has been exploring materials to reduce the carbon footprint of their products. Toray rCF connects these visions by repurposing Toray’s high-performance carbon fiber from the Boeing aircraft production process into Lenovo’s ultra-light laptop PC.

TORAYCA™ is an established aerospace material known for its high strength, stiffness, and lightweighting properties. These qualities have led to its adoption in other applications such as electrical and electronic equipment housings, sports equipment, and other industrial applications.

A key advantage of carbon fiber is the ability to retain its primary mechanical properties even after the recycling process. Toray is actively advancing recycling technologies and establishing a strategic business model for rCF. Given that the carbon footprint of rCF is lower than that of virgin carbon fiber, Toray is proactively recommending the adoption of rCF to reduce the environmental impact of customers’ products. This commitment aligns with Toray’s dedication to fostering a circular economy, thereby reducing landfill waste.

Source:

Toray Industries

19.12.2023

New sustainability label Autoneum Blue

With its new sustainability label Autoneum Blue, Autoneum combines the use of recycled materials with protecting the oceans and social responsibility. Autoneum Blue is a continuation of the LABEL blue by Borgers®, which was originally launched by Borgers Automotive. Following the acquisition of the German automotive supplier in April 2023, Autoneum has now fully integrated the label into its sustainable product portfolio.

With its new sustainability label Autoneum Blue, Autoneum combines the use of recycled materials with protecting the oceans and social responsibility. Autoneum Blue is a continuation of the LABEL blue by Borgers®, which was originally launched by Borgers Automotive. Following the acquisition of the German automotive supplier in April 2023, Autoneum has now fully integrated the label into its sustainable product portfolio.

Marine pollution has reached alarming levels in recent decades, with plastic contamination posing one of the most harmful threats to the health of the world’s largest ecosystem. In light of ever-stricter legal requirements for the environmental performance of vehicles, especially regarding the recycled content of components and their end-of-life recyclability, the reduction and recycling of plastics is also one of the key challenges for the automotive industry. Autoneum Pure, the Company’s sustainability label for technologies with an excellent sustainability performance throughout the product life cycle, is already successfully helping customers to tackle these challenges. With Autoneum Blue, Autoneum is now expanding its sustainable product portfolio with a label for components that combine the use of recycled material with protecting the oceans and social responsibility.

In order to qualify for the Autoneum Blue label, components must be based on materials that consist of at least 30% recycled PET that was collected from coastal areas within a 50-kilometer range of the water. These credentials mean the products make an important contribution to preventing plastic pollution in the oceans. In addition, the process of collecting the PET bottles must be socially respon-sible and comply with human rights, and traceable procurement of the bottle flakes must be guaran-teed. Autoneum Blue thus complements the Company’s strategic target to continuously reduce water consumption in all areas of its operations with an additional focus on preventing plastic pollution of the oceans.

Autoneum currently offers selected wheelhouse outer liners, needlepunch carpets and trunk side trim under the Blue label. In principle, however, the label could be extended to any product based on Autoneum technologies that feature recycled polyester fibers. As an addition to Autoneum’s existing fully recyclable monomaterial polyester constructions, which are characterized by waste-free production and have a significantly lower carbon footprint compared to products made from virgin fibers, Autoneum Blue presents another example of the Company’s ongoing efforts and continuous strides towards a sustainable circular economy.

Source:

Autoneum Management AG

Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta. Abbildung 1 © W. Barthlott, M. Mail/Universität Bonn
Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta.
14.12.2023

Self-driven and sustainable removal of oil spills in water using textiles

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

For many technical applications, unexpected solutions come from the field of biology. Millions of years of evolution led to optimized surfaces of living organisms for their interaction with the environment. Solutions - often rather unfamiliar to materials scientists and difficult to accept. The long-time routine examination of around 20,000 different species showed that there is an almost infinite variety of structures and functionalities. Some species in particular stand out for their excellent oil adsorption properties. It was shown that, e.g., leaves of the floating fern Salvinia molesta, adsorb oil, separate it from water surfaces and transport it on their surfaces (Figure 1, see also the video of the phenomon.).

The observations inspired them to transfer the effect to technical textiles for separating oil and water. The result is a superhydrophobic spacer fabric that can be produced industrially and is therefore easily scalable.

The bio-inspired textile can be integrated into a device for oil-water separation. This entire device is called a Bionic Oil Adsorber (BOA). Figure 2: Cross-section of computer-aided (CAD) model of the Bionic Oil Adsorber. The scheme shows an oil film (red) on a water surface (light blue). In the floating cotainer(gray), the textile (orange) is fixed so that it is in contact with the oil film and the end protrudes into the container. The oil is adsorbed and transported by the BOA textile. As shown in the cross-section, it enters the contain-er, where it is released again and accumulates at the bottom of the container. See also the video regarding the oil absorption on the textile, source ITA).
 
Starting from the contamination in the form of an oil film on the water surface, the separation and collection process works according to the following steps:

  • The BOA is introduced into the oil film.
  • The oil is adsorbed by the textile and separated from the water at the same time.
  • The oil is transported through the textile into the collection container.
  • The oil drips from the textile into the collection container.
  • The oil is collected until the container is emptied.

The advantage of this novel oil separation device is that no additional energy has to be applied to operate the BOA. The oil is separated from the surrounding water by the surface properties of the textile and transported through the textile driven solely by capillary forces, even against gravity. When it reaches the end of the textile in the collection container, the oil desorbs without any further external influence due to gravitational forces. With the current scale approximately 4 L of diesel can be separated from water by one device of the Bionic Oil Adsorber per hour.

  • It seems unlikely that a functionalized knitted spacer textile is cheaper than a conventional nonwoven, like it is commonly used for oil sorbents. However, since it is a functional material, the costs must be related to the amount of oil removed. In this respect, if we compare the sales price of the BOA textile with the sales prices of various oil-binding nonwovens, the former is 5 to 13 times cheaper with 10 ct/L oil removed.
    Overall, the BOA device offers a cost-effective and sustainable method of oil-water separation in contrast to conventional cleaning methods due to the following advantages:
  • No additional energy requirements, such as with oil skimmers, are necessary
  • No toxic substances are introduced into the water body, such as with oil dispersants
  • The textiles and equipment can be reused multiple times
  • No waste remains inside the water body
  • Inexpensive in terms of the amount of oil removed.
  • The team of researchers from the ITA, the University of Bonn and Heimbach GmbH was able to prove that the novel biomimetic BOA technology is surprisingly efficient and sustainable for a self-controlled separation and automatic collection of oil films including their complete removal from the water. BOA can be asapted for open water application but also for the use in inland waters. Furthermore, it is promising, that the textile can be used in various related separation processes. The product is currently being further developed so that it can be launched on the market in 2-3 years.

 

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

Propylat-Technologie Photo Autoneum Management AG
08.12.2023

Optimized acoustic performance thanks to sustainable technology with high recycled content

Autoneum’s sustainable, textile and lightweight Propylat technology reduces both interior and exterior noise of vehicles. Propylat was originally developed by Borgers Automotive, which was acquired by Autoneum in April 2023. The versatile technology is characterized by a flexible material composition of natural and synthetic fibers with a high recycled content and contributes to significant waste reduction thanks to its complete vertical integration. In addition, the fully recyclable technology variant Propylat PET is now part of the sustainability label Autoneum Pure.

Autoneum’s sustainable, textile and lightweight Propylat technology reduces both interior and exterior noise of vehicles. Propylat was originally developed by Borgers Automotive, which was acquired by Autoneum in April 2023. The versatile technology is characterized by a flexible material composition of natural and synthetic fibers with a high recycled content and contributes to significant waste reduction thanks to its complete vertical integration. In addition, the fully recyclable technology variant Propylat PET is now part of the sustainability label Autoneum Pure.

The ongoing electrification of mobility as well as increasingly strict regulatory requirements for vehicle performance in terms of sustainability and acoustics are presenting new challenges to car manufacturers worldwide. With Propylat, Autoneum now offers another lightweight, fiber-based and versatile technology whose sound-insulating and -absorbing properties as well as high content of recycled materials help customers address these challenges. Propylat-based products not only contribute to reducing pass-by noise and improving driver comfort, but they are also up to 50 percent lighter than equivalent plastic alternatives; this results in a lower vehicle weight and, consequently, less fuel and energy consumption as well as lower CO2 emissions.

Autoneum's innovative Propylat technology consists of a mixture of recycled synthetic and natural fibers – the latter include cotton, jute, flax or hemp, for example – that are consolidated using thermoplastic binding fibers without adding any further chemical binders. Thanks to the flexible fiber composition and the variable density and thickness of the porous material, the properties of the respective Propylat variant, for example with regards to acoustic performance, can be tailored to individual customer requirements. This allows for a versatile application of the technology in a variety of interior and exterior components such as wheelhouse outer liners, trunk trim, underbody systems and carpets. For instance, Propylat-based wheelhouse outer liners significantly reduce rolling noise both inside and outside the vehicle while at the same time offering optimum protection against stone chipping and spray water.

In terms of sustainability, Propylat always contains a high proportion of recycled fibers – up to 100% in some variants – and can be manufactured with zero waste. Thanks to the full vertical integration of Propylat and Autoneum’s extensive expertise in recycling processes, the technology also contributes to a further significant reduction in production waste. Moreover, the Propylat PET technology variant, which consists of 100% PET, of which up to 70% are recycled fibers, is fully recyclable at the end of product life. For this reason, Propylat PET has been selected for Autoneum Pure – the Company’s sustainability label for technologies with excellent environmental performance throughout the product life cycle – where it will replace the current Mono-Liner technology going forward.

Propylat-based components are currently available in Europe, North America and China.

Source:

Autoneum Management AG

Devan Chemicals Photo Devan Chemicals
27.11.2023

DEVAN REPEL: A new brand in the water repellency market

In a world where water-repellent textiles play an important role in various industries, Pulcra Chemicals has joined forces with its subsidiary, Devan Chemicals, to introduce DEVAN REPEL. The first product, DEVAN REPEL ONE, is a durable water repellent for Polyester and blends. The development of DEVAN REPEL ONE is a joint to Devan and Pulcra's dedication to innovation and sustainability.

The solution offers a range of benefits:

In a world where water-repellent textiles play an important role in various industries, Pulcra Chemicals has joined forces with its subsidiary, Devan Chemicals, to introduce DEVAN REPEL. The first product, DEVAN REPEL ONE, is a durable water repellent for Polyester and blends. The development of DEVAN REPEL ONE is a joint to Devan and Pulcra's dedication to innovation and sustainability.

The solution offers a range of benefits:

  • Superior Performance: The technology offers outstanding water repellency performance, ensuring that textiles remain dry. Whether it's rain and outdoor wear, outdoor furnishing, shower curtains or multiple technical textiles, the new solution can handle it, making it a strong choice for industries where water resistance is paramount.
  • Flexibility: The versatility of this technology can be applied to a wide range of materials, with especially good results on polyester and its blends, offering flexibility for various applications across industries.
  • Enhanced Sustainability: This technology is free from perfluorinated compounds (PFCs), and free from isocyanates.
  • Longevity: Products treated with this water repellency technology are protecting from the elements for a longer lifespan.

Performance, particularly on effect durability, can be boosted to meet different requirements with new DEVAN EXTENDER GEN3. This extender is free of Isocyanate, Butanone-oxime and 2-dimethylpyrazole.

17.11.2023

Cinte Techtextil China 2024 taking place in September 2024

Cinte Techtextil China 2024, one of Asia’s leading technical textiles and nonwovens trade fair, will take place from 19 – 21 September 2024 at the Shanghai New International Expo Centre. In its capacity as a well-established platform for the latest textiles, nonwovens, and equipment, the 18th edition of the fair will offer business opportunities across the industry supply chain. With the previous edition attracting 467 exhibitors from 13 countries and regions across 40,000 sqm, the organisers are looking to build on that success at next year’s show.

With next year’s fair expected to again see strong domestic and international participation, the previous edition featured the return of the Taiwan Pavilion, the 40-exhibitor strong European Zone, and seven Chinese regional pavilions. At every edition, multiple fringe events enhance business connections and provide insights to fairgoers. In 2023, key highlights included the 11th China International Nonwovens Conference, the Advanced Technical Textiles Industry Chain Synergistic Innovation Development Forum, various marine textile and rope netting events, and the “Kingsafe Dangs” University Students’ Showcase.

Cinte Techtextil China 2024, one of Asia’s leading technical textiles and nonwovens trade fair, will take place from 19 – 21 September 2024 at the Shanghai New International Expo Centre. In its capacity as a well-established platform for the latest textiles, nonwovens, and equipment, the 18th edition of the fair will offer business opportunities across the industry supply chain. With the previous edition attracting 467 exhibitors from 13 countries and regions across 40,000 sqm, the organisers are looking to build on that success at next year’s show.

With next year’s fair expected to again see strong domestic and international participation, the previous edition featured the return of the Taiwan Pavilion, the 40-exhibitor strong European Zone, and seven Chinese regional pavilions. At every edition, multiple fringe events enhance business connections and provide insights to fairgoers. In 2023, key highlights included the 11th China International Nonwovens Conference, the Advanced Technical Textiles Industry Chain Synergistic Innovation Development Forum, various marine textile and rope netting events, and the “Kingsafe Dangs” University Students’ Showcase.

The fair’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry.

The fair is organised by Messe Frankfurt (HK) Ltd; the Sub-Council of Textile Industry, CCPIT; and the China Nonwovens & Industrial Textiles Association (CNITA).

Source:

Messe Frankfurt (HK) Limited

(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
14.11.2023

Successful SMCCreate 2023 Design Conference in Prague

Successful SMCCreate 2023 Design Conference in Prague

With over 60 participants from Europe and the USA the second edition of the SMCCreate Design Conference took place from November 7th to 8th in Prague. The conference was jointly organized by the AVK – Federation of Reinforced Plastics and the European Alliance for SMC BMC, promoting the use of SMC and providing design tools to designers for applying these versatile materials.

During the SMCCreate 2023 conference topics covered the wide spectrum of the design with fiber composite/composite components in SMC and BMC technology, from conceptual design, development, and scale-up, with a special emphasis on recycling and sustainability solutions. 18 speakers from various European countries showed how they address important market trends and changing customer needs, and which solutions their companies offered in terms of materials, performance and much more.

Successful SMCCreate 2023 Design Conference in Prague

With over 60 participants from Europe and the USA the second edition of the SMCCreate Design Conference took place from November 7th to 8th in Prague. The conference was jointly organized by the AVK – Federation of Reinforced Plastics and the European Alliance for SMC BMC, promoting the use of SMC and providing design tools to designers for applying these versatile materials.

During the SMCCreate 2023 conference topics covered the wide spectrum of the design with fiber composite/composite components in SMC and BMC technology, from conceptual design, development, and scale-up, with a special emphasis on recycling and sustainability solutions. 18 speakers from various European countries showed how they address important market trends and changing customer needs, and which solutions their companies offered in terms of materials, performance and much more.

As an introduction, speakers - including CTC/Airbus and Teijin - presented different possible applications for SMC and BMC components, including aircraft interiors, bicycle boxes, and applications in e-mobility. The topic of sustainability was broadly covered, highlighting recycling solutions and experiences (Siemens, IDI, OC, AOC), the use of renewable raw materials, as well new LCA models developed by the SMC BMC Alliance (LCS),

Specifically for designers, the use of the SMC flow and curing modelling was presented (ESI, OC), SMC positioning vs. aluminium (Spartners). The second day concluded with contributions on process optimization options for component production, including speeches by Dieffenbacher, Netzsch and EBG.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

DITF: Lignin coating for Geotextiles Photo: DITF
Coating process of a cellulose-based nonwoven with the lignin compound using thermoplastic processing methods on a continuous coating line.
27.10.2023

DITF: Lignin coating for Geotextiles

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Depending on humidity and temperature, natural fiber materials can degrade in the soil in a matter of months or even a few days. In order to significantly extend the degradation time and make them suitable for geotextiles, the Denkendorf team researches a protective coating. This coating, based on lignin, is itself biodegradable and does not generate microplastics in the soil. Lignin is indeed biodegradable, but this degradation takes a very long time in nature.

Together with cellulose, Lignin forms the building materials for wood and is the "glue" in wood that holds this composite material together. In paper production, usually only the cellulose is used, so lignin is produced in large quantities as a waste material. So-called kraft lignin remains as a fusible material. Textile production can deal well with thermoplastic materials. All in all, this is a good prerequisite for taking a closer look at lignin as a protective coating for geotextiles.

Lignin is brittle by nature. Therefore, it is necessary to blend the kraft lignin with softer biomaterials. These new biopolymer compounds of brittle kraft lignin and softer biopolymers were applied to yarns and textile surfaces in the research project via adapted coating systems. For this purpose, for example, cotton yarns were coated with lignin at different application rates and evaluated. Biodegradation testing was carried out using soil burial tests both in a climatic chamber with temperature and humidity defined precisely according to the standard and outdoors under real environmental conditions. With positive results: the service life of textiles made of natural fibers can be extended by many factors with a lignin coating: The thicker the protective coating, the longer the protection lasts. In the outdoor tests, the lignin coating was still completely intact even after about 160 days of burial.

Textile materials coated with lignin enable sustainable applications. For example, they have an adjustable and sufficiently long service life for certain geotextile applications. In addition, they are still biodegradable and can replace previously used synthetic materials in some applications, such as revegetation of trench and stream banks.

Thus, lignin-coated textiles have the potential to significantly reduce the carbon footprint: They reduce dependence on petroleum-based products and avoid the formation of microplastics in the soil.

Further research is needed to establish lignin, which was previously a waste material, as a new valuable material in industrial manufacturing processes in the textile industry.

The research work was supported by the Baden-Württemberg Ministry of Food, Rural Areas and Consumer Protection as part of the Baden-Württemberg State Strategy for a Sustainable Bioeconomy.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

One-third increase in exhibitors at Cinte Techtextil China 2023 (c) Messe Frankfurt (HK) Ltd
04.10.2023

One-third increase in exhibitors at Cinte Techtextil China 2023

Since the rapid growth brought about by the pandemic, the technical textiles and nonwovens markets are stabilising towards a new normal – one in which technological innovation, sustainable development, and intelligent manufacturing are the most sought-after qualities. Held from 19 – 21 September 2023 at the Shanghai New International Expo Centre, the fair amplified this new industry direction, both through its fringe programme and across the booths of the 40,000 sqm show floor. With a nearly one-third increase from 2021, 467 exhibitors representing 13 countries and regions engaged a significantly international visitor flow, numbering 15,542 total visits from 52 countries and regions. Suppliers showcased up-to-date products for multiple application areas, with various equipment, technical textiles and nonwovens for agriculture, automotive, protective apparel, and medical and hygiene especially prevalent.

Since the rapid growth brought about by the pandemic, the technical textiles and nonwovens markets are stabilising towards a new normal – one in which technological innovation, sustainable development, and intelligent manufacturing are the most sought-after qualities. Held from 19 – 21 September 2023 at the Shanghai New International Expo Centre, the fair amplified this new industry direction, both through its fringe programme and across the booths of the 40,000 sqm show floor. With a nearly one-third increase from 2021, 467 exhibitors representing 13 countries and regions engaged a significantly international visitor flow, numbering 15,542 total visits from 52 countries and regions. Suppliers showcased up-to-date products for multiple application areas, with various equipment, technical textiles and nonwovens for agriculture, automotive, protective apparel, and medical and hygiene especially prevalent.

Speaking at the fair’s close, Ms Wilmet Shea, General Manager of Messe Frankfurt (HK) Ltd, had an optimistic outlook for the future of the sector: “Sustainability and innovation often go hand-in-hand, and walking through the various halls, zones, and pavilions these past few days the evidence for this was widespread. With environmental protection more important than ever, and buyers across application areas increasingly sourcing eco-friendly solutions, our exhibitors were well-placed to meet that demand. This fair is consistently at the leading edge of technological progress, and with the global and domestic markets showing signs of improving further, we are already looking forward to what we can offer at next year’s edition.”  

With many overseas exhibitors making a comeback, this year’s fair was marked by the return of the Taiwan Pavilion and the 40-exhibitor strong European Zone. Beyond the international areas, domestic pavilions were organised by Beijing Guanghua, China Hang Tang Group, Funing, Jiujing, Shenda, Tiantai, Xianto, and Xiqiao, showcasing nonwovens for various sub-sectors, including filtration and medical. Valuable insights were exchanged at multiple fringe events, including the 11th China International Nonwovens Conference, the Advanced Technical Textiles Industry Chain Synergistic Innovation Development Forum, various events covering marine textiles and rope netting, and the “Kingsafe Dangs” National University Students' Nonwovens Development and Applications Showcase. Visitors, meanwhile, were pleased with the innovation on show across the entire platform.

The fair’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry.

Bac Mono Photo Hypetex
22.09.2023

Hypetex: Coloured carbon fibre replacing paint coating

•    First production supercar created with Hypetex coloured carbon fibre
•    Paint-replacement technology reduces weight to enhance performance

British car manufacturer Briggs Automotive Company (BAC) has created a unique Hypetex coloured carbon fibre version of its Mono R, reducing the weight by removing the need for paint.  

The original BAC Mono R was created to be lighter and more powerful than the standard model, with 343bhp and 555kg total weight, equating to a power-to-weight ratio of 618bhp-per-tonne. By removing the need for paint coatings in this version, the net weight of the exterior is reduced compared to a painted shell, resulting in a further improved overall performance.

The car’s body was created using Hypetex’s titanium carbon fibre twill, and finished with a crystalized lacquer, offering a unique aesthetic finish. The ultra-lightweight supercar can accelerate from zero to 60mph in less than 2.5 seconds.  

•    First production supercar created with Hypetex coloured carbon fibre
•    Paint-replacement technology reduces weight to enhance performance

British car manufacturer Briggs Automotive Company (BAC) has created a unique Hypetex coloured carbon fibre version of its Mono R, reducing the weight by removing the need for paint.  

The original BAC Mono R was created to be lighter and more powerful than the standard model, with 343bhp and 555kg total weight, equating to a power-to-weight ratio of 618bhp-per-tonne. By removing the need for paint coatings in this version, the net weight of the exterior is reduced compared to a painted shell, resulting in a further improved overall performance.

The car’s body was created using Hypetex’s titanium carbon fibre twill, and finished with a crystalized lacquer, offering a unique aesthetic finish. The ultra-lightweight supercar can accelerate from zero to 60mph in less than 2.5 seconds.  

Hypetex’s paint-replacement technology retains the visible weave, allowing for a bold design and a choice of colours without technical compromises, perfectly aligning with BAC’s initiatives to maximise performance whilst creating bespoke supercars. Paint generally adds 138 grams per metre squared, whereas Hypetex adds just 17 grams for the same area, offering an 8x weight saving.
This bespoke version of BAC’s single-seater Mono R was subject to BAC’s renowned BAC Bespoke programme, which ensures that no two Monos are the same. The client, a US-based collector, worked with BAC’s design team to design the car to their personal taste.   

Born out of Formula 1 technology, Hypetex offers manufacturers sustainable aesthetic materials with technical and efficiency benefits. This collaboration is an all-British success story, with the Hypetex carbon fibre body built by Formaplex, a leading UK-based manufacturing company who manufacture lightweight engineered solutions for top tier customers in Automotive, Aerospace and Defence markets. BAC’s supply chain is 95% UK-based.  

Hypetex continues to expand its growing portfolio of the use of coloured carbon fibre to add personalisation to the automotive field, with its material recently featured on the 2024 Ford Mustang Dark Horse.  

 

More information:
HYPETEX® carbon fibers
Source:

Hypetex

AGU’s HeiQ Smart Temp cycling kits at three Grand Tours Photo: AGU
Jumbo-Visma team winning at Vuelta a España with AGU’s HeiQ Smart Temp cycling kits
22.09.2023

AGU’s HeiQ Smart Temp cycling kits at three Grand Tours

Team Jumbo-Visma’s triumphant victories in Europe’s three Grand Tours of cycling, including the recent Vuelta a España, were supported by AGU’s cycling kits that are powered by the HeiQ Smart Temp thermoregulation technology.

HeiQ celebrates its collaboration with AGU, a high-performance sports gear manufacturer. Together, the companies integrated HeiQ Smart Temp technology into the jerseys of Jumbo-Visma, the triumphant team whose outstanding cyclists Jonas Vingegaard, Primoz Roglic, and Sepp Kuss won Europe’s three Grand Tours; the Tour de France, Giro d’Italia, and Vuelta a España.

HeiQ Smart Temp, an innovative thermoregulation solution, dynamically responds to body heat and moisture, providing cyclists with a cooling effect when they need it most. This technology enhances comfort and performance, making it ideal for next-to-skin apparel, sportswear, and activewear.

AGU's product developers harnessed the power of HeiQ Smart Temp to create jerseys with cooling properties. The Jumbo-Visma team's lightest-weight jersey, weighing 25% less than their regular aero shirt, keeps athletes up to 2.5°C cooler than other performance fabrics.

Team Jumbo-Visma’s triumphant victories in Europe’s three Grand Tours of cycling, including the recent Vuelta a España, were supported by AGU’s cycling kits that are powered by the HeiQ Smart Temp thermoregulation technology.

HeiQ celebrates its collaboration with AGU, a high-performance sports gear manufacturer. Together, the companies integrated HeiQ Smart Temp technology into the jerseys of Jumbo-Visma, the triumphant team whose outstanding cyclists Jonas Vingegaard, Primoz Roglic, and Sepp Kuss won Europe’s three Grand Tours; the Tour de France, Giro d’Italia, and Vuelta a España.

HeiQ Smart Temp, an innovative thermoregulation solution, dynamically responds to body heat and moisture, providing cyclists with a cooling effect when they need it most. This technology enhances comfort and performance, making it ideal for next-to-skin apparel, sportswear, and activewear.

AGU's product developers harnessed the power of HeiQ Smart Temp to create jerseys with cooling properties. The Jumbo-Visma team's lightest-weight jersey, weighing 25% less than their regular aero shirt, keeps athletes up to 2.5°C cooler than other performance fabrics.

Source:

HeiQ Materials AG

Cinte Techtextil China 2023 with different zones (c) Messe Frankfurt (HK) Ltd
14.09.2023

Cinte Techtextil China 2023 with different zones

Technological progress often results from close collaboration, and industries that rely on continual improvement stand to benefit from the return to in-person business. Cinte Techtextil China’s first edition since eased pandemic measures is set to reflect a 27.9% increase in exhibitor numbers, with a rejuvenated international contingent further supplemented by the return of the European Zone. Taking place from 19 – 21 September across 40,000 sqm at the Shanghai New International Expo Centre, the platform is expected to welcome buyers from across Asia, Europe, and beyond. Pre-registrations have doubled compared to the previous edition, and international buyers account for over 20% of the total.

The new zone, Marine Textile Zone, will be comprised of multiple Chinese green marine and nautical rope netting exhibitors, while also hosting the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry. Prominent exhibitors in this zone include Ropenet Group, Hunan Xinhai, and Zhejiang Four Brothers Rope.

Technological progress often results from close collaboration, and industries that rely on continual improvement stand to benefit from the return to in-person business. Cinte Techtextil China’s first edition since eased pandemic measures is set to reflect a 27.9% increase in exhibitor numbers, with a rejuvenated international contingent further supplemented by the return of the European Zone. Taking place from 19 – 21 September across 40,000 sqm at the Shanghai New International Expo Centre, the platform is expected to welcome buyers from across Asia, Europe, and beyond. Pre-registrations have doubled compared to the previous edition, and international buyers account for over 20% of the total.

The new zone, Marine Textile Zone, will be comprised of multiple Chinese green marine and nautical rope netting exhibitors, while also hosting the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry. Prominent exhibitors in this zone include Ropenet Group, Hunan Xinhai, and Zhejiang Four Brothers Rope.

Other domestic exhibitors, such as Shanghai Shenda Kebao New Materials, SIJIA New Material (Shanghai), Zhejiang Hailide New Material, and Zhejiang Jinda New Materials, will showcase products for applications in outdoor advertising, tents, boats, vehicles, environmental engineering, and much more.

Supplementing the fairground’s wide variety of domestic suppliers will be a much-increased showing of international exhibitors, with many to be found within hall E1’s European Zone. Several global industry leaders are featured in their categories below:

Nonwovens equipment

  • Autefa Solutions, Germany: solutions provider for nonwovens lines and machines for carded-crosslapped needlepunching lines, spunlace lines and thermobonding lines.
  • Dilo, Germany: in addition to offering general services, Dilo supplies opening and blending equipment, carding and airlay machines, and crosslapping and needling machines.
  • Groz-Beckert, Germany: provider of industrial machine needles, precision parts and fine tools, as well as systems and services for the production and joining of textile fabrics.
  • Reifenhäuser Reicofil, Germany: provider of innovative technologies and components for plastics extrusion, producing blown films, cast films, sheets as well as nonwovens.

Weaving equipment

  • Itema, Italy: provider of advanced weaving machines, spare parts, and integrated services, specifically for rapier, air jet and projectile weft insertion technologies.
  • Lindauer DORNIER, Germany: the company manufactures weaving machines, film stretching lines, and composite systems, also offering technical support and spare parts supply.
  • Picanol, Belgium: producer and servicer of high-tech air jet and rapier weaving machines, with around 2,600 weaving mills utilising their systems worldwide.

Coating and lamination

  • BRÜCKNER Textile Technologies, Germany: manufacturer of machines and lines for the coating and finishing of apparel fabric, technical textiles, nonwovens, glass fabrics and floor coverings.
  • ROWA Lack, Germany: developer of high-quality materials and product solutions for the polymer industry, with applications including automotive, electrical engineering, construction, technical textiles, and medical technology.
  • Stahl, the Netherlands: the Dutch company provides high quality coatings, dyes and process chemicals for leather, flexible coated substrates, textiles, films and foils, paper, and related products.

Fibre

  • Monosuisse, Switzerland: with production sites in Switzerland, Poland, Romania, Mexico, and Germany, Monosuisse manufactures various precise, high-quality polymer monofilaments from 19µm to 3.00 mm in diameter.
  • Perlon, Germany: specialised in the manufacture of synthetic filaments in diverse application areas, including paper machine clothing, dental care, and advanced technical textiles for agriculture, 3D printing, sports and leisure, home, and more.

Meanwhile, first-time exhibitors include Rökona (Germany), showcasing RE:SPACE, their range of recycled technical textiles; Testex AG (Switzerland), the official OEKO-TEX® representative in multiple countries including China; Hohenstein (Germany), the renowned testing laboratory and research institute; and zwissTEX (Germany), the knitted fabrics and lamination specialists. In addition, the returning Taiwan Pavilion is set to feature the debut of Shinih Enterprise Co Ltd (Taiwan China).

Beyond the innovation displayed at the booths, the fair’s programme is set to welcome global experts from various technical textile and nonwoven sub-sectors to offer specific insights and unveil innovations. Highlighted events include:

The 11th China International Nonwovens Conference
14 sessions cover topics such as the quality control of medical supplies; green development in technology and applications in the nonwovens industry; and the development and application of flashspun nonwovens in China.

Marine textiles and rope netting events
Events specific to this zone include the Top 10 Suppliers in the China Rope Net Industry; Conference on Textile Applications for Marine Engineering and Fisheries; and the China Nonwovens & Industrial Textiles Association (CNITA) Rope Net Branch Council Meeting

"Nonwovens, Creating a Better Life” Innovation Showcase
Product display area showcasing around 100 nonwovens products with applications in five areas: medical and health, quality of life, human habitat, sustainable development, and innovative design.

Advanced Technical Textiles Industry Chain Synergistic Innovation Development Forum
Includes presentations from multiple key players in the technical textile industry, including Mr Steven Liu, Commercial Manager of Polymer Additives Business of Sanitized (China) Ltd.

Source:

Messe Frankfurt (HK) Ltd

Toray Composite Materials America: Boeing Supplier of the Year Photo Toray
04.09.2023

Toray Composite Materials America: Boeing Supplier of the Year

Toray Composite Materials America, Inc. headquartered in Tacoma, Washington, has been awarded the "Boeing Supplier of the Year" award, a leadership-nominated award given to supplier companies that support and propel Boeing's strategic objectives through risk-sharing and enduring partnerships. This year, 12 companies were selected from among 11,000 Boeing suppliers worldwide, and CMA was selected as one of them for the Alliance Award. This is Toray's second award from Boeing, receiving the Supplier of the Year Excellence Award in 2019.

Toray began supplying Boeing in 1975 when it first qualified TORAYCA™ T300 carbon fiber for commercial application on the Boeing 737. Since then, Toray has provided high-performance carbon fiber and highly toughened, primary structure carbon fiber composite prepreg on various programs.

The trophy was presented by William A. Ampofo II, Vice President of Parts & Distribution Services and Supply Chain for Boeing Global Services and Chair of the Supply Chain Operations Council to CMA.

Toray Composite Materials America, Inc. headquartered in Tacoma, Washington, has been awarded the "Boeing Supplier of the Year" award, a leadership-nominated award given to supplier companies that support and propel Boeing's strategic objectives through risk-sharing and enduring partnerships. This year, 12 companies were selected from among 11,000 Boeing suppliers worldwide, and CMA was selected as one of them for the Alliance Award. This is Toray's second award from Boeing, receiving the Supplier of the Year Excellence Award in 2019.

Toray began supplying Boeing in 1975 when it first qualified TORAYCA™ T300 carbon fiber for commercial application on the Boeing 737. Since then, Toray has provided high-performance carbon fiber and highly toughened, primary structure carbon fiber composite prepreg on various programs.

The trophy was presented by William A. Ampofo II, Vice President of Parts & Distribution Services and Supply Chain for Boeing Global Services and Chair of the Supply Chain Operations Council to CMA.

Source:

Toray

04.09.2023

Albany International: Acquisition of Heimbach Group completed

Albany International Corp. has completed its acquisition of Heimbach Group (Heimbach). Headquartered in Düren, Germany, Heimbach is a global supplier of paper machine clothing for the production of all grades of paper and cardboard on all machine types as well as high-tech textile products used in a variety of sectors, such as the food processing, chemicals, construction materials and automotive industries.

Daniel Halftermeyer, President of Machine Clothing, said, “We are excited about the opportunities to create additional value for our shareholders and customers through the increased scale, complementary technologies and broader geographic footprint this transaction provides. Together we will effectively combine the strengths of each company to set a new standard in customer value delivery as the industry’s partner-of-choice.”

Albany acquired Heimbach for €132 million in cash, and assumed net debt of approximately €22 million. The transaction was funded with cash held in Europe.

Albany International Corp. has completed its acquisition of Heimbach Group (Heimbach). Headquartered in Düren, Germany, Heimbach is a global supplier of paper machine clothing for the production of all grades of paper and cardboard on all machine types as well as high-tech textile products used in a variety of sectors, such as the food processing, chemicals, construction materials and automotive industries.

Daniel Halftermeyer, President of Machine Clothing, said, “We are excited about the opportunities to create additional value for our shareholders and customers through the increased scale, complementary technologies and broader geographic footprint this transaction provides. Together we will effectively combine the strengths of each company to set a new standard in customer value delivery as the industry’s partner-of-choice.”

Albany acquired Heimbach for €132 million in cash, and assumed net debt of approximately €22 million. The transaction was funded with cash held in Europe.

Source:

Albany International

ropes Photo Cinte Techtextil
29.08.2023

Cinte Techtextil China 2023 to launch new Marine Textile Zone

At the crosswinds of China’s 14th Five-Year Plan for the Development of the Marine Economy and its 14th Five-Year Guidance for the Development of the Technical Textiles Industry lies the marine textile sub-sector. Following the government’s directive, the Marine Textile Zone will be unfurled at this year’s fair, taking place from 19 – 21 September 2023 at the Shanghai New International Expo Centre. Multiple exhibitors from across China have confirmed their participation within the zone, which will be comprised of three main parts: green marine science and nautical rope netting innovation display area, the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry.
 
The global rope market is predicted to experience a CAGR of 5.6% and grow by over USD 4 billion between 2022 - 2027[1], and suppliers are eager for the chance to meet buyers face to face. In fact, many will use the new zone at Asia’s leading technical textiles and nonwovens fair to do so.

At the crosswinds of China’s 14th Five-Year Plan for the Development of the Marine Economy and its 14th Five-Year Guidance for the Development of the Technical Textiles Industry lies the marine textile sub-sector. Following the government’s directive, the Marine Textile Zone will be unfurled at this year’s fair, taking place from 19 – 21 September 2023 at the Shanghai New International Expo Centre. Multiple exhibitors from across China have confirmed their participation within the zone, which will be comprised of three main parts: green marine science and nautical rope netting innovation display area, the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry.
 
The global rope market is predicted to experience a CAGR of 5.6% and grow by over USD 4 billion between 2022 - 2027[1], and suppliers are eager for the chance to meet buyers face to face. In fact, many will use the new zone at Asia’s leading technical textiles and nonwovens fair to do so.

In the green marine and rope netting category, exhibitors will showcase the latest innovations along the marine textile industry chain, anchored by application areas such as marine engineering, marine economy, marine fencing, marine rescue, deep-sea fishing, deep-sea aquaculture, and many more.

Featured exhibitors include:

  • Ropenet Group: covering 36 application areas, such as aerospace, marine fisheries, safety protection, and emergency rescue, the Shandong-based company has exported to over 110 countries and regions. Products include ropes, nets, threads, and belts, with new materials and high-performance synthetic fibre spinning ropes forming the core of its business.
  • Hunan Xinhai: with its Hunan factory covering 200,000 sqm, its industry-leading rope net production scale ensures it can service multiple sectors such as fisheries, sports, military industry, marine engineering, life-saving protection, and many more. Its extensive network spans Asia, Africa, Europe, and beyond.
  • Zhejiang Four Brothers Rope: located in Zhejiang Toumen Port Economic Development Zone, the special chemical fibre rope manufacturer integrates R&D, manufacturing, sales, and after-sales service. After nearly 60 years of operation, the company now has a yearly production capacity of over 15,000 tons.

Other notable exhibitors in this zone include Xuzhou Henghui Braiding Machine; Shandong Jinguan Netting; Jiuli Rope; and Zhejiang Hailun Rope Net.

Meanwhile, the Technology Exchange Forum will focus on policies and regulations, strategic development opportunities, market analysis, product and process innovation, and the promotion and application of marine textiles. A range of well-known international and domestic experts have been invited to deliver comprehensive industry analysis, and unveil oceanic green textile initiatives onsite.

Designed to expand the influence of the rope net industry, the Top 10 Suppliers in the China Rope Net Industry awards will highlight enterprises currently making key contributions. Other fringe events related to this textile sub-sector include the Conference on Textile Applications for Marine Engineering and Fisheries, and the China Nonwovens & Industrial Textiles Association (CNITA) Rope Net Branch Council Meeting.

Lastly, the Marine Textile Zone will also encompass a business negotiation area to facilitate negotiations between key players onsite, set against the backdrop of the innovation display area’s award-winning and patented rope net products. As a whole, the zone is expected to encourage independent innovation in marine science and technology, coordinate the protection and development of marine resources, and help build a modern maritime industrial system.

The fair’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry.

The fair is organised by Messe Frankfurt (HK) Ltd; the Sub-Council of Textile Industry, CCPIT; and the China Nonwovens & Industrial Textiles Association (CNITA).

Source:

Messe Frankfurt (HK) Ltd