From the Sector

Reset
38 results
VacuFil (c) Oerlikon
24.09.2020

Recycling becomes a focus

Mountains of waste, plastic-infested oceans, negative CO2 footprints – the need for more sustainable ways of living has never been more urgent. Consequently, it is logical that recycling solutions are becoming increasingly important within the textile industry. This was also tapped into at the first virtual Global Fiber Congress in Dornbirn with a session that focused specifically on the topic. In front of around 400 participants, Markus Reichwein, Head of Product Management at Oerlikon Barmag, also spoke about solutions currently on the market.

As one of only manufactureres, the Oerlikon Group’s Manmade Fibers segment offers the entire mechanical recycling chain –from preparing the recycled materials, producing the melt all the way through to the textured package. Here, the company utilizes the VacuFil solution supplied by its subsidiary Barmag Brückner Engineering (BBE) –which, in addition to mastering bottle-to-bottle and bottle-to-textile processes, is also able to process textile waste into chips. This permits the running of textile production operations very much in line with the zero-waste philosophy.

Mountains of waste, plastic-infested oceans, negative CO2 footprints – the need for more sustainable ways of living has never been more urgent. Consequently, it is logical that recycling solutions are becoming increasingly important within the textile industry. This was also tapped into at the first virtual Global Fiber Congress in Dornbirn with a session that focused specifically on the topic. In front of around 400 participants, Markus Reichwein, Head of Product Management at Oerlikon Barmag, also spoke about solutions currently on the market.

As one of only manufactureres, the Oerlikon Group’s Manmade Fibers segment offers the entire mechanical recycling chain –from preparing the recycled materials, producing the melt all the way through to the textured package. Here, the company utilizes the VacuFil solution supplied by its subsidiary Barmag Brückner Engineering (BBE) –which, in addition to mastering bottle-to-bottle and bottle-to-textile processes, is also able to process textile waste into chips. This permits the running of textile production operations very much in line with the zero-waste philosophy.

VacuFil ensures a stable process in the case of recycled quality yarns
The reliable removal of contaminants is vital for a stable and efficient spinning process and outstanding yarn quality. At the same time, stable operating conditions with minimal fluctuations are essential. The greatest challenge here is the differing qualities of the bottle flakes fed into the system, as the extrusion process is barely able to balance these fluctuations. Here, the VacuFil concept counters with blending silos, which reduce the differences in the viscosity of the polymers considerably and guarantee high yarn and fabric quality.

The VacuFil concept is installed upstream to an Oerlikon Barmag POY system, which transforms the recycled melt into filament yarn of the accustomed high quality. As texturing solutions, Oerlikon Barmag offers its state-of-the-art automatic eAFK-series systems, including the latest generation of the eAFK Evo, which was unveiled at the ITMA Barcelona last year. Yarn manufacturers wishing to continue texturing manually can use the eFK series.

With the VarioFil R+, producers of smaller batches now also have a compact system with an integrated recycled materials preparation unit at their disposal. The system offers a special extrusion system for bottle flake materials, the very latest metering and mixing technology for spin-dying and expanded 2-stage melt filtration. The four spinning positions are each equipped with an Oerlikon Barmag 10-end WINGS POY winder.

While mechanical recycling has already been extensively developed, chemical recycling for mixed fabrics is still presenting the textile industry with huge challenges. The Oerlikon Group’s Manmade Fibers segment is currently working on solutions and concepts for transforming these fabrics into new textiles.

 

More information:
Oerlikon Sustainability Yarns
Source:

Oerlikon

Kooperation AMAC und FINNESTER (c) Finnester
Finnester’s innovative fire protection coatings in action
21.09.2020

Cooperation AMAC and FINNESTER

  • Finnish coating and gelcoat manufacturer Finnester strengthens its activities in the D-A-CH region with AMAC

As of September 15th 2020, the Finland-based coating and gelcoat manufacturer Finnester Coatings Oy strengthens its activities in German speaking countries, the so-called D- A-CH region, comprising Germany, Austria and Switzerland with Dr. Michael Effing from AMAC.

Finnester is a pioneer in developing high-quality coatings and gelcoat for both urface spread as well as flame and thermal insulation of composite solutions in different fields of industries. Their portfolio comprises products based on Polyester coatings for fire and thermal protection as well as ceramifying polymers like HybridRED, compliant with the requirements of the standards e.g. EN45545-2. In
order to develop new business opportunities in the D-A-CH region for the endmarkets building and infrastructure, transportation, marine, industrial and electrical industries, Finnester is cooperating with AMAC to accelerate the process of locating suitable partnerships.

  • Finnish coating and gelcoat manufacturer Finnester strengthens its activities in the D-A-CH region with AMAC

As of September 15th 2020, the Finland-based coating and gelcoat manufacturer Finnester Coatings Oy strengthens its activities in German speaking countries, the so-called D- A-CH region, comprising Germany, Austria and Switzerland with Dr. Michael Effing from AMAC.

Finnester is a pioneer in developing high-quality coatings and gelcoat for both urface spread as well as flame and thermal insulation of composite solutions in different fields of industries. Their portfolio comprises products based on Polyester coatings for fire and thermal protection as well as ceramifying polymers like HybridRED, compliant with the requirements of the standards e.g. EN45545-2. In
order to develop new business opportunities in the D-A-CH region for the endmarkets building and infrastructure, transportation, marine, industrial and electrical industries, Finnester is cooperating with AMAC to accelerate the process of locating suitable partnerships.

Ari Hokkanen, CEO of Finnester: “Finnester has developed unique high-quality coatings. The cooperation with AMAC will accelerate our growth ambitions and supports us in finding new business opportunities. We are happy to benefit from AMAC and Dr. Effing’s long-term experience as a pioneer in the composites industry and his high-quality network along the entire value chain.” Dr. Effing, CEO of AMAC GmbH confirms: “Fire-retardant coatings are very important to the composites industry in order to be successful especially in rail, fast ferry and building & infrastructure applications with their tough fire standards. The DACH region represents more than 30 % of the European market and is the key target for Finnester. I am looking forward to supporting Finnester with their unique offerings and connecting them with key players in the D-A-CH region.”

More information:
Finnester Coatings Oy AMAC
Source:

AMAC GmbH

Oerlikon: Three staple fiber bicomponent systems successfully commissioned in Asia (c) Oerlikon Neumag
Oerlikon Neumag staple fiber plants stand for highest product quality and absolute reliability.
27.08.2020

Oerlikon: Three staple fiber bicomponent systems successfully commissioned in Asia

Neumünster – Oerlikon Neumag has successfully commissioned three staple fiber bicomponent systems in China. With capacities of 50 tons per day each, the systems are being used to manufacture coresheath bicomponent fibers made from PP/PE or PET/PE at two long-standing Oerlikon Manmade Fibers customers. These fibers are used to make hygiene products.

Oerlikon Neumag staple fiber technology still in demand

Despite coronavirus-related restrictions, the three new systems were installed within three and five months, all without any problems. They have meanwhile been operating under stable production conditions with optimum fiber quality of the very highest standards for several weeks now.

Many years of experience in bi-component spinning

Neumünster – Oerlikon Neumag has successfully commissioned three staple fiber bicomponent systems in China. With capacities of 50 tons per day each, the systems are being used to manufacture coresheath bicomponent fibers made from PP/PE or PET/PE at two long-standing Oerlikon Manmade Fibers customers. These fibers are used to make hygiene products.

Oerlikon Neumag staple fiber technology still in demand

Despite coronavirus-related restrictions, the three new systems were installed within three and five months, all without any problems. They have meanwhile been operating under stable production conditions with optimum fiber quality of the very highest standards for several weeks now.

Many years of experience in bi-component spinning

Oerlikon Neumag looks back on many years of experience in constructing bicomponent staple fiber systems. The first system for this fiber type was commissioned as far back as 1995. Oerlikon Neumag offers solutions for the most varied cross-sections, ranging from sheath/core’, ‘side-by-side’, ‘island in the sea’, ‘orange type’ as well as ‘trilobal’. The applications are diverse: from self-crimping fibers, bonding fibers, super-microfibers all the way through to hollow fibers.

The Oerlikon Neumag bicomponent technology is particularly characterized by the extremely robust spin packs that have no expensive wear parts, which considerably reduces the costs here. The reconditioning costs when cleaning the spin packs are kept to an absolute minimum. Add to this the separate temperature transfer option in the spinning beam for the two polymers. As a result, the quality and the viscosity of the polymers can be accurately adjusted in accordance with the respective process requirements.

Source:

Oerlikon Neumag

CHEMLOGIS and SANITIZED AG: New strategic sales partnership for the Sanitized® antimicrobial polymer additives in Mexico (c) SANITIZED AG
CHEMLOGIS’s CEO Ing. León Freiman K.
30.07.2020

CHEMLOGIS and SANITIZED AG: New strategic sales partnership for the Sanitized® antimicrobial polymer additives in Mexico

Mexico and Switzerland - SANITIZED customers in the polymer industry in Mexico will profit from CHEMLOGIS’s expertise and established sales network. The Sanitized® antimicrobial additives for hygiene function and material protection for polymers will be marketed in Mexico by our new sales partner.

SANITIZED and CHEMLOGIS, two experts in their fields with similar understanding of values, have joined forces; both deal in high-performance products for the Polymer industry combined with the best possible service, which begins with the conception of value-added products and their optimum use. This collaboration with SANITIZED is a good fit for the portfolio as both companies focus on innovative, customer-specific solutions.

Mexico and Switzerland - SANITIZED customers in the polymer industry in Mexico will profit from CHEMLOGIS’s expertise and established sales network. The Sanitized® antimicrobial additives for hygiene function and material protection for polymers will be marketed in Mexico by our new sales partner.

SANITIZED and CHEMLOGIS, two experts in their fields with similar understanding of values, have joined forces; both deal in high-performance products for the Polymer industry combined with the best possible service, which begins with the conception of value-added products and their optimum use. This collaboration with SANITIZED is a good fit for the portfolio as both companies focus on innovative, customer-specific solutions.

With the addition of the antimicrobial Sanitized® additives at CHEMLOGIS, the Polymer industry gets a new overall package, offering more than just products for hygiene function and material protection. As an addition to the core product services, SANITIZED supports development and production, regulatory queries and marketing through the use of the Sanitized® Ingredient Brand, which characterizes the end products within their differentiation and emphasis on quality.

The antimicrobial additives for Polymers from SANITIZED protect end products from bacterial infestation, growth of algae and mildew, material degradation, biofilms, pink stain, and odors caused by microbes. The Polymer industry uses the antimicrobial additive in flooring, industrial coatings, artificial leather, roof membranes, pool liners, tarpaulins, and all extruded products.

“Everyone at CHEMLOGIS is very excited to partner with SANITIZED for the sale of their antimicrobial products to the Polymer processors in Mexico. Together we bring a highly focused approach to customer´s needs in terms of technology service and products” says CHEMLOGIS’s CEO Ing. León Freiman K.” “The technical competence and the strong customer focus impress me about CHEMLOGIS”, says Michael Lüthi, Head of BU Polymer at SANITIZED AG.

Source:

EMG

Start of 3-years Interreg cross-border project AACOMA  is kicked-off (c) AMAC GmbH
AMAC-Standortkarte
13.05.2020

Start of 3-years Interreg cross-border project AACOMA is kicked-off

  • AACOMA - Accelerate advanced composite manufacturing
  • EMR Region Belgium, the Netherlands & Germany area hot spot for the future of lightweight materials and technologies

The Euregio Meuse-Rhine provides a huge potential with its many highly innovative, leading companies and especially SMEs which are active in the area of advanced material manufacturing in many industrial sectors, such as Automotive, Aerospace, Electronics, Building and Infrastructure, etc. The advanced material sector is growing, with a consolidated offer, ranging from raw material producers over technology development to production, research and development as well as industrial OEMs.

Interreg Euregio Meuse-Rhine invests EUR 96 million from the European Regional Development Fund (ERDF) in the period 2014-2020. Through the investments in cross-border projects, the European Union invests in the economic development, innovation, territorial development and social inclusion and education of this region.

Project

  • AACOMA - Accelerate advanced composite manufacturing
  • EMR Region Belgium, the Netherlands & Germany area hot spot for the future of lightweight materials and technologies

The Euregio Meuse-Rhine provides a huge potential with its many highly innovative, leading companies and especially SMEs which are active in the area of advanced material manufacturing in many industrial sectors, such as Automotive, Aerospace, Electronics, Building and Infrastructure, etc. The advanced material sector is growing, with a consolidated offer, ranging from raw material producers over technology development to production, research and development as well as industrial OEMs.

Interreg Euregio Meuse-Rhine invests EUR 96 million from the European Regional Development Fund (ERDF) in the period 2014-2020. Through the investments in cross-border projects, the European Union invests in the economic development, innovation, territorial development and social inclusion and education of this region.

Project

The Euregio Meuse-Rhine is a potential hot-spot for the further development of advanced material and process technologies. Technical Centers and Institutes around Aachen/Germany, Liège/Belgium and Eindhoven/The Netherlands were awarded with this new project AACOMA.

Innovative material design and advanced manufacturing provide large opportunities for SMEs. The AACOMA project kick-off took place in Aachen at the Campus of the RWTH University of technology in 1 Q 2020. The aim of the project, which is running for 3 years until 2023 with a budget of €3 Mio, is to connect SMEs with innovation hot-spots like institutes and technical centers.
Seven partners from all three regions will carry the project out: Centexbel is the project leader and gets support by University of Liège, Sirris and Flanders Make from Belgium, as well as Fontys University of Applied Science and AMIBM of Maastricht University in the Netherlands and AMAC in Germany.

Statements

Bernard Paquet, Project Coordinator from Centexbel/ Belgium stated:
“Centexbel, with a strong experience in textile and composites, will identify with its Interreg partners and an advisory board of international experts several demonstrators which will enable an accelerated advanced manufacturing of composite parts. This could include new materials and intermediates, high performance additives, bio-based products and new composites by additive manufacturing”.

Michael Effing, Managing Director of AMAC/ Germany said:
“The major goal of the project is to connect around 200 innovative SMEs with each other and establish the links to the world-class institutes in the EMR region. We will facilitate 6 roadshow events, addressing key topics like automated manufacturing, additive manufacturing or bio-based material systems combined with match making and training events. The first roadshow will be held on September 24, 2020 at the Aachen Campus of the RWTH University of Technology.”

Prof. Gunnar Seide from the AMIBM/The Netherlands continued:  
“Our AMIBM offers already an international master program on bio-based materials. The AACOMA project will be an important element for transborder research and will identify new players in the value chain coming from the EMR region. Innovative companies find markets for their new bio-based building blocks, chemicals and polymers. Their success stories and upcoming technological breakthroughs are needed for a sustainable future.”

 

Meltblown Vliesstoffanlagen von Oerlikon Nonwoven (c) Oerlikon Manmade fibers
Meltblown Vliesstoffanlagen von Oerlikon Nonwoven
02.04.2020

Oerlikon Nonwoven large-scale meltblown sold to Asia

a leading Asian large-scale manufacturer of manmade fibers and polymers has invested in a new Oerlikon Nonwoven meltblown system. The recently-signed contract comprises a 2-beam system for manufacturing filtration nonwovens – predominantly for medical products such as face masks – with a nominal capacity of up to 1,200 tons of nonwovens a year. The commercial production launch has been scheduled for the fourth quarter of 2020.

The 2-beam system has an operating width of 1.6 meters and is equipped with the new patented Oerlikon Nonwoven electro-charging unit. The Oerlikon Nonwoven meltblown technology is recognized by the market as being the technically most efficient method for producing highly-separating filter media made from manmade fibers, particularly in conjunction with electrostatic charging and with extremely low-pressure loss. Electro-charging the filter nonwovens allows the manufacture of sophisticated EPA- and HEPA-class filter media as well as media that comply with the requirements of N95-, FFP2- and FFP3-class respiratory masks.

a leading Asian large-scale manufacturer of manmade fibers and polymers has invested in a new Oerlikon Nonwoven meltblown system. The recently-signed contract comprises a 2-beam system for manufacturing filtration nonwovens – predominantly for medical products such as face masks – with a nominal capacity of up to 1,200 tons of nonwovens a year. The commercial production launch has been scheduled for the fourth quarter of 2020.

The 2-beam system has an operating width of 1.6 meters and is equipped with the new patented Oerlikon Nonwoven electro-charging unit. The Oerlikon Nonwoven meltblown technology is recognized by the market as being the technically most efficient method for producing highly-separating filter media made from manmade fibers, particularly in conjunction with electrostatic charging and with extremely low-pressure loss. Electro-charging the filter nonwovens allows the manufacture of sophisticated EPA- and HEPA-class filter media as well as media that comply with the requirements of N95-, FFP2- and FFP3-class respiratory masks.

The demand for filtration nonwovens for medical applications has risen tremendously across the globe since the outbreak of the Sars-CoV-2 (coronavirus) epidemic, presenting all manufacturers with huge challenges. A meltblown system will be commissioning at the site of a leading Western European nonwovens producers as early as the second quarter of 2020. This system will be deployed exclusively in the manufacture of nonwovens for respiratory masks.

Due to the current state of emergency with regards to the local supply of face masks, Oerlikon Nonwoven is currently using its own laboratory system to produce electrostatically-charged filter media which are being sent to local small businesses and companies for the manufacture of face masks. 

 

More information:
Oerlikon Nonwoven
Source:

Oerlikon Manmade fibers

The Oerlikon Nonwoven electro-charging unit (c) Oerlikon Nonwoven
The Oerlikon Nonwoven electro-charging unit
23.01.2020

Oerlikon Nonwoven showcases convincing meltblown and spunbond technology

The Oerlikon Nonwoven experts will be presenting efficient solutions and comprehensive technology know-how for challenging filtration tasks to an international trade audience at the FiltXPO 2020 in Chicago, USA (Stand # 420), taking place between February 26 and 28.

Meltblown technology is one of the most efficient methods for producing very fine and highly-separating filter media made from manmade fibers. New, unique and highly-sophisticated filter media are easy to manufacture thanks to Oerlikon Nonwoven’s optimized meltblown technology. This process is characterized by its constant melt pressure distribution and consistent dwell time across the entire width of the spinning beam, Furthermore, the novel guidance and distribution of the process air outside the coathanger distributor offered by the Oerlikon Nonwoven technology prevents so-called hotspots, which overall ensures particularly homogeneous nonwoven properties and basis weights even in the case of delicate raw materials.

The Oerlikon Nonwoven experts will be presenting efficient solutions and comprehensive technology know-how for challenging filtration tasks to an international trade audience at the FiltXPO 2020 in Chicago, USA (Stand # 420), taking place between February 26 and 28.

Meltblown technology is one of the most efficient methods for producing very fine and highly-separating filter media made from manmade fibers. New, unique and highly-sophisticated filter media are easy to manufacture thanks to Oerlikon Nonwoven’s optimized meltblown technology. This process is characterized by its constant melt pressure distribution and consistent dwell time across the entire width of the spinning beam, Furthermore, the novel guidance and distribution of the process air outside the coathanger distributor offered by the Oerlikon Nonwoven technology prevents so-called hotspots, which overall ensures particularly homogeneous nonwoven properties and basis weights even in the case of delicate raw materials.

The Oerlikon Nonwoven charging unit stands out against other concepts currently available on the market. Users can freely choose from a large number of variation possibilities and set the optimum charging method depending on the filter application, allowing the Oerlikon Nonwoven charging unit to also be used for the manufacture of EPA- and HEPA-class filter media.

The new forming section ensures improved nonwoven formation evenness across the entire width, even in the case of high spinning speeds, special polymers and polymer combinations. In addition to this, the newly-designed system also ensures that nonwovens only require minimal edge trimming at the end of the production process. The newly-developed mixedfiber technology enables the combining of various filament cross-sections and polymers, in order to set ideal filtering and pleating performances, for example.

 

More information:
Oerlikon Nonwoven Filtxpo
Source:

Oerlikon Nonwoven

(c) Oerlikon
16.01.2020

Domotex 2020: Manmade Fibers shows BCF S8 with new CPC-T

Market leader Oerlikon Neumag has its finger firmly on the pulse of their customers with the new Color Pop Compacting unit (CPC-T) for the BCF S8 carpet yarn plant, which is now available for the Polyamide 6 process. The new solution, which was on show from 10-13 January 2020 at the Domotex 2020 in Hannover, attracted great interest from many trade visitors.

Following the trend for multicolored carpets, BCF S8 sets new standards in regards to color separation. The plant, launched as a tricolor solution at last year’s ITMA in Barcelona, makes anything possible – from mélange to strongly separated. It promises carpet yarn producers even more flexible color mixing variants for product differentiation. The core component in this process, the Color Pop Compacting unit (CPC-T), offers more than 200,000 different color shades from three colors. The innovation, which has been filed for patent, is available for polypropylene and polyester polymers as well as for the polyamide 6 process.

Market leader Oerlikon Neumag has its finger firmly on the pulse of their customers with the new Color Pop Compacting unit (CPC-T) for the BCF S8 carpet yarn plant, which is now available for the Polyamide 6 process. The new solution, which was on show from 10-13 January 2020 at the Domotex 2020 in Hannover, attracted great interest from many trade visitors.

Following the trend for multicolored carpets, BCF S8 sets new standards in regards to color separation. The plant, launched as a tricolor solution at last year’s ITMA in Barcelona, makes anything possible – from mélange to strongly separated. It promises carpet yarn producers even more flexible color mixing variants for product differentiation. The core component in this process, the Color Pop Compacting unit (CPC-T), offers more than 200,000 different color shades from three colors. The innovation, which has been filed for patent, is available for polypropylene and polyester polymers as well as for the polyamide 6 process.

Polyester, recycling polyester and fine titers are on trend
During numerous conversations with customers, Martin Rademacher, Head of Sales Oerlikon Neumag, observed a noticeable trend for polyester in the carpet industry even outside the USA. Sustainable solutions are equally sought after: “Our customers increasingly demand plants that can process recycled polyester,” explains Martin Rademacher.

The Manmade Fibers segment presented an additional solution by Oerlikon Barmag for polyester applications that need fine single filament titers from 0.5 dpf and high filament counts: Puffy, soft polyester filament yarns with BCF-similiar properties are produced on the basis of a POY and texturing process. Core components of the processes are the POY take-up unit WINGS HD as well as the new texturing machine eAFK Big-V.

23.09.2019

Tape inserts offer big potential for injection molding parts

Market and technology analysis confirms big potential for tape inserts in the injection molding process. Following the finalization of a major consortial project led by the Aachen Center for Integrative Lightweight Production (AZL) and the Institute for Plastics Processing at RWTH Aachen University (IKV), the result is clear: tape inserts offer enormous potential for injection molding parts. For suitable components, product costs and component properties can be positively influenced.

In cooperation with 20 industrial partners, the two renowned Aachen research institutes AZL and IKV carried out a detailed analysis of tape inserts in injection molded components over a period of eight months. The tapes, which are a few tenths of a millimeter thick, are continuous fibers, typically made of glass or carbon, completely impregnated and embedded in a thermoplastic matrix. The tapes can be precisely aligned to the loads in a component and are used primarily in high-performance applications with the aim of weight reduction. The aim of the conducted analysis was the identification of potential applications and the estimation of a wider range of applications.

Market and technology analysis confirms big potential for tape inserts in the injection molding process. Following the finalization of a major consortial project led by the Aachen Center for Integrative Lightweight Production (AZL) and the Institute for Plastics Processing at RWTH Aachen University (IKV), the result is clear: tape inserts offer enormous potential for injection molding parts. For suitable components, product costs and component properties can be positively influenced.

In cooperation with 20 industrial partners, the two renowned Aachen research institutes AZL and IKV carried out a detailed analysis of tape inserts in injection molded components over a period of eight months. The tapes, which are a few tenths of a millimeter thick, are continuous fibers, typically made of glass or carbon, completely impregnated and embedded in a thermoplastic matrix. The tapes can be precisely aligned to the loads in a component and are used primarily in high-performance applications with the aim of weight reduction. The aim of the conducted analysis was the identification of potential applications and the estimation of a wider range of applications.

The project was divided into several phases: Phase I was used to identify the current status. In 20 interviews with representative companies of the injection molding industry, the researchers gathered why tape inserts have rarely been taken into account so far, when defining the material concepts to be analyzed. The lack of information about the material class, the procedure and tools for the development process and the necessary production technologies were cited as major challenges. This is where the consortium will take action and provide comprehensive information during the “Technology Information Day” on the extensively prepared state of the art and the high degree of maturity of the supply chain. Based on the status quo, they developed a methodology for analyzing the technological and economic potential of tape inserts in injection molding applications.

Both the previous results and the planned follow-up projects are the subject of the “Technology Information Day" at K 2019, to which the companies involved in the study, the AZL and IKV, invite all companies along the value chain, from raw material manufacturers to injection molders to OEMs. (Date: 18th October 2019, 10:00 am to 1:30 pm, Trade Fair Düsseldorf CCD South, Room 002).

The consortium, amongst others consisting of Asahi Kasei Europe GmbH, BASF SE, Borealis AG, BÜFA Thermoplastic Composites GmbH & Co. KG, ENGEL AUSTRIA GmbH, Huesker Synthetic GmbH, LG Hausys R&D Center, Mitsui Chemicals, Nippon Electric Glass, Polyscope Polymers BV, POLYTEC GROUP, Simcon kunststofftechnische Software GmbH, SABIC and Toray International Europe GmbH, is inviting to the “Technology Information Day” at K 2019. The goal is to inform about the technology and to identify topics for future collaboration.

Source:

AZL Aachen GmbH

(c) Schoeller Textil AG
17.05.2019

Industrial partnership wear2wear: recycled, recyclable and PFC-free functional fabrics

wear2wear is an innovative industrial partnership dedicated to high-quality and sustainable clothing. Five expert partners in Europe have come together to cover the entire recycling loop. On cutting-edge production systems, textile fibres from used clothing will be turned into functional fabrics. Schoeller Textil AG is supplying a wholistic textile portfolio for the workwear area. At Schoeller Textil, the recyclable, functional fabrics from the wear2wear concept belong to the Inspire fabric group. These are high-quality protective workwear fabrics made of 100 percent polyester, which offer the greatest clothing comfort and often feel just like cotton. They are also compliant with the stringent requirements of the bluesign® system.

wear2wear is an innovative industrial partnership dedicated to high-quality and sustainable clothing. Five expert partners in Europe have come together to cover the entire recycling loop. On cutting-edge production systems, textile fibres from used clothing will be turned into functional fabrics. Schoeller Textil AG is supplying a wholistic textile portfolio for the workwear area. At Schoeller Textil, the recyclable, functional fabrics from the wear2wear concept belong to the Inspire fabric group. These are high-quality protective workwear fabrics made of 100 percent polyester, which offer the greatest clothing comfort and often feel just like cotton. They are also compliant with the stringent requirements of the bluesign® system.

The sustainable wear2wear concept is synonymous with high-quality, responsible clothing. In European operations, textile fibres from used garments are used to produce new functional fabrics. Depending upon the area of intended use, they also meet strict waterproofing, breathability, protection and comfort requirements. To ensure that the raw material cycle comes full circle, these textiles can be recycled again when they reach the end of their service life. As a result, there is no waste, and they go on to produce new garments. As the wear-2-wear partner companies guarantee that – from the quality of the raw materials to the guaranteed recycling end process – these are 100 percent recyclable, functional fabrics made of recycled textile fibres. Water- and dirt-repelling technologies based on renewable raw materials, along with the most advanced membrane technology, will ensure that the textiles are manufactured and impregnated entirely without the use of PFC in the future too.

Five partner companies  
The five European partner companies in the wear2wear cooperation cover the entire recycling loop. Heinrich Glaeser Nachfolger GmbH is a German fibre and yarn producer and the “recycler” in the loop. Märkischen Faser GmbH (D) is the “upcycler” and fibre manufacturer. Carl Weiske GmbH & Co. KG (D) develops the polymers, fibres, yarns, chemical additives and textile systems, and TWD Fibres GmbH (D), a fully-integrated filament yarn producer, covers the entire range of polyester and polyamide 6.6 continuous filament yarns. Schoeller Textil AG, the innovative Swiss company, is responsible for textile production and manufactures sustainable high-tech fabrics with maximum clothing comfort. The matching climate-neutral and similarly 100 percent recyclable PTFE and PFC-free membrane, as well as recycled outer materials and linings, are supplied by Sympatex Technologies (D), the ecological alternative among the textile function specialists. DutchSpirit is a Dutch company which has been dedicated to environment-friendly clothing since 2010. Its mission is to significantly increase the awareness for sustainable clothing and offer recyclable clothing in the workwear segment. DutchSpirit is the initiator for the development of the Inspire products from Schoeller Textil and provided the inspiration for the wear2wear concept. Further garment-making partners who now also belong to the cooperative group include: Anchor Workwear BV (NL), Hüsler Berufskleider AG (CH), Groenendijk Bedrijfskleding BV (NL), Bedrijfskledingdiscounter BV (NL) and Rifka'S (NL).

(c) Hexcel
04.03.2019

Hexcel at JEC World 2019

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

Visitors to JEC will see an Integrated Wing Panel demonstrator and an I-beam, both made with HiTape® reinforcements, and an Opticoms rib made with HiMax™ NCF. The Opticoms rib and I Beam were both manufactured using C-RTM (Compression Resin Transfer Molding). They were injected with Hexcel’s RTM6 resin in a process taking less than 5 minutes. The total manufacturing cycle for both parts was just 4.5 hours.

Also among the Aerospace exhibits, Hexcel will display a composite petal for a satellite antenna, manufactured by Thales Alenia Space Italia. The petal is part of a set of 24 deployable structural elements that form the large area reflector assembly used on board Low Earth Orbit (LEO) observation satellites. Thales Alenia Space Italia selected Hexcel’s HexPly® M18 prepreg for this application, acknowledging the superior mechanical and outgassing properties provided.

Another Hexcel prepreg application on show is a “zero” frame, manufactured by Aerofonctions for the engine area of Daher’s TBM 910/930 single-engine turboprop aircraft. Hexcel’s HexPly® M56 prepreg was selected by Daher for the “zero” frame – a product developed for Out of Autoclave applications that provides the same high quality and performance as autoclave-cured prepregs, from a simple vacuum bag cure in an oven.

With 50 years of experience behind its comprehensive range of high-strength, high-strain PAN-based carbon fibers, Hexcel continues to innovate, and is introducing two new fibers to its portfolio. HexTow® HM50 combines high modulus and high tensile strength, making it ideal for commercial and defense aircraft and engines. HexTow® 85 was developed specifically to replace rayon-based carbon fiber for ablative applications.

HexTow® carbon fiber holds the most qualified carbon fiber positions on aerospace programs in the industry and is the best unsized fiber available on the market. It provides excellent bonding interfacial properties with thermoplastic matrices and is the best-performing fiber for 3D printing applications.

Additive manufacturing is another area of expertise for Hexcel, using PEKK ultra-high performance polymers and HexAM™ technology to manufacture carbon-reinforced 3D printed parts. This
innovative process provides a weight-saving solution for intricate parts in highly demanding aerospace, satellite and defense applications. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts with a new technology.

Hexcel is well known for its range of weight-saving, stiffness-enhancing honeycombs and the company adds value by providing a range of engineered core solutions to customers from facilities in the USA, Belgium and the newly opened Casablanca plant in Morocco. Hexcel’s engineered core capabilities enable highly contoured parts with precision profiling to be produced to exacting customer specifications. An example of such a part will be on display at JEC. Made from Aluminum FlexCore®, the part is CNC machined on both sides, and formed and stabilized with both peel ply and flyaway layers of stabilization. Aircraft engines benefit from a number of Hexcel core technologies including HexShield™ honeycomb that provides high temperature resistance in aircraft engine nacelles. By inserting a thermally resistant material into honeycomb cells, Hexcel provides a core product with unique heat-shielding capabilities that allows for the potential re-use of material after a fire event.

Hexcel’s Acousti-Cap® broadband noise-reducing honeycomb significantly improves acoustic absorption in aircraft engine nacelles. The acoustic treatment may be positioned at a consistent depth and resistance within the core, or can be placed in a pattern of varying depths and/or resistances (Multi-Degrees of Freedom and 3 Degrees Of Freedom), offering an acoustic liner that is precisely tuned to the engine operating conditions. These technologies have been tested at NASA on a full engine test rig and meet all 16 design conditions without trade-offs.

HexBond™ – the new name in Adhesives

Hexcel’s range of high performance adhesives has expanded considerably following the company’s acquisition of Structil. The company has now decided to unite the range by marketing all of its adhesive products using HexBond™ branding. The comprehensive range of HexBond™ structural film adhesives, foaming adhesive films, paste adhesives, liquid shims, epoxy fillets and Chromium free liquid primers is suitable for a wide range of applications in combination with Hexcel’s prepreg and honeycomb products.

Automotive Innovations

Hexcel’s carbon prepreg patch technology provides an innovative way of locally stiffening and reinforcing metal parts, providing noise and vibration management functionality. HexPly® prepreg patches consist of unidirectional carbon fiber impregnated with a fast curing epoxy matrix that has self-adhesive properties, enabling it to bond to metal in a highly efficient one-step process. These key technology properties are demonstrated in an 18.5kg aluminum subframe (that is 50% lighter than steel equivalents), which was reinforced with 500 grams of HexPly® prepreg and tested by Saint Jean Industries. The part demonstrates a significant reduction in noise, vibration and harshness (NVH). Other benefits include lower production costs, energy savings, increased driver comfort, production flexibility and part count reduction. With this technology Hexcel is a finalist in the JEC Innovation Awards 2019 in the Automotive Applications category.

HexPly® prepreg patch technology was also applied to a hybrid side sill demonstrator developed with Volkswagen and Dresden University to address future crash test requirements, specifically for electric cars. Combining fiber-reinforced plastic (FRP) with metal, the hybrid construction allows for optimum performance including weight savings, enhanced safety, increased energy absorption, battery protection in a crash situation and production flexibility.

Hexcel will also display a lightweight CFRP transmission crossmember produced from Hexcel’s high performance HexMC®-i 2000 molding compound. The transmission crossmember was developed in partnership with the Institute of Polymer Product Engineering (at Linz University), Engel and Alpex. As the part connects the chassis together and supports transmission it has to be stiff and strong, resisting fatigue and corrosion. Hexcel’s HexMC®-i 2000 was selected as the best-performing molding compound on the market, curing in as little as two minutes to produce lightweight, strong and stiff parts.
To produce the transmission crossmember HexMC®-i 2000 preforms are laid up in Alpex molds and compression-molded in a v-duo press that was tailored for the application by Engel. Ribs, aluminum inserts and other functions can be molded into the part using the single-stage process, reducing component-count. Any offcuts from the preforms can be interleaved between the plies of material to provide additional reinforcement in key areas - meaning that the process generates no waste.

Other Automotive promotions on Hexcel’s stand at JEC World include a composite leaf spring manufactured by ZF using HexPly® M901 prepreg. In contrast to steel leaf springs, composite versions offer many advantages including weight savings of up to 70%, high corrosion resistance, optimized system integration and superior performance. HexPly® M901 prepreg reduces the cure cycle to below 15 minutes and provides 15% higher mechanical performance, with enhanced fatigue properties. It also operates at high temperatures, providing a Tg of up to 200°C following a post cure.

Marine Innovations

Hexcel has a comprehensive range of products aimed at racing yacht and luxury boat builders that include America’s Cup, IMOCA class and DNV GL-approved prepregs, woven reinforcements and multiaxial fabrics for hull and deck structures, masts and appendages.

At JEC World Hexcel will display an IMOCA yacht mast manufactured by Lorima using HexPly® high modulus and high strength carbon fiber prepreg from Hexcel Vert-Le-Petit. Lorima is the exclusive official supplier of masts for IMOCA 60 class racing boats.

Hexcel’s HexTow® IM8 carbon fiber has been selected as the highest performing industrial carbon fiber on the market and will be used by spar and rigging manufacturer Future Fibres to manufacture their AEROrazr solid carbon rigging for all the teams in the 36th America’s Cup.

Hexcel’s HiMax™ DPA (Dot Pattern Adhesive) reinforcements are non-crimp fabrics supplied pre-tacked, allowing multiple fabrics to be laid-up more easily in preparation for resin infusion. Providing an optimal, consistent level of adhesion, they allow a faster and more consistent resin flow, as well as eliminating the use of spray adhesive for a healthier working environment and lower risk of contamination. Simply unrolled and applied to the mold or core layer before the introduction of resin, HiMax™ DPA fabrics are widely used in boat building, where lay-up times can be reduced by up to 50%.

Wind Energy Innovations

Hexcel has developed a range of HexPly® surface finishing prepregs and semi-pregs for wind turbine blades and marine applications. Providing a tough, durable and ready-to-paint surface without using in-mold coats, these products shorten the manufacturing cycle and reduce material costs. HexPly® XF2(P) prepreg is optimized for wind blades and has a ready-to-paint surface, straight from the mold, saving at least 2 hours of takt time.

Polyspeed® pultruded carbon laminates were developed for load-carrying elements in a blade structure and are manufactured with a polyurethane matrix that provides outstanding mechanical performance in terms of stiffness and durability. The blade manufacturing process is optimized, with increased throughput. The pultruded laminates are supplied in coils as continuous cross section profiles.
HiMax™ non-crimp fabrics using E-glass, high modulus glass and carbon fibers are also available in a wide range of unidirectional, biaxial and triaxial constructions. HiMax™ fabrics have applications throughout the turbine, from the stitched carbon fiber UDs used in the main structural elements, to glass fabrics and hybrids for blade shells and nacelles. There are also specialist applications such as lightweight fabrics for heated leading edge de-icing zones.

Source:

AGENCE APOCOPE

15.02.2019

PearlTech® a Monofilament with a special surface

PERLON® - The Filament Company presenting will be showcasing PearlTech®, their latest product brand at Techtextil in Frankfurt from 14th – 17th May. PearlTech® is a monofilament which has special particles incorporated into it. The size and shape of the particles is irregular and the material is unrelated to the base polymer.

PearlTech® is currently available in a PET based variant as well as in PA. The particles are added into the polymer melt and evenly distributed over the whole cross-section. These newly acquired properties remain intact throughout the lifetime of the monofilament. The particles incorporated into the polymer matrix protrude slightly from the monofilament surface, giving PearlTech® an interesting optical appearance and a structured surface finish.

PearlTech® provides improved stability against wear, reduces machine power consumption whilst reducing the build-up of dirt on the end product. This is in comparison to standard polymers. The particles have no negative effect on hydrolysis resistance and furthermore offer the possibility to avoid the use of fluoropolymers.

PERLON® - The Filament Company presenting will be showcasing PearlTech®, their latest product brand at Techtextil in Frankfurt from 14th – 17th May. PearlTech® is a monofilament which has special particles incorporated into it. The size and shape of the particles is irregular and the material is unrelated to the base polymer.

PearlTech® is currently available in a PET based variant as well as in PA. The particles are added into the polymer melt and evenly distributed over the whole cross-section. These newly acquired properties remain intact throughout the lifetime of the monofilament. The particles incorporated into the polymer matrix protrude slightly from the monofilament surface, giving PearlTech® an interesting optical appearance and a structured surface finish.

PearlTech® provides improved stability against wear, reduces machine power consumption whilst reducing the build-up of dirt on the end product. This is in comparison to standard polymers. The particles have no negative effect on hydrolysis resistance and furthermore offer the possibility to avoid the use of fluoropolymers.

More information:
Perlon Perlon Group
Source:

Perlon GmbH

(c) BASF
12.11.2018

BASF 3D Printing Solutions presents new products at formnext and announces pioneering strategic alliances for industrial 3D printing

New products for photopolymer and laser sinter printing methods from BASF 3D Printing Solutions GmbH (B3DPS) are on show from November 13 to 16 at Stand F20 in Hall 3.1 at this year’s formnext fair in Frankfurt. The BASF subsidiary is also announcing several new partnerships for the development and distribution of groundbreaking 3D printing solutions and products.

B3DPS has entered into a strategic partnership with the US company Origin, San Francisco, California for the further development of photopolymer printing processes. “Within the framework of an open business model, we are combining BASF’s material know-how with Origin’s expertise in printer software programming and the manufacture of the corresponding hardware,” explained Volker Hammes, Managing Director BASF 3D Printing Solutions GmbH. The collaboration has already shown the first signs of success. Origin has developed a new printing method where BASF’s new Ultracur3D photopolymers can be processed particularly well. The technology offers an optimal combination of a good surface finish and high mechanical stability, while also allowing for high material throughput.

New products for photopolymer and laser sinter printing methods from BASF 3D Printing Solutions GmbH (B3DPS) are on show from November 13 to 16 at Stand F20 in Hall 3.1 at this year’s formnext fair in Frankfurt. The BASF subsidiary is also announcing several new partnerships for the development and distribution of groundbreaking 3D printing solutions and products.

B3DPS has entered into a strategic partnership with the US company Origin, San Francisco, California for the further development of photopolymer printing processes. “Within the framework of an open business model, we are combining BASF’s material know-how with Origin’s expertise in printer software programming and the manufacture of the corresponding hardware,” explained Volker Hammes, Managing Director BASF 3D Printing Solutions GmbH. The collaboration has already shown the first signs of success. Origin has developed a new printing method where BASF’s new Ultracur3D photopolymers can be processed particularly well. The technology offers an optimal combination of a good surface finish and high mechanical stability, while also allowing for high material throughput.

B3DPS is working together with Photocentric, a manufacturer of 3D printers and their corresponding software and materials, on the development of new photopolymers and large-format photopolymer printers for mass production of functional components. Based in Peterborough, UK and Phoenix, USA, Photocentric has developed and optimized the use of LCD screens as image generators for its own printing systems. The two partners plan to offer the industry 3D printing solutions that replace parts of traditional manufacturing processes such as injection molding for small series, as well as enabling the production of large components.

The objective of the cooperation with Xunshi Technology, a Chinese printer manufacturer headquartered in Shaoxing, and operates in USA under the name Sprintray, will be opening new fields of application in 3D printing for the Ultracur3D product range of B3DPS.

Ultracur3D specialties for photopolymer printing processes
B3DPS has grouped well-established and new photopolymers designed for the respective 3D printing processes under the brand name Ultracur3D. BASF has developed unique raw materials for its new products that enable special part properties.
“Our Ultracur3D portfolio enables us to offer customers various UV-curable materials for 3D printing that provide far better mechanical properties and higher long-term stability than most available materials,” explained András Marton, Senior Business Development Manager at B3DPS. He added: “These materials have been developed for functional components that are subject to high stress.”

Expansion of distribution network for filaments
Innofil3D, a subsidiary of B3DPS, is entering into a partnership with Jet-Mate Technology, based in Tjanjin, China, for the distribution of plastic filaments in China. In parallel, a distribution agreement has been concluded with M. Holland in Northbrook, USA for the distribution of filaments in USA. “Since the USA is the largest market for filaments, we intend to strengthen our activities there,” said Jeroen Wiggers, Business Director 3DP Solutions for Additive Extrusion at B3DPS, adding: “Asia is another important market for us. We will be developing further distribution channels there and putting our Ultrafuse filaments on the Asian market in 2019.”

BASF’s portfolio of filaments for 3D printing are comprised of two categories; the well-established Innofil3D filaments based on generic polymers for conventional applications and polymer-based Ultrafuse filaments for advanced formulations used in demanding technical applications. One of the broadest filament selections on the market, this portfolio covers customer requirements ranging from prototype to industrial-scale production.

SLS: new 3D printing material with fire protection classification
New flame-resistant Ultrasint Polyamide PA6 Black FR meets UL94 V2 fire protection standards and is a new material class for use in selective laser sintering (SLS) processes, distinguished by high stiffness and thermal stability. In cooperation with one of the global leaders of public transportation vehicles, B3DPS has developed new components that meet vehicle fire protection requirements. “Together with our partner, we are currently producing prototypes, spare parts, and small series components, and are working to further improve flame resistance to meet additional certification specifications,” explained Hammes.
BASF introduced Ultrasint Grey PA6 LM X085 at AMUG this spring and now is followed by another product on show at formnext. Ultrasint PA6 Black LM X085 is based on polyamide 6, and can be processed at 175-185 degrees Celsius therefore making it suitable for most current SLS machines.

B3DPS adds polypropylene to its 3D printing portfolio
Through the acquisition of Advanc3D Materials GmbH in July 2018, B3DPS has expanded its range with numerous materials for use on laser sinter machines, including polyamide Adsint PA12, Adsint PA11, Adsint PA11CF and Adsint TPU flex 90.
Ultrasint PP is a special highlight. This polypropylene-based product exhibits outstanding mechanical properties and is frequently used in standard industrial production as it offers a good balance between price and performance. Ultrasint PP is distinguished by excellent plasticity, low moisture uptake, and resistance to liquids and gases. Prototypes and small batches can now be produced from the same material as used for traditional serial production. Post treatments such as thermoforming, sealing, and dyeing can be performed after printing.

More information:
BASF 3D printing materials
Source:

BASF 3D Printing Solutions GmbH

(c) AGENCE APOCOPE
22.10.2018

12 Composites Innovators to receive a JEC Innovation Award in Seoul next November 15, 2018

Twelve companies from eight different countries will receive a JEC Innovation Award at JEC Asia 2018. Asia-Pacific is an innovative region that sets the tone for all other regions of the globe. Once again, the JEC Innovation Awards highlight how composites bring solutions considering the new challenges in terms of efficiency, sustainability and life-cycle analysis.

This year, JEC Group awards innovations in the following categories: aerospace (structural and tooling), automotive, commercial vehicles, e-mobility, marine, railway, sports & leisure, infrastructure & civil engineering, industrial equipment, sustainability and additive manufacturing.

The ceremony will take place on Thursday November 15, 2018 at the COEX Center of Seoul (South Korea). Ida DAUSSY (Seo Hye-na), will host the ceremony in front of officials, manufacturers, scientists and composites professionals.

Twelve companies from eight different countries will receive a JEC Innovation Award at JEC Asia 2018. Asia-Pacific is an innovative region that sets the tone for all other regions of the globe. Once again, the JEC Innovation Awards highlight how composites bring solutions considering the new challenges in terms of efficiency, sustainability and life-cycle analysis.

This year, JEC Group awards innovations in the following categories: aerospace (structural and tooling), automotive, commercial vehicles, e-mobility, marine, railway, sports & leisure, infrastructure & civil engineering, industrial equipment, sustainability and additive manufacturing.

The ceremony will take place on Thursday November 15, 2018 at the COEX Center of Seoul (South Korea). Ida DAUSSY (Seo Hye-na), will host the ceremony in front of officials, manufacturers, scientists and composites professionals.

Category: AEROSPACE – STRUCTURAL
Winner: CSIR National Aerospace Laboratories (India)

Most of the composite structures for aircraft are made of carbon-epoxy composites, which can withstand a maximum service temperature of 130°C. As a consequence, carbon-epoxy materials cannot be used in hot zones like engine vicinity areas. The Aeronautical Development Agency (ADA) and CSIR-NAL took up the challenge of developing high temperature resistant composites for use in hot zones of light combat aircraft, which would result in significant weight and cost savings, as well as a considerable reduction in the meantime between failures (MTBF) due to thermal ageing.

The first task was to choose a material system with a service temperature of about ~ 200°C. During the material selection process, it was found that BMI resins are a relatively young class of thermosetting polymers. Hence, a carbon-BMI prepreg was selected due to a number of unique features including excellent physical property retention at elevated temperatures and in wet environments.

It was realized that weight savings and performance can be maximized using co-curing technology. This results in a large reduction of fabrication cycle times, costs and weight. Co-cured structures have fewer fasteners, which results in shorter assembly cycle times and also reduces sealing issues.

A prototype engine bay door assembly was built and tested at 180°C for flight certification. The engine bay door consists of an inner skin and co-cured outer skin assembly with eight transverse stiffeners. The stiffeners were designed with ‘J’ sections. The door size was 1.5 m length, 1 m width and 0.4 m overall depth. The co-cured door was developed using autoclave moulding. Two doors were installed in prototype aircraft and successfully flown.

HUNTSMAN and the CHEMOURS Company Expand Longstanding Alliance CHEMOURS & HUNTSMANN
Logos HUNTSMAN and CHEMOURS
12.10.2018

HUNTSMAN and the CHEMOURS Company Expand Longstanding Alliance

  • Huntsman Textile Effects and The Chemours Company FC, LLC (‘Chemours’) have agreed to expand their long-term alliance in the area of durable water repellence (DWR).

Singapore – By combining the strengths of both companies in innovation, technical support and marketing, the expanded co-operation unlocks the full potential of the alliance to develop and deliver new, sustainable DWR solutions and chemistry.  This historical alliance that was established in the early 1990s has been at the forefront of delivering state-of-the-art solutions to the textile industry for durable water repellent effects. In addition to
fluorinated solutions, the expanded alliance will now be able to offer non-fluorinated alternatives as well. The alliance will cover different aspects of the value chain including research, marketing, technical support and manufacturing.

  • Huntsman Textile Effects and The Chemours Company FC, LLC (‘Chemours’) have agreed to expand their long-term alliance in the area of durable water repellence (DWR).

Singapore – By combining the strengths of both companies in innovation, technical support and marketing, the expanded co-operation unlocks the full potential of the alliance to develop and deliver new, sustainable DWR solutions and chemistry.  This historical alliance that was established in the early 1990s has been at the forefront of delivering state-of-the-art solutions to the textile industry for durable water repellent effects. In addition to
fluorinated solutions, the expanded alliance will now be able to offer non-fluorinated alternatives as well. The alliance will cover different aspects of the value chain including research, marketing, technical support and manufacturing.

“Strengthening the partnership between Huntsman Textile Effects and Chemours unlocks the full potential of both companies to shape technology and product offerings in sustainable durable water repellency. Our cooperation, which has stood the test of time, has clearly demonstrated that strong environmental credentials and performance can co-exist in equal measure. We are excited to move forward with a broader alliance as we strengthen our position as the industry leader in DWR textile solutions,” said Jay Naidu, Vice President, Strategic Marketing and Planning, Huntsman Textile Effects.

“Chemours is excited to expand our partnership with Huntsman Textile Effects. This partnership reinforces our commitment to take a leadership role in the innovation and development of more sustainable and high performing products that address the rapidly evolving needs of the textile industry and the consumers that use these products,” said Jesal Chopra, Vice President, Chemours Fluoropolymers.

Together, Huntsman Textile Effects and Chemours have worked to lead the textile industry’s transition  from long-chain water repellent products to more environmentally friendly short-chain chemistry and, more recently, non-fluorinated chemistry. The collaboration has resulted in new, market-leading DWR solutions that deliver on performance and sustainability. Chemours introduced Teflon EcoElite™ with Zelan™ R3 technology in 2015, a renewably sourced, non-fluorinated water repellent finish. Containing 60% plant-based materials* and complying with all key industry standards, Zelan™ R3 repellent offers excellent water repellency and durability while preserving fabric breathability. It meets or exceeds performance levels possible with fluorinated technologies. Teflon™ Eco Dry with Zelan™ R2 PLUS technology, which compliments Teflon EcoElite™, was recently introduced. Zelan™ R2 PLUS contains 30% renewably sourced plant-based raw materials* and is focused on delivering a high level of durable water repellency for all substrates.

In 2017, Huntsman Textile Effects introduced PHOBOTEX® RSY non-fluorinated durable water repellent, which was developed to specifically meet extreme protection, comfort and durability requirements for both synthetic and cellulosic fibers, delivering an enhanced environmental profile for brands. PHOBOTEX® RSY durable water repellent raises the bar in performance on synthetics, allowing brands to offer high-performance weather protection with an assurance of eco-friendly sustainability. Providing effective protection in extreme environments together with breathable comfort, PHOBOTEX® RSY durable water repellent repulses rain, sleet, and snow, ideal for highperformance outerwear fabrics.

Both companies bring a rich and established heritage firmly centered on research and innovation. Through their expanded alliance, joint research and development efforts in DWR enable Huntsman and Chemours to stay at the forefront of industry trends and regulatory changes for a more sustainable textile industry.

More information:
Huntsman Chemours
Source:

Huntsman Textile Effects

(c) SANITIZED AG, PR022
15.08.2018

SANITIZED (China) Ltd.: Featuring Advanced Antimicrobial Additives for Flexible Polymer Applications

The global antimicrobial market is big business. Demand is strong due to increasing public awareness about contamination and infections, and by consumers’ desire for protective solutions. At Cinte Techtexil China 2018, taking place Sept. 4-6 in Shanghai, SANITIZED (China) Ltd. will be showcasing on Booth D25, Hall N1, its long-lasting Sanitized® Swiss antimicrobial protection for flexible polymer applications.

In recent years, regulatory developments have limited the available types of biocides that can be used to protect polymers and textiles from bacterial and fungal growth. For example, the biocide OBPA was widely used to protect PVC and other plastics from such issues in the past, but the European Union blocked OBPA from sale in January 2013, prompting producers to seek other options. Commonly used alternatives such as DCOIT, BBIT, zinc pyrithione or IBPC have their own limitations, related to their use in various flexible polymer applications.

The global antimicrobial market is big business. Demand is strong due to increasing public awareness about contamination and infections, and by consumers’ desire for protective solutions. At Cinte Techtexil China 2018, taking place Sept. 4-6 in Shanghai, SANITIZED (China) Ltd. will be showcasing on Booth D25, Hall N1, its long-lasting Sanitized® Swiss antimicrobial protection for flexible polymer applications.

In recent years, regulatory developments have limited the available types of biocides that can be used to protect polymers and textiles from bacterial and fungal growth. For example, the biocide OBPA was widely used to protect PVC and other plastics from such issues in the past, but the European Union blocked OBPA from sale in January 2013, prompting producers to seek other options. Commonly used alternatives such as DCOIT, BBIT, zinc pyrithione or IBPC have their own limitations, related to their use in various flexible polymer applications.

Outdoor applications in particular have seen an increase in performance requirements –– especially as regards antimicrobial effectiveness after exposure to water and ultraviolet light. Such additives also should not contribute to yellowing after UV exposure, but the available alternatives often fall short in this regard. And antimicrobial additives need to be able to meet the requirements for heat stability during the application process, while also avoiding initial discoloration and demonstrating compatibility with other additives in the formulation.

SANITIZED AG has developed a solution that addresses all these issues. Sanitized® PL 14-32 offers highly effective, long-lasting antimicrobial protection for flexible polymer applications. Besides thermal stability and compatibility with most formulations, Sanitized PL 14-32 provides high UV resistance and no yellowing after UV exposure, as well as good water resistance. It protects the target material against the unwanted effects of microbes such as bacteria, mold, mildew, yeast, pink stain and algae – all of which can destroy material, while also causing unsightly stains, cross contamination, odor development and biofilm formation. The product has been proven to deliver thermal and color stability, and efficient antimicrobial protection in several formulations. Further, it is supported under the EU`s Biocidal Products Regulation (BPR), and the U.S. Environmental Protection Agency has approved its active substances.

More information:
Sanitized AG
Source:

EMG for SANITIZED AG

SABIC SHOWCASES FULL COMPLEMENT OF MARKET LEADING FLUIDS FOR CHINESE AND ASIAN MARKETS AT IESD SHOW, SHANGHAI
23.04.2018

SABIC SHOWCASES FULL COMPLEMENT OF MARKET LEADING FLUIDS FOR CHINESE AND ASIAN MARKETS AT IESD SHOW, SHANGHAI

As a global leader in the chemical industry, SABIC will present its full Fluids product portfolio at IESD, the leading surfactants and detergents show for China and Asia, in Shanghai, April 24 -26.

SABIC Specialties provides high value, technologically advanced chemical derivatives for use in a wide range of applications. Employed as surfactants, detergents, emulsifiers, emollients and thickeners for consumer products ranging from cosmetic and personal care, home care and pharmaceuticals, to industrial products like textiles, paints and coatings. Additionally, these products find their way into industrial uses such as specialty lubricants, crop protection, and oil & gas applications.

As a global leader in the chemical industry, SABIC will present its full Fluids product portfolio at IESD, the leading surfactants and detergents show for China and Asia, in Shanghai, April 24 -26.

SABIC Specialties provides high value, technologically advanced chemical derivatives for use in a wide range of applications. Employed as surfactants, detergents, emulsifiers, emollients and thickeners for consumer products ranging from cosmetic and personal care, home care and pharmaceuticals, to industrial products like textiles, paints and coatings. Additionally, these products find their way into industrial uses such as specialty lubricants, crop protection, and oil & gas applications.

A key aspect of SABIC Specialties Fluids business - not only within China, but for the broader Asia region - is its ability to deliver the added value only a dedicated, local team with stocked inventory and flexible packaging options, can supply. In addition to local team know-how and readiness, SABIC’s Chinese operations are supported by a global team with significant expertise and production facilities around the globe. Focused on creating the right balance of properties and performance to meet the ever-increasing needs of consumers and industry, SABIC works closely with specifiers and formulators to develop vital constituents for game changing products.

At IESD SABIC will be introducing SAPEG 400 PH, its new pharma grade PEG400, conforming to USP-NF monograph and manufactured to EXCiPACT Good Manufacturing Practices of pharmaceutical excipients. It is used in liquid preparations as a viscosity modifier, in ointment and suppository bases as a melting point regulator, moisturizer and lubricant and in the preservation of pathological specimens. It can be used in the manufacturing of creams, lotions, toothpastes and in soaps as a humectant.

“SABIC Specialties has long been a pioneer in developing innovative chemicals and polymers to support the production of the latest and most advanced domestic and industrial applications”, said Eric Jaarda, Senior Manager, Fluids Marketing Global at SABIC Specialties. “We are proud to present some of our most advanced and versatile offerings at this year’s IESD in Shanghai and to demonstrate our commitment to the Chinese and broader Asian market.”

In addition to SAPEG 400 PH, SABIC will also be showcasing the following:

  • Natural Fatty Alcohol (C12-14) Ethoxylates (SABIC® SABICOL L2/L3/L7/L9) - both colorless and odourless, this is a range of versatile non-ionic surfactants. Supplied as liquids or as a paste, they are efficient water in oil emulsifiers and readily biodegradable.
  • Synthetic Alcohol (Isodecyl and Isotridecyl Alcohol) Ethoxylates (SABIC® SABICOL DA5/DA7/TA5/TA6/TA7/TA8/TA9) - a series of fast wetting, low odor and biodegradable non-ionic surfactants.
  • Castor Oil Ethoxylates (SABIC® SABICOL EL30/40/55) - supplied in liquid form or as a paste, they are completely miscible in water and many organic solvents. Non-toxic and non-irritant, they are employed as emulsifiers in both domestic and industrial applications.
  • Polyethyleneglycols (SAPEG200/300/400/600) - consisting of a distribution of polymers of varying molecular weights, these are colorless and odorless liquids. Non-toxic and non-irritant, they are used as humectants, lubricants, solvents and viscosity modifiers in a range of applications.

 

Source:

© 2018 Saudi Basic Industries Corporation (SABIC)

26.02.2018

Hexcel’s Product Innovations for Aerospace, Automotive, Wind Energy and Marine at JEC WORLD 2018

STAMFORD, February 26, 2018 - at JEC World 2018, taking place in Paris March 6-8, Hexcel will display an array of product innovations for customer applications in aerospace, automotive, wind energy and marine markets.
Hexcel’s banner at the exhibit hall entrance features the Airbus H160 helicopter and A350 XWB aircraft, both with carbon fiber livery to acknowledge the high Hexcel composites content in both programs. Hexcel’s reinforcements, prepregs, adhesives and honeycomb materials were selected for the H160’s composite fuselage structures and main rotor blades, contributing to the lightweight fuel-saving design and performance optimization. Airbus has loaned Hexcel an H160 BLUE EDGE blade to display on the booth.

STAMFORD, February 26, 2018 - at JEC World 2018, taking place in Paris March 6-8, Hexcel will display an array of product innovations for customer applications in aerospace, automotive, wind energy and marine markets.
Hexcel’s banner at the exhibit hall entrance features the Airbus H160 helicopter and A350 XWB aircraft, both with carbon fiber livery to acknowledge the high Hexcel composites content in both programs. Hexcel’s reinforcements, prepregs, adhesives and honeycomb materials were selected for the H160’s composite fuselage structures and main rotor blades, contributing to the lightweight fuel-saving design and performance optimization. Airbus has loaned Hexcel an H160 BLUE EDGE blade to display on the booth.

Among the Aerospace promotions at Hexcel’s booth are carbon-reinforced 3D printed parts, made from Hexcel’s HexAM™ additive manufacturing technology that uses PEKK ultra-high performance polymers. Hexcel acquired this technology from Oxford Performance Materials in December 2017 to provide a weight-saving solution for intricate parts in highly demanding aerospace, satellite and defense applications. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts with a new technology.

Aircraft engines benefit from a number of Hexcel technologies that will be promoted at JEC 2018, including HexShield™ honeycomb that provides high temperature resistance in aircraft engine nacelles. By inserting a thermally resistant material into honeycomb cells, Hexcel provides a core product with unique heat-shielding capabilities that allows for the potential re-use of material after a fire event.
Another honeycomb innovation from Hexcel is Acousti-Cap® broadband noise-reducing honeycomb that significantly improves acoustic absorption in aircraft engine nacelles. The acoustic treatment may be positioned at a consistent depth and resistance within the core, or can be placed in a pattern of varying depths and/or resistances (Multi-Degrees of Freedom and 3 Degrees Of Freedom), offering an acoustic liner that is precisely tuned to the engine operating conditions. These technologies have been tested at NASA on a full engine test rig and meet all 16 design conditions without trade-offs. An example of this technology will be on display at JEC 2018.

Rounding off the aircraft engine exhibits is a CTi fan blade for new generation lightweight turbofan engines from Rolls-Royce, manufactured from Hexcel’s HexPly® M91 high toughness and impact-resistant epoxy prepreg. Hexcel supplies HexPly® M91 as slit tape for the automated lay-up of the complex aerodynamic shape, with a constantly changing thickness across the blade length. The blade which is thinner and lighter than titanium fan blades is currently undergoing flight tests.
Hexcel’s HiTape® and HiMax™ dry carbon reinforcements that were developed for the automated lay-up of preforms for resin-infused aerospace structures will be promoted at the show. Two demonstrator parts, one made with HiMax™ and one with HiTape®, were both infused with HexFlow® RTM6 resin to demonstrate the potential benefits of an integrated design for aircraft skins, spars and stiffeners that meets OEM requirements for production rate increases and cost effectiveness.

Hexcel is also introducing its new range of HiFlow™ advanced liquid resins for aerospace structures manufactured by liquid molding technologies. Based on novel proprietary chemistry, the new resin family will enhance the performance of composites and ease processing when combined with HiTape® and HiMax™ dry carbon reinforcements. HiFlow™ HF610 is the first resin in the range.
Hexcel’s range of high performance adhesives has expanded considerably following the company’s acquisition of Structil last October. Hexcel is relaunching the acquired products under the new HexBond™ brand name at JEC World. This fast-growing range of pastes, liquid shim and film adhesives has a wide spectrum of operating temperatures and is in qualification with a large number of aerospace and industrial OEMs.
In the Planet Aerospace area at JEC, Daher and Hexcel will jointly display an aircraft spar manufactured from HexPly® M56 prepreg. Hexcel’s Neil Parker and Daher R&T Director Dominique Bailly will give a joint presentation focusing on the materials used and the benefits for the finished part. The aircraft spar was designed and manufactured by Daher using Hexcel’s HexPly® M56 prepreg, in slit tape format, that was developed for automated deposition and out-of-autoclave curing. The spar was manufactured using only the vacuum bag process and demonstrates very low porosity levels. It is currently undergoing testing and validation through CORAC funding.

Hexcel’s Automotive promotions at JEC World 2018 include a new prepreg for composite leaf springs, HexPly® M901. In contrast to steel leaf springs used for suspension on vans, trucks and SUVs, newer composite versions offer many advantages including weight savings of up to 70%, high corrosion resistance, optimized system integration and superior performance. Hexcel’s HexPly® M901 prepreg raises the bar further, reducing mold cure time below 15 minutes, a 50% reduction compared to standard industrial prepregs. HexPly® M901 provides 15% higher mechanical performance, with enhanced fatigue properties. It also operates at high temperatures, providing a Tg of up to 200°C following a post cure. Hexcel’s expertise in manufacturing heavy weight glass UD prepregs, with fiber areal weights of up to 1600gsm, allows the company to offer a highly cost-competitive solution for the rapid manufacture of these safety critical components.

Hexcel is constantly seeking ways to ensure that customers obtain the maximum benefit from composites and has recently acquired state-of-the-art simulation technology that accurately predicts how HiMax™ non-crimp fabrics will drape in a mold. Working in collaboration with Nottingham University Hexcel has created a car seat shell, for which the material selection was optimized using this new drape simulation technology. Visitors to Hexcel’s stand at JEC will see an on-screen demonstration that illustrates how the simulation tool operates, predicting process and performance and ensuring that the optimum fabric architecture is quickly identified, reducing the need for expensive trial programs.
Hexcel’s HexMC®-i 2000 carbon fiber/epoxy molding compound has been successfully used by Audi to manufacture a high-performance engine cross brace. HexMC®-i is a fast curing high-performance molding material, suitable for the series production of complex shaped parts and providing excellent mechanical properties. The Audi cross brace covers the engine, providing torsional stiffness for enhanced drive dynamics.

Hexcel’s product offering for customers in the Marine industry has expanded following the acquisition of Formax in 2016 and Structil in 2017. At JEC World, Hexcel will promote its enhanced portfolio of carbon fibers, prepregs, woven reinforcements and multiaxial fabrics for builders of racing catamarans and luxury yachts.
Marine customers have supplied a number of parts for display to illustrate their expertise in manufacturing composite structures from Hexcel materials. These include part of a Diam 24 yacht mast made by ADH Inotec from Hexcel’s HexPly® M79 fast curing, low temperature cure prepreg. ADH Inotec purchased the prepreg from Composites Distribution, a Hexcel Official Distributor that also supplied HexPly® M9.6 prepreg to Lorima for the Outremer 5X catamaran mast section on display. Part of Lorima’s 42m wing mast for a multihull racing boat made with HexPly® prepreg from Vert-Le-Petit (formerly Structil) will complete the marine display.

Hexcel’s innovations for Wind Energy include Polyspeed® pultruded laminates for load-carrying elements in wind blades. These continuous cross-section profiles, made from a polyurethane matrix reinforced with unidirectional carbon fiber, provide consistently high mechanical properties, including high stiffness, fracture toughness and shear strength, combined with low weight and durability. Visitors to Hexcel’s stand will see a 2m diameter coil of pultruded carbon laminate that contains 255m of material in a single roll. This technology offers an economical way of reinforcing large-scale composite structures such as wind turbine blades. Hexcel will also launch its surface finishing prepreg for wind turbine blades and components. This provides a tough, durable and ready-to-paint blade surface without the use of gel coat and results in faster blade manufacture, saving time in production and reducing material costs. The benefits of the new surfacing prepreg will be demonstrated via a wind blade exhibit that has been given four different treatments across the blade surface. These include a section with gel coat, a section of standard prepreg without gel coat, and a section where a fleece has been added to improve surface quality but still requires preparation before painting due to pin holes. The final section made with new HexPly® XF2P surfacing prepreg has a ready-to-paint surface, straight from the mold, without any requirement for gel coat, fleece or finishing operations.

More information:
Hexcel JEC World 2018 Aircraft
Source:

Dorothée DAVID & Marion RISCH, AGENCE APOCOPE