From the Sector

Reset
4 results
SiWerTEX (c) Hochschule Niederrhein
Projektleiterin Prof. Dr. Maike Rabe (l.) mit den FTB-Mitarbeiterinnen Dr. Anna Missong und Alexandra Glogowsky
09.02.2024

SiWerTEX erforscht simultane Rückgewinnung von Faserpolymeren und Wertstoffen

Textil-Recycling ist eine der großen Herausforderungen unserer Zeit. Aktuell wird der Großteil der gebrauchten Kleidung (über 85 %) thermisch verwertet oder landet auf Deponien. Ein deutlich kleinerer Anteil wird als Second-Hand Kleidung in Entwicklungsländer verschifft. Lediglich weniger als ein Prozent der Kleidung wird recycelt und anschließend wieder zu Kleidung verarbeitet.

Textilien zu recyceln ist kompliziert. Für Sammlung und Sortierung der Altkleider gibt es noch keine etablierten Systeme. Mechanische Verfahren zur Rückgewinnung von Fasern resultieren häufig in einer schlechteren Qualität der textilen Produkte und chemische Verfahren sind technisch kaum entwickelt, sowie wirtschaftlich noch nicht attraktiv genug. Dies gilt auch für das weltweit am häufigste produzierte synthetische Textilfasermaterial Polyester, das aus dem gleichen Material wie PET Flaschen hergestellt wird. Das derzeit in der Textil- und Bekleidungsindustrie genutzte recycelte PET (rPET) stammt fast ausschließlich aus recycelten PET-Flaschen.

Textil-Recycling ist eine der großen Herausforderungen unserer Zeit. Aktuell wird der Großteil der gebrauchten Kleidung (über 85 %) thermisch verwertet oder landet auf Deponien. Ein deutlich kleinerer Anteil wird als Second-Hand Kleidung in Entwicklungsländer verschifft. Lediglich weniger als ein Prozent der Kleidung wird recycelt und anschließend wieder zu Kleidung verarbeitet.

Textilien zu recyceln ist kompliziert. Für Sammlung und Sortierung der Altkleider gibt es noch keine etablierten Systeme. Mechanische Verfahren zur Rückgewinnung von Fasern resultieren häufig in einer schlechteren Qualität der textilen Produkte und chemische Verfahren sind technisch kaum entwickelt, sowie wirtschaftlich noch nicht attraktiv genug. Dies gilt auch für das weltweit am häufigste produzierte synthetische Textilfasermaterial Polyester, das aus dem gleichen Material wie PET Flaschen hergestellt wird. Das derzeit in der Textil- und Bekleidungsindustrie genutzte recycelte PET (rPET) stammt fast ausschließlich aus recycelten PET-Flaschen.

Forscher:innen des Forschungsinstituts für Textil- und Bekleidung (FTB) der Hochschule Niederrhein und des Instituts für Chemische und Thermische Verfahrenstechnik (ICTV) der Technischen Universität Braunschweig nehmen sich im Projekt SiWerTEX den Hürden der simultanen Rückgewinnung von Monomeren und werthaltigen Zuschlagsstoffen aus dem Recycling von Polyestertextilien an. Das Bundesministerium für Wirtschaft und Klimaschutz finanziert im Rahmen der Industriellen Gemeinschaftsforschung (IGF) die Entwicklungsarbeit der Wissenschaftler:innen unter der Leitung von Professorin Dr.-Ing. Maike Rabe (FTB) und Professor. Dr.-Ing. Stephan Scholl (ICTV).

Zusammen mit deutschen Textilherstellern und Textilausrüstern wollen die Wissenschaftler:innen ein chemisches Verfahren zum PET- bzw. Polyesterrecycling, weiterentwickeln. Eine große Herausforderung stellt dabei die Vielfalt von Ausrüstungsmitteln und Additiven dar, mit denen Kleidung und technische Textilien ausgestattet sind: sie sind gefärbt, bedruckt und mit Flammschutz- oder Weichgriffmitteln ausgerüstet.

Untersucht wird im Projekt nicht nur, wie dies beim Recycling effektiv entfernt werden kann, sondern auch, ob die Additive als Wertstoffe zurückgewonnen werden können. Der Fokus wird in SiWerTEX auf die Entfernung von Farbstoffen und die Rückgewinnung des in Flammschutzmitteln enthaltenen Phosphors gerichtet. Die Erkenntnisse sollen helfen, Textilien von Beginn an so zu produzieren, dass ein späteres Recycling möglich wird.

Für die Textil-Unternehmen werden zum Ende des Projektes Handlungsempfehlungen für recyclingfreundliche Färb- und Ausrüstungsprodukte herausgegeben werden können.

Photo Autoneum
15.08.2023

Autoneum’s Re-Liner nominated as finalist for 2023 PACE Award

Using recovered resin from discarded car bumpers, Autoneum’s sustainable Re-Liner technology transforms a previously unusable waste product into lightweight and durable wheelhouse outer liners. In addition to their high recycled content, the eco-friendly components require significantly less energy to produce than conventional alternatives. The innovation presents another important step towards a more sustainable circular economy and has now been nominated for the 2023 PACE Award.

Autoneum has been selected as one of the finalists for the 2023 Automotive News PACE Awards. Entering its 29th year, this prestigious award honors superior innovation, technological advancement and business performance among automotive suppliers.

Using recovered resin from discarded car bumpers, Autoneum’s sustainable Re-Liner technology transforms a previously unusable waste product into lightweight and durable wheelhouse outer liners. In addition to their high recycled content, the eco-friendly components require significantly less energy to produce than conventional alternatives. The innovation presents another important step towards a more sustainable circular economy and has now been nominated for the 2023 PACE Award.

Autoneum has been selected as one of the finalists for the 2023 Automotive News PACE Awards. Entering its 29th year, this prestigious award honors superior innovation, technological advancement and business performance among automotive suppliers.

Re-Liner is based on a core of polyolefins recovered from post-consumer bumpers and has a textile top layer made of fibers from recycled materials. “Autoneum has recognized the untapped potential of recovered resin from automotive bumper covers as a resource and is giving this former waste product a second life,” explained Dan Moler. “The core resin of Re-Liner is 100% automotive post-consumer recycled material, not just a filler or additive to a virgin material. Lightweight, durable, and sustainable wheelhouse outer liners based on this technology are expected to reduce waste generated by bumper covers by nearly one million kilograms in 2023.”

For more than a quarter century of a century, the PACE Award has honored innovations driven by automotive suppliers. The award is known in the global automotive industry for identifying and recognizing the latest game-changing innovation: from the plant floor to the product to the showroom. In 2000, Autoneum (then Rieter Automotive) already received a PACE Award for its Ultra-Light technology. In addition, two of the Company’s technologies have also been nominated as finalists in the past: Ultra-Silent in 2010 and Theta-Fiber in 2012.

More information:
Autoneum Re-Liner PACE award
Source:

Autoneum

10.08.2021

Kornit Digital acquires Voxel8

  • Expanding additive manufacturing technology portfolio for next generation of sustainable on-demand textile production

Kornit Digital Ltd. (NASDAQ: KRNT), a worldwide market leader in digital textile production technologies, announced the acquisition of all associated assets of Somerville, Massachusetts-based Voxel8.  

Voxel8’s advanced additive manufacturing technology for textiles allows for digital fabrication of functional features with zonal control of material properties, in addition to utilizing high-performance elastomers adhering to inkjet technology.

  • Expanding additive manufacturing technology portfolio for next generation of sustainable on-demand textile production

Kornit Digital Ltd. (NASDAQ: KRNT), a worldwide market leader in digital textile production technologies, announced the acquisition of all associated assets of Somerville, Massachusetts-based Voxel8.  

Voxel8’s advanced additive manufacturing technology for textiles allows for digital fabrication of functional features with zonal control of material properties, in addition to utilizing high-performance elastomers adhering to inkjet technology.

"By integrating Voxel8’s technology into Kornit’s product roadmap, we will be able to transform numerous market segments and verticals, accelerating our collective visions and technology advancements," . “Voxel8 offers direct 3D print-on-part capabilities, advanced design software that can be easily integrated with any production floor software workflow, and versatile chemistry enabling on-the-fly formulation of high-performance elastomers to change the material properties of the resulting printed structures by multiple orders of magnitude. This means reflective, high-density, silicone and metallics, as well as compression elements for sports and therapeutics, protection elements like cushioning and impact resistance, and functionality applications like anti-slip, waterproofing, and other qualities combining form and function that are key to Kornit’s vision of digitizing production in every conceivable manner,” explained Kobi Mann, Kornit Digital Chief Technology Officer

Source:

pr4u for Kornit

(c) AGENCE APOCOPE
22.10.2018

12 Composites Innovators to receive a JEC Innovation Award in Seoul next November 15, 2018

Twelve companies from eight different countries will receive a JEC Innovation Award at JEC Asia 2018. Asia-Pacific is an innovative region that sets the tone for all other regions of the globe. Once again, the JEC Innovation Awards highlight how composites bring solutions considering the new challenges in terms of efficiency, sustainability and life-cycle analysis.

This year, JEC Group awards innovations in the following categories: aerospace (structural and tooling), automotive, commercial vehicles, e-mobility, marine, railway, sports & leisure, infrastructure & civil engineering, industrial equipment, sustainability and additive manufacturing.

The ceremony will take place on Thursday November 15, 2018 at the COEX Center of Seoul (South Korea). Ida DAUSSY (Seo Hye-na), will host the ceremony in front of officials, manufacturers, scientists and composites professionals.

Twelve companies from eight different countries will receive a JEC Innovation Award at JEC Asia 2018. Asia-Pacific is an innovative region that sets the tone for all other regions of the globe. Once again, the JEC Innovation Awards highlight how composites bring solutions considering the new challenges in terms of efficiency, sustainability and life-cycle analysis.

This year, JEC Group awards innovations in the following categories: aerospace (structural and tooling), automotive, commercial vehicles, e-mobility, marine, railway, sports & leisure, infrastructure & civil engineering, industrial equipment, sustainability and additive manufacturing.

The ceremony will take place on Thursday November 15, 2018 at the COEX Center of Seoul (South Korea). Ida DAUSSY (Seo Hye-na), will host the ceremony in front of officials, manufacturers, scientists and composites professionals.

Category: AEROSPACE – STRUCTURAL
Winner: CSIR National Aerospace Laboratories (India)

Most of the composite structures for aircraft are made of carbon-epoxy composites, which can withstand a maximum service temperature of 130°C. As a consequence, carbon-epoxy materials cannot be used in hot zones like engine vicinity areas. The Aeronautical Development Agency (ADA) and CSIR-NAL took up the challenge of developing high temperature resistant composites for use in hot zones of light combat aircraft, which would result in significant weight and cost savings, as well as a considerable reduction in the meantime between failures (MTBF) due to thermal ageing.

The first task was to choose a material system with a service temperature of about ~ 200°C. During the material selection process, it was found that BMI resins are a relatively young class of thermosetting polymers. Hence, a carbon-BMI prepreg was selected due to a number of unique features including excellent physical property retention at elevated temperatures and in wet environments.

It was realized that weight savings and performance can be maximized using co-curing technology. This results in a large reduction of fabrication cycle times, costs and weight. Co-cured structures have fewer fasteners, which results in shorter assembly cycle times and also reduces sealing issues.

A prototype engine bay door assembly was built and tested at 180°C for flight certification. The engine bay door consists of an inner skin and co-cured outer skin assembly with eight transverse stiffeners. The stiffeners were designed with ‘J’ sections. The door size was 1.5 m length, 1 m width and 0.4 m overall depth. The co-cured door was developed using autoclave moulding. Two doors were installed in prototype aircraft and successfully flown.