From the Sector

Reset
6 results
(c) POLARYSE
18.11.2022

Grand Largue Composites and Sicomin enable flax-fibre-built Racing Yacht

Fibres, fabrics, epoxy resins and adhesives from Sicomin have been used by Grand Largue Composites (GLC) to construct the first Class40 racing yacht to feature a significant quantity of flax-fibre reinforcements.
The yacht, called Crosscall, won the Class40 World Championships in June 2022 and is a prototype of the new Lift V2 design by Marc Lombard, one of the leading naval architects in this field.

Class40 is one of the most competitive fleets in yacht racing. The hulls of Class40 yachts must be light in weight, strong and stiff, and durable in the most extreme of conditions. Furthermore, to keep costs down, they cannot be reinforced with carbon fibres. The quality and reliability of the resins used for the infusion and lamination of the hulls are therefore of paramount importance.

Fibres, fabrics, epoxy resins and adhesives from Sicomin have been used by Grand Largue Composites (GLC) to construct the first Class40 racing yacht to feature a significant quantity of flax-fibre reinforcements.
The yacht, called Crosscall, won the Class40 World Championships in June 2022 and is a prototype of the new Lift V2 design by Marc Lombard, one of the leading naval architects in this field.

Class40 is one of the most competitive fleets in yacht racing. The hulls of Class40 yachts must be light in weight, strong and stiff, and durable in the most extreme of conditions. Furthermore, to keep costs down, they cannot be reinforced with carbon fibres. The quality and reliability of the resins used for the infusion and lamination of the hulls are therefore of paramount importance.

Crosscall's cockpit was designed to be effectively non-structural, with the mainsheet, which can generate huge shock loads, supported separately. This would allow the cockpit to be made from a hybrid biaxial fabric comprising 50% flax fibres. Other parts of the boat that incorporate flax fibre include the tunnel, the engine cover, the ballast tanks and the cap. The rest of the boat is reinforced with 100% glass-fibre fabrics.

To help it realise this ambitious design, GLC, an infusion specialist, turned to its long-time material supplier, Sicomin. The hull was moulded and infused in one piece and the deck – including the hybrid flax-fibre cockpit – was also infused as a single part. The internal structure was then laminated into the hull by hand before the hull and deck were finally bonded together.

The infusion resin selected was Sicomin’s SR 1710, a high-modulus structural epoxy. Designed specifically for use in infusion and injection processes, it has exceptionally low viscosity and its low-reactivity hardener makes it suitable for the production of large parts. Composites components made from SR 1710 possess high interlaminar shear-strength and the resin retains its mechanical properties in wet environments.

Sicomin’s low-toxicity SR 8200 was used to laminate the internal structures onto the skin of the hull. Ideal for hand laminating, this system includes a choice of hardeners with a wide range of reactivities, which makes it equally suitable for making large or small parts. The hull and deck were joined together with Sicomin’s Isobond SR 7100, which demonstrates high fatigue strength and is very resistant to microcracking.

An epoxy bonding primer – called Undercoat EP 215 HB+ and supplied by Sicomin’s sister company, Map Yachting – was applied to the moulds first to make demoulding easier. It also serves as an undercoat in the polyurethane exterior paint system that is used instead of gelcoat to protect the epoxy hull from UV damage.

Since the launch of Crosscall, GLC has started building a second Lift V2 Class40 and a third one is now planned, both for which Sicomin will supply the materials.

Source:

Sicomin / 100% Marketing

(c) Hexcel Corporation
29.04.2022

Hexcel Composite Solutions for the Automotive, Marine, Wind Energy and Recreation Markets at JEC World 2022

Hexcel will present a wide range of high-performance composite innovations for the Automotive, Marine, Wind Energy and Recreation markets during JEC World 2022 in Paris on May 3 – 5.

Hexcel will present a wide range of high-performance composite innovations for the Automotive, Marine, Wind Energy and Recreation markets during JEC World 2022 in Paris on May 3 – 5.

G-Vent Technology for Marine Structures
Hexcel has developed a new technology for out-of-autoclave (OoA) processing that delivers a game-changing reduction in process time and cost for marine manufacturers without compromising mechanical performance. Hexcel has leveraged its experience in aerospace and wind energy to develop its new G-Vent technology for OoA processing of highly loaded, thick section marine structures such as masts, foils, and wind-assisted ship propulsion (WASP) components. A full range of Hexcel marine prepregs are now available with integrated G-Vent technology, reducing the requirement for debulking steps and ensuring extremely low porosity (<1%) regardless of the laminate thickness. Leading marine non-destructive testing specialists Q.I. Composites recently confirmed that the thick section G-Vent panels they had evaluated had void contents and laminate quality in line with state-of-the-art autoclaved prepreg components. Visitors to the Hexcel stand will see a unique 400mm carbon cube cured in a single stage using 695 layers of HexPly M79 carbon fiber UD600 prepreg with G-Vent technology.

New HexPly® Nature Range Sustainable Prepregs
HexPly® Nature Range prepregs feature proven resins such as HexPly M49, M78 and M79 with bio-derived epoxy resin content. Created for use in all industrial markets, HexPly Nature Range materials can be seamlessly integrated into existing production processes, maintaining consistent mechanical performance and processing properties. A dedicated sustainability corner of the Hexcel stand will detail Nature Range products optimized for automotive, marine, wind energy and winter sport applications. The display will include an alpine ski produced by leading manufacturer Tecnica Group Ski Excellence Center which produces skis for Blizzard and for Nordica using HexPly Nature M78.1 UD flax prepreg material. In addition to the reduced environmental impact of the sustainably grown reinforcement, the flax fiber laminates also improve impact resistance and vibration damping in the ski.

HexPly® XF Surface Technology for Improved Part Surface Finish Quality
HexPly XF is a lightweight, semi-preg material that replaces traditional in-mold gel coat. It eliminates time-consuming refinishing work typically required to obtain a paint-ready surface and produces lighter, more consistent parts with shorter cycle times and a cleaner working environment. Visitors to the stand will see a composite panel illustrating a high-quality painted surface enabled with XF technology in a diverse range of industrial applications such as super yacht roof parts, Class A surface automotive panels, and both prepreg and infused wind turbine blades.

HexPly® M49 Prepreg for Automotive Visual Carbon Parts
HexPly M49 is easy to process and is especially suitable for visual carbon fiber-look applications such as the Brabus hood scoop on display on the Hexcel stand at JEC.

HexPly® Prepregs and HiMax® Reinforcements for Performance Marine Structures
Using a scale model of a Gunboat 68 performance sailing catamaran, Hexcel will illustrate how its HexPly and HiMax materials provide manufacturers with a complete set of lightweight composite solutions for high-performance marine structures. HexPly prepreg was selected for critical structural parts of the Gunboat 68 and provides very high mechanical performance including high dry and wet Tg.

Heavyweight HiMax reinforcements offer high deposition rates and remain easy to handle after cutting, making them highly suitable for industrial applications. In combination with a lightweight PrimeTex® woven fabric, the package of carbon fiber HiMax materials developed for the Gunboat 68 enabled consistent resin flow during infusion with reduced surface print-through.

Hexcel Fibers and Reinforcements for Lightweight Sporting Equipment
Sporting equipment manufacturers rely on Hexcel composite materials to deliver the ultimate performance at the lowest possible weight. Hexcel will exhibit a number of the latest high-performance sporting equipment applications such as a Bauer hockey stick featuring PrimeTex 98 gsm AS4C 3K fabric and a Corima tri-spoke cycling wheel made with lightweight Hexcel carbon fiber UD tape. Hexcel will also demonstrate how its HexTow® carbon fibers are used in key leisure and marine applications by displaying an AEROrazr solid carbon rigging component manufactured by spar and rigging manufacturer Future Fibres for the 36th America’s Cup.

 

Source:

Hexcel Corporation / 100% Marketing

(c) Dubai Museum of the Future
02.03.2022

Sicomin supports Dubai's Museum of the Future with fire-retardant epoxy solutions

Sicomin supported the build of Dubai’s Museum of the Future and supplied its bio-based intumescent gelcoat as well as fire-retardant laminating resins for the production of over 200 double curved panels making up the interior of the Museum’s entrance lobby.

The Museum of the Future, a new addition to Dubai’s skyline by architects Killa Design, engineers Buro Happold and contractor BAM International, opened last week on 22nd February 2022 and features a large percentage of composite materials in the interior construction.

Advanced Fiberglass Industries (AFI) manufactured 230 double curved interior panels, a double-helix DNA structure staircase that scales the full seven levels of the museum and 228 GRP oval shaped light structures for the museums car parking area.

Sicomin supported the build of Dubai’s Museum of the Future and supplied its bio-based intumescent gelcoat as well as fire-retardant laminating resins for the production of over 200 double curved panels making up the interior of the Museum’s entrance lobby.

The Museum of the Future, a new addition to Dubai’s skyline by architects Killa Design, engineers Buro Happold and contractor BAM International, opened last week on 22nd February 2022 and features a large percentage of composite materials in the interior construction.

Advanced Fiberglass Industries (AFI) manufactured 230 double curved interior panels, a double-helix DNA structure staircase that scales the full seven levels of the museum and 228 GRP oval shaped light structures for the museums car parking area.

Adaptable mould technology from Danish company Adapa, was introduced by Advanced Fiberglass Industries, Dubai (AFI) to ensure that the interior panels could be delivered in line with the project schedule. As well as allowing each panel shape to be rapidly configured without the machining of traditional moulds, the adaptive mould technology massively reduced waste generated in the moulding process, contributing to the building’s low carbon LEED platinum credentials.

With a challenging structural and fire safety specification defined, Sicomin’s bio-based SGi128 intumescent gelcoat and SR1122 fire retardant laminating epoxy were chosen for the panels, an additional advantage being that in addition to high fire properties, SGi 128 is also formulated with over 30% carbon from renewable sources, reducing the final carbon footprint significantly.  

Sicomin worked alongside the panel manufacturer, providing technical support for the fire test panels and the initial Adapa moulding trials.

Source:

Sicomin / 100% Marketing

08.11.2021

Composites Evolution showcased prepregs and new thermoplastic unidirectional tapes

Composites Evolution exhibited at the Advanced Engineering 2021 show on 3rd - 4th November highlighting its range of prepreg and introducing a new thermoplastic tape manufacturing capability.

Composites Evolution is a developer, manufacturer and supplier of prepregs for the production of lightweight structures from composite materials. A flexible approach allows Composites Evolution to offer short lead times and low minimum order quantities, while decades of combined expertise ensure that in-depth technical support is on-hand when customers need it.

Showcased was a battery box from a high-performance luxury electric vehicle manufactured from Evopreg® PFC bio-based, fire-resistant prepreg, a rear wing from a Ginetta G56 GTA GT4 race car utilising Evopreg® ampliTex™ natural fibre prepreg, and parts fabricated from the company’s newly-launched Evopreg® PA thermoplastic tape range.

Composites Evolution exhibited at the Advanced Engineering 2021 show on 3rd - 4th November highlighting its range of prepreg and introducing a new thermoplastic tape manufacturing capability.

Composites Evolution is a developer, manufacturer and supplier of prepregs for the production of lightweight structures from composite materials. A flexible approach allows Composites Evolution to offer short lead times and low minimum order quantities, while decades of combined expertise ensure that in-depth technical support is on-hand when customers need it.

Showcased was a battery box from a high-performance luxury electric vehicle manufactured from Evopreg® PFC bio-based, fire-resistant prepreg, a rear wing from a Ginetta G56 GTA GT4 race car utilising Evopreg® ampliTex™ natural fibre prepreg, and parts fabricated from the company’s newly-launched Evopreg® PA thermoplastic tape range.

Composites Evolution has a family of specialist prepregs for various applications, including Evopreg® EPC epoxy component prepregs which are a range of pre-impregnated fabrics suitable for moulding into high-performance, lightweight, structural components; Evopreg® EPT epoxy tooling prepregs which have been designed to help composite tooling manufacturers improve the flexibility and efficiency of their tooling manufacturing processes; and Evopreg® PFC fire-retardant prepregs a 100% bio-derived alternative to phenolics for applications where fire performance is a critical requirement.

Evopreg® ampliTex™ combines Composite Evolution’s high-performance Evopreg® epoxy resin systems with Bcomp’s award-winning ampliTex™ flax reinforcements, to deliver a family of materials which offer outstanding performance for component applications.

Composites Evolution launched their new range of Evopreg® PA Thermoplastic Tapes at Advanced Engineering; these are manufactured from polyamide-6 (PA6) polymer with unidirectional carbon fibre and are suitable for automated tape laying, winding and compression moulding into high-performance, lightweight components.

Source:

Composites Evolution Ltd

02.06.2021

Teijin: Tenax™ Carbon Fiber Prepreg Adopted for Next-Generation Aircraft Engine Nacelle

Teijin Limited announced today that its Tenax™ carbon fiber prepreg has been adopted for a part of nacelle, or streamlined housing, for next-generation aircraft engine to be used by Airbus. A prototype of the nacelle part, which Nikkiso Co., Ltd. is developing for Airbus’s Propulsion of Tomorrow project, will be delivered to Airbus by the end of 2021.

The Tenax™ prepreg used for the nacelle part was developed especially for aircraft applications using high-performance and rapid-curing epoxy resin. Notably, the Tenax™ prepreg can be molded at a lower temperature and in a shorter time than conventional prepregs for aircraft applications. In addition to general autoclave molding, the Tenax™ prepreg also is suited to press molding for mass production, achieving excellent quality required for aircraft applications. Furthermore, it is compatible with automated fiber placement (AFP) therefore can be combined with automatic laminating technology and short-time molding to maximize production efficiency. The excellent productivity and cost efficiency of the Tenax™ prepreg were key reasons why it was adopted for Nikkiso’s nacelle.

Teijin Limited announced today that its Tenax™ carbon fiber prepreg has been adopted for a part of nacelle, or streamlined housing, for next-generation aircraft engine to be used by Airbus. A prototype of the nacelle part, which Nikkiso Co., Ltd. is developing for Airbus’s Propulsion of Tomorrow project, will be delivered to Airbus by the end of 2021.

The Tenax™ prepreg used for the nacelle part was developed especially for aircraft applications using high-performance and rapid-curing epoxy resin. Notably, the Tenax™ prepreg can be molded at a lower temperature and in a shorter time than conventional prepregs for aircraft applications. In addition to general autoclave molding, the Tenax™ prepreg also is suited to press molding for mass production, achieving excellent quality required for aircraft applications. Furthermore, it is compatible with automated fiber placement (AFP) therefore can be combined with automatic laminating technology and short-time molding to maximize production efficiency. The excellent productivity and cost efficiency of the Tenax™ prepreg were key reasons why it was adopted for Nikkiso’s nacelle.

Teijin is intensively accelerating its development of mid- to downstream applications for aircraft, one of the strategic focuses of its medium-term management plan for 2020-2022. Going forward, Teijin intends to further strengthen its carbon fiber and intermediate material businesses to contribute to increasing global sustainability, aiming to become a company that supports the society of the future.

Source:

Teijin

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists (c) JEC Group
17.05.2021

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

Sicomin, the formulator and supplier of the leading range of GreenPoxy bio-based epoxy resin systems, supplied its DNV GL approved InfuGreen 810 resin system that was used to infuse the Green Nacelle’s main structural sandwich panels, as well as providing intumescent FR gelcoats, bio-based laminating resins and UV resistant clear coatings for the groundbreaking new nacelle.  Materials, as well as on-site technical support, were delivered by Sicomin’s German distributor TIME OUT Composites.

The winners of the awards will be announced during JEC Connect which will be held on the 1st and 2nd June 2021.

Source:

100% Marketing