From the Sector

Reset
3 results
AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project (c) AZL Aachen GmbH
21.12.2023

AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting not only served as a platform to foster new contacts and get informed about the expertise and interests of the consortium members in the field of hydrogen pressure vessels, but also laid the groundwork for steering the focus of the upc oming project's ambitious phases. As a basis for the interactive discussion session, AZL outlined the background, motivation and detailed work plan. The central issues of the dialogue were the primary objectives, the most pressing challenges, the contribut ion to competitiveness, and
the priorities that would best meet the expectations of the project partners.

Discussions covered regulatory issues, the evolving value chain and the supply and properties of key materials such as carbon and glass fibres and resins. The consortium defined investigations into different manufacturing technologies, assessing their matu rity and potential benefits. Design layouts, including liners, boss designs and winding patterns, were thoroughly considered, taking into account their implications for mobile and stationary storage. The group is also interested in cost effective testing m ethods and certification processes, as well as the prospects for recycling into continuous fibres and the use of sustainable materials. Insight was requested into future demand for hydrogen tanks, OEM needs and strategies, and technological developments to produce more economical tanks.

The meeting highlighted the importance of CAE designs for fibre patterns, software suitability and the application dependent use of thermoset and thermoplastic designs.

The first report meeting will also set the stage of the next project phase, which will be the creation of reference designs by AZL's engineering team. These designs will cover a range of pressure vessel configurations using a variety of materials and production concepts. The aim is to develop models that not only re flect current technological capabilities, but also provide deep insight into the cost analysis of different production technologies, their CO2 footprint, recycling aspects and scalability.

AZL's project remains open to additional participants. Companies interested in joining this initiative are invited to contact Philipp Fröhlig.

11.09.2023

Project and technology study: Trends and Design Factors for Hydrogen Pressure Vessels

Die AZL Aachen GmbH, bekannter Innovationspartner für Industriekooperationen auf dem Gebiet der Leichtbautechnologieforschung, startet eines neuen Projekts mit dem Titel "Trends und Designfaktoren für Wasserstoffdruckbehälter". Das Projekt wird Fragestellungen der Industrie in Bezug auf die Wasserstoffspeicherung adressieren.


AZL Aachen GmbH, a recognized innovator in lightweight technologies research and industry collaboration, announces the initiation of a new project titled "Trends and Design Factors for Hydrogen Pressure Vessels". The project aims to address industry needs surrounding hydrogen storage.

Hydrogen has gained significant attention as a key technological solution for decarbonization, with high pressure storage and transportation emerging as vital components. Its applications extend from stationary storage solutions to mobile pressure vessels employed in sectors such as transportation and energy systems.

Die AZL Aachen GmbH, bekannter Innovationspartner für Industriekooperationen auf dem Gebiet der Leichtbautechnologieforschung, startet eines neuen Projekts mit dem Titel "Trends und Designfaktoren für Wasserstoffdruckbehälter". Das Projekt wird Fragestellungen der Industrie in Bezug auf die Wasserstoffspeicherung adressieren.


AZL Aachen GmbH, a recognized innovator in lightweight technologies research and industry collaboration, announces the initiation of a new project titled "Trends and Design Factors for Hydrogen Pressure Vessels". The project aims to address industry needs surrounding hydrogen storage.

Hydrogen has gained significant attention as a key technological solution for decarbonization, with high pressure storage and transportation emerging as vital components. Its applications extend from stationary storage solutions to mobile pressure vessels employed in sectors such as transportation and energy systems.

The AZL team, renowned for its high reputation in providing market and technology insights as well as developing component and production concepts in the format of Joint Partner Projects seeks for companies along the whole composite value chain interested in further developing their application know how in this economically highly relevant field.

The project will provide an in depth exploration of market insights, regulatory standards, and intellectual property landscapes. Beyond this, there is a dedicated focus on staying updated with state of the art and advancements in design, materials, and man ufacturing techniques.

An integral component of the project involves the creation of reference designs by AZL´s engineering team. The reference designs will encompass a variety of pressure vessel configurations and will consider a diverse range of materials and production concep ts.

With the scheduled project start in October 2023, and a project timeline of approximately nine months, AZL encourages companies active across the composite value chain to participate. Companies interested in participating or seeking further information should reach out directly to the AZL expert team.

Source:

Aachener Zentrum für integrativen Leichtbau

PrePro2D "PrePro 2D“ machine system for tape placement of tailored blanks and laminates with in-situ consolidation. (c) Fraunhofer IPT.
PrePro2D
16.02.2018

Commercialization of Fraunhofer´s tape-placement and tape winding systems

The two AZL Partners Conbility GmbH and Fraunhofer IPT, Aachen started their long-term cooperation for the further development and for the commercialization of Fraunhofer´s tape-placement and tape winding systems with in-situ-consolidation by the usage of laser or IR heat sources.

With this cooperation, the company Conbility GmbH makes 25 years of expertise in special machine development of tape placement systems of the Fraunhofer Institute for Production Technology IPT commercially available. Conbility offers two different tape processing systems available in different configurations.

The two AZL Partners Conbility GmbH and Fraunhofer IPT, Aachen started their long-term cooperation for the further development and for the commercialization of Fraunhofer´s tape-placement and tape winding systems with in-situ-consolidation by the usage of laser or IR heat sources.

With this cooperation, the company Conbility GmbH makes 25 years of expertise in special machine development of tape placement systems of the Fraunhofer Institute for Production Technology IPT commercially available. Conbility offers two different tape processing systems available in different configurations.

The “PrePro 2D” machine system allows for the automated tailored tape placement of UD laminates and which can be used for subsequent thermoforming or as stiffening structures in injection molding processes. The machine comprises a rotating and translational table which is moved relatively to the applicator station. The table is scalable according to the requirements of customers. Standard table diameters are 1200 mm or 2000 mm. The applicator station can be equipped with a single or with multiple spool applicators. Because of the large process area, a 9 kW IR heater is used for the in-situ-consolidation process.  
Three in one: Three technologies included in one single modular system
Furthermore, the award-winning “PrePro 3D” tape placement and winding applicator is available as modular product with decentral control system (including closed-loop control of energy input into the processing zone) for the “plug-in” implementation in existing robot systems or machine systems by standard interfaces for the communication with the master control system. Conbility provides the single applicator as well as turn-key ready systems including the robot and handling systems.

Unique selling point of the PrePro 3D system is its multifunctional range of usage: it accomplishes laser-assisted thermoplastic tape placement, IR-assisted thermoset prepreg placement and dry fiber placement: Three technologies included in one single modular system.  

During the JEC World in Paris (March 6th – 8th 2018), Conbility GmbH will present its new “VCSEL Tape Placement and Winding Applicator” (Fig. 3), developed in cooperation with Fraunhofer IPT and Philips Photonics at the AZL Composites in Action area (Hall 5A, C55).

VCSEL Laser Systems as heat source for lower investment and process costs
This applicator uses an integrated VCSEL Laser System as heat source which has been developed by Philips Photonics. This tape placement and winding applicator can also be integrated as modular “plug-in” system into industrial jointed-arm and linear gantry robots in variable manufacturing cells. Using the new VCSEL Laser as heat source (VCSEL: Vertical-Cavity Surface Emitting Laser) leads to significant lower investment and process cost in comparison to other laser systems. Furthermore, the VCSEL laser system can accomplish controllable in-process adjustments of the laser-spot geometry as well as the intensity distribution within the spot size during the process (in-process control of laser-spot geometries and intensities) for the first time. The new system with 2 kW laser power and 10 separate emission zones which can be controlled separately will be shown at JEC World in Paris 2018 as new product of Conbility GmbH.