From the Sector

Reset
1 result
Foto: Freudenberg Performance Materials
11.08.2022

Freudenberg Friction Inserts at WindEnergy Hamburg 2022

Freudenberg Performance Materials is introducing Freudenberg Friction Inserts to trade visitors at WindEnergy, the leading trade fair for the international wind energy industry. Freudenberg Friction Inserts is a unique technology aimed at increasing the power density of wind turbines.

The Freudenberg Friction Inserts (FFI) technology is based on a special very thin nonwoven carrier material coated on one side with hard particles. The FFI are customized to fit each application, in terms of both the geometry and the construction parameters of the connection. As they do not create a gap they can be applied exactly where they are needed.

When placed in the joint, these hard particles penetrate into the surfaces of the two joining parts creating a micro interlock, thus reliably increasing the friction coefficient and achieving higher torque transmission in connections. This results in higher performance and a significant improvement in the efficiency of wind turbines. In addition, it enables the downsizing of components without compromising performance, reducing weight and material.

Freudenberg Performance Materials is introducing Freudenberg Friction Inserts to trade visitors at WindEnergy, the leading trade fair for the international wind energy industry. Freudenberg Friction Inserts is a unique technology aimed at increasing the power density of wind turbines.

The Freudenberg Friction Inserts (FFI) technology is based on a special very thin nonwoven carrier material coated on one side with hard particles. The FFI are customized to fit each application, in terms of both the geometry and the construction parameters of the connection. As they do not create a gap they can be applied exactly where they are needed.

When placed in the joint, these hard particles penetrate into the surfaces of the two joining parts creating a micro interlock, thus reliably increasing the friction coefficient and achieving higher torque transmission in connections. This results in higher performance and a significant improvement in the efficiency of wind turbines. In addition, it enables the downsizing of components without compromising performance, reducing weight and material.

FFI help to improve the reliability of connections and thus of the entire wind turbine. Furthermore, they eliminate slipping and prevent fretting of connections.

Other examples of applications for FFI are highly loaded flange connections between the rotor shaft and gearbox, connections between the main bearing and the machine carrier housing, the gearbox to generator, or at the pitch gear or ring gear. They increase the friction co-efficient between two components.

Source:

Freudenberg Performance Materials