From the Sector

Reset
61 results
Experimenteller Aufbau zur Umsetzung der lokalen Hochleistungs-laserinduzierten Pyrolyse eines gewickelten Composite-Ringes und des gleichzeitigen Abziehens des matrixbefreiten Carbonfaser-Streifens. Im Prozess findet die Pyrolyse an der Stelle des Laserspots statt. © Fraunhofer EMI
Experimenteller Aufbau zur Umsetzung der lokalen Hochleistungs-laserinduzierten Pyrolyse eines gewickelten Composite-Ringes und des gleichzeitigen Abziehens des matrixbefreiten Carbonfaser-Streifens. Im Prozess findet die Pyrolyse an der Stelle des Laserspots statt.
25.04.2025

Innovatives Recyclingverfahren für Carbonfasern

Forschende des Fraunhofer-Instituts für Kurzzeitdynamik, Ernst-Mach-Institut, EMI haben eine Technologie entwickelt, die es ermöglicht, endlose Carbonfasern aus Verbundwerkstoffen zurückzugewinnen – ohne Einbußen bei der Materialqualität. Mittels Hochleistungslaser wird die Matrix der mehrlagigen faserverstärkten Kunststoffe gezielt zersetzt. Das Verfahren bietet nicht nur ökologische Vorteile, sondern auch erhebliches wirtschaftliches Potenzial.

Carbonfaser-Verbundwerkstoffe, sogenannte Composites, sind besonders fest und leicht, was sie zu bevorzugten Materialien in vielen Industrien macht. Doch die Herausforderung der Entsorgung und Wiederverwertung dieser leistungsfähigen Materialien ist hoch. Das Forschungsteam am Fraunhofer EMI hat nun einen Prozess entwickelt, in dem Fasern gebrauchter Composites effizient zur Wiederverwendung aufbereitet werden – ohne ihre mechanischen Eigenschaften zu beeinträchtigen. In bisherigen Recyclingverfahren werden die Faser-Kunststoff-Verbunde geschreddert, was zu verkürzten Fasern und somit zum Downcycling führt.

Forschende des Fraunhofer-Instituts für Kurzzeitdynamik, Ernst-Mach-Institut, EMI haben eine Technologie entwickelt, die es ermöglicht, endlose Carbonfasern aus Verbundwerkstoffen zurückzugewinnen – ohne Einbußen bei der Materialqualität. Mittels Hochleistungslaser wird die Matrix der mehrlagigen faserverstärkten Kunststoffe gezielt zersetzt. Das Verfahren bietet nicht nur ökologische Vorteile, sondern auch erhebliches wirtschaftliches Potenzial.

Carbonfaser-Verbundwerkstoffe, sogenannte Composites, sind besonders fest und leicht, was sie zu bevorzugten Materialien in vielen Industrien macht. Doch die Herausforderung der Entsorgung und Wiederverwertung dieser leistungsfähigen Materialien ist hoch. Das Forschungsteam am Fraunhofer EMI hat nun einen Prozess entwickelt, in dem Fasern gebrauchter Composites effizient zur Wiederverwendung aufbereitet werden – ohne ihre mechanischen Eigenschaften zu beeinträchtigen. In bisherigen Recyclingverfahren werden die Faser-Kunststoff-Verbunde geschreddert, was zu verkürzten Fasern und somit zum Downcycling führt.

Werkstoffkunde kompakt: Duroplastische vs. thermoplastische Composites
Ein Carbonfaser-Verbundwerkstoff besteht aus Faserbündeln, die in einem Polymer eingebettet sind. Dies erlaubt, die Fasern zusammenzuhalten, die Geometrie eines Bauteils festzulegen und die Fasern vor Umwelteinflüssen zu schützen. Man unterscheidet zwischen zwei Arten von Kunststoff, in denen die Fasern eingebettet werden können: Duroplastische Composites bestehen aus einer nicht schmelzbaren Matrix, das heißt sie können nicht erneut bearbeitet werden. Diese verhalten sich wie ein Klebstoff, der aushärtet und eine dauerhafte feste Verbindung bildet. Thermoplastische Composites hingegen können geschmolzen und wiederverarbeitet werden. Duroplaste sind allerdings einfacher zu verarbeiten und werden daher häufiger in der Industrie eingesetzt.

Peelingbasiertes Recycling von gewickelten Strukturen
Die Forschenden am Fraunhofer EMI tragen die Faserverstärkung der duroplastischen Composites kontrolliert mithilfe eines Hochleistungslasers ab. Dieses Verfahren ist besonders relevant für Wasserstoffdruckbehälter, bei denen ein Carbonfaser-Bündel endlos um eine Kunststoffhülle gewickelt wird, damit sie besonders stabil sind und hohen Betriebsdrücken von bis zu 700 bar standhalten.

Der Vorteil des innovativen Recyclingverfahrens liegt in der Möglichkeit, die duroplastische Matrix, die die Carbonfasern umgibt, effizient mittels einer lokalen Pyrolyse zu entfernen, während die Carbonfasern selbst nahezu unversehrt bleiben. »Die Besonderheit bei diesem Prozess ist, dass wir die Pyrolyse der Matrix und das Abwickeln der Fasern gleichzeitig, möglichst schnell und ohne Beschädigung der Carbonfasern umsetzen«, erklärt Projektleiter Dr. Mathieu Imbert.

Die Herausforderung besteht darin, das optimale Prozessfenster zu definieren: Die Matrix zersetzt sich bei 300 bis 600 Grad Celsius, während die Fasern ab circa 600 Grad Celsius beschädigt werden können. »Wir haben einen sehr guten Kompromiss zwischen Prozesseffizienz und Qualität des Rezyklats gefunden. Unsere Ergebnisse zeigen, dass die zurückgewonnenen endlosen Fasern die gleichen hohen Leistungsmerkmale wie neue Fasern aufweisen, was das Verfahren besonders attraktiv macht«, so Dr. Imbert.

Ökonomische plus ökologische Vorteile
Das innovative Verfahren bietet nicht nur ökologische Vorteile, sondern auch erhebliches wirtschaftliches Potenzial für Recyclingunternehmen. Der lokale Wärmeeintrag und das gleichzeitige Abziehen des endlosen Faserbündels ersparen die lange Pyrolysezeit und entsprechend hohe Prozesskosten, die die dickwandigen Wasserstoffbehälter üblicherweise verursachen. Die laserunterstützte Rückgewinnung benötigt außerdem nur circa ein Fünftel der Fertigungsenergie von neuen Fasern. In Zeiten steigender Energiekosten und wachsender Umweltanforderungen sind das wesentliche Vorteile.

Das Projekt läuft noch bis Ende 2025 und ist Teil des DigiTain-Projekts, das vom Bundesministerium für Wirtschaft und Klimaschutz gefördert wird. Die Forschenden arbeiten zurzeit daran, das Verfahren noch energieeffizienter zu machen und die Qualität der zurückgewonnenen Fasern weiter zu verbessern. Das Forscherteam sieht das äußerst positive Verhältnis von hohem Rezyklatwert zu niedrigen Prozesskosten als das entscheidende Argument für den geplanten Transfer des Verfahrens in die Recycling-Industrie.

Source:

Fraunhofer EMI

11.04.2025

Aachen-Dresden-Denkendorf International Textile Conference 2025: Call for Papers

The Aachen-Dresden-Denkendorf International Textile Conference 2025 will take place on November 27 and 28, 2025 at the Eurogress Aachen.

To contribute to the conference program and submit an abstract for a talk or poster presentation, please note that the Call for Abstracts for oral presentations ends on May 5, 2025. The Call for Abstracts for poster contributions is open until July 31, 2025.

The conference program includes plenary lectures and themed sessions in the areas of

The Aachen-Dresden-Denkendorf International Textile Conference 2025 will take place on November 27 and 28, 2025 at the Eurogress Aachen.

To contribute to the conference program and submit an abstract for a talk or poster presentation, please note that the Call for Abstracts for oral presentations ends on May 5, 2025. The Call for Abstracts for poster contributions is open until July 31, 2025.

The conference program includes plenary lectures and themed sessions in the areas of

  • Sustainable Textiles and Circular Textile Economy
  • Bio-based Fibers
  • Synthetic High-Performance Fibers
  • Artificial Intelligence in the Textile Sector
  • Textile Production
  • Smart Textiles & Applications
  • Textiles for Medicine & Health Care
  • Technology Transfer & Start-up Pitches
  • Fiber Composites and Lightweight Construction
  • Best-Practices – Examples from Collaboration Projects between Academia and Industry
  • Functionalization & Finishing


Further information about the conference and the call for abstracts (including the submission form) at  https://www.aachen-dresden-denkendorf.de/en/itc/registration/call-for-abstracts/.

Source:

Aachen-Dresden-Denkendorf International Textile Conference

needle-punched fabrics Photo (c) Beaulieu International Group
12.03.2025

Beaulieu Fibres International at IDEA25: High in performance and sustainability

Beaulieu Fibres International is exhibiting its next-generation sustainable fibre solutions for high performance nonwovens in various industries at IDEA25 in Miami Beach end of April.

“IDEA25 is at the intersection of nonwoven materials and sustainability, with a focus on innovation and research to address environmental challenges and new opportunities. With our Sustainable Fibres Program, we offer low carbon, recyclable and circular solutions where performance and sustainability go hand in hand, bringing value in co-design and TCO performance,” said Maria Teresa Tomaselli, General Manager, Beaulieu Fibres International.

Self-reinforced PP fibres for fully recyclable automotive composites
The company will be presenting its comprehensive range of polypropylene (PP) bonding fibres designed for thermoplastic lightweight composites and automotive interior fabrics. These fibres assist car manufacturers and OEMs in meeting stringent performance, cost-efficiency, and sustainability standards. Beaulieu’s PP fibres are engineered to enhance the mechanical, thermal, and functional properties of composites while reducing vehicle weight.

Beaulieu Fibres International is exhibiting its next-generation sustainable fibre solutions for high performance nonwovens in various industries at IDEA25 in Miami Beach end of April.

“IDEA25 is at the intersection of nonwoven materials and sustainability, with a focus on innovation and research to address environmental challenges and new opportunities. With our Sustainable Fibres Program, we offer low carbon, recyclable and circular solutions where performance and sustainability go hand in hand, bringing value in co-design and TCO performance,” said Maria Teresa Tomaselli, General Manager, Beaulieu Fibres International.

Self-reinforced PP fibres for fully recyclable automotive composites
The company will be presenting its comprehensive range of polypropylene (PP) bonding fibres designed for thermoplastic lightweight composites and automotive interior fabrics. These fibres assist car manufacturers and OEMs in meeting stringent performance, cost-efficiency, and sustainability standards. Beaulieu’s PP fibres are engineered to enhance the mechanical, thermal, and functional properties of composites while reducing vehicle weight.

Fibres for high performance liquid and air filtration
Beaulieu has set new performance standards for the fast-growing air and liquid filtration industry rolling out its full range of MONO and BICO fine-medium count fibres, as an outcome of its investment into R&D efforts to promote staple fibres in the field of high efficiency filtration.

In addition to its existing portfolio of PP fibres for liquid filtration, compliant with FDA and European food contact regulations, Beaulieu is launching a new bicomponent fibre range in PET/PE, PP/PE for high loft filtration media and fine count mono PP fibres for tribo-electric charged air filter media.

The fine count mono fibres are customized according to the line specifics of the nonwoven producer and guarantee up to 20% higher filtration efficiencies for nonwovens in combination with state-of-the-art acrylic counter fibre compared to standard PP fibres used in this application. Typical applications are air handling units in larger buildings and residential furnaces.

Premium outdoor PP fibres for resilient, weather-resistant crop protection solutions
Engineered for superior mechanical strength and resistance to environmental stress factors, these fibres enhance durability in needle-punched fabrics, ensuring long-lasting protection in the field. Their advanced UV stabilization prevents degradation from prolonged sun exposure, extending the lifespan of crop covers, while their hydrophobic properties repel water, reducing moisture-related damage and maintaining breathability.

Ultrabond, design for recycling
Discover UltraBond innovative bonding staple fibres that replace the need for chemical binders. They open a path to create 100% polypropylene (PP) needlepunched fabrics which meet the same performance requirements as traditional constructions, while reducing end-of-life environmental impact.

The 100% polyolefin-based needlepunched fabrics are fully recyclable, reducing waste generation and creating high value PP recycled products as new materials. Furthermore, the sustainable fabrics are produced with an improved Total Cost of Ownership and with a significant ecological footprint reduction.

Beaulieu strengthening its position in the hygiene market
With a full portfolio already serving the hygiene sector, Beaulieu is focusing on next-generation speciality bicomponent solutions designed to enhance softness, processability, and sustainability in absorbent hygiene products.

Hypersoft fibres are specifically engineered for topsheet applications in direct contact with the skin: 25% improvement in softness compared to standard reference fibres while maintaining optimal processability has been achieved.

Meralux is a bicomponent trilobal fibre that improves nonwoven materials by providing better opacity, comfort, and absorption. It also promotes sustainability by saving raw materials and reducing carbon emissions by up to 60%.

Source:

Beaulieu International Group

Japanese and German scientists cooperating in the Fraunhofer Innovation Platform for Fibers, Processing and Recycling Solutions at Innovative Composite Center © Innovative Composite Center
Japanese and German scientists cooperating in the Fraunhofer Innovation Platform for Fibers, Processing and Recycling Solutions at Innovative Composite Center
26.02.2025

FIP-MIRAI@ICC: International cooperation sets course for the circular composite economy

With the Fraunhofer Innovation Platform for Fibers, Processing and Recycling Solutions at Innovative Composite Center FIP-MIRAI@ICC, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV and the Innovative Composite Center (ICC), Kanazawa Institute of Technology (KIT) in Kanazawa area are setting new standards in the circular economy. With a total budget of 2 million euros - half funded by the Fraunhofer-Society and half by the ICC - the platform aims to develop solutions to global challenges in the field of composite recycling. A Fraunhofer Innovation Platform (FIP) is a temporary research unit hosted and operated by a research institution abroad, which is set up in close cooperation with one or more Fraunhofer Institutes in Germany. With “Mirai”, the Japanese word for “future”, the FIP-MIRAI@ICC sends out a clear signal: Waste is seen as a valuable resource and reused through new technologies. The aim is to create a forward-looking circular economy that guarantees sustainability for future generations.

With the Fraunhofer Innovation Platform for Fibers, Processing and Recycling Solutions at Innovative Composite Center FIP-MIRAI@ICC, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV and the Innovative Composite Center (ICC), Kanazawa Institute of Technology (KIT) in Kanazawa area are setting new standards in the circular economy. With a total budget of 2 million euros - half funded by the Fraunhofer-Society and half by the ICC - the platform aims to develop solutions to global challenges in the field of composite recycling. A Fraunhofer Innovation Platform (FIP) is a temporary research unit hosted and operated by a research institution abroad, which is set up in close cooperation with one or more Fraunhofer Institutes in Germany. With “Mirai”, the Japanese word for “future”, the FIP-MIRAI@ICC sends out a clear signal: Waste is seen as a valuable resource and reused through new technologies. The aim is to create a forward-looking circular economy that guarantees sustainability for future generations. At the heart of the five-year cooperation (2025-2029) is a central location in Kanazawa area, which brings together researchers from the Fraunhofer IGCV and the ICC with companies, universities and customers.

Global challenges as an opportunity for innovation
The increasing use of composite materials in industries such as aerospace, wind energy and sports is leading to rising volumes of hard-to-recycle waste. As early as 2023, 75 kilotons of carbon fiber waste were produced worldwide, and 350 kilotons are expected by 2028 in aviation alone. The growing use of hydrogen technologies in mobility and transportation will further exacerbate this problem.

Technological innovations for sustainability
The German-Japanese collaboration pools technological expertise: the Fraunhofer IGCV contributes its expertise in fiber-matrix separation, quality assurance of recyclates and the wet-laid process, while the ICC contributes its pressing processes and continuous double-belt press technology. Together, this creates a unique “one-stop-shop” offering for companies looking for solutions for the recycling of composite materials.

Appearance at the JEC World 2025
A first insight into the work of FIP-MIRAI@ICC will be provided at JEC World 2025 in Paris, where the platform will be represented at the Japan Pavilion. Companies, researchers and industry experts are invited to visit the stand and discuss the latest developments.

A boost for the circular economy
FIP-MIRAI@ICC aims to act as a catalyst for sustainable technologies and transform waste streams into valuable resources. The close partnership between German and Japanese players paves the way for a sustainable and future-proof industry. With this initiative, science and industry are joining forces to turn global challenges into opportunities. With the vision of promoting ecological and economic sustainability, FIP-MIRAI@ICC is setting new standards in international cooperation.

Source:

Fraunhofer IGCV

from left: Dr. Erik Frank (DITF), Britta Waschl (e5) Photo: DACCUS-Team
from left: Dr. Erik Frank (DITF), Britta Waschl (e5)
31.01.2025

Lightweight construction: JEC Composites Innovation Award 2025 for CO2-negative house walls

At this year's JEC Composites Innovation Awards ceremony, the award in the "Construction & Civil Engineering" category went to the "DACCUSS" project, coordinated by the DITF. TechnoCarbon Technologies GbR, the inventor of Carbon Fiber Stone (CFS), received the JEC Award together with its development partners. The award is for the development of house walls made of Carbon Fiber Stone (CFS), a CO2 negative composite material.

Each year, the JEC Composites Innovation Awards recognize innovative and creative projects that demonstrate the full potential of composite materials. With the help of a development team from 12 companies and research institutions, TechnoCarbon Technologies GbR successfully submitted its innovative DACCUSS building element for house walls made of Carbon Fiber Stone.

At this year's JEC Composites Innovation Awards ceremony, the award in the "Construction & Civil Engineering" category went to the "DACCUSS" project, coordinated by the DITF. TechnoCarbon Technologies GbR, the inventor of Carbon Fiber Stone (CFS), received the JEC Award together with its development partners. The award is for the development of house walls made of Carbon Fiber Stone (CFS), a CO2 negative composite material.

Each year, the JEC Composites Innovation Awards recognize innovative and creative projects that demonstrate the full potential of composite materials. With the help of a development team from 12 companies and research institutions, TechnoCarbon Technologies GbR successfully submitted its innovative DACCUSS building element for house walls made of Carbon Fiber Stone.

Carbon Fiber Stone is a building material made of natural rocks and bio-based carbon fibers. It serves as an environmentally friendly replacement for CO2-intensive concrete in the construction industry. While conventional concrete walls release large amounts of CO2 during production, the DACCUS building element binds 59 kg of CO2 per square meter and therefore has a negative carbon footprint. In addition, the panels weigh only one-third of equivalent reinforced concrete house walls.

Each DACCUS element consists of several high-strength natural stone slabs made from magmatic rock. Inside the construction are bio-based carbon fibers, which the DITF Denkendorf is working intensively to develop. They form the stiffening element that enables the high strength of the construction elements and, in turn, contribute to the negative CO2 balance. The layer between the natural rock slabs is filled with carbon-negative biochar granulate, which is responsible for the insulation of the building element. The mineral sawdust from the cut rock slabs can be used as a soil amendment and serves as a binder for free CO2 from the atmosphere. The strict focus on processes and materials that actively bind CO2 has made it possible to produce a building material with a negative CO2 balance.

Partners: Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF), TechnoCarbon Technologies GbR, Universität Hamburg (UHH), Labor für Stahl- und Leichtmetallbau GmbH (LSL), AHP GmbH & Co. KG, Technische Universität München (TUM), GVU mbH, Silicon Kingdom Holding Ltd., Gallehr Sustainable Risk Management GmbH, Peer Technologies GmbH & Co. KG, GREIN srl, Convoris Group GmbH, RecyCoal GmbH, ITA, Institut für Textiltechnik der RWTH Aachen, LISD GmbH.

Source:

Deutsche Institute für Textil- und Faserforschung DITF

Photo: Cobra International / JEC
27.01.2025

JEC Award: Design, Furniture & Home for Cobra International

Stylish and recyclable carbon fibre furniture
Cobra and its partners have coordinated the design, engineering, material selection and manufacturing of a range of innovative carbon fibre-based furniture. The furniture uses the recyclable epoxy resins, along with other production waste, and recycled raw materials.

Cobra, Aditya Birla Group, Burapa University, Hankuk Carbon, and Luxara Design Studio present a recyclable composite meeting table and barstool. The Liana table uses Recyclamine resins, high-modulus prepreg and Cobra’s production-waste BMC material for its structure. Neolith, a 100% sustainable artificial marble with 52% recycled content, and Hankuk woven carbon fabric provide the exceptional surface finish. The Loop barstool uses a looping design style, and again, it uses Recyclamine resins and Hankuk carbon over a recyclable PET core for a high-end yet sustainable seating solution.

Cobra International (Thailand)
Partners:
• Aditya Birla Chemicals Ltd. – Advanced Materials (Thailand)
• Burapha University (Thailand)
• HANKUK CARBON CO., LTD. (South Korea)
• LUXARA DESIGN CO.,LTD. (Thailand)

Stylish and recyclable carbon fibre furniture
Cobra and its partners have coordinated the design, engineering, material selection and manufacturing of a range of innovative carbon fibre-based furniture. The furniture uses the recyclable epoxy resins, along with other production waste, and recycled raw materials.

Cobra, Aditya Birla Group, Burapa University, Hankuk Carbon, and Luxara Design Studio present a recyclable composite meeting table and barstool. The Liana table uses Recyclamine resins, high-modulus prepreg and Cobra’s production-waste BMC material for its structure. Neolith, a 100% sustainable artificial marble with 52% recycled content, and Hankuk woven carbon fabric provide the exceptional surface finish. The Loop barstool uses a looping design style, and again, it uses Recyclamine resins and Hankuk carbon over a recyclable PET core for a high-end yet sustainable seating solution.

Cobra International (Thailand)
Partners:
• Aditya Birla Chemicals Ltd. – Advanced Materials (Thailand)
• Burapha University (Thailand)
• HANKUK CARBON CO., LTD. (South Korea)
• LUXARA DESIGN CO.,LTD. (Thailand)

Key benefits:
• Thin yet strong, only achievable with carbon fibre
• Lightweight yet durable for lasting performance
• First recyclable carbon fibre furniture
• Upcycling composites waste
• A step towards circularity

09.10.2024

Composites-Industrie fordert Wiederaufnahme des Technologietransfer-Programms Leichtbau

Vor dem aktuellen Hintergrund frei gewordener Mittel aus anderen Töpfen des Bundeshaushalts appelliert die deutsche Composites-Industrie an die Politik, sich wieder für das TTP LB und dessen Finanzierung im geplanten Umfang einzusetzen. Insbesondere für mittelständische Unternehmen und Startups müsse das Programm für deren Wettbewerbsfähigkeit und damit zur Sicherung und Schaffung zukunftssicherer Arbeitsplätze wiederbelebt werden, um letztlich auch zum Erhalt des Wohlstands in Deutschland beizutragen.

Vor dem aktuellen Hintergrund frei gewordener Mittel aus anderen Töpfen des Bundeshaushalts appelliert die deutsche Composites-Industrie an die Politik, sich wieder für das TTP LB und dessen Finanzierung im geplanten Umfang einzusetzen. Insbesondere für mittelständische Unternehmen und Startups müsse das Programm für deren Wettbewerbsfähigkeit und damit zur Sicherung und Schaffung zukunftssicherer Arbeitsplätze wiederbelebt werden, um letztlich auch zum Erhalt des Wohlstands in Deutschland beizutragen.

Mit dem Technologietransferprogramm Leichtbau (TTP LB) hatte das Bundesministerium für Wirtschaft und Klimaschutz (BMWK) eine wichtige Unterstützung für eine erfolgreiche Transformation der in diesem Bereich tätigen Unternehmen geschaffen. Es war Innovations- und Transfertreiber für Energie- und Ressourceneffizienz und mitentscheidend für die Erreichung der ambitionierten europäischen und deutschen Klimaschutzziele. Mit großer Sorge hatte die Faserverbund- bzw. Composites-Industrie festgestellt, dass das Programm Anfang dieses Jahres Sparzwängen des Bundeshaushalts zum Opfer fiel. Dabei wurde der Leichtbau als Schlüsseltechnologie für Deutschland im Koalitionsvertrag der Bundesregierung verankert und durch deren dann folgende Leichtbau-Strategie manifestiert.

Ohne Leichtbau werde es keinen ausreichenden Klimaschutz geben: 70 % der Treibhausgasemissionen stammen aus der Nutzung von fossilen Rohstoffen wie Erdgas, Erdöl und Kohle, um hauptsächlich Energie zu gewinnen. Daher sei die Transformation in Richtung Erneuerbare Energiegewinnung z. B. durch Windenergie und grünen Wasserstoff von entscheidender Bedeutung für den Erfolg des European Green Deal. Beide Technologien seien ohne Leichtbau nicht umsetzbar: Windenergieanlagen nutzen den multi-materialen Leichtbau mit Glasfaserverstärkten Kunststoffen, Kohlenstofffaserverstärkten Kunststoffen (CFK), Holz und Metallen und die Lagerung des Wasserstoffs erfolgt in CFK-Behältern.

Darüber hinaus sei der Leichtbau eine Game-Changer-Technologie für Deutschland: Durch diese innovative und wettbewerbsfähige Schlüsseltechnologie lassen sich sowohl Materialien in der Produktion sparen als auch Energie bei der späteren Nutzung der Produkte. Branchen wie unter anderem das Bauwesen, der Maschinenbau und der gesamte Transportsektor können davon stark profitieren.

Insbesondere vor dem Hintergrund der aktuellen Probleme der deutschen Automobilindustrie erscheinen auch mit Fördermitteln unterstützte Innovationen zu Leichtbaukonzepten für PKW und LKW unerlässlich für die Wettbewerbsfähigkeit dieses wichtigen volkswirtschaftlichen Sektors in Deutschland.

Auf europäischer Ebene hat die Composites-Industrie über das vom BMWK ins Leben gerufene European Lightweighting Network (ELN) Werbung für eine europäische Leichtbaustrategie gemacht und bereits viele europäische Partner gefunden. Um weiterhin als Impulsgeber und Gestalter vorangehen zu können und glaubwürdig den Leichtbau als Schlüsseltechnologie für Europa zu promoten, sei eine tatkräftige politische Unterstützung im Rahmen des TTP LB in Deutschland essenziell.

Source:

Composites Germany

BMW Group and Bcomp win Altair Enlighten Award for Seat (c) BMW Group
06.09.2024

BMW Group and Bcomp win Altair Enlighten Award for Seat

Bcomp, a company in high-performance, natural fibre composites for the mobility-, recreational-, and mass transportation sectors, has been awarded the 2024 Altair Enlighten Award with BMW M GmbH, a renowned performance car subsidiary of BMW Group, for the BMW M Visionary Materials Seat, alongside other BMW M GmbH partners in the project. Manufactured with Bcomp’s ampliTex™ bio-based materials, the seat won in the Sustainable Process category.

The award-winning seat design re-envisions the manufacture and component materials to introduce a lighter, circular product that meets the demands of large-scale vehicle production. The seatback features a fully bio-based, high-performance natural fibre layup with ampliTex™-PP composite. By combining the structural and aesthetically pleasing visual properties of the material in one manufacturing step, production is both more efficient and dematerialised.

Bcomp, a company in high-performance, natural fibre composites for the mobility-, recreational-, and mass transportation sectors, has been awarded the 2024 Altair Enlighten Award with BMW M GmbH, a renowned performance car subsidiary of BMW Group, for the BMW M Visionary Materials Seat, alongside other BMW M GmbH partners in the project. Manufactured with Bcomp’s ampliTex™ bio-based materials, the seat won in the Sustainable Process category.

The award-winning seat design re-envisions the manufacture and component materials to introduce a lighter, circular product that meets the demands of large-scale vehicle production. The seatback features a fully bio-based, high-performance natural fibre layup with ampliTex™-PP composite. By combining the structural and aesthetically pleasing visual properties of the material in one manufacturing step, production is both more efficient and dematerialised.

The accent has been on Design for Circularity, meaning that in addition to using natural and recycled materials, the BMW M Visionary Materials Seat’s recyclability has been taken into account right from the start of development. Less complex assemblies and monomaterials that can be separated by type enable the recyclability of the seat at the end of its life. Flax fibre composites are CO2e-neutral from cradle to gate, and can reduce manufacturing-related emissions of high-performance composite parts by up to 85% compared to carbon fibre, depending on the application. Compared to current large-scale automotive plastic parts, Bcomp’s material solutions can reduce component weights by up to 50%, thanks to their low density and high stiffness.

The seat is a development project designed and engineered by long-time collaborators, BMW M GmbH and Bcomp, along with BMW Designworks, Automotive Management Consulting GmbH, Gradel Lightweight Sàrl and Lasso Ingenieurgesellschaft mbH. BMW M GmbH and Bcomp have already delivered innovations in previous development projects for high-end road cars and series application for race cars, such as interior and bodywork components for the BMW M4 GT4, bodywork for the BMW M4 DTM, and cooling shafts for the BMW iFE.20 in Formula E.

The annual Enlighten Awards are sponsored by Altair, a global leader in computational science and intelligence. They celebrate lightweighting innovations that reduce emissions, materials and energy consumption, while advancing material reuse and recyclability. The winning technologies are of significant interest to automotive engineers, manufacturers, policymakers and consumers.

Source:

Bcomp Ltd

03.09.2024

Teijin Companies at CAMX 2024

The Teijin Group companies Teijin Carbon America, Renegade Materials and Teijin Aramid will participate in CAMX. the largest, most comprehensive composites and advanced materials event in North America, in San Diego, USA. At the TEIJIN booth, visitors can explore innovative composite solutions and learn about the comprehensive technical support and provided services.

Teijin's diverse network of materials companies excels across various fields, ranging from high-performance carbon and aramid fibers to cutting-edge industrial textiles and revolutionary, cost-effective prepreg composite solutions. The shared commitment to quality, innovation, and environmental responsibility unites Teijin in their mission to deliver eco-friendly solutions across multiple industries and applications, including pressure vessels, aerospace, and both defense and commercial aircraft construction.

The Teijin Group companies Teijin Carbon America, Renegade Materials and Teijin Aramid will participate in CAMX. the largest, most comprehensive composites and advanced materials event in North America, in San Diego, USA. At the TEIJIN booth, visitors can explore innovative composite solutions and learn about the comprehensive technical support and provided services.

Teijin's diverse network of materials companies excels across various fields, ranging from high-performance carbon and aramid fibers to cutting-edge industrial textiles and revolutionary, cost-effective prepreg composite solutions. The shared commitment to quality, innovation, and environmental responsibility unites Teijin in their mission to deliver eco-friendly solutions across multiple industries and applications, including pressure vessels, aerospace, and both defense and commercial aircraft construction.

Teijin’s dedication to acquiring appropriate certifications for sustainable production and product development underscores the high level of commitment to lead in this field. In the past years, Teijin has continuously striven to minimize their carbon footprint and global impact, while also supporting customers on their own sustainability journeys. This year, Teijin Aramid achieved the EcoVadis Gold Medal recognition, placing the company in the top 5% of all companies across all industries globally and in the top 3% of all man-made fiber manufacturers worldwide.

Teijin Carbon has been awarded the ISCC Plus certification for its production in Germany and Japan and is on track to receive the same certification in the U.S. in the coming months. This accreditation allows the Teijin Carbon Group to prove to its customers sustainable products that contribute to a circular economy. Teijin Carbon is diligently working toward establishing new sustainability standards, promoting ecological innovations, and fostering partnerships for a more sustainable world.

Teijin is looking forward to engaging with customers and partners at CAMX 2024 in San Diego to discuss innovative ideas for the circular economy and recycling processes.

Teijin Carbon is one of the world's leading manufacturers of Tenax™ carbon fibers and carbon fiber-based materials, with production sites in the US, Germany, Japan and Vietnam. Teijin Carbon develops solutions for the aerospace, automotive, energy, electronics and sporting goods industries using high-performance technologies in an international environment. They work closely with their partners to create a fully circular value chain. The goal to make Teijin’s products net CO₂-free by 2050 aligns with the commitment to global society to find solutions and take action to combat it.

As a manufacturer of intermediate materials in the US, Renegade Materials is known for its product expertise and commitment to customer satisfaction. Renegade Materials distinguishes itself by merging cutting-edge materials science with advanced prepreg manufacturing and testing equipment, all meticulously controlled by rigorous quality management systems. Renegade is steadfast in their commitment to the development and largescale production of advanced, multi-functional materials that offer engineered solutions to the current composite design, usage and affordability initiatives in the aerospace industry.

Teijin Aramid is a global leader in high-performance aramid fiber, a subsidiary of the global Teijin Group. Specializing in high-performance aramid fibers, their materials are used in automotive and aerospace industries, ballistic protection and more.

Source:

Teijin

Cellulose Fibres Conference 2025 - Call for Abstracts (c) nova-Institut GmbH
24.07.2024

Cellulose Fibres Conference 2025: Call for Abstracts

Latest developments in the sustainable textile industry will be introduced and discussed at the “Cellulose Fibres Conference 2025 – New with Biosynthetics” in Cologne, Germany and online, on 12-13 March 2025. Abstract submission is now open.

In 2024, 214 participants enjoyed two conference days in Cologne or online. The highlights were 40 presentations with lively panel discussions afterwards, the innovation award “Cellulose Fibre Innovation of the Year”, an exhibition, the poster session and plenty of networking possibilities. All of this will be repeated in 2025, including new topics, new speakers and new inputs. The “Cellulose Fibres Conference 2025” will again cover the entire value chain, from lignocellulose, chemical pulp, cellulose fibres such as rayon, viscose, modal or lyocell and new developments to a wide range of applications, e.g. textiles from renewable fibres, nonwovens such as wet wipes and composites, hygiene and packaging. The conference will further address topics like circular economy, fibre-to-fibre recycling and sustainable carbon cycles, biosynthetics, new technologies and feedstocks.

Latest developments in the sustainable textile industry will be introduced and discussed at the “Cellulose Fibres Conference 2025 – New with Biosynthetics” in Cologne, Germany and online, on 12-13 March 2025. Abstract submission is now open.

In 2024, 214 participants enjoyed two conference days in Cologne or online. The highlights were 40 presentations with lively panel discussions afterwards, the innovation award “Cellulose Fibre Innovation of the Year”, an exhibition, the poster session and plenty of networking possibilities. All of this will be repeated in 2025, including new topics, new speakers and new inputs. The “Cellulose Fibres Conference 2025” will again cover the entire value chain, from lignocellulose, chemical pulp, cellulose fibres such as rayon, viscose, modal or lyocell and new developments to a wide range of applications, e.g. textiles from renewable fibres, nonwovens such as wet wipes and composites, hygiene and packaging. The conference will further address topics like circular economy, fibre-to-fibre recycling and sustainable carbon cycles, biosynthetics, new technologies and feedstocks.

Call for Abstracts
Enterprises and research institutes are invited to contribute to the program and present their innovative products, technologies or developments. Deadline for submission is 30 September 2024.
cellulose-fibres.eu/call-for-abstracts

Call for Innovations
The conference will conclude with the innovation award “Cellulose Fibre Innovation 2025” whose winner can join the ranks of amazing innovations. The deadline for innovation submissions is 30 November 2024. The innovation award “Cellulose Fibre Innovation of the Year 2025” is sponsored by GIG Karasek.
cellulose-fibres.eu/award-application

Call for posters
The poster exhibition is highly anticipated event at the conference. Poster submissions are open until 31 January 2025.
cellulose-fibres.eu/call-for-posters

Bcomp’s natural fibre materials in CUPRA (c) CUPRA, SEAT, S.A.
03.06.2024

Bcomp’s natural fibre materials in CUPRA

  • The fully electric vehicle sport EV to incorporate sustainable, flax-based composites to decarbonise manufacturing
  • CUPRA Born VZ to have full natural fibre front seats with Bcomp’s high-performance ampliTex™
  • Bcomp’s natural fibre materials enable a reduction of 49% of CO2 emissions in seats’ production compared to previous version

CUPRA announces the use of Bcomp’s innovative natural fibre composite solutions for the new CUP Bucket seats in the CUPRA Born VZ electric vehicles, the latest addition to the Spanish brand’s vehicle line-up.

CUPRA focuses on innovation and sustainability to redefine the automotive industry. This approach is exemplified by the CUPRA Born VZ, which combines powerful performance with eco-friendly design, aiming to inspire a new generation of drivers with its progressive and responsible engineering.

  • The fully electric vehicle sport EV to incorporate sustainable, flax-based composites to decarbonise manufacturing
  • CUPRA Born VZ to have full natural fibre front seats with Bcomp’s high-performance ampliTex™
  • Bcomp’s natural fibre materials enable a reduction of 49% of CO2 emissions in seats’ production compared to previous version

CUPRA announces the use of Bcomp’s innovative natural fibre composite solutions for the new CUP Bucket seats in the CUPRA Born VZ electric vehicles, the latest addition to the Spanish brand’s vehicle line-up.

CUPRA focuses on innovation and sustainability to redefine the automotive industry. This approach is exemplified by the CUPRA Born VZ, which combines powerful performance with eco-friendly design, aiming to inspire a new generation of drivers with its progressive and responsible engineering.

For the car’s interior design, CUPRA’s collaboration with Bcomp and Sabelt, has resulted in the creation of the first full natural fibre CUP Bucket seats in the CUPRA vehicle line-up. By replacing the seatbacks currently made from carbon and glass fibres, the new all-natural fibre seatbacks offer significant reductions in emissions. The use of Bcomp’s proprietary ampliTex™ technical material reduces CO2 emissions by 49% compared to the hybrid version, while also offering end-of-life options. The incorporation of natural fibres offers other benefits including enhanced vibration damping and increased safety, providing a blend of sustainability and high performance.

Source:

Bcomp

Professor Dr.-Ing. Markus Milwich Photo: DITF
Professor Dr.-Ing. Markus Milwich.
19.03.2024

Markus Milwich represents "Lightweight Design Agency for Baden-Württemberg"

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

The use of lightweight materials in combination with new production technologies will significantly reduce energy consumption in transportation, the manufacturing industry and the construction sector. Resources can be saved through the use of new materials. As a cross-functional technology, lightweight construction covers entire value chain from production and use to recycling and reuse.

The aim of the state government is to establish Baden-Württemberg as a leading provider of innovative lightweight construction technologies in order to strengthen the local economy and secure high-quality jobs.

Among others, the "Lightweight Construction Alliance Baden-Württemberg" will continue the nationally renowned "Lightweight Construction Day", which acts as an important source of inspiration for a wide range of lightweight construction topics among business and scientific community.

Professor Milwich, an expert with many years of experience and an excellent network beyond the State's borders, has been recruited for this task. In his role, Milwich also represents the state of Baden-Württemberg on the Strategy Advisory Board of the Lightweight Construction Initiative of the Federal Ministry for Economic Affairs and Climate Action, which supports the cross functional-technology and efficient transfer of knowledge between the various nationwide players in lightweight construction and serves as a central point of contact for entrepreneurs nationwide for all relevant questions.

From 2005 to 2020, Professor Milwich headed the Composite Technology research at the DITF, which was integrated into the Competence Center Polymers and Fiber Composites in 2020. He is also an honorary professor at Reutlingen University, where he teaches hybrid materials and composites. "Lightweight design is an essential aspect for sustainability, environmental and resource conservation. I always showcase this in research and teaching and now also as a representative of the lightweight construction community in Baden-Württemberg," emphasizes Professor Milwich.

Source:

Deutsche Institute für Textil- und Faserforschung

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024 (c) FUSE GmbH
26.02.2024

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

The STOLL Business Unit will be focussing on thermoplastic materials. Several knit to shape parts with a textile outer surface and a hardened inner surface will be on display. The double-face products can be made from different types of yarn and do not need to be back-moulded for use as side door panels or housing shells, for example. In addition, the ready-to-use design saves on waste and yarn material.

Sorted and cut textile waste ready for tearing © SBO EVENT
Sorted and cut textile waste ready for tearing
01.12.2023

First automated textile waste sorting and recycling line in France

Partnership between Nouvelles Fibres Textiles, Pellenc ST and ANDRITZ promotes circular economy for textiles.

France’s first industrial plant for automated sorting and recycling of textile waste was officially inaugurated at Nouvelles Fibres Textiles, Amplepuis, on November 30, 2023. The plant is the result of an ambitious partnership between textile recycling company Nouvelles Fibres Textiles, waste sorting specialist Pellenc ST and international technology group ANDRITZ, a specialist in textile recycling machinery and processes.

Capable of automatically sorting garments by composition and color, the new line meets the needs of both post-consumer and post-industrial waste markets. The line also removes hard parts such as buttons and zippers to prepare the material for further processing in an ANDRITZ tearing machine.

The automated textile sorting line at Nouvelles Fibres Textiles is dedicated to industrial-scale production, customer trials and projects, and the R&D activities of the partners. It will process textile waste to produce recycled fibers for the spinning, nonwovens, and composites industries.

Partnership between Nouvelles Fibres Textiles, Pellenc ST and ANDRITZ promotes circular economy for textiles.

France’s first industrial plant for automated sorting and recycling of textile waste was officially inaugurated at Nouvelles Fibres Textiles, Amplepuis, on November 30, 2023. The plant is the result of an ambitious partnership between textile recycling company Nouvelles Fibres Textiles, waste sorting specialist Pellenc ST and international technology group ANDRITZ, a specialist in textile recycling machinery and processes.

Capable of automatically sorting garments by composition and color, the new line meets the needs of both post-consumer and post-industrial waste markets. The line also removes hard parts such as buttons and zippers to prepare the material for further processing in an ANDRITZ tearing machine.

The automated textile sorting line at Nouvelles Fibres Textiles is dedicated to industrial-scale production, customer trials and projects, and the R&D activities of the partners. It will process textile waste to produce recycled fibers for the spinning, nonwovens, and composites industries.

Automated sorting was the last missing link needed to develop a complete ecosystem in France, where the fashion industry, social and solidarity economy actors, waste management companies, and textile producers from different sectors are working together towards a textile circular economy.

The EU's strategy for sustainable and circular textiles aims to ensure that by 2030 textile products are made to a great extent of recycled fibers and incineration and landfilling of textiles are minimized.

Flachs-Koeper-Band (c) vombaur
Flachs-Koeper-Band
20.09.2023

Technical textiles made of natural fibres: Sustainable textiles for lightweight design

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

Ideal mechanical properties
vombaur makes the mechanical properties of flax usable for lightweight design. Because flax fibres are particularly rigid and tear-resistant, they ensure great stability in natural fibre-reinforced plastics (NFRPs). And thanks to their low density of 1.50 g/cm3, the fibres weigh virtually nothing. On top of this, fibre-reinforced plastics are less prone to splintering than glass fibre-reinforced plastics.

Excellent carbon footprint
The cultivation of flax binds CO2 and the production of natural fibre-reinforced plastics (NFRPs) generates approximately one third less CO2 emissions compared with conventional fibre-reinforced plastics. Energy consumption is substantially lower. This saves resources. The use of flax fibre tapes by vombaur in lightweight design applications also improves the product's carbon footprint and contributes to a secure, regional supply chain.

Recycling without impacting on quality
Flax offers another sustainability benefit: more recycling cycles than glass- or carbon fibre-reinforced plastics – without impacting on quality. Thermoplastic fibre-matrix prepregs are melted and reused in the recycling process. The natural fibres can be used in other products such as natural fibre-reinforced injection moulded parts.

Sustainable product developments for many industries
"Orthoses for high-performance sports, high-tech skis, wind turbines, components for the automotive industry or aerospace, but also modern window profiles – the application scope for our lightweight design flax tapes is amazingly diverse", as Carl Mrusek, Chief Sales Officer at vombaur explains. "After all, wherever flax tapes are used, three key properties come together: light weight, strength and sustainability".

More information:
CO2
Source:

vombaur

30.06.2023

17th World Pultrusion Conference - CALL FOR PAPERS

The EPTA – European Pultrusion Technology Association organizes in cooperation with the ACMA – American Composites Manufacturers Association - the 17th World Pultrusion Conference on 29th February – 1st March 2024 in Hamburg, Germany. The conference is one of the leading pultrusion events in the world. The event takes place just before the JEC World 2024 in Paris (5th – 7th March 2024).

The presentations are to document innovations in the following subject areas of
pultruded reinforced plastics:

  • Market development in Europe, USA, Asia
  • Innovative applications
  • New Markets: Ideas for potential new applications with pultruded shapes or
  • systems
  • Sustainability: Technical possibilities, recycling, etc.
  • Raw materials
    ○ Development of fibres
    ○ Development of resins
  • Construction / Testing / Calculation
  • Processes

The presentation language will be English. Deadline for paper submission (title, short abstract, speaker name and address) until 15th September 2023 to info@pultruders.com.

The EPTA – European Pultrusion Technology Association organizes in cooperation with the ACMA – American Composites Manufacturers Association - the 17th World Pultrusion Conference on 29th February – 1st March 2024 in Hamburg, Germany. The conference is one of the leading pultrusion events in the world. The event takes place just before the JEC World 2024 in Paris (5th – 7th March 2024).

The presentations are to document innovations in the following subject areas of
pultruded reinforced plastics:

  • Market development in Europe, USA, Asia
  • Innovative applications
  • New Markets: Ideas for potential new applications with pultruded shapes or
  • systems
  • Sustainability: Technical possibilities, recycling, etc.
  • Raw materials
    ○ Development of fibres
    ○ Development of resins
  • Construction / Testing / Calculation
  • Processes

The presentation language will be English. Deadline for paper submission (title, short abstract, speaker name and address) until 15th September 2023 to info@pultruders.com.

28.06.2023

EPTA highlights contribution of pultruded composites to sustainable construction

Increasing energy and resource efficiency in the construction sector will be key to the EU’s ambition of achieving climate neutrality by 2050. By enabling the manufacture of strong, durable and lightweight products, composite materials can help the construction sector improve its environmental sustainability, as well as reduce total lifecycle costs. The latest EPTA industry briefing, Pultruded composites contribute to a more sustainable future for construction, discusses how pultruded composites answer the need for materials offering high performance, faster installation, corrosion resistance and low maintenance.

The report is available to download from the EPTA website.

Increasing energy and resource efficiency in the construction sector will be key to the EU’s ambition of achieving climate neutrality by 2050. By enabling the manufacture of strong, durable and lightweight products, composite materials can help the construction sector improve its environmental sustainability, as well as reduce total lifecycle costs. The latest EPTA industry briefing, Pultruded composites contribute to a more sustainable future for construction, discusses how pultruded composites answer the need for materials offering high performance, faster installation, corrosion resistance and low maintenance.

The report is available to download from the EPTA website.

The future of construction
As one of the largest global users of energy and raw materials, the construction industry is under immense pressure to improve its sustainability. At the same time, it must respond to demands for improved performance and reduced total cost of ownership. New materials will be needed to minimise the use of natural resources, enable a reduction of carbon footprint and facilitate circular economy practices. Choosing the optimum materials required for durability throughout the lifecycle will be increasingly important. A shift to off-site production is also forecast, where factory-controlled environments and automated processes can improve quality control, lower waste, and reduce work on site.

Lightweight pultruded parts can be pre-assembled into modules or complete structures in the factory for faster installation on site. Lightweight profiles lower energy use during transportation and installation, and a longer service life combined with minimal maintenance can deliver a reduced through-life carbon footprint. Pultruded parts such as profiles, gratings, beams, tubes and planks are increasingly found in a range of building, construction and infrastructure applications. Examples include bridge decks, fencing, stairs and handrails, train platforms, cladding, utility poles, modular building concepts, and window frames.

One application offering large growth potential for composites is bridges. Composite bridges are being designed to provide a service life of 100 years and unlike steel bridges do not require regular repainting to protect them from corrosion. Over recent years, pultruded glass fibre composite has become a highly popular choice for pedestrian and cycle bridges. Pre-fabricated ‘easy fit’ bridge decking planks, pre-assembled bridge modules and complete bridge ‘kits’ are now available. Corrosion-resistant composite bridges are ideal for use near water or on the coast, and in remote locations where regular maintenance operations would be difficult. A composite bridge can deliver the same performance as a steel structure with a weight saving of up to 50% or more. This enables more streamlined bridge designs which require less substantial supporting structures and foundations, greatly reducing consumption of materials and energy. Lightweight also results in easier logistics and simplified installation. Pultruded are more easily transported to the construction site, with lower fuel consumption, and easier to move on site, often reducing labour requirements and the capacity of lifting equipment.

A lifecycle approach
As the construction industry looks to the future, the environmental and economic benefits of composite materials linked to easier logistics and installation, durability and low maintenance are becoming increasingly valued. More projects are demonstrating the benefits of composite materials and standards covering the design, fabrication and installation of pultruded profiles are making it easier for the construction industry to use them. With ongoing development and collaboration, pultrusion has the potential to contribute to a more sustainable future for construction and many other industries. EPTA will continue to promote the advancement of pultrusion technology and its applications and foster sustainable practices within the industry.

Source:

The European Pultrusion Technology Association (EPTA)

(c) KARL MAYER GROUP
02.06.2023

KARL MAYER GROUP with sustainable technical textiles at ITMA

KARL MAYER GROUP will be presenting a WEFTTRONIC® II G at the ITMA with new features and upgrades for greater efficiency. This warp knitting machine with weft insertion produces lattice structures from high-strength polyester, which are firmly established in the construction industry in particular. With a working width of 213", it offers productivity and further advantages through design innovations. New features include weft thread tension monitoring, management and the new VARIO WEFT laying system. The component for the weft insertion aims at maximum flexibility. It allows the patterning of the weft yarn to be changed quickly and easily electronically, without mechanical intervention during yarn insertion and without limits on repeat lengths. In addition, there is less waste.

KARL MAYER GROUP will be presenting a WEFTTRONIC® II G at the ITMA with new features and upgrades for greater efficiency. This warp knitting machine with weft insertion produces lattice structures from high-strength polyester, which are firmly established in the construction industry in particular. With a working width of 213", it offers productivity and further advantages through design innovations. New features include weft thread tension monitoring, management and the new VARIO WEFT laying system. The component for the weft insertion aims at maximum flexibility. It allows the patterning of the weft yarn to be changed quickly and easily electronically, without mechanical intervention during yarn insertion and without limits on repeat lengths. In addition, there is less waste.

The KARL MAYER GROUP also supports its customers with well thought-out Care Solutions. The new support offers include retrofit packages for retrofitting control and drive technology for weft insertion and composite machines, and service packages that bundle various services. These include machine inspections and the replacement of all drive belts. The customer benefits from fixed prices that cover the costs of technician assignments, various discount options and transparent services.

A new solution for the vertical greening of cities is presented from the field of application for technical textiles. The core of the innovation is a grid textile produced on warp knitting machines with weft insertion by KARL MAYER Technische Textilien GmbH. The knitted lattice fabric is made of flax. It is used as a climbing aid for fast-growing plants, and after the greening phase, in autumn, it can be recycled together with these plants as biomass in pyrolysis plants to produce electricity and activated carbon. In summer, the planted sails lower the ambient temperature through evaporation effects. In addition, photosynthesis creates fresh air and binds CO2. Other important advantages are low soil requirements and flexible placement in public spaces. The greening system was developed by the company Micro Climate Cultivation, OMC°C, with the support of KARL MAYER Technische Textilien.

The KARL MAYER GROUP will also be exhibiting a sustainable composite solution made from natural fibres. The reinforcing textile of the innovative lightweight material is a multiaxial non-crimp fabric, which was also produced from the bio-based raw material flax on a COP MAX 4 from KARL MAYER Technische Textilien. The boatbuilding specialist GREENBOATS uses natural fibre composites to achieve sustainable products. The fact that it succeeds in this is shown, for example, by the Global Warming Potential (GWP): 0.48 kg of CO2 per kilogram of flax reinforcement compares with 2.9 kg of CO2 per kilogram of glass textile.

Source:

KARL MAYER Verwaltungsgesellschaft mbH

Winding unit for the continuous production of fibre-reinforced thermoplastic pipe profiles (c) ITA. Winding unit for the continuous production of fibre-reinforced thermoplastic pipe profiles
30.03.2023

Composites made by ITA at JEC World 2023

  • Less C02 emissions + sustainable + recyclable

Sustainability first - this is the principle of the Institut für Textiltechnik (ITA) of RWTH Aachen University at JEC World 2023. ITA combines various lightweight construction technologies to reduce C02 and to use renewable and/or recyclable raw materials.

ITA presents innovations in the production of reinforcing fibres and in the textile processing of high-modulus fibres. It also shows the impregnation of high-modulus fibres with thermosetting and thermoplastic matrix systems.  

ITA will be exhibiting in hall 6 together with Textechno, Mönchengladbach, Germany, textile testing equipment and Maruhachi Fukui, Japan, Thermoplastic Composite Material Systems. The Interreg AACOMA project will also be presented at the stand. 

  • Less C02 emissions + sustainable + recyclable

Sustainability first - this is the principle of the Institut für Textiltechnik (ITA) of RWTH Aachen University at JEC World 2023. ITA combines various lightweight construction technologies to reduce C02 and to use renewable and/or recyclable raw materials.

ITA presents innovations in the production of reinforcing fibres and in the textile processing of high-modulus fibres. It also shows the impregnation of high-modulus fibres with thermosetting and thermoplastic matrix systems.  

ITA will be exhibiting in hall 6 together with Textechno, Mönchengladbach, Germany, textile testing equipment and Maruhachi Fukui, Japan, Thermoplastic Composite Material Systems. The Interreg AACOMA project will also be presented at the stand. 

Source:

ITA Institut für Textiltechnik of RWTH Aachen

09.02.2023

AVK Innovation Award 2023 – Submissions until 14 April

The The German Federation of Reinforced Plastics (AVK) is looking for the best innovations in the field of fibre-reinforced plastics (FRP) / composites covering the following categories:

  • Innovative products/components or applications
  • Innovative procedures/processes
  • Research and science

One goal of the AVK Innovation Award is to promote new products/components and applications made from fibre-reinforced plastics (FRP) and to promote new processes and methods for the manufacturing of FRP products. A further award is given to universities, colleges and institutes for outstanding work in science and research. In each of the categories special emphasis will be placed on the issue of sustainability.

Another goal is to give prominence to the innovations and also to the companies/institutions behind them, thus publicising their performance throughout the industry. The submissions will be evaluated by a jury of experts from the composites sector. The award ceremony will be held during the JEC Forum DACH event in Salzburg, Austria (24-25 October 2023).

The The German Federation of Reinforced Plastics (AVK) is looking for the best innovations in the field of fibre-reinforced plastics (FRP) / composites covering the following categories:

  • Innovative products/components or applications
  • Innovative procedures/processes
  • Research and science

One goal of the AVK Innovation Award is to promote new products/components and applications made from fibre-reinforced plastics (FRP) and to promote new processes and methods for the manufacturing of FRP products. A further award is given to universities, colleges and institutes for outstanding work in science and research. In each of the categories special emphasis will be placed on the issue of sustainability.

Another goal is to give prominence to the innovations and also to the companies/institutions behind them, thus publicising their performance throughout the industry. The submissions will be evaluated by a jury of experts from the composites sector. The award ceremony will be held during the JEC Forum DACH event in Salzburg, Austria (24-25 October 2023).

The submission deadline for the application documents is 14th April 2023.
Further details and assessment criteria can be found online.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.