From the Sector

Reset
75 results
(c) ARMALITH®
13.01.2022

Armalith presents Armalith 2.0® and its portfolio

«Armalith® is the story of my passions. Firstly textiles, which opened the doors to the great ready-to-wear and haute couture houses. Then motorcycling, an incredible vehicle for finding freedom and meeting people. In 2003, I combined these two passions by creating Armalith® with one idea in mind: to offer the best possible protection to bikers without compromising on the comfort and authenticity of a real pair of jeans. Today, Armalith 2.0® is the denim of choice for the most prestigious brands for their abrasion protection equipment.» Pierre-Henry Servajean, Armalith® MK Support manager.

Armalith 2.0 in facts:

«Armalith® is the story of my passions. Firstly textiles, which opened the doors to the great ready-to-wear and haute couture houses. Then motorcycling, an incredible vehicle for finding freedom and meeting people. In 2003, I combined these two passions by creating Armalith® with one idea in mind: to offer the best possible protection to bikers without compromising on the comfort and authenticity of a real pair of jeans. Today, Armalith 2.0® is the denim of choice for the most prestigious brands for their abrasion protection equipment.» Pierre-Henry Servajean, Armalith® MK Support manager.

Armalith 2.0 in facts:

  • The mechanical qualities of leather with the comfort of denim
  • Extreme resistance to cuts, traction, tears and abrasion
  • High UV resistance that preserves its mechanical properties
  • One layer for resistance that is superior to any lined products

High technology for high security
The heart of the armour is made of UHMWPE (high molecular weight polyethylene). This high resistance fiber comes from aerospace research; it is used for space module re-entry ropes, military armour, mooring cables for offshore platforms and more. This core is then covered with a cotton fiber using an exclusive and patented process, and combined with LYCRA® dualFX® technology for a powerful and durable stretch.

High resistance for high protection
High-tech integrated into authentic denim for unique comfort and protection, Armalith 2.0® meets the most demanding standards such as Darmstadt and Cambridge, which are more scientific than the CE certification.
Armalith 2.0® is available in 3 grades - A, AA and AAA - to cover all needs from urban use to maximum protection against abrasion. In its EXO (KNIT) form, Armalith 2.0® can be used as a lining to increase resistance in specific areas without using other uncomfortable solutions.

High comfort for high style
Safety in a single layer of fabric, comfort, softness, stretchability, and style! Armalith 2.0® is a real denim. Soft, supple, comfortable, breathable and hydrophilic, it allows all the usual textures, dyes, prints and finishing in low temperatures.

Armalith 2.0® is an ethical and responsible denim

  • GRS cotton sourced from Greece.
  • Designed in France, manufactured and produced on a single site - spinning, dyeing, indigo, weaving, finishing - at Tejidos Royo in Spain.
  • UHMWPE fibre requires half the energy to produce than aramids.
  • The UHMWPE fibre used under the ARMALITH 2.0® patent is continuous (no energy-intensive cracking) and untextured (no energy-intensive texturing).
  • All Armalith 2.0® denim manufacturing processes are carried out at low temperatures: a world first for stretch fabrics.
  • No heavy metals used in the pigments, the indigo is made using a slow, cold, waterless process
  • Resistant to more than a thousand washes for greater longevity and without loss of elasticity.
More information:
Armalith Denim Leather stretch fabric
Source:

ARMALITH® / VIA VENETO

12.01.2022

Cellulose fibres strengthen networks: Industry meets in Cologne, Germany, and online

Strict protective measures will make the industry meeting possible at the International Conference on Cellulose Fibres in Cologne on February 2 and 3, 2022. The latest innovations will be shocased: from hygiene and textiles to non-wovens and carbon fibre alternatives to lightweight construction applications. Online participation is also possible.

Cellulose fibres show an increasingly expanding wide range of applications, while at the same time markets are driven by technological developments and political framework conditions, especially bans and restrictions on plastics and increasing sustainability requirements. The conference provides rich information on opportunities for cellulose fibres through policy assessment, a session on sustainability, recycling and alternative feedstocks as well as latest development in pulp, cellulose fibres and yarns. This includes application such as non-wovens, packaging and composites.

Strict protective measures will make the industry meeting possible at the International Conference on Cellulose Fibres in Cologne on February 2 and 3, 2022. The latest innovations will be shocased: from hygiene and textiles to non-wovens and carbon fibre alternatives to lightweight construction applications. Online participation is also possible.

Cellulose fibres show an increasingly expanding wide range of applications, while at the same time markets are driven by technological developments and political framework conditions, especially bans and restrictions on plastics and increasing sustainability requirements. The conference provides rich information on opportunities for cellulose fibres through policy assessment, a session on sustainability, recycling and alternative feedstocks as well as latest development in pulp, cellulose fibres and yarns. This includes application such as non-wovens, packaging and composites.

Live at the conference, host nova-Institute and sponsor GIG Karasek GmbH will grand the “Cellulose Fibre Innovation of the Year” award to one of six highly interesting products, ranging from cellulose made of orange and wood pulp to a novel technology for cellulose fibre production. The presentations, election of the winner by the conference audience and the award ceremony will take place on the first day of the conference.

The conference sessions reflect the current topics of industry and research. “Strategies and Market Trends” provides an overview of the rapid development of cellulose fibres and their technological progress across the fibre market. An analysis of the key cost components of these fibres to benchmark against current cost levels will highlight future opportunities and challenges for novel textile fibres. The session will conclude with an overview of the industry's recent strategies to defossilize the fibre market.

The session “New Opportunities for Cellulose Fibres in Replacing Plastics”, focusses on questions such as: “What impact does the ban on plastics in single-use products have on the industry?” and “What are the latest regulatory issues and policy opportunities for cellulose fibres?”. This part of the conference presents new opportunities for the replacement of fossil-based insulating materials with cellulose-based technologies suitable for use in a variety of applications, from aerospace to mobility and construction.
Institutefor Ecology and Innovation

“Sustainability and Circular Economy” highlights crucial issues with regard to the overall goal of keeping the environmental impact of cellulose fibres low. A core theme of the session is the responsible use of wood and forests. With this objective, the five speakers discuss the importance of circular concepts for cellulose feedstocks. Exciting insights into the important “Hot Button Report” are offered by Canopy. The “Hot Button” report enables the producers of cellulose fibres to better understand the impact their raw materials have on forests and the climate development worldwide.

The full conference programme is available at www.cellulose-fibres.eu/program.

Source:

nova-Institut GmbH

New Opportunities for Cellulose Fibres in Replacing Plastics (c) nova-Institut
Nicolas Hark - nova-Institut (DE)
08.12.2021

New Opportunities for Cellulose Fibres in Replacing Plastics

  • Second Session of the International Conference on Cellulose Fibres 2022

Cellulose fibers are a true material miracle as they offer a steadily expanding, broad range of applications. Meanwhile markets are driven by technological developments and policy frameworks, especially bans and restrictions on plastics, as well as an increasing number of sustainability requirements. The  presentations will provide valuable information on the various use-opportunities for cellulosic fibers through a policy overview, a special session on sustainability, recycling and alternative feedstocks, as well as the latest developments in pulp, cellulosic fibers and yarns. In addition, examples of non-wovens, packaging and composites will offer a look beyond the horizon of conventional application fields.

  • Second Session of the International Conference on Cellulose Fibres 2022

Cellulose fibers are a true material miracle as they offer a steadily expanding, broad range of applications. Meanwhile markets are driven by technological developments and policy frameworks, especially bans and restrictions on plastics, as well as an increasing number of sustainability requirements. The  presentations will provide valuable information on the various use-opportunities for cellulosic fibers through a policy overview, a special session on sustainability, recycling and alternative feedstocks, as well as the latest developments in pulp, cellulosic fibers and yarns. In addition, examples of non-wovens, packaging and composites will offer a look beyond the horizon of conventional application fields.

The second session of the conference: "New Opportunities for Cellulose Fibres in Replacing Plastics", will focus on questions such as: "What is the impact of the ban on plastics on single-use products?" and "What are the latest regulatory issues and policy opportunities for cellulose fibres?".  This section presents new opportunities for replacing fossil-based insulating materials with cellulose-based technologies that can be used for a variety of applications, from aerospace to mobility, as well as in construction. For the program just click here.

Speakers of the Session "New Opportunities for Cellulose Fibres in Replacing Plastics":

  • Nicolas Hark - nova-Institut (DE): Opportunities in Policy for Cellulose Fibres
  • Paula Martirez - Stora Enso (SE): Last years Winner Papira® – an Eco-revolution in Foam Packaging
  • Stefanie Schlager - Lenzing (AT): LENZING™ Fibres for Sustainable Single use Products
  • Sascha Schriever - Institut für Textiltechnik der RWTH Aachen University (DE): Cellulose Aerogel Non-wovens – Sustainable Insulators of Tomorrow
(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
24.11.2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – presents its Innovation Awards 2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

Category “Research and Science”
First place in the “Research and Science” category was awarded to the German Aerospace Center (DLR) for its Bondline Control Technology (BCT). This innovative process is used for quality control and assurance of bonded joints. The core element is a porous fabric which is applied to a joining surface using an epoxy adhesive or matrix resin. Peeling away the fabric creates a chemically reactive and undercut surface and can also be used as a test to check adhesion to the substrate. BCT has potential in a variety of possible applications. For example, peel ply can be replaced by BCT fabric to produce composite components with an optimised joining surface. The cost-effective BCT peel test is suitable for coupon testing and process control. In addition, the combined adhesion test and surface pre-treatment can be used for quality assurance of bonded repairs on fibre composite structures.

Second place was taken by the Institute of Textile Technology (ITA) at RWTH Aachen University and its partners AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR with “StoneBlade – Lightweight construction with granite for the wind industry”. This innovation enables manufacturers to reduce the amount of non-recyclable materials used in rotor blade construction. At the same time, it reduces the weight of these components and improves the mechanical properties relating to the stability of wind turbines. The innovative approach replaces glass-fibre reinforced plastic in the blade components with hard rock – a natural, cost-effective and recyclable lightweight material. The slabs of rock are cut and ground to a thickness of just a few millimetres and embedded in a fibre composite laminate with carbon fibre, which stabilises them for alternating load cases. The pre-stressed material is pressure-stable in the composite and can absorb tensile forces in the event of continuously alternating loads without any loss of stiffness.

Third place went to the Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK) with its partner Mercedes Benz AG for the interdisciplinary development of a highly integrated inductive charging module for electric vehicles. The ultra-thin charging module was designed to make optimum use of space in the vehicle underbody without reducing ground clearance. An interdisciplinary approach was adopted for the development process. This involved the electrical, mechanical and process characterisation of high-frequency Litz wires, ferromagnetic foil and metal wire cloth as well as the creation of a simulation model. The result is a demonstrator for a charging system with a structural height of 15 mm and a total weight of 8 kg. It achieves a transmission efficiency of up to 92 percent at 7.2 kW nominal power and active air cooling. The hardware demonstrator was fabricated in a 3-step process using RTM and VARI techniques.

Overview of all the winners in the three categories:
Category “Innovative Products/Applications”
1st Place: “Traffic signs from Nabasco (N-BMC)” – Nabasco Products BV and Lorenz Kunststofftechnik GmbH, partners: Pol Heteren BV and NPSP BV
2nd Place: “Novel, ultratough vinyl ester resin for the construction of large marine vessels” Evonik Operations GmbH
3rd Place: “Air intake housing with a multi-material design for gas turbines” – MAN Energy Solutions SE, Leichtbau-Zentrum Sachsen GmbH and Leichtbau-Systemtechnologien KORROPOL GmbH.
Category “Innovative Processes”
1st Place: “In-mould wrapping” off-tool, film-coated, fibre composite components for exterior applications – BMW Group, Partner: Renolit SE
2nd Place: “Adaptive automated repair of composite structural components in the aviation sector” – Lufthansa Technik AG, Partner: iSAM AG
3rd Place: “Automated surface pre-treatment using VUV excimer lamps” – CTC GmbH
Category “Research and Science”
1st Place: “Bondline Control Technology (BCT)” – German Aerospace Center (DLR)
2nd Place: “StoneBlade – Lightweight construction with granite for the wind industry” – Institute of Textile Technology at RWTH Aachen University, Partners: AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR
3rd Place: “Interdisciplinary development of a highly integrated inductive charging module for electric vehicles” – Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK), Partner: Mercedes Benz AG

Submissions for the next Innovation Award can be made from the end of January 2022.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

With the "SmartTex" shirt, astronauts can wear the necessary sensors comfortably on their bodies. © DLR
SmartTex Shirt
27.10.2021

Research for cosmic missions: SmartTex provides data on vital functions

It looks like a normal shirt, but it has it all: The new SmartTex shirt uses integrated sensors to transfer physiological data from astronauts to Earth via a wireless communication network. In this way, the effects of the space environment on the human cardiovascular system will be evaluated and documented, especially with regard to long-term manned space missions. Developed by the German Aerospace Center (DLR) in cooperation with DSI Aerospace Technology, the Medical Faculty of Bielefeld University and textile research partner Hohenstein, SmartTex will be tested for the first time as part of the Wireless Compose-2 (WICO2) project by German ESA astronaut Dr. Matthias Maurer, who will leave for his ‘Cosmic Kiss’ mission on the International Space Station (ISS) for six months on October 30, 2021.

It looks like a normal shirt, but it has it all: The new SmartTex shirt uses integrated sensors to transfer physiological data from astronauts to Earth via a wireless communication network. In this way, the effects of the space environment on the human cardiovascular system will be evaluated and documented, especially with regard to long-term manned space missions. Developed by the German Aerospace Center (DLR) in cooperation with DSI Aerospace Technology, the Medical Faculty of Bielefeld University and textile research partner Hohenstein, SmartTex will be tested for the first time as part of the Wireless Compose-2 (WICO2) project by German ESA astronaut Dr. Matthias Maurer, who will leave for his ‘Cosmic Kiss’ mission on the International Space Station (ISS) for six months on October 30, 2021.

"We were already able to gain valuable insights into the interaction of the body, clothing and climate under microgravity conditions during the previous projects Spacetex (2014) and Spacetex2 (2018)," explains Hohenstein Senior Scientific Expert Dr. Jan Beringer. The insights provided at the time by the mission of ESA astronaut Dr. Alexander Gerst have now been directly incorporated into the development of the new SmartTex shirt at Hohenstein. "Matthias Maurer can wear his tailor-made shirt comfortably on his body during his everyday work on the International Space Station. For this, we used his body measurements as the basis for our cut development and the production of the shirt. We integrated the necessary sensors as well as data processing and communication modules into the shirt's cut in such a way that they interfere as little as possible and are always positioned in the right place, regardless of the wearing situation. This is the prerequisite for reliably measuring the relevant physiological data." The SmartTex shirt is intended to provide a continuous picture of the vital functions of astronauts. This will be particularly relevant for future long-term manned space missions to the Moon and Mars.

For example, during the BEAT experiment (Ballistocardiography for Extraterrestrial Applications and long-Term missions), Matthias Maurer will be the first astronaut to wear a T-shirt equipped with sensors that measure his ballistocardiographic data such as pulse and relative blood pressure. For this purpose, the sensors were calibrated in the :envihab research facility at the DLR Institute of Aerospace Medicine in Cologne. Details on the contraction rate and opening and closing times of the heart valves, which are normally only accessible via sonography or computer tomography, can also be read from the data material. The goal is to study the effects of the space environment on the human cardiovascular system. To be able to analyse these effects realistically, Matthias Maurer's ballistocardiographic data will be recorded before, during and after his stay on the ISS. For the future, a technology transfer of the SmartTex shirt for application in the field of fitness or even in telemedicine is conceivable.

Wireless Compose-2 (WICO2)
The project was planned and prepared by the German Aerospace Center (DLR) and its cooperation partners DSI Aerospace Technology, Hohenstein and the University of Bielefeld. The wireless communication network reads sensor data and can determine the position of people and objects in space by propagation times of radio pulses. It is also available as a platform for several experiments on the ISS. The determined data is temporarily stored within the network and read out at regular intervals by the astronauts. These data packets are then transferred to Earth via the ISS link and analysed by the research teams. It can generate its own energy from artificial light sources via solar cells.

 

 

ESA astronaut Dr. Matthias Maurer in summer 2021 during preliminary talks on the Cosmic Kiss mission in DLR's :envihab in Cologne. © DLR


Sensors measure physiological data during a test run on Earth. © DLR


With the "SmartTex" shirt, astronauts can wear the necessary sensors comfortably on their bodies. © DLR

Dr. Jan Beringer, Hohenstein Senior Scientific Expert. © Hohenstein

27.10.2021

JEC Korea 2021 co-located with Carbon Korea via JEC Korea Connect

From November 3-5, 2021, JEC Korea 2021 will be held at the COEX and online, via JEC Korea Connect, simultaneously with the first edition of Carbon Korea. Due to the COVID situation, for its 14th edition and 4th time in Seoul, JEC KOREA will bring together exhibitors and attendees in one single hall for both exhibiting companies and conferences, and in a hybrid format with JEC Korea Connect, including digital booths and conferences in livestreaming, to better network and share knowledge.

More than 50 domestic and foreign industry representatives will exhibit in Seoul and online during three days, among which: Hyosung, Toray Korea, Jeollabuk-do pavilion, Leresche, Pinette, MFtech of France, ZSK of Germany, HOS-TECHNIK of Austria. Through this, the entire value chain of composite materials, including large companies as well as small and medium-sized enterprises, gather in one place to showcase their latest technologies and innovations.

From November 3-5, 2021, JEC Korea 2021 will be held at the COEX and online, via JEC Korea Connect, simultaneously with the first edition of Carbon Korea. Due to the COVID situation, for its 14th edition and 4th time in Seoul, JEC KOREA will bring together exhibitors and attendees in one single hall for both exhibiting companies and conferences, and in a hybrid format with JEC Korea Connect, including digital booths and conferences in livestreaming, to better network and share knowledge.

More than 50 domestic and foreign industry representatives will exhibit in Seoul and online during three days, among which: Hyosung, Toray Korea, Jeollabuk-do pavilion, Leresche, Pinette, MFtech of France, ZSK of Germany, HOS-TECHNIK of Austria. Through this, the entire value chain of composite materials, including large companies as well as small and medium-sized enterprises, gather in one place to showcase their latest technologies and innovations.

JEC KOREA Technical Conference + ICF International Carbon Festival will unite 20 global speakers
for 3 days at the core of the event, as well as online through JEC Korea Connect, improving the composites skills of all attendees. It will be an exchange of technical market trends and innovation under the themes of:

  • New Energy / hydrogen and carbon
  • Smart Manufacturing
  • New mobility and aerospace
Source:

JEC Group

19.10.2021

Teijin to boost Heat-Resistant Carbon Fiber Prepreg Production

Teijin Limited announced today that its carbon fiber subsidiary Renegade Materials Corporation, a leading U.S.-based supplier of highly heat-resistant thermoset prepregs, resins and adhesives for the aerospace industry, will expand its prepreg production by 2.5 times approximately. The increased capacity, which aligns with Renegade’s capacity expansion strategy at the Miamisburg, Ohio location, is the result of a USD 4 million investment made in December 2019 and the construction was started in March 2020. Operation of the new production lines will commence January 2022.

Renegade Materials' heat-resistant thermoset prepregs, resins and adhesives are well trusted by U.S. and European aircraft manufacturers and aircraft engine suppliers.

Renegade Materials will showcase its high heat-resistant thermoset prepreg at the Composites and Advanced Materials Expo (CAMX), one of the largest, most comprehensive composites and advanced materials event in North America, at the Dallas Convention Center in Dallas, Texas, from October 19 to 21.

Teijin Limited announced today that its carbon fiber subsidiary Renegade Materials Corporation, a leading U.S.-based supplier of highly heat-resistant thermoset prepregs, resins and adhesives for the aerospace industry, will expand its prepreg production by 2.5 times approximately. The increased capacity, which aligns with Renegade’s capacity expansion strategy at the Miamisburg, Ohio location, is the result of a USD 4 million investment made in December 2019 and the construction was started in March 2020. Operation of the new production lines will commence January 2022.

Renegade Materials' heat-resistant thermoset prepregs, resins and adhesives are well trusted by U.S. and European aircraft manufacturers and aircraft engine suppliers.

Renegade Materials will showcase its high heat-resistant thermoset prepreg at the Composites and Advanced Materials Expo (CAMX), one of the largest, most comprehensive composites and advanced materials event in North America, at the Dallas Convention Center in Dallas, Texas, from October 19 to 21.

Source:

Teijin Carbon Europe GmbH

14.10.2021

Monforts: Automated finishing at Knopf’s Sohn

Knopf’s Sohn, a contract finisher of technical textiles, has installed a fully automated Montex stenter at its plant in Helmbrechts, Germany.
Knopf’s Sohn is processing technical textiles for the automotive, aerospace, home furnishings and workwear markets, based on wool, cellulose, polyamide and polyester fabrics, along with elastane blends, in weights of 80-800gsm.

The Montex machinery range is constantly being upgraded to meet evolving customer needs for greater automation, ease of operation and energy optimisation. The latest ten chamber line at Knopf’s Sohn, with a working width of up to 2.0 metres, was engineered to specific requirements in order to accelerate the company’s move to fully automatic control of its production, and high scaffolding was required for its installation.

The line benefits from two integrated ECO Booster modules to provide high energy savings. These compact, air-to-air heat exchangers, installed within the roof structure of the line, exploit energy from the exhaust gas to preheat up to 60% of the incoming fresh air entering the stenter.

Knopf’s Sohn, a contract finisher of technical textiles, has installed a fully automated Montex stenter at its plant in Helmbrechts, Germany.
Knopf’s Sohn is processing technical textiles for the automotive, aerospace, home furnishings and workwear markets, based on wool, cellulose, polyamide and polyester fabrics, along with elastane blends, in weights of 80-800gsm.

The Montex machinery range is constantly being upgraded to meet evolving customer needs for greater automation, ease of operation and energy optimisation. The latest ten chamber line at Knopf’s Sohn, with a working width of up to 2.0 metres, was engineered to specific requirements in order to accelerate the company’s move to fully automatic control of its production, and high scaffolding was required for its installation.

The line benefits from two integrated ECO Booster modules to provide high energy savings. These compact, air-to-air heat exchangers, installed within the roof structure of the line, exploit energy from the exhaust gas to preheat up to 60% of the incoming fresh air entering the stenter.

The use of a single ECO Booster unit has been calculated to save up to 35% in energy costs, based on fixation processes. Fully automatic operation, set at the Monforts Qualitex control unit, ensures there is no additional burden on the machine operator.

The line is powered by Exxotherm indirect heating, which practically eliminates the yellowing which can be experienced during the treatment of certain polyamide and elastane-based fabrics, and is also equipped with a Conticlean circulating air filter system for constant high drying capacity.

Software
The latest Qualitex visualisation software offers operators reliability and easy control with its full HD multi-touch monitor and slider function, dashboard function with individual adaptation to operating states and faster access to comprehensive recipe data management.

With the Monformatic control system, the exact maintenance of the dwell time in combined treatment processes (drying and heat-setting) can be monitored. When the heat-setting point is reached, the fan speed is automatically adjusted, keeping energy consumption fully under control.

Source:

A. Monforts Textilmaschinen GmbH & Co. KG / AWOL Media

19.07.2021

ISKO to work with the MIT Computer Science & Artificial Intelligence Lab

ISKO announces its participation in CSAIL’s Alliances programme, a collaboration with CSAIL researchers, students and industry partners. Through participation in the programme, ISKO will contribute its expertise in textile innovation and collaborate on the research and development of smart textiles and wearable technologies.

The company joins a network of 26 industries – from startups to big organizations – including AI and machine learning, aerospace, healthcare, life sciences and telecommunications, as well as retail, media and entertainment.

With the goal of overall advancement of the textile and denim industry through the development of smart and wearable solutions, ISKO is stepping up to lead the change through these technologies and their many possible end-uses. The work is done in compliance with ISKO’s Responsible Innovation™ approach.

ISKO brings its innovative and agile structure, impressive production capacity and textile knowledge to the CSAIL programme which has over 1200 people, 60 research groups, 120+ researchers, 600+ students and over 900+ active projects.

ISKO announces its participation in CSAIL’s Alliances programme, a collaboration with CSAIL researchers, students and industry partners. Through participation in the programme, ISKO will contribute its expertise in textile innovation and collaborate on the research and development of smart textiles and wearable technologies.

The company joins a network of 26 industries – from startups to big organizations – including AI and machine learning, aerospace, healthcare, life sciences and telecommunications, as well as retail, media and entertainment.

With the goal of overall advancement of the textile and denim industry through the development of smart and wearable solutions, ISKO is stepping up to lead the change through these technologies and their many possible end-uses. The work is done in compliance with ISKO’s Responsible Innovation™ approach.

ISKO brings its innovative and agile structure, impressive production capacity and textile knowledge to the CSAIL programme which has over 1200 people, 60 research groups, 120+ researchers, 600+ students and over 900+ active projects.

Source:

ISKO / Menabò Group srl

Hexcel showcases Carbon Fiber Prepreg Capability for UAV Applications (c) Hexcel Corporation
07.07.2021

Hexcel showcases Carbon Fiber Prepreg Capability for UAV Applications

Hexcel, a global leader in advanced composites technologies, announces the successful maiden flight of a lightweight camera drone, developed using Hexcel HexPly® carbon fiber prepregs. The composite drone was developed by a team of students from the University of Applied Sciences Upper Austria in Wels with composite materials supplied by Hexcel Neumarkt in Austria.

A team of six students in the university’s lightweight construction and composite materials course was responsible for the complete design, engineering, and manufacture of the camera drone over a period of 18 months. Hexcel materials and optimization of the composite engineering enabled the team to reduce the composite structural mass by an impressive 42% compared to similar drones.

Hexcel, a global leader in advanced composites technologies, announces the successful maiden flight of a lightweight camera drone, developed using Hexcel HexPly® carbon fiber prepregs. The composite drone was developed by a team of students from the University of Applied Sciences Upper Austria in Wels with composite materials supplied by Hexcel Neumarkt in Austria.

A team of six students in the university’s lightweight construction and composite materials course was responsible for the complete design, engineering, and manufacture of the camera drone over a period of 18 months. Hexcel materials and optimization of the composite engineering enabled the team to reduce the composite structural mass by an impressive 42% compared to similar drones.

Hexcel Neumarkt was one of eight industrial partners supporting the university team throughout the project, providing all carbon fiber prepreg materials used for the drone’s landing gear as well as the fuselage. The ultra-lightweight 32g landing gear was laid up and cured in the press, whereas the fuselage was autoclave cured by the student team using Hexcel HexPly M901 and HexPly M78.1 prepreg resin systems with a combination of woven and unidirectional carbon fiber reinforcements.

With the development of Unmanned Aerial Vehicles (UAV) as a key emerging market and innovation space in the transportation sector, Hexcel’s collaboration with the University of Applied Sciences Upper Austria team not only creates an important link with the next generation of lightweight composite engineers but also highlights the weight saving and structural benefits of Hexcel composite material solutions.

"The massive weight saving achieved with their updated version of the camera drone is a fantastic achievement by the student team," said Michael Rabl, Dean of FH Wels of the Upper Austria University of Applied Sciences. "The joint study not only illustrates the wide range of complex and innovative composite techniques present in the drone sector but also presents the opportunities that exist for further development in the wider Urban Air Mobility (UAM) and aerospace composites markets.”

Hexcel congratulates the project team which includes Lukas Weninger, Karl-Heinz Schneider, Jakob Schlosser, Matthias Thon, Marla Unter, and Simone Hartl on an exceptional piece of lightweight composite design and thanks them for showcasing the contribution of Hexcel materials with a presentation and drone flight. Johanna Arndt, research and technology group leader at Hexcel Neumarkt, said, “It was a great pleasure to work with the team who were very cooperative and self-motivated to succeed. Watching the drone just fly around the Neumarkt plant was just great.”

Hexcel manufactures a complete range of carbon fibers, dry carbon UD tapes, specialty reinforcements, prepregs, and honeycomb core materials, providing customized manufacturing options for new UAM applications that combine aerospace reliability with the high-rate production required. Hexcel composite materials are the ideal solution for the lightest and most efficient cost-competitive transportation vehicles of the future.

Source:

Hexcel Corporation / 100% Marketing

11.05.2021

JEC Composites Innovation Awards 2021: Finalists Line Up Revealed

Innovation is an essential part of this industry – it's how we invest in our future. The top priorities for players in the composites value chain include product solidity, safety, and durability. The JEC Composites Innovation Awards are meant to inspire all participants, the whole industry and shed light on the excellent work carried out by the prize winners.

After pre-selecting the finalists, a selection process and a jury will select one winner in each category (Aerospace; Automotive & road transportation – exterior; Automotive & road transportation – structural; Building; Construction & Infrastructure, Design; Equipment & Machinery and Sustainability)

The awards ceremony will take place during JEC Composites Connect on Wednesday, June 2nd at 2:30 pm CEST.

More information here.

Innovation is an essential part of this industry – it's how we invest in our future. The top priorities for players in the composites value chain include product solidity, safety, and durability. The JEC Composites Innovation Awards are meant to inspire all participants, the whole industry and shed light on the excellent work carried out by the prize winners.

After pre-selecting the finalists, a selection process and a jury will select one winner in each category (Aerospace; Automotive & road transportation – exterior; Automotive & road transportation – structural; Building; Construction & Infrastructure, Design; Equipment & Machinery and Sustainability)

The awards ceremony will take place during JEC Composites Connect on Wednesday, June 2nd at 2:30 pm CEST.

More information here.

Source:

JEC Group

22.04.2021

JEC Group: Experts to feature at JEC Composites Connect

From leaders to entrepreneurs, JEC COMPOSITES CONNECT is welcoming a lineup of special guests. As part of conferences, they will share their expertise, vision, and perspective in front of all the players in the composites industry.

AEROSPACE – Towards a More Sustainable Strategy, Tuesday, June 1st –  9am to 10:15am (CEST)
The aerospace industry is a major source of innovation and technological advancements that often originates inspiration across a wide variety of other industries. Nowadays, in a context where environmental constraints are becoming increasingly stringent especially when it comes to air mobility, OEMs are constantly in search of innovative answers and solutions that will allow them to create a ‘greener’ future. The need for light-weighting, reduced maintenance and waste, and repurposing aerospace-grade CFRP towards other applications are expected to drive demand and adoption of composites in aerospace applications.

From leaders to entrepreneurs, JEC COMPOSITES CONNECT is welcoming a lineup of special guests. As part of conferences, they will share their expertise, vision, and perspective in front of all the players in the composites industry.

AEROSPACE – Towards a More Sustainable Strategy, Tuesday, June 1st –  9am to 10:15am (CEST)
The aerospace industry is a major source of innovation and technological advancements that often originates inspiration across a wide variety of other industries. Nowadays, in a context where environmental constraints are becoming increasingly stringent especially when it comes to air mobility, OEMs are constantly in search of innovative answers and solutions that will allow them to create a ‘greener’ future. The need for light-weighting, reduced maintenance and waste, and repurposing aerospace-grade CFRP towards other applications are expected to drive demand and adoption of composites in aerospace applications.

Yannick Willemin, Head of Marketing & Business Development, 9TLabs, will chair this conference with Clémentine Gallet, CEO, Coriolis, Hervé Gilibert,CTO, ArianeGroup, Jean Botti, CEO, Voltaero and Scott Finn, Chief Consulting Engineer for Composites, GE Aviation.

AUTOMOTIVE – The Right Material at the Right Place, Tuesday, June 1st –  3 pm to 5:05 pm (CEST)
Among the many challenges facing the automotive industry, reducing vehicle mass and therefore emissions all while maintaining safety and cost-efficiency remain key. Lighter materials implying higher costs, they limit mass production. Therefore, a combination of materials, albeit hybrid solutions, would help solve this issue and are becoming increasingly attractive for manufacturers. This conference consists of industry presentations and a panel discussion involving major OEMs & Tier1s from all over the world. It covers the challenges & opportunities of using composites materials in the Automotive field.

Dale Brosius CFO, IACMI, will chair this conference with Alice Swallow, Senior Innovation Engineer, FORD MOTOR GROUP, Christophe Kühn, Senior Project Manager – Composites & Hybrid Components, VOLKSWAGEN, Dominik Klaiber, Doctoral Candidate Body Advanced Engineering, PORSCHE and Gerard LIRAUT, Expert Leader Polymers, GROUPE RENAULT – ALLIANCE RENAULT NISSAN MITSUBISHI.

More information:
JEC Composites JEC Group
Source:

JEC Group

Decision SA and Carboman Group Announce New Direct Mould Tooling Technology for Aerospace (c) Decision SA.
new direct mould tooling technology
08.03.2021

Decision SA and Carboman Group Announce New Direct Mould Tooling Technology for Aerospace

Decision SA, part of the leading European composites consortium, Carboman Group, and a specialist in the development, prototyping and production of large composite structures, is proud to announce a new direct mould tooling technology for aerospace.  Decision’s latest tooling solution provides OEMs and manufacturers with short lead times for highly stable direct moulds for series production both in and outside of the autoclave at temperatures of up to 180˚C.

Decision and Carboman recently delivered the first customer moulds using the new technology, providing a tooling glass prepreg, stainless-steel backed direct female mould tool created for the series production of a Class 3 fairing to a leading European aerospace OEM. Decision has immediate availability and capacity for similar tooling projects with lead times currently as short as six to eight weeks.

Decision SA, part of the leading European composites consortium, Carboman Group, and a specialist in the development, prototyping and production of large composite structures, is proud to announce a new direct mould tooling technology for aerospace.  Decision’s latest tooling solution provides OEMs and manufacturers with short lead times for highly stable direct moulds for series production both in and outside of the autoclave at temperatures of up to 180˚C.

Decision and Carboman recently delivered the first customer moulds using the new technology, providing a tooling glass prepreg, stainless-steel backed direct female mould tool created for the series production of a Class 3 fairing to a leading European aerospace OEM. Decision has immediate availability and capacity for similar tooling projects with lead times currently as short as six to eight weeks.

With no traditional plug or mould pattern required, Decision’s direct mould process starts with the group’s engineers selecting a material combination for the tool surface and support structure that will provide the optimum match between the coefficient of thermal expansion (CTE) of the mould and the composite part to be processed.  The CNC machined composite face sheet is supported by a stress-relieved metallic or composite backing structure before final post curing and machining is completed. The principal benefit of this novel approach, aside from removing the need for costly and time-consuming plug production, is the production accuracy delivered by the closely matched CTE of the mould tool and the finished composite part.

The autoclaved composite tool surface is not only extremely dimensionally stable up to processing temperatures of 180˚C, but it can also be configured with additional metallic inserts or fixtures if required.  

Produced in an EN 9100:2018 controlled production environment, and with CMM checks before and after machining, the new direct composite tools have dimensional tolerances of +/-0.2mm.  The available tooling dimensional envelope is currently defined by Decision’s 2200mm x 6000mm autoclave.

“With our new direct tooling technology, we are able to combine the highest technical standards in dimensional accuracy and thermal stability with extremely short lead times.  Decision and Carboman Groups’ combined mission has always been to develop the construction methods for tomorrow’s composite structures, and we believe that this tooling solution will allow our customers to accelerate the implementation of the next generation of high-performance carbon fibre aerostructures and components” Grégoire Metz, Managing Director, Decision SA.

Source:

Decision SA.

08.03.2021

SGL Carbon SE moves up to the SDAX after all

The Deutsche Börse AG Group announced that an incorrect data basis regarding the index changes published on March 3, 2021, had been corrected. As a result, the SGL Carbon SE share will be included in the small cap index SDAX on the chaining date on Monday March 22, 2021. The promotion to the SDAX is carried out within the framework of the so-called Regular Entry Rule.

The SDAX comprises 70 stocks, which follow the MDAX stocks in the ranking according to free float market capitalization and stock exchange turnover.

"We are very pleased that Deutsche Börse has corrected its previous decision and that we will be included in the SDAX," said Dr. Torsten Derr, Chief Executive Officer of SGL Carbon SE. "For us, the promotion is a confirmation of our restructuring efforts to date and at the same time an aspiration and obligation to consistently continue the path we have taken so far in the future."

The Deutsche Börse AG Group announced that an incorrect data basis regarding the index changes published on March 3, 2021, had been corrected. As a result, the SGL Carbon SE share will be included in the small cap index SDAX on the chaining date on Monday March 22, 2021. The promotion to the SDAX is carried out within the framework of the so-called Regular Entry Rule.

The SDAX comprises 70 stocks, which follow the MDAX stocks in the ranking according to free float market capitalization and stock exchange turnover.

"We are very pleased that Deutsche Börse has corrected its previous decision and that we will be included in the SDAX," said Dr. Torsten Derr, Chief Executive Officer of SGL Carbon SE. "For us, the promotion is a confirmation of our restructuring efforts to date and at the same time an aspiration and obligation to consistently continue the path we have taken so far in the future."

Source:

SGL Carbon SE

MaruHachi/AMAC: High-temperature thermoplastic tapes and laminates (c) MaruHachi
16.02.2021

MaruHachi/AMAC: High-temperature thermoplastic tapes and laminates

With their recently installed high-temperature unidirectional tape line, Japan-based composites manufacturer MaruHachi enables new opportunities for high-end applications in demanding market segments like aerospace, automotive or others outperforming traditional materials based on PP and PA which are already widely available.

In the first phase, MaruHachi will produce up to 40 tons/year and focuses now specifically on high-temperature thermoplastic uni-directional (UD) tapes and multi-layer sheet laminates. The material is based on high-performance fibers like carbon, aramid, glass or natural fibers and the matrix can be high-performance polymers like PPS, PEEK or other higher temperature polymers, which are much tougher than epoxies and easy to recycle. With a width of 500 mm, a specific weight from 60 to 350 g/m2, depending on the chosen material, the lines can operate under temperatures up to 420 degrees Celsius. Working under these extremely high temperatures allows for better material properties of the final application, higher performance, increased resistance and integrated high-performance functionalities e.g. by overmoulding.

With their recently installed high-temperature unidirectional tape line, Japan-based composites manufacturer MaruHachi enables new opportunities for high-end applications in demanding market segments like aerospace, automotive or others outperforming traditional materials based on PP and PA which are already widely available.

In the first phase, MaruHachi will produce up to 40 tons/year and focuses now specifically on high-temperature thermoplastic uni-directional (UD) tapes and multi-layer sheet laminates. The material is based on high-performance fibers like carbon, aramid, glass or natural fibers and the matrix can be high-performance polymers like PPS, PEEK or other higher temperature polymers, which are much tougher than epoxies and easy to recycle. With a width of 500 mm, a specific weight from 60 to 350 g/m2, depending on the chosen material, the lines can operate under temperatures up to 420 degrees Celsius. Working under these extremely high temperatures allows for better material properties of the final application, higher performance, increased resistance and integrated high-performance functionalities e.g. by overmoulding.

Since 2017, MaruHachi Group is active in the European market in cooperation with Dr. Michael Effing,the CEO of AMAC GmbH, who advises and supports the company strategically. The established, family-owned MaruHachi Group has a strong history in automotive and medical textiles and has been active in the innovative composites market for more than 15 years.

Toshi Sugahara, CEO of MaruHachi: “For many years, we have already been cooperating with domestic and international partners on high-demand applications and therefore, MaruHachi decided now to invest over 1 million EUR in this new line in phase 1, including a funding participation from the Japanese government NEDO. New developments in phase 2 will be be undertaken by end of 2021 on the downstream technologies like the automated preforming and consolidation. With our new products, we want to contribute to significant weight reductions of the final products, thus improve energy efficiency while offering a cost-efficient and high-quality solution.”

Dr. Effing, CEO of AMAC GmbH confirms: „The focus on the niche of high-temperature products based on PPS and PEEK allows MaruHachi on very demanding high-end applications such as structural frames on space and aircrafts, aircraft seats or engine components etc. The tapes are fully recyclable and can be processed e.g. with high-speed with laser-based tape placement machines and robots.”

Source:

AMAC GmbH

14.12.2020

Hexcel and Safran Expand Scope of Existing Contract

Hexcel and Safran Expand Scope of Existing Contract for Advanced Composite Materials on Commercial Aerospace Programs

Hexcel Corporation (NYSE: HXL) announced today that the scope of its long-term supplier contract with Safran S.A. has been expanded to include advanced composite materials for a broader range of commercial aerospace applications.

For more than three decades, Hexcel has been a trusted, leading supplier of high-performance, advanced composites such as carbon fiber, adhesives, prepregs, dry fabrics, and honeycomb core to Safran programs. Since 2013, Hexcel HexTow® IM7 carbon fiber has been supplied for the LEAP*-1A, -1B and -1C engine programs. That contract now has been amended to include HexTow IM7 for the GE9X engine that powers the Boeing 777X.The contract also includes Hexcel core, adhesives, prepregs, and fabrics for additional applications on engine nacelles and aircraft interiors.

Hexcel and Safran Expand Scope of Existing Contract for Advanced Composite Materials on Commercial Aerospace Programs

Hexcel Corporation (NYSE: HXL) announced today that the scope of its long-term supplier contract with Safran S.A. has been expanded to include advanced composite materials for a broader range of commercial aerospace applications.

For more than three decades, Hexcel has been a trusted, leading supplier of high-performance, advanced composites such as carbon fiber, adhesives, prepregs, dry fabrics, and honeycomb core to Safran programs. Since 2013, Hexcel HexTow® IM7 carbon fiber has been supplied for the LEAP*-1A, -1B and -1C engine programs. That contract now has been amended to include HexTow IM7 for the GE9X engine that powers the Boeing 777X.The contract also includes Hexcel core, adhesives, prepregs, and fabrics for additional applications on engine nacelles and aircraft interiors.

“It was time to include Safran Cabin, Safran Seats and Safran Aerosystems within our global long-term agreement,” said Thierry Viguier, Vice President, Safran Materials Purchasing. “Hexcel has shown again, during this difficult period of time, that they are a strong and reliable long-term partner.”

“This contract expansion is the result of a successful, collaborative relationship between Safran and Hexcel that started more than 35 years ago to serve the aerospace industry,” said Thierry Merlot, President Aerospace Europe, Asia Pacific, Middle East, Africa & Industrial. “This agreement will further strengthen the long-term partnership between our companies and reinforces our strategic position within Safran’s First Circle suppliers.”

13.11.2020

The AVK presents its awards virtually for the first time

The AVK – Industrievereinigung Verstärkte Kunststoffe e.V. – has once again announced the winners of its prestigious Innovation Awards. Decided by an expert jury, the awards recognise and honour sustainable innovations in three categories: “Innovative Products/Applications”, “Innovative Processes” and “Research and Science”.

Overview of all the winners in the three categories:

Category “Innovative Products/Applications”
1st Place: “Directly-cooled electric motor with integral lightweight housing made of fibre reinforced polymers - DEmiL” – developed by the Fraunhofer Institute for Chemical Technology ICT, Pfinztal, Germany, in partnership with the Karlsruhe Institute of Technology and Sumitomo Bakelite Co., Ltd.*

2nd Place: “Intrinsically Reprocessable, Repairable and Recyclable (3R) thermoset composites for more Competitive and Sustainable Industries” – developed by cidetec, Donostia-San Sebastian, Spain*

The AVK – Industrievereinigung Verstärkte Kunststoffe e.V. – has once again announced the winners of its prestigious Innovation Awards. Decided by an expert jury, the awards recognise and honour sustainable innovations in three categories: “Innovative Products/Applications”, “Innovative Processes” and “Research and Science”.

Overview of all the winners in the three categories:

Category “Innovative Products/Applications”
1st Place: “Directly-cooled electric motor with integral lightweight housing made of fibre reinforced polymers - DEmiL” – developed by the Fraunhofer Institute for Chemical Technology ICT, Pfinztal, Germany, in partnership with the Karlsruhe Institute of Technology and Sumitomo Bakelite Co., Ltd.*

2nd Place: “Intrinsically Reprocessable, Repairable and Recyclable (3R) thermoset composites for more Competitive and Sustainable Industries” – developed by cidetec, Donostia-San Sebastian, Spain*

3rd Place: “Fireproof composite metal hybrid structure – LEO® fire protection sandwich with integrated Hyconnect steel-glass hybrid connector” – developed by SAERTEX GmbH & Co. KG and Hyconnect GmbH.*

Category “Innovative Processes”
1st Place: “Robotised Injection Moulding (ROBIN)” – developed by Robin, Dresden with the Institute for Lightweight Engineering and Polymer Technology at the TU Dresden*

2nd Place: “Omega stringer from the roll” – developed by the German Aerospace Center, Braunschweig*

3rd Place: “Hybrid die-casting – manufacturing of intrinsic CFRP-aluminium composite structures in aluminium high-pressure die-casting” – developed by Faserinstitut Bremen e. V. with Fraunhofer IFAM, Bremen*

Category “Research and Science”:
1st Place: “New high-temperature resistant UP resins and toughening agents” – developed by Münster University of Applied Sciences with BASF SE Global New Business Development, Leibniz Institute for Polymer Research e. V., Saertex multicom GmbH*

2nd Place: “Scientific basis for the industrial application of the thermoplastic resin transfer moulding (T-RTM) process” – developed by Fraunhofer Institute for Chemical Technology ICT, Pfinztal*

3rd Place: “The material- and energy-efficient production of turbine struts by the integrative combination of thermoset fibre reinforced materials” – developed by the Institute of Polymer Technology, University of Erlangen-Nuremberg with the German Aerospace Center, Gubesch Group, Schmidt WFT, Siebenwurst, Raschig.

Award ceremony on the Internet for the first time
For the first time, due to the Covid-19 pandemic, the award ceremony took place as an online event on 12 November 2020. Many of the award winners’ innovations will be presented again in this year’s AVK Innovation Award brochure. This will be available online: https://www.avk-tv.de/innovationaward.php

 

*Please see attached document for more information.

 

Source:

AVK – Industrievereinigung Verstärkte Kunststoffe e.V

vombaur: Composites for Aviation and Automotive (c) vombaur
Pioneering tech tex
04.11.2020

vombaur: Composites for Aviation and Automotive

  • Composite textiles for modern mobility
  • Extremely lightweight, high tensile components by vombaur

In the snow, on a plane, in an electric vehicle or on a bicycle: no matter where and how we are on the road – composite textiles by vombaur ensure that we make good progress. With materials that are both extremely light and extremely reliable.

Lightweight components for modern mobility
Modern mobility relies on high-tech lightweight components Narrow textiles by vombaur are woven from high-performance fibres. On looms that are specially made for particularly demanding composite textiles: the textile company uses special machines to produce high-tech woven tapes with closed selvedges and elasticated UD tubulars that retain their 0° orientation over the entire length of the component – regardless of the diameter. Since they do not exhibit undesired break points caused by seams or welding, they not only have a particularly high bursting strength, they are also extremely reliable and durable.

  • Composite textiles for modern mobility
  • Extremely lightweight, high tensile components by vombaur

In the snow, on a plane, in an electric vehicle or on a bicycle: no matter where and how we are on the road – composite textiles by vombaur ensure that we make good progress. With materials that are both extremely light and extremely reliable.

Lightweight components for modern mobility
Modern mobility relies on high-tech lightweight components Narrow textiles by vombaur are woven from high-performance fibres. On looms that are specially made for particularly demanding composite textiles: the textile company uses special machines to produce high-tech woven tapes with closed selvedges and elasticated UD tubulars that retain their 0° orientation over the entire length of the component – regardless of the diameter. Since they do not exhibit undesired break points caused by seams or welding, they not only have a particularly high bursting strength, they are also extremely reliable and durable.

Challenging applications
"From snowboards to aerospace – the applications for our composite textiles are demanding; the mechanical, chemical and thermal requirements are extreme," explains COO Christoph Schliefer. "As a development partner, we at vombaur are therefore often involved in product development at an early stage. We specify our woven tapes and tubulars individually for each project to suit the specific task at hand."

High quality raw materials, wide variety of geometries
The variety of shapes is virtually unlimited. vombaur manufactures 3D fabrics for composites in individual special shapes from carbon, aramid, glass or hybrids. Curves, edges, tubulars, spiral fabrics – the shape of the 3D fabrics, like the material itself, depends entirely on the task at hand. Powder or non-woven coatings create additional important properties.

Pioneering tech tex
"Developments in the field of modern mobility are happening at a rapid pace," emphasizes Schliefer. "With our composite textiles for extremely lightweight and high tenacity components, we at vombaur are also pushing these developments forward."

30.10.2020

SGL Carbon SE: Board of Management resolves restructuring program

An impairment charge has become necessary based on the current status of the new 5 year plan.

(Market Abuse Regulation N° 596/2014)
•    Impairment loss amounting to €80-100 million in the fourth quarter 2020 in the business unit CFM
•    Restructuring program resolved with savings target of more than €100 million until 2023
•    Guidance 2020 for Group sales and operating recurring Group EBIT confirmed
•    Guidance 2020 for net result reduced to minus €130-150 million

An impairment charge has become necessary based on the current status of the new 5 year plan.

(Market Abuse Regulation N° 596/2014)
•    Impairment loss amounting to €80-100 million in the fourth quarter 2020 in the business unit CFM
•    Restructuring program resolved with savings target of more than €100 million until 2023
•    Guidance 2020 for Group sales and operating recurring Group EBIT confirmed
•    Guidance 2020 for net result reduced to minus €130-150 million

In the current status of the 5 year plan, which is at present under preparation, significant deviations have already become apparent today, particularly in the market segments Automotive, Aerospace and Wind Energy in the business unit Composites – Fibers & Materials (CFM). Partially also due to the pandemic, Automotive and Aerospace is developing slower than anticipated in the last 5 year plan. In contrast, business with Wind Energy is growing much stronger than previously planned. These changes in the product mix lead to lower mid-term earnings at CFM compared to the prior 5 year plan. Following these deviations from the last 5 year plan, an event-driven impairment test was undertaken. This results in a non-cash impairment charge amounting to €80-100 million, which will be recorded in the fourth quarter 2020.

The Board of Management of SGL Carbon SE today also resolved the implementation of a restructuring program, with which the Company is targeting savings of more than €100 million until 2023 (compared to the base year 2019). These savings consist of a planned socially compatible reduction in personnel of more than 500 employees and substantial reduction in indirect spend, particularly in the areas of travel, consulting and external services. Costs of approximately €40 million are anticipated for the implementation of this restructuring program. A little more than half of this is expected to be recorded as expenses in the fourth quarter 2020, while the associated cash outflows are mainly forecasted for 2021.

This requires a partial adjustment of the guidance for 2020. The solid operational development in the third quarter 2020 with Group sales between €220 and €230 million and operating recurring EBIT1 between €13 and €15 million (plus approximately €9 million positive one-time effects) is within the framework of our expectations for the full year 2020. However, the Group net result is likely to develop below the prior year level of minus €90 million and reach approximately between minus €130 and €150 million due to the restructuring provisions as well as the impairment charge (prior guidance: improvement to a negative low double-digit million € amount).

With liquidity of €167 million as of September 30, 2020 (compared to €137 million at year-end 2019) and further cash inflows in the fourth quarter 2020 from successfully implemented additional funding measures, the Company’s position is solid. This liquidity is more than sufficient for the payment of the purchase price for SGL Composites USA in the amount of USD 62 million at the end of 2020 as well as the restructuring-related cash outflows expected mainly in 2021. The Company continues to have access to the revolving credit facility (RCF) in the amount of €175 million, which remains undrawn.

The quarterly statement as of September 30, 2020 will be published on November 12, 2020 as scheduled. Further details on the new 5 year plan as well as the guidance on the fiscal year 2021 will be presented with the publication of the Annual Report 2020 on March 25, 2021.

*The use of KPIs in this notification is aligned to the annual report 2019 and the interim report for the first half year 2020. There were no changes to the scope of consolidation or to valuation methods compared to the previous guidance.

More information:
SGL Carbon Composites Fibers
Source:

SGL CARBON SE

Thomas Dippold (c) Schaltbau Holding
Thomas Dippold
15.10.2020

SGL Carbon SE: Thomas Dippold becomes member of the Board of Management

As reported on August 17, 2020, the Supervisory Board of SGL Carbon SE had appointed Thomas Dippold to CFO and member of the Board of Management of SGL Carbon SE effective December 1, 2020. Fortunately, Mr. Dippold is able to assume office of his mandate as member of the Board of Management of SGL Carbon SE earlier, so that the Supervisory Board of the company has brought forward the appointment to October 15, 2020, also to prepare for the planned assumption of the CFO position.

As previously reported, and effective December 1, 2020, Mr. Dippold is succeeding the long-standing CFO Dr. Michael Majerus, who is resigning from his office effective November 30, 2020 by mutual amicable consent.

As planned, Dr. Stephan Bühler resigned from his office as member of the Board of Management effective October 15, 2020.

As reported on August 17, 2020, the Supervisory Board of SGL Carbon SE had appointed Thomas Dippold to CFO and member of the Board of Management of SGL Carbon SE effective December 1, 2020. Fortunately, Mr. Dippold is able to assume office of his mandate as member of the Board of Management of SGL Carbon SE earlier, so that the Supervisory Board of the company has brought forward the appointment to October 15, 2020, also to prepare for the planned assumption of the CFO position.

As previously reported, and effective December 1, 2020, Mr. Dippold is succeeding the long-standing CFO Dr. Michael Majerus, who is resigning from his office effective November 30, 2020 by mutual amicable consent.

As planned, Dr. Stephan Bühler resigned from his office as member of the Board of Management effective October 15, 2020.

Source:

SGL Carbon SE