From the Sector

Reset
16 results
Winner of Cellulose Fibre Innovation Award 2024 (c) nova-Institute
Winner of Cellulose Fibre Innovation Award 2024
27.03.2024

Winner of Cellulose Fibre Innovation Award 2024

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

40 international speakers presented the latest market trends in their industry and illustrated the innovation potential of cellulose fibres. Leading experts introduced new technologies for the recycling of cellulose-rich raw materials and gave insights into circular economy practices in the fields of textiles, hygiene, construction and packaging. All presentations were followed by exciting panel discussions with active audience participation including numerous questions and comments from the audience in Cologne and online. Once again, the Cellulose Fibres Conference proved to be an excellent networking opportunity to the 214 participants and 23 exhibitors from 27 countries. The annual conference is a unique meeting point for the global cellulose fibre industry.  

For the fourth time, nova-Institute has awarded the “Cellulose Fibre Innovation of the Year” Award at the Cellulose Fibres Conference. The Innovation Award recognises applications and innovations that will lead the way in the industry’s transition to sustainable fibres. Close race between the nominees – “The Straw Flexi-Dress” by DITF & VRETENA (Germany), cellulose textile fibre from unbleached straw pulp, is the winning cellulose fibre innovation 2024, followed by HONEXT (Spain) with the “HONEXT® Board FR-B (B-s1, d0)” from fibre waste from the paper industry, while TreeToTextile (Sweden) with their “New Generation of Bio-based and Resource-efficient Fibre” won third place.

Prior to the event, the conference advisory board had nominated six remarkable innovations for the award. The nominees were neck and neck, when the winners were elected in a live vote by the audience on the first day of the conference.

First place
DITF & VRETENA (Germany): The Straw Flexi-Dress – Design Meets Sustainability

The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

Second place
Honext Material (Spain): HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry

HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, the product is verified in the Product Environmental Footprint.

Third Place
TreeToTextile (Sweden): A New Generation of Bio-based and Resource-efficient Fibre

TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn’t exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

The next conference will be held on 12-13 March 2025.

Source:

nova-Institut für politische und ökologische Innovation GmbH

HEREWEAR is winner of the Cellulose Fibre Innovation of the Year Photo: DITF
The Flexidress in its various forms
22.03.2024

HEREWEAR is winner of the Cellulose Fibre Innovation of the Year

At the "International Conference on Cellulose Fibers 2024" in Cologne, Germany, the Nova Institute for Ecology and Innovation awarded first place in the Innovation Prize to the project partners of the EU-funded HEREWEAR project. They presented a dress made of cellulose fibers, which is entirely made of straw pulp.

HEREWEAR is an EU-wide research project that brings together partners from research and industry. They are working to establish a European circular economy for locally produced textiles and clothing made from bio-based raw materials.
The HEREWEAR consortium consists of small and medium-sized enterprises and research institutions. HEREWEAR covers all the necessary expertise and infrastructure from academic and applied research and industry from nine EU countries.

The HEREWEAR approach includes technical and ecological innovations in the production of fibers, yarns, fabrics, knitwear and garments, as well as the use of regional value chains and the circular development of fashion items.

At the "International Conference on Cellulose Fibers 2024" in Cologne, Germany, the Nova Institute for Ecology and Innovation awarded first place in the Innovation Prize to the project partners of the EU-funded HEREWEAR project. They presented a dress made of cellulose fibers, which is entirely made of straw pulp.

HEREWEAR is an EU-wide research project that brings together partners from research and industry. They are working to establish a European circular economy for locally produced textiles and clothing made from bio-based raw materials.
The HEREWEAR consortium consists of small and medium-sized enterprises and research institutions. HEREWEAR covers all the necessary expertise and infrastructure from academic and applied research and industry from nine EU countries.

The HEREWEAR approach includes technical and ecological innovations in the production of fibers, yarns, fabrics, knitwear and garments, as well as the use of regional value chains and the circular development of fashion items.

New technologies for wet and melt spinning of cellulose and bio-based polyesters, e.g. PLA, from which yarns and fabrics are produced, form the technical basis. Coating and dyeing processes have been developed and tested as part of the project. In addition to reducing the carbon footprint of the product, another environmental goal is to reduce the release of microfibers throughout the textile manufacturing process and life cycle.

Improving the sustainability and recyclability of the developed garments is ensured by design for circularity and digitally networked production means. On-demand production is realized in so-called "microfactories", which are individualized and produce only for actual demand. This production method can be achieved through regional, networked value chains and enables the traceability of materials and manufacturing processes.

The dress presented at the award ceremony is an example of the cooperation and the different qualifications of the project partners: TNO (Netherlands Organization for Applied Scientific Research) provided sustainably produced pulp. The HighPerCell fibers were produced in DITF's spinning facilities. At the same time, designers from the fashion label Vretena created the design for the flexible, two-piece dress, which can be knitted without cutting waste. DITF textile experts worked with the designers to develop the knitting pattern. DITF textile engineers and technicians produced the knitted fabric and assembled the dress at the institutes’ technical center. DITF computer scientists and engineers created the "value chain" and "digital twins" for digital traceability of the production processes.

The innovation prize was awarded to the HEREWEAR consortiu for their joint achievement. Representatives of DITF Denkendorf and Vretena accepted the award on behalf of the EU project partners.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

Thomas Stegmaier appointed Sustainability Officer Photo: DITF
Dr.-Ing. habil. Thomas Stegmaier
11.03.2024

DITF: Thomas Stegmaier appointed Sustainability Officer

The EU directive on the further development of sustainability reporting (CSRD) poses major challenges for companies and the public sector. Until now, the regulations have only applied to large capital market-oriented companies. However, far-reaching changes to sustainability reporting are expected when the CSRD is transposed into national law in 2024. The German Institutes of Textile and Fiber Research (DITF) are facing up to this challenge of external reporting and at the same time the responsibility for sustainable and resource-conserving science. The Textile Research Center has therefore set up a specialist department reporting to the Executive Board.

The DITF are reaffirming their commitment to sustainability with the appointment of the previous Head of the Competence Center Textile Chemistry, Environment & Energy, Dr.-Ing. habil. Thomas Stegmaier, as Chief Sustainability Officer (CSO). In addition to this new role, Stegmaier will continue to provide his expertise to the Competence Center Textile Chemistry, Environment & Energy as Deputy Head.

The EU directive on the further development of sustainability reporting (CSRD) poses major challenges for companies and the public sector. Until now, the regulations have only applied to large capital market-oriented companies. However, far-reaching changes to sustainability reporting are expected when the CSRD is transposed into national law in 2024. The German Institutes of Textile and Fiber Research (DITF) are facing up to this challenge of external reporting and at the same time the responsibility for sustainable and resource-conserving science. The Textile Research Center has therefore set up a specialist department reporting to the Executive Board.

The DITF are reaffirming their commitment to sustainability with the appointment of the previous Head of the Competence Center Textile Chemistry, Environment & Energy, Dr.-Ing. habil. Thomas Stegmaier, as Chief Sustainability Officer (CSO). In addition to this new role, Stegmaier will continue to provide his expertise to the Competence Center Textile Chemistry, Environment & Energy as Deputy Head.

The task of the Chief Sustainability Officer is to develop solutions to reduce the DITF's energy and resource consumption, promote renewable energies and implement efficient energy use. The management team, the operational organizational units and all employees are involved in the process.

The CSO also acts as a driving force for both the Executive Board and the research departments to promote sustainability issues.

DITF: Modular cutting tool recognized with JEC Composites Innovation Award Photo: Leitz
Hermann Finckh (DITF) and Andreas Kisselbach (Leitz GmbH & Co. KG)
16.02.2024

DITF: Modular cutting tool recognized with JEC Composites Innovation Award

Hermann Finckh received the JEC Composites Innovation Award in the category Equipment Machinery & Heavy Industries for the innovation MAXIMUM WEIGHT REDUCTION OF COMPOSITE TOOLS. The research team from the German Institutes of Textile and Fiber Research Denkendorf (DITF) developed a new modular cutting tool for woodworking machines, which was produced and successfully tested by the industrial partner Leitz GmbH & Co. KG.

The extremely lightweight planing tool was made from carbon fiber-reinforced plastics (CFRPs) instead of aluminum using a completely new modular construction principle. As a result, it weighs 50 percent less than conventional tools. It enables significantly higher working speed, which enables a one-and-a-half-fold increase in productivity. The development of the extreme-lightweight principle was performed by numerical simulation and every solution was virtually tested in advance. A patent application has been filed for the concept.

Hermann Finckh received the JEC Composites Innovation Award in the category Equipment Machinery & Heavy Industries for the innovation MAXIMUM WEIGHT REDUCTION OF COMPOSITE TOOLS. The research team from the German Institutes of Textile and Fiber Research Denkendorf (DITF) developed a new modular cutting tool for woodworking machines, which was produced and successfully tested by the industrial partner Leitz GmbH & Co. KG.

The extremely lightweight planing tool was made from carbon fiber-reinforced plastics (CFRPs) instead of aluminum using a completely new modular construction principle. As a result, it weighs 50 percent less than conventional tools. It enables significantly higher working speed, which enables a one-and-a-half-fold increase in productivity. The development of the extreme-lightweight principle was performed by numerical simulation and every solution was virtually tested in advance. A patent application has been filed for the concept.

DITF: Pleated textile tube for ventilation of surgical fields Photo: Wandres GmbH micro-cleaning
06.11.2023

DITF: Pleated textile tube for ventilation of surgical fields

The German Institutes of Textile and Fiber Research Denkendorf (DITF) will be exhibiting at the MEDICA medical technology trade fair in Düsseldorf from November 13 to 16, 2023. At the joint stand of Baden-Württemberg International, a new development will be shown, that can reduce infections during operations.

These nosocomial infections occur when surgical wounds are contaminated by microbes. They can lead to serious complications. The task of the contract development was to create a porous ring tube that reduces the risk of contamination during operations. Germ-free air is introduced into the operating field via the so-called airflow ring, thereby shielding pathogenic germs.

The tube is knitted from polyester and folded. This pleating ensures that the circular shape remains stable, but the tube is still flexible. The outside of the tube is coated so that the air is directed into the inner area of the airflow ring. The ring is attached to the skin with a biocompatible adhesive so that it fits tightly on curved areas of the body such as the face or around joints. The position of the ring can be easily changed.

The German Institutes of Textile and Fiber Research Denkendorf (DITF) will be exhibiting at the MEDICA medical technology trade fair in Düsseldorf from November 13 to 16, 2023. At the joint stand of Baden-Württemberg International, a new development will be shown, that can reduce infections during operations.

These nosocomial infections occur when surgical wounds are contaminated by microbes. They can lead to serious complications. The task of the contract development was to create a porous ring tube that reduces the risk of contamination during operations. Germ-free air is introduced into the operating field via the so-called airflow ring, thereby shielding pathogenic germs.

The tube is knitted from polyester and folded. This pleating ensures that the circular shape remains stable, but the tube is still flexible. The outside of the tube is coated so that the air is directed into the inner area of the airflow ring. The ring is attached to the skin with a biocompatible adhesive so that it fits tightly on curved areas of the body such as the face or around joints. The position of the ring can be easily changed.

The functionality of the airflow ring was successfully demonstrated in tests with nebulized colony-forming bacteria.

The tests showed that the ring also withstands significantly worse conditions than in an operating theater, e.g. in doctors' surgeries and in situations with lower hygiene standards.

DITF: Lignin coating for Geotextiles Photo: DITF
Coating process of a cellulose-based nonwoven with the lignin compound using thermoplastic processing methods on a continuous coating line.
27.10.2023

DITF: Lignin coating for Geotextiles

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Depending on humidity and temperature, natural fiber materials can degrade in the soil in a matter of months or even a few days. In order to significantly extend the degradation time and make them suitable for geotextiles, the Denkendorf team researches a protective coating. This coating, based on lignin, is itself biodegradable and does not generate microplastics in the soil. Lignin is indeed biodegradable, but this degradation takes a very long time in nature.

Together with cellulose, Lignin forms the building materials for wood and is the "glue" in wood that holds this composite material together. In paper production, usually only the cellulose is used, so lignin is produced in large quantities as a waste material. So-called kraft lignin remains as a fusible material. Textile production can deal well with thermoplastic materials. All in all, this is a good prerequisite for taking a closer look at lignin as a protective coating for geotextiles.

Lignin is brittle by nature. Therefore, it is necessary to blend the kraft lignin with softer biomaterials. These new biopolymer compounds of brittle kraft lignin and softer biopolymers were applied to yarns and textile surfaces in the research project via adapted coating systems. For this purpose, for example, cotton yarns were coated with lignin at different application rates and evaluated. Biodegradation testing was carried out using soil burial tests both in a climatic chamber with temperature and humidity defined precisely according to the standard and outdoors under real environmental conditions. With positive results: the service life of textiles made of natural fibers can be extended by many factors with a lignin coating: The thicker the protective coating, the longer the protection lasts. In the outdoor tests, the lignin coating was still completely intact even after about 160 days of burial.

Textile materials coated with lignin enable sustainable applications. For example, they have an adjustable and sufficiently long service life for certain geotextile applications. In addition, they are still biodegradable and can replace previously used synthetic materials in some applications, such as revegetation of trench and stream banks.

Thus, lignin-coated textiles have the potential to significantly reduce the carbon footprint: They reduce dependence on petroleum-based products and avoid the formation of microplastics in the soil.

Further research is needed to establish lignin, which was previously a waste material, as a new valuable material in industrial manufacturing processes in the textile industry.

The research work was supported by the Baden-Württemberg Ministry of Food, Rural Areas and Consumer Protection as part of the Baden-Württemberg State Strategy for a Sustainable Bioeconomy.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

09.08.2022

Carbios joined WhiteCycle to process and recycle plastic textile waste

  • An innovative European project to process and recycle plastic textile waste
  • A partnership to reach the objectives set by the European Union in reducing CO2 emissions by 2030
  • A unique consortium rallying 16 public and private European organizations working together for more circular economy

Carbios joined WhiteCycle, a project coordinated by Michelin, which was launched in July 2022. Its main goal is to develop a circular solution to convert complex[1] waste containing textile made of plastic into products with high added value. Co-funded by Horizon Europe, the European Union’s research and innovation program, this unprecedented public/private European partnership includes 16 organizations and will run for four years.
 

  • An innovative European project to process and recycle plastic textile waste
  • A partnership to reach the objectives set by the European Union in reducing CO2 emissions by 2030
  • A unique consortium rallying 16 public and private European organizations working together for more circular economy

Carbios joined WhiteCycle, a project coordinated by Michelin, which was launched in July 2022. Its main goal is to develop a circular solution to convert complex[1] waste containing textile made of plastic into products with high added value. Co-funded by Horizon Europe, the European Union’s research and innovation program, this unprecedented public/private European partnership includes 16 organizations and will run for four years.
 
WhiteCycle envisions that by 2030 the uptake and deployment of its circular solution will lead to the annual recycling of more than 2 million tons of the third most widely used plastic in the world, PET[2]. This project should prevent landfilling or incineration of more than 1.8 million tons of that plastic each year. Also, it should enable reduction of CO2 emissions by around 2 million tons.
 
Complex waste containing textile (PET) from end-of-life tyres, hoses and multilayer clothes are currently difficult to recycle, but could soon become recyclable thanks to the project outcomes. Raw material from PET plastic waste could go back into creation of high-performance products, through a circular and viable value chain.
 
Public and private European organizations are combining their scientific and industrial expertises:

  • industrial partners (Michelin, Mandals, KORDSA);
  • cross-sector partnership (Inditex)
  • waste management companies (Synergies TLC, ESTATO);
  • intelligent monitoring systems for sorting (IRIS);
  • biological recycling SME (Carbios);
  • product life cycle analysis company (IPOINT);
  • university, expert in FAIR data management (HVL);
  • universities, research and technology organizations (PPRIME – Université de Poitiers/CNRS, DITF, IFTH, ERASME);
  • industry cluster (Axelera);
  • project management consulting company (Dynergie).

 
The consortium will develop new processes required throughout the industrial value chain:

  • Innovative sorting technologies, to enable significant increase of the PET plastic content of complex waste streams in order to better process them;
  • A pre-treatment for recuperated PET plastic content, followed by a breakthrough recycling enzyme-based process to decompose it into pure monomers in a sustainable way;
  • Repolymerization of the recycled monomers into like new plastic;
  • Fabrication and quality verification of the new products made of recycled plastic materials

 
WhiteCycle has a global budget of nearly 9.6 million euros and receives European funding in the amount of nearly 7.1 million euros. The consortium’s partners are based in five countries (France, Spain, Germany, Norway and Turkey). Coordinated by Michelin, it has an effective governance system involving a steering committee, an advisory board and a technical support committee.

[1] Complex waste: multi materials waste (Rubber goods composites and multi-layer textile)
[2] PET: Polyethylene terephthalate

Source:

Carbios

(c) DITF
Kick-off-Veranstaltung der Projektpartner Ende Juni in Denkendorf (von links) Alexander Artschwager (DITF), Dr. Jürgen Seibold (DITF), Alexander Artschwager (DITF), Dr. Jürgen Seibold (DITF), Jeanette Nordmann (Assyst GmbH), Alexander Mirosnicenko (DITF), Dr. Rainer Trieb (Human Solutions), Dr. Martin Lades (Assyst GmbH), Stefanie Hiss (DITF)
18.07.2022

DITF: Umweltfreundliche und nachhaltige Produktion

Der Designer hat eine Idee, der Kunde, Konsument oder Handel, schaut sie sich an und ändert noch das eine oder andere Detail nach seinem Geschmack. Danach werden Kleidungsstücke in kleinen Losgrößen hergestellt oder dank moderner Körpervermessung auf den Leib geschneidert. Digitale Technik sorgt dafür, dass die Wünsche erfüllt werden, alles passt und alles so aussieht, wie erwartet. Retoure? Das war gestern.

Digitalisierte Prozesse stellen nicht nur den Kunden zufrieden, sondern schonen auch die Umwelt. Deshalb fördert die Deutsche Bundesstiftung Umwelt die Forschungskooperation von den Deutschen Instituten für Textil- und Faserforschung Denkendorf (DITF) und der Assyst GmbH. Rückverlagerung von Wertschöpfungsprozessen ist das Stichwort. Ergebnis: Keine Massenware für den Müll, keine Kinderarbeit, hohe ökologische Standards und geringe Transportkosten.

Der Designer hat eine Idee, der Kunde, Konsument oder Handel, schaut sie sich an und ändert noch das eine oder andere Detail nach seinem Geschmack. Danach werden Kleidungsstücke in kleinen Losgrößen hergestellt oder dank moderner Körpervermessung auf den Leib geschneidert. Digitale Technik sorgt dafür, dass die Wünsche erfüllt werden, alles passt und alles so aussieht, wie erwartet. Retoure? Das war gestern.

Digitalisierte Prozesse stellen nicht nur den Kunden zufrieden, sondern schonen auch die Umwelt. Deshalb fördert die Deutsche Bundesstiftung Umwelt die Forschungskooperation von den Deutschen Instituten für Textil- und Faserforschung Denkendorf (DITF) und der Assyst GmbH. Rückverlagerung von Wertschöpfungsprozessen ist das Stichwort. Ergebnis: Keine Massenware für den Müll, keine Kinderarbeit, hohe ökologische Standards und geringe Transportkosten.

„Jeder Körper ist ein Individuum“ betont Dr. Martin Lades, Assyst GmbH. Dem trägt das Projekt ECO-Shoring Rechnung. Die Erstellung eines Avatars, also dem Modell des eigenen Körpers, ist Basis. Auch gibt es Reihenmessungen in verschiedenen Regionen der Welt. Im Projekt ermöglichen Prozesse und die Datenbasis der Avalution GmbH, dass der Kunde nur noch wenige Körperkennwerte angeben muss, um eine treffsichere Passform zu bekommen. Mit der Körpergröße, dem Gewicht und Alter kann das Programm ein originalgetreues Körperdouble erstellen – das Anprobieren am Computer kann beginnen. Das Modell eignet sich in erster Linie für das Online-Shopping, aber grundsätzlich kann der Kunde sich auch direkt im Shop vermessen und beraten lassen.

More information:
DITF Nachhaltigkeit Assyst
Source:

DITF

DITF verabschieden Professor Michael Doser in den Ruhestand (c) DITF
Prof. Dr. Michael Doser, stellvertretendes Vorstandsmitglied und Prokurist der DITF
10.06.2022

DITF verabschieden Professor Michael Doser in den Ruhestand

Professor Dr. Michael Doser, stellvertretendes Vorstandsmitglied und Prokurist der Deutschen Institute für Textil-  und Faserforschung Denkendorf (DITF), ging Ende Mai 2022 in den Ruhestand. Fast 32 Jahre war er an den DITF tätig. Er war für alle Forschungsstellen ein wichtiger Kommunikator und Impulsgeber und engagierte sich als Wissenschaftler insbesondere für den Auf- und Ausbau des Forschungsbereichs Biomedizintechnik an den DITF.

Professor Dr. Michael Doser, stellvertretendes Vorstandsmitglied und Prokurist der Deutschen Institute für Textil-  und Faserforschung Denkendorf (DITF), ging Ende Mai 2022 in den Ruhestand. Fast 32 Jahre war er an den DITF tätig. Er war für alle Forschungsstellen ein wichtiger Kommunikator und Impulsgeber und engagierte sich als Wissenschaftler insbesondere für den Auf- und Ausbau des Forschungsbereichs Biomedizintechnik an den DITF.

Michael Doser begann 1990 seinen Weg an den DITF – zunächst am damaligen Institut für Textil- und Verfahrenstechnik Denkendorf (ITV) unter Professor Heinrich Planck. Als promovierter Biologe der Universität Hohenheim und mit ersten Erfahrungen als wissenschaftlicher Mitarbeiter am Institut für Genetik in Hohenheim brachte er das Rüstzeug mit, um die Textilforschung in Richtung Medizintechnik neu zu denken. Er forschte zu Pankreas und Leber im Bereich Biohybride Organe und führte zahlreiche Projekte in der Regenerationsmedizin durch mit Entwicklungen für die Haut, für Blutgefäße, Nerven, Knorpel und Knochen. Doser baute den Forschungsbereich Biomedizintechnik an den DITF rasch zu einem wichtigen Geschäftsfeld auf und übernahm bereits 1998 dessen Leitung. Mit dieser Expertise wurde die Fördergemeinschaft Körperverträgliche Textilien e.V. (FKT) gegründet, die ein Prüfsiegel für die Bewertung und Kennzeichnung körperverträglicher Textilien entwickelte. Markenhersteller wie Mey, Falke, Mattes und Ammann oder Lenzing nutzen bis heute das Qualitätssiegel.

Für seine wissenschaftliche Arbeit und sein Engagement in der Biomedizintechnik erhielt Michael Doser zahlreiche Ehrungen und Auszeichnungen, zum Beispiel den EU EUREKA Innovation Award in der Kategorie „Erfinder von morgen” für die Entwicklung eines textilbasierten Verschlusses für einen Riss in der Bandscheibe.

Über diese Projekte der Biomedizintechnik engagierte sich Doser gleichzeitig schon früh als interdisziplinärer Ideengeber und kooperativer „Verbindungsmann” für andere Forschungsbereiche in Denkendorf. Seit 2001 nahm Doser diese Aufgaben als stellvertretender Institutsleiter des damaligen ITV und später als stellvertretender Vorstand der DITF wahr und prägte damit ganz wesentlich die Geschicke der DITF.

Erfolgreiche Gremienarbeit
Neben seiner wissenschaftlichen Arbeit engagierte sich Doser in zahlreichen nationalen und internationalen Gremien sowie Normenausschüssen und nahm über viele Jahre Gutachtertätigkeit wahr, unter anderem für die Forschungsdirektion der Europäischen Union. Besonders am Herzen lag ihm seine Mitgliedschaft in der European Society of Biomaterials, in der er einige Jahre im Vorstand aktiv war und 2018 zum ESB Honorary Member ernannt wurde.

Einige DIN-, ISO- und ASTM-Normen im Bereich biologischer und medizinischer Prüfungen tragen Dosers Handschrift. Von 2006 bis 2018 war er Leiter der ISO Arbeitsgruppe 5 zum Thema Cytotoxicity und brachte in dieser Funktion einen Standard zur Prüfung der Unbedenklichkeit von Medizintextilien auf den Weg, der heute noch für die Testung aller Medizinprodukte weltweit zur Anwendung kommt.

Engagement in der Lehre
Seit 1994 gab Michael Doser sein umfangreiches Wissen an Studierende weiter, zunächst mit Vorlesungen an der Universität Stuttgart, später auch mit Lehraufträgen an den Universitäten Ulm und Tübingen. In Würdigung seines Engagements in der Ausbildung auf dem Gebiet der Medizinischen Verfahrenstechnik und Medizintechnik wurde Doser zum Honorarprofessor der Universität Stuttgart ernannt.

07.06.2022

EPTA World Pultrusion Conference 2022 explores composites sustainability

The European Pultrusion Technology Association (EPTA) has published a report from its latest conference, which focuses on advances in sustainability and recycling.

More than 130 professionals from the global pultrusion community gathered at the 16th World Pultrusion Conference in Paris on 5-6 May 2022. Organised by EPTA in collaboration with the American Composites Manufacturers Association (ACMA), the event featured 25 international speakers sharing insight on market trends, developments in materials, processing and simulation technologies, and innovative pultruded applications in key markets such as building and infrastructure, transportation and wind energy.

The European Pultrusion Technology Association (EPTA) has published a report from its latest conference, which focuses on advances in sustainability and recycling.

More than 130 professionals from the global pultrusion community gathered at the 16th World Pultrusion Conference in Paris on 5-6 May 2022. Organised by EPTA in collaboration with the American Composites Manufacturers Association (ACMA), the event featured 25 international speakers sharing insight on market trends, developments in materials, processing and simulation technologies, and innovative pultruded applications in key markets such as building and infrastructure, transportation and wind energy.

‘Bio-pultrusion’:  
Composites based on natural fibres offer a number of benefits, including low density and high specific strength, vibration damping, and heat insulation. The German Institutes for Textile and Fiber Research Denkendorf (DITF) are developing pultrusion processes using bio-based resins and natural fibres. Projects include the BioMat Pavilion at the University of Stuttgart, a lightweight structure which combines ‘bamboo-like’ natural fibre-based pultruded profiles with a tensile membrane.

Applications for recycled carbon fibre (rCF):
The use of rCF in composite components has the potential to reduce their cost and carbon footprint. However, it is currently used to a limited extent since manufacturers are uncertain about the technical performance of available rCF products, how to process them, and the actual benefits achievable. Fraunhofer IGCV is partnering with the Institute for Textile Technology (ITA) in the MAI ÖkoCaP project to investigate the technical, ecological and economic benefits of using rCF in different industrial applications. The results will be made available in a web-based app.

Circularity and recycling:
The European Composites Industry Association (EuCIA) is drafting a circularity roadmap for the composites industry. It has collaborated with the European Cement Association (CEMBUREAU) on a position paper for the EU Commission’s Joint Research Centre (JRC) which outlines the benefits of co-processing end-of-life composites in cement manufacturing, a recycling solution that is compliant with the EU’s Waste Framework Directive and in commercial operation in Germany. Initial studies have indicated that co-processing with composites has the potential to reduce the global warming impact of cement manufacture by up to 16%. Technologies to allow recovery of fibre and/or resin from composites are in development but a better understanding of the life cycle assessment (LCA) impact of these processes is essential. EuCIA’s ‘circularity waterfall,’ a proposed priority system for composites circularity, highlights the continued need for co-processing.

Sustainability along the value chain:
Sustainability is essential for the long-term viability of businesses. Resin manufacturer AOC’s actions to improve sustainability include programmes to reduce energy, waste and greenhouse gas emissions from operations, the development of ‘greener’ and low VOC emission resins, ensuring compliance with chemicals legislation such as REACH, and involvement in EuCIA’s waste management initiatives. Its sustainable resins portfolio includes styrene-free and low-styrene formulations and products manufactured using bio-based raw materials and recycled PET.

Source:

European Pultrusion Technology Association EPTA

Foto: DITF
05.05.2022

Forschungsprojekt SensorStrick 4.0: Fehler früh erkennen und Kosten sparen

Digitalisierte Fertigungsverfahren ermöglichen eine individualisierte Produktion. Eine geringe Fehlerquote ist besonders bei E-Textiles wichtig, da Fehler bei den smarten Zusatzfunktionen in Textilien oft erst am Ende der Wertschöpfungskette erkannt werden. Dadurch werden textile Wearables sehr teuer und ein Mehrwert zu nichttextilen Wearables wie Smartwatches ist nicht mehr gegeben. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) entwickeln für das Prozessmanagement einen globalen „Industrie 4.0-Ansatz“, der bereits bei der Garnherstellung beginnt und sich über alle Prozessketten erstreckt.

Digitalisierte Fertigungsverfahren ermöglichen eine individualisierte Produktion. Eine geringe Fehlerquote ist besonders bei E-Textiles wichtig, da Fehler bei den smarten Zusatzfunktionen in Textilien oft erst am Ende der Wertschöpfungskette erkannt werden. Dadurch werden textile Wearables sehr teuer und ein Mehrwert zu nichttextilen Wearables wie Smartwatches ist nicht mehr gegeben. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) entwickeln für das Prozessmanagement einen globalen „Industrie 4.0-Ansatz“, der bereits bei der Garnherstellung beginnt und sich über alle Prozessketten erstreckt.

Für hochelastische smarte Textilprodukte werden Garne verwendet, die häufig sowohl aus leitfähigen als auch nichtleitfähigen Komponenten bestehen. Dazu werden zum Beispiel konventionelle hochelastische Garne mit leitfähigen Feinstdrähten umwunden. Die Elastizität der Garnkomponente bleibt auf diese Weise weitgehend erhalten. Beim Stricken werden die Fäden jedoch so stark belastet, dass die leitfähigen Garnkomponenten geschädigt werden können. Da dabei häufig nicht das gesamte Garn bricht, wird bei den derzeitigen Produktionsabläufen der Fehler während des Strickprozesses nicht erkannt. Im Extremfall ist das fertige Strickteil Ausschuss. Bei fully fashioned gestrickten Teilen ist der Schaden wegen der relativ geringen Produktivität des Flachstrickprozesses und des relativ hohen Verlusts an Produktionszeit besonders groß.

Um Fehler der elektrischen Eigenschaften bereits während des Herstellungsprozesses zu erkennen, werden im Forschungsprojekt SensorStrick 4.0 Prozess- und Umgebungsdaten bei der Textilproduktion in verschiedenen Prozessstufen erfasst.

Dazu werden Umwinde- und Flachstrickmaschinen mit verteilter Sensorik ausgerüstet, die Temperatur, Feuchte, Licht, Näherung und Fadenzugkraft sowie die Fadengeschwindigkeit misst. Zusätzlich überwachen Mikrofone die Geräusche in der direkten Produktionsumgebung. Diese akustischen Messdaten weisen zum Beispiel auf Vibrationen hin und können besonders gut mit künstlicher Intelligenz ausgewertet werden. Bei der Umwindegarnherstellung werden die erfassten Prozessgrößen direkt für die Steuerung der Prozessparameter verwendet.

Darüber hinaus werden neue kostengünstige Sensoren entwickelt. Für laufende Garne wurde zum Beispiel ein Prinzip mit vier Messröhrchen entwickelt, die schnell und berührungsfrei messen, wie leitfähig das durchlaufende Garn ist und wie seine sensorischen Eigenschaften sind. Diese Sensoren sind so ausgelegt, dass sie in möglichst vielen Textilprozessen eingesetzt werden können ohne sie aufwendig an unterschiedliche Abläufe anpassen zu müssen.

Die Garne werden also sowohl bei der Umwindegarnherstellung als auch im anschließenden Strickprozess überwacht. Tritt ein Bruch der leitfähigen Garnkomponente auf, wird er sofort entdeckt. Luftfeuchtigkeit und Umgebungstemperatur beeinträchtigen die Messgenauigkeit nicht. Die Überwachung der Prozesse funktioniert nicht nur bei Gestricken, sondern auch bei anderen textilen Flächen.

Im weiteren Projektverlauf werden die Sensoren bei der Herstellung von hochelastischen Umwindegarnen und Strickteilen eingesetzt und dabei getestet wie effektiv die auftretenden Fehler erkannt werden.

Mit diesen neu entwickelten Verfahren können fehlerhafte Halbzeuge rechtzeitig aus der Prozesskette genommen werden. Teure zusätzliche Kontrollen während späterer Prozessschritte werden überflüssig.

More information:
DITF E-Textiles Garne
Source:

DITF

(c) DITF
12.11.2021

ADD ITC: Textile Impulse für die Zukunft

Am 9. und 10. November fand die Aachen-Dresden-Denkendorf International Textile Conference in Stuttgart statt. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) organisierten in diesem Jahr eine digitale Veranstaltung, nachdem die Tagung in 2020 coronabedingt abgesagt worden war. 360 Teilnehmerinnen und Teilnehmer aus 25 Ländern und vier Kontinenten nutzten die Gelegenheit, bei einem der wichtigsten europäischen Fachkongresse dabei zu sein. Ministerialdirektor Michael Kleiner überbrachte ein Grußwort der Ministerin für Wirtschaft, Arbeit und Tourismus Baden-Württemberg, Nicole Hoffmeister-Kraut, die das gelungene Programm des textilen Branchentreffs würdigte. Die Konferenz wird jährlich im Wechsel von den Instituten ITM Dresden, DWI Aachen und DITF Denkendorf organisiert.

Am 9. und 10. November fand die Aachen-Dresden-Denkendorf International Textile Conference in Stuttgart statt. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) organisierten in diesem Jahr eine digitale Veranstaltung, nachdem die Tagung in 2020 coronabedingt abgesagt worden war. 360 Teilnehmerinnen und Teilnehmer aus 25 Ländern und vier Kontinenten nutzten die Gelegenheit, bei einem der wichtigsten europäischen Fachkongresse dabei zu sein. Ministerialdirektor Michael Kleiner überbrachte ein Grußwort der Ministerin für Wirtschaft, Arbeit und Tourismus Baden-Württemberg, Nicole Hoffmeister-Kraut, die das gelungene Programm des textilen Branchentreffs würdigte. Die Konferenz wird jährlich im Wechsel von den Instituten ITM Dresden, DWI Aachen und DITF Denkendorf organisiert.

Über 60 Vorträge in Plenarsessions und drei Parallelsessions standen auf dem Programm. Expertinnen und Experten aus Wirtschaft und Forschung berichteten über Forschungsergebnisse und marktfähige textile Innovationen in den Bereichen Hochleistungsfasern, Faserverbundwerkstoffe, Medizintextilien, der Funktionalisierung und im Textilmaschinenbau. Die Themen der Konferenz standen im Zeichen der Umbrüche, die durch die digitale Transformation und die Anforderungen einer nachhaltigen Kreislaufwirtschaft von der Textilindustrie bewältigt werden müssen.

Die Möglichkeiten für textile Anwendungen sind groß. Ob Mobilität mit Faserverbundwerkstoffen, Architektur mit modernen Baustoffen oder smarte Textilien für Arbeitsalltag, Gesundheit oder für neue außergewöhnliche Sportarten – es gibt kaum einen Lebensbereich, bei dem High-Tech-Textilien nicht zur Lösung von zukünftigen Herausforderungen beitragen. Die Session „quo vadis Textilmaschinenkonzepte“ zeigte, dass auch bei den Verfahren und Prozessen noch viel Innovationspotenzial besteht und ausgeschöpft wird.

Unter dem Motto „Von der Idee bis zur Praxis“ stellte das Forschungskuratorium Textil e. V. in einer eigenen Transfersession erfolgreiche Kooperationsprojekte aus dem IGF-ZIM-Programm vor, in denen von Vertretern und Vertreterinnen aus Wissenschaft und Industrie gemeinsam Produkte und Verfahren entwickelt und erfolgreich umgesetzt wurden.

Referentinnen und Referenten aus den diesjährigen Partnerländern Portugal und Spanien gaben mit Vorträgen und Diskussionsbeiträgen einen umfassenden Einblick in die Textilindustrie und Forschung der beiden Länder.

Ergänzt wurde das Tagungsprogramm durch eine virtuelle Ausstellung mit Firmen und Instituten sowie über 100 wissenschaftlichen Postern. Drei der Posterpräsentationen wurden mit dem Best Poster-Award der Aachen-Dresden-Denkendorf International Textile Conference 2021 ausgezeichnet.

Etwa 20 Technikerinnen und Techniker und sechs Dolmetscherinnen und Dolmetscher waren im Einsatz, um die Vorträge und Diskussionen in alle Welt zu übertragen. Die nächste ADD International Textile Conference wird wieder wie gewohnt als Präsenzveranstaltung stattfinden. Am 1. und 2. Dezember 2022 lädt das DWI nach Aachen ein.

More information:
ADD ITC
Source:

DITF

Aktuell können Teams wieder vor Ort im EscapeROOM an den DITF gemeinsam Lösungen finden. Foto: Hahn-Schickard
27.09.2021

Kompetenzzentrum Textil vernetzt präsentiert virtuellen „KI-EscapeROOM“

Künstliche Intelligenz (KI) bietet auch kleinen und mittleren Unternehmen große Chancen. Damit das Potenzial von KI spielerisch erlebbar wird, haben die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) und die Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. im Sommer letzten Jahres den „KI-EscapeROOM“ eröffnet. Aufgrund der andauernden Einschränkungen durch COVID-19 wurde für Interessenten aus der Industrie eine virtuelle Möglichkeit geschaffen, weiterhin aktiv das Thema KI kennenzulernen. Das neue Online-Angebot des Mittelstand 4.0 Kompetenzzentrums Textil vernetzt kann ab sofort genutzt werden.

Künstliche Intelligenz (KI) bietet auch kleinen und mittleren Unternehmen große Chancen. Damit das Potenzial von KI spielerisch erlebbar wird, haben die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) und die Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. im Sommer letzten Jahres den „KI-EscapeROOM“ eröffnet. Aufgrund der andauernden Einschränkungen durch COVID-19 wurde für Interessenten aus der Industrie eine virtuelle Möglichkeit geschaffen, weiterhin aktiv das Thema KI kennenzulernen. Das neue Online-Angebot des Mittelstand 4.0 Kompetenzzentrums Textil vernetzt kann ab sofort genutzt werden.

Wissenschaftler*innen von DITF und Hahn-Schickard haben im Sommer letzten Jahres gemeinsam ein Konzept erstellt, mit dem KI-Prinzipien spannend und verständlich vermittelt werden: Der KI-EscapeROOM wurde eröffnet. Die Spielenden werden Schritt für Schritt an das Thema KI herangeführt und können am Ende Impulse und Ideen für die eigene Arbeit mitnehmen. Als pandemiebedingt der reale KI-Escape-Room geschlossen werden musste, fehlte ein digitales Angebot. Jetzt wurde die virtuelle Baustelle für den Aufbau des KI-EscapeROOM eingerichtet. Mit Desktop-PC oder Laptop kann man in das 3D-Browser-Spiel eintreten und dabei helfen, den KI-EscapeROOM aufzubauen. In 15-20 Minuten kann die Baustelle weiterentwickelt werden, indem durch das richtige Beantworten von Multiple-Choice-Fragen benötigte Bauteile erspielt werden. Gegenstände müssen angeklickt und gedreht werden – überall können sich Hinweise verbergen.

Am Ende des Spiels steht nicht nur die Steuerzentrale, an die der reale KI-EscapeROOM anknüpft, sondern die Teilnehmer*innen wissen, was Künstliche Intelligenz kann – und was nicht. Die Spielerinnen und Spieler kennen sowohl verschiedene Aufgaben, die KI lösen kann, als auch verschiedene Algorithmen, die KI verwendet.

Der reale KI-EscapeROOM an den DITF kann jetzt wieder besucht werden. Mit Knobeln, Kombinieren und Ausprobieren können weitere spannende Aufgaben rund um Künstliche Intelligenz gelöst werden.

Im KI-EscapeROOM können Mitarbeiter*innen aus allen Branchen Künstliche Intelligenz hautnah erleben und gemeinsam in interdisziplinären Teams unterschiedliche Aufgaben meistern.

Wer sich gerne im KI-EscapeROOM für die Zukunft fit machen möchte, meldet sich zu einem der Termine an oder vereinbart einen individuellen Termin mit einer Gruppe von drei bis sechs Personen. Zur kompletten Terminübersicht aus dem Kompetenzzentrum Textil vernetzt geht es unter www.kompetenzzentrum-textil-vernetzt.digital.

Für die Teilnehmer*innen, die Ideen in ihren Unternehmen umsetzen möchten, stehen zusätzlich die KI-Trainer*innen aus dem Kompetenzzentrum Textil vernetzt mit Rat und Tat zur Seite.

More information:
Textil vernetzt KI DITF
Source:

DITF

DITF: Möbel aus der Biogasanlage (c) DITF
27.07.2021

DITF: Möbel aus der Biogasanlage

Die Hallertau ist Deutschlands größtes Hopfenanbaugebiet. Bei der Ernte bleiben Hopfenrebenhäcksel übrig, die vor Ort in einer Biogasanlage zu umweltfreundlichem Bioerdgas umgewandelt werden. Aber das ist noch nicht das Ende der Verwertungskette dieser Faserpflanze. Aus den pflanzenhaltigen Gärresten haben Forscherinnen und Forscher an den Deutschen Instituten für Textil- und Faserforschung Denkendorf (DITF) einen Verbundwerkstoff hergestellt, aus dem sich Möbel herstellen lassen.

Schichtstoffe sind in der Möbelindustrie sehr gefragt, da sie sehr flexibel gestaltet werden können. Der an den DITF mit seinen Projektpartnern entwickelte Verbundwerkstoff aus Gärresten ist eine besonders nachhaltige Variante. Um ihn herzustellen, werden diese pflanzenhaltigen Reststoffe zunächst umweltschonend gereinigt. Aus dieser Masse haben die DITF mit der Hochschule Reutlingen ein Nassvlies entwickelt, das zusammen mit einem biobasierten Harzsystem zu einem Verbundwerkstoff gepresst wird. Er ist belastbar und kann vielseitig verarbeitet werden.

Das Forschungsprojekt wurde im Rahmen des Zentralen Innovationsprogrammes Mittelstand (ZIM) gefördert.

Die Hallertau ist Deutschlands größtes Hopfenanbaugebiet. Bei der Ernte bleiben Hopfenrebenhäcksel übrig, die vor Ort in einer Biogasanlage zu umweltfreundlichem Bioerdgas umgewandelt werden. Aber das ist noch nicht das Ende der Verwertungskette dieser Faserpflanze. Aus den pflanzenhaltigen Gärresten haben Forscherinnen und Forscher an den Deutschen Instituten für Textil- und Faserforschung Denkendorf (DITF) einen Verbundwerkstoff hergestellt, aus dem sich Möbel herstellen lassen.

Schichtstoffe sind in der Möbelindustrie sehr gefragt, da sie sehr flexibel gestaltet werden können. Der an den DITF mit seinen Projektpartnern entwickelte Verbundwerkstoff aus Gärresten ist eine besonders nachhaltige Variante. Um ihn herzustellen, werden diese pflanzenhaltigen Reststoffe zunächst umweltschonend gereinigt. Aus dieser Masse haben die DITF mit der Hochschule Reutlingen ein Nassvlies entwickelt, das zusammen mit einem biobasierten Harzsystem zu einem Verbundwerkstoff gepresst wird. Er ist belastbar und kann vielseitig verarbeitet werden.

Das Forschungsprojekt wurde im Rahmen des Zentralen Innovationsprogrammes Mittelstand (ZIM) gefördert.

Doktorandin des ITFT erhält den Manfred Hirschvogel Preis (c) DITF Denkendorf
02.07.2021

Doktorandin des ITFT erhält den Manfred Hirschvogel Preis

Dr.-Ing. Larissa Born, wissenschaftliche Mitarbeiterin am Institut für Textil- und Fasertechnologien (ITFT), wurde am 02. Juli 2021 im Rahmen der Abschlussfeier der Masterabsolvent:innen der Maschinenbau-Fakultäten an der Universität Stuttgart mit dem Manfred Hirschvogel Preis 2021 ausgezeichnet. Der mit 5.000 Euro dotierte Preis wird jährlich an allen TU9-Universitäten für die beste Dissertation aus dem Bereich Maschinenbau verliehen. Die prämierte Doktorarbeit trägt den Titel „Grundlagen für die Auslegung und Gestaltung eines Hybridmaterials für außen liegende, adaptive Fassadenbauteile aus Faserverbundkunststoff“. Dr.-Ing. Marc Hirschvogel, Kuratoriumsvorsitzender der Frank Hirschvogel Stiftung, lobte bei der Preisverleihung insbesondere den innovativen Ansatz und die wissenschaftliche Tiefe der Arbeit.

Dr.-Ing. Larissa Born, wissenschaftliche Mitarbeiterin am Institut für Textil- und Fasertechnologien (ITFT), wurde am 02. Juli 2021 im Rahmen der Abschlussfeier der Masterabsolvent:innen der Maschinenbau-Fakultäten an der Universität Stuttgart mit dem Manfred Hirschvogel Preis 2021 ausgezeichnet. Der mit 5.000 Euro dotierte Preis wird jährlich an allen TU9-Universitäten für die beste Dissertation aus dem Bereich Maschinenbau verliehen. Die prämierte Doktorarbeit trägt den Titel „Grundlagen für die Auslegung und Gestaltung eines Hybridmaterials für außen liegende, adaptive Fassadenbauteile aus Faserverbundkunststoff“. Dr.-Ing. Marc Hirschvogel, Kuratoriumsvorsitzender der Frank Hirschvogel Stiftung, lobte bei der Preisverleihung insbesondere den innovativen Ansatz und die wissenschaftliche Tiefe der Arbeit.

Mit ihrer Doktorarbeit stellt Larissa Born eine grundlegende Methodik zur Entwicklung adaptiver Faserverbundkunststoffe zur Verfügung und wandte diese beispielhaft auf ein Hybridmaterial aus glasfaserverstärktem Kunststoff, Elastomer und thermoplastischem Polyurethan an. Zwischen steifen Bauteilbereichen werden lokal nachgiebige Bereiche (Gelenke) durch Anpassung des Materialaufbaus integriert. Um die adaptiven Material-eigenschaften analysieren zu können, entwickelte sie darüber hinaus ein neues Prüf-verfahren, das die Biegung eines Prüfkörpers um bis zu 180° ermöglicht. Das neuartige Hybridmaterial lässt eine Dauerbelastung von 5.000 Biegezyklen um 180° mit lediglich marginalem Festigkeitsverlust zu. Ergebnis der durchgeführten Analysen ist eine Datenbasis inklusive Regressionsmodell auf deren Grundlage sich die mechanischen Eigenschaften eines Gelenk-Bauteils einstellen lassen.

Das Hybridmaterial hat bereits in verschiedenen Demonstratoren Anwendung gefunden, die mit dem AVK Innovation Award (Flectofold) und dem Materialica Gold Award (Flexafold) ausgezeichnet wurden. „Mit ihrer Arbeit ist es Larissa Born gelungen, eine völlig neue, materialtechnische Grundlage für die Entwicklung adaptiver Faserverbundkunststoffe zu schaffen.“, lobte Prof. Dr.-Ing. Götz T. Gresser, Doktorvater und Institutsleiter des ITFT, die Arbeit anlässlich der Preisverleihung. „Die Anwendung ist nicht beschränkt auf den architek-tonischen Kontext, sondern kann ebenso auf andere Bereiche wie beispielsweise Automobil und Luftfahrt übertragen werden. So können mechanische, wartungsintensive Gelenke durch verschleißarme, nachgiebige Mechanismen ersetzt werden.“

Nach der abgeschlossenen Promotion wird Larissa Born als stellvertretende Institutsleiterin des ITFT ihre Forschungsarbeiten am Institut fortsetzen. Gemeinsam mit Prof. Gresser gilt es, das bisherige Forschungsfeld zu vertiefen und neue Forschungsthemen im Bereich Faserverbund zu eröffnen.

DITF: Torwarthandschuhe mit integriertem textilen Finger-Überdehnungsschutz (c) DITF
18.06.2021

DITF: Torwarthandschuhe mit integriertem textilen Finger-Überdehnungsschutz

Oft entscheidet eine Fingerspitzenlänge über Sieg oder Niederlage. Wenn wir derzeit bei der Europameisterschaft sehen, wie ein Torwart den Ball elegant über die Latte lenkt, können wir uns kaum vorstellen, welche Kräfte dabei auf die Fingerspitzen wirken und wie groß die Gefahr ist, sich dabei zu verletzen. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) entwickeln mit ihrem Projektpartner T1TAN GmbH einen wirksamen Finger-Überdehnungsschutz für Fußballtorwart-Handschuhe.

Oft entscheidet eine Fingerspitzenlänge über Sieg oder Niederlage. Wenn wir derzeit bei der Europameisterschaft sehen, wie ein Torwart den Ball elegant über die Latte lenkt, können wir uns kaum vorstellen, welche Kräfte dabei auf die Fingerspitzen wirken und wie groß die Gefahr ist, sich dabei zu verletzen. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) entwickeln mit ihrem Projektpartner T1TAN GmbH einen wirksamen Finger-Überdehnungsschutz für Fußballtorwart-Handschuhe.

Der an den DITF entwickelte Handschuh soll 90 Prozent der Verletzungen verhindern, die durch Überdehnung verursacht werden. Dazu wurde ein mechanisches Konzept entwickelt, das die Kraft in den Fingerspitzen aufnimmt und über die Handgelenkmanschette optimal in den Unterarm ableitet – und das, ohne dass sich der Handschuh verformt. Das zentrale Funktionselement des Überdehnungsschutzes sind lastaufnehmende textile Strukturen mit spezifischer Kraft-Dehnungsmechanik. Diese Strukturen werden vom Fingerendgelenk der Außenhand bis zum Fingerendgelenk der Innenhand aufgenäht und sind dadurch fest im Handschuh verankert. Der Handschuh und seine funktionellen Einzelelemente wurden so gestaltet und angeordnet, dass ein geometrisch hoher Formschluss entsteht, der den Kraftfluss optimal leitet.

Der große Vorteil für den Sportler ist dabei, dass die Schutzvorrichtung nicht nur individuell auf jede Handlänge abgestimmt, sondern sogar für jeden einzelnen Finger die passende Vorspannung eingestellt werden kann. Das ersetzt die bisherigen an der Außenhand angebrachten Kunststoffschienen. Diese sogenannten „Finger Frames“ haben den Nachteil, dass sie sich leicht über ihre Dehngrenze hinaus verbiegen.

Das Handgelenk wird von einer Manschette aus einem besonders festen und elastischen Material umschlossen und leitet mit Hilfe von lastaufnehmenden textilen Bändern die Zugkräfte über Kanäle in der Innenhand in den Unterarm.

Um die Wirkung zu testen, wurde an den DITF ein „Handschuhprüfstand“ aufgebaut. Er besteht aus einer Ballkanone und einem speziell entwickelten Handdummy für den Torwarthandschuh.

Das Forschungsprojekt wird im September 2021 abgeschlossen sein