From the Sector

Reset
4 results
08.11.2023

Hexcel showcases new fiber HexPly® M79 Prepregs at METSTRADE 2023

Hexcel will continue to celebrate its 75th anniversary and highlight its latest developments for the Marine market at METSTRADE 2023 on November 15-17. Hexcel will showcase innovative advanced lightweight material technologies including new intermediate and high modulus fiber HexPly® M79 prepregs and present example high-performance superyacht and windship components developed by customers using Hexcel materials.

The new intermediate modulus prepreg combines the low temperature curing and simple processing of the DNV GL accredited HexPly M79 resin system with the market-leading stiffness of HexTow® IM2C fiber, creating a uniquely optimized composite material for highly loaded components. Originally developed to provide best-in-class performance for America’s Cup and IMOCA hull and deck structures, the new combination minimizes structural deformation under load in parts such as rigs, foils, and other appendages.

Hexcel will continue to celebrate its 75th anniversary and highlight its latest developments for the Marine market at METSTRADE 2023 on November 15-17. Hexcel will showcase innovative advanced lightweight material technologies including new intermediate and high modulus fiber HexPly® M79 prepregs and present example high-performance superyacht and windship components developed by customers using Hexcel materials.

The new intermediate modulus prepreg combines the low temperature curing and simple processing of the DNV GL accredited HexPly M79 resin system with the market-leading stiffness of HexTow® IM2C fiber, creating a uniquely optimized composite material for highly loaded components. Originally developed to provide best-in-class performance for America’s Cup and IMOCA hull and deck structures, the new combination minimizes structural deformation under load in parts such as rigs, foils, and other appendages.

For a high modulus solution, HexTow® HM54 fiber is also now available with the HexPly M79 resin system. The unique mechanical properties of HexTow HM54 fiber allow structural designers to achieve higher safety margins for both stiffness and strength critical applications. Both products can be manufactured with Hexcel G-Vent technology for out-of-autoclave processing, delivering a reduction in process time and cost without compromising mechanical performance.

Hexcel will also display customer products that have benefited from the performance and processing gains provided by HexPly materials. A section of a Solid Sail mast made using Bureau Veritas (BV)-approved HexPly® M9.6 prepregs will be exhibited at METS. Such masts are used for wind propulsion and, by harnessing the power of ocean winds, they reduce reliance on engines, reducing fuel usage and emissions.

Visitors to the Hexcel booth will also see a section of a radar arch part from luxury motor yacht builder Sunseeker made using HexPly® XF surfacing technology and HexPly® SuperFIT semi-pregs. The part is lighter in weight and stiffer than versions made using resin-infusion processes and de-molds with a pinhole-free surface that needs minimal preparation to be ready for painting. Sunseeker has recorded an overall reduction in process time and material costs of around 30% against traditional prepreg parts, using Hexcel composite materials.

Source:

Hexcel

05.06.2023

Resource-efficient dyeing solutions for sustainable PA fibers

CHT and Fulgar have collaborated to support the goal of reducing the carbon footprint with an effective and sustainable solution for the textile market.

Combining FULGAR’s circular economy ready yarns with CHT’s resource-saving dyeing techniques significantly reduces the usage of natural resources and leads to lower environmental impact and ultimately a lower carbon footprint. The combined process needs less water, uses less energy, and saves time while meeting the color fastness standards for finished textile products.

The combination of 100 % biobased polyamide EVO® by FULGAR yarns with CHT sustainable dyeing application can save water up to 64 %, energy use up to 50 % and process time up to 50 %, when compared to standard dyeing processes. Sustainable dyeing of EVO® is promoted using CHT’s soy-based dyeing auxiliary SARABID TS 300. SARABID TS 300 has accredited a C2C Certified Material Health Certificate at Gold level and USDA Certified Biobased Product Certification.

CHT and Fulgar have collaborated to support the goal of reducing the carbon footprint with an effective and sustainable solution for the textile market.

Combining FULGAR’s circular economy ready yarns with CHT’s resource-saving dyeing techniques significantly reduces the usage of natural resources and leads to lower environmental impact and ultimately a lower carbon footprint. The combined process needs less water, uses less energy, and saves time while meeting the color fastness standards for finished textile products.

The combination of 100 % biobased polyamide EVO® by FULGAR yarns with CHT sustainable dyeing application can save water up to 64 %, energy use up to 50 % and process time up to 50 %, when compared to standard dyeing processes. Sustainable dyeing of EVO® is promoted using CHT’s soy-based dyeing auxiliary SARABID TS 300. SARABID TS 300 has accredited a C2C Certified Material Health Certificate at Gold level and USDA Certified Biobased Product Certification.

EVO® by FULGAR, the totally renewable yarn based on castor plants, does not require high amounts of water - 4 times less compared to cotton. In addition to the sustainable aspect, EVO® by FULGAR offers characteristics like lower fiber weight, particular moisture management and higher stretch often without the need for elastomer fiber. This helps to avoid material mixes for better recycling opportunities. EVO® provides greater user comfort, mainly for performance and casual apparel.

More information:
CHT Evo by Fulgar Fulgar
Source:

CHT Germany GmbH

(c) POLARYSE
18.11.2022

Grand Largue Composites and Sicomin enable flax-fibre-built Racing Yacht

Fibres, fabrics, epoxy resins and adhesives from Sicomin have been used by Grand Largue Composites (GLC) to construct the first Class40 racing yacht to feature a significant quantity of flax-fibre reinforcements.
The yacht, called Crosscall, won the Class40 World Championships in June 2022 and is a prototype of the new Lift V2 design by Marc Lombard, one of the leading naval architects in this field.

Class40 is one of the most competitive fleets in yacht racing. The hulls of Class40 yachts must be light in weight, strong and stiff, and durable in the most extreme of conditions. Furthermore, to keep costs down, they cannot be reinforced with carbon fibres. The quality and reliability of the resins used for the infusion and lamination of the hulls are therefore of paramount importance.

Fibres, fabrics, epoxy resins and adhesives from Sicomin have been used by Grand Largue Composites (GLC) to construct the first Class40 racing yacht to feature a significant quantity of flax-fibre reinforcements.
The yacht, called Crosscall, won the Class40 World Championships in June 2022 and is a prototype of the new Lift V2 design by Marc Lombard, one of the leading naval architects in this field.

Class40 is one of the most competitive fleets in yacht racing. The hulls of Class40 yachts must be light in weight, strong and stiff, and durable in the most extreme of conditions. Furthermore, to keep costs down, they cannot be reinforced with carbon fibres. The quality and reliability of the resins used for the infusion and lamination of the hulls are therefore of paramount importance.

Crosscall's cockpit was designed to be effectively non-structural, with the mainsheet, which can generate huge shock loads, supported separately. This would allow the cockpit to be made from a hybrid biaxial fabric comprising 50% flax fibres. Other parts of the boat that incorporate flax fibre include the tunnel, the engine cover, the ballast tanks and the cap. The rest of the boat is reinforced with 100% glass-fibre fabrics.

To help it realise this ambitious design, GLC, an infusion specialist, turned to its long-time material supplier, Sicomin. The hull was moulded and infused in one piece and the deck – including the hybrid flax-fibre cockpit – was also infused as a single part. The internal structure was then laminated into the hull by hand before the hull and deck were finally bonded together.

The infusion resin selected was Sicomin’s SR 1710, a high-modulus structural epoxy. Designed specifically for use in infusion and injection processes, it has exceptionally low viscosity and its low-reactivity hardener makes it suitable for the production of large parts. Composites components made from SR 1710 possess high interlaminar shear-strength and the resin retains its mechanical properties in wet environments.

Sicomin’s low-toxicity SR 8200 was used to laminate the internal structures onto the skin of the hull. Ideal for hand laminating, this system includes a choice of hardeners with a wide range of reactivities, which makes it equally suitable for making large or small parts. The hull and deck were joined together with Sicomin’s Isobond SR 7100, which demonstrates high fatigue strength and is very resistant to microcracking.

An epoxy bonding primer – called Undercoat EP 215 HB+ and supplied by Sicomin’s sister company, Map Yachting – was applied to the moulds first to make demoulding easier. It also serves as an undercoat in the polyurethane exterior paint system that is used instead of gelcoat to protect the epoxy hull from UV damage.

Since the launch of Crosscall, GLC has started building a second Lift V2 Class40 and a third one is now planned, both for which Sicomin will supply the materials.

Source:

Sicomin / 100% Marketing

16.11.2022

CHT: From plastic waste to textile finishing: ARRISTAN rAIR

  • made out of recycled PET flakes and recyclable again
  • suited for finishing recycled yarns and fabrics
  • moisture management in sports and active wear

For the sustainable use of resources, the CHT Group has developed the product ARRISTAN rAIR, according to the principles of the circular economy. Here, plastic waste is converted into a valuable textile finishing product to achieve, for example, optimal moisture management in sports and active wear. Other areas of application include socks and tights in the clothing sector, filtration media and nonwovens in the technical textiles sector, and pillows and curtains in home textiles.

Since ARRISTAN rAIR is made out of recycled PET flakes, it is suited for finishing recycled yarns and fabrics which are subsequently recyclable again.

The hydrophilizing agent ARRISTAN rAIR is characterized by its fast-drying properties in combination with excellent soil release and thermoregulation. It therefore offers, especially in the field of functional textiles, optimal functionalities for high-quality and durable sportswear.

  • made out of recycled PET flakes and recyclable again
  • suited for finishing recycled yarns and fabrics
  • moisture management in sports and active wear

For the sustainable use of resources, the CHT Group has developed the product ARRISTAN rAIR, according to the principles of the circular economy. Here, plastic waste is converted into a valuable textile finishing product to achieve, for example, optimal moisture management in sports and active wear. Other areas of application include socks and tights in the clothing sector, filtration media and nonwovens in the technical textiles sector, and pillows and curtains in home textiles.

Since ARRISTAN rAIR is made out of recycled PET flakes, it is suited for finishing recycled yarns and fabrics which are subsequently recyclable again.

The hydrophilizing agent ARRISTAN rAIR is characterized by its fast-drying properties in combination with excellent soil release and thermoregulation. It therefore offers, especially in the field of functional textiles, optimal functionalities for high-quality and durable sportswear.

Source:

CHT Germany GmbH