Textination Newsline

Reset
117 results
In the future, one will be able to use their phone to read the clothing woven-in labels made with inexpensive photonic fibers. (c) Marcin Szczepanski/Lead Multimedia Storyteller, University of Michigan College of Engineering. In the future, one will be able to use their phone to read the clothing woven-in labels made with inexpensive photonic fibers.
15.02.2023

The new butterfly effect: A ‘game changer’ for clothing recycling?

Photonic fibers borrow from butterfly wings to enable invisible, indelible sorting labels

Less than 15% of the 92 million tons of clothing and other textiles discarded annually are recycled—in part because they are so difficult to sort. Woven-in labels made with inexpensive photonic fibers, developed by a University of Michigan-led team, could change that.
 
“It’s like a barcode that’s woven directly into the fabric of a garment,” said Max Shtein, U-M professor of materials science and engineering and corresponding author of the study in Advanced Materials Technologies. “We can customize the photonic properties of the fibers to make them visible to the naked eye, readable only under near-infrared light or any combination.”

Photonic fibers borrow from butterfly wings to enable invisible, indelible sorting labels

Less than 15% of the 92 million tons of clothing and other textiles discarded annually are recycled—in part because they are so difficult to sort. Woven-in labels made with inexpensive photonic fibers, developed by a University of Michigan-led team, could change that.
 
“It’s like a barcode that’s woven directly into the fabric of a garment,” said Max Shtein, U-M professor of materials science and engineering and corresponding author of the study in Advanced Materials Technologies. “We can customize the photonic properties of the fibers to make them visible to the naked eye, readable only under near-infrared light or any combination.”

Ordinary tags often don’t make it to the end of a garment’s life—they may be cut away or washed until illegible, and tagless information can wear off. Recycling could be more effective if a tag was woven into the fabric, invisible until it needs to be read. This is what the new fiber could do.
 
Recyclers already use near-infrared sorting systems that identify different materials according to their naturally occurring optical signatures—the PET plastic in a water bottle, for example, looks different under near-infrared light than the HDPE plastic in a milk jug. Different fabrics also have different optical signatures, but Brian Iezzi, a postdoctoral researcher in Shtein’s lab and lead author of the study, explains that those signatures are of limited use to recyclers because of the prevalence of blended fabrics.

“For a truly circular recycling system to work, it’s important to know the precise composition of a fabric—a cotton recycler doesn’t want to pay for a garment that’s made of 70% polyester,” Iezzi said. “Natural optical signatures can’t provide that level of precision, but our photonic fibers can.”

The team developed the technology by combining Iezzi and Shtein’s photonic expertise—usually applied to products like displays, solar cells and optical filters—with the advanced textile capabilities at MIT’s Lincoln Lab. The lab worked to incorporate the photonic properties into a process that would be compatible with large-scale production.
 
They accomplished the task by starting with a preform—a plastic feedstock that comprises dozens of alternating layers. In this case, they used acrylic and polycarbonate. While each individual layer is clear, the combination of two materials bends and refracts light to create optical effects that can look like color. It’s the same basic phenomenon that gives butterfly wings their shimmer.

The preform is heated and then mechanically pulled—a bit like taffy—into a hair-thin strand of fiber. While the manufacturing process method differs from the extrusion technique used to make conventional synthetic fibers like polyester, it can produce the same miles-long strands of fiber. Those strands can then be processed with the same equipment already used by textile makers.

By adjusting the mix of materials and the speed at which the preform is pulled, the researchers tuned the fiber to create the desired optical properties and ensure recyclability. While the photonic fiber is more expensive than traditional textiles, the researchers estimate that it will only result in a small increase in the cost of finished goods.

“The photonic fibers only need to make up a small percentage—as little as 1% of a finished garment,” Iezzi said. “That might increase the cost of the finished product by around 25 cents—similar to the cost of those use-and-care tags we’re all familiar with.”

Shtein says that in addition to making recycling easier, the photonic labeling could be used to tell consumers where and how goods are made, and even to verify the authenticity of brand-name products. It could be a way to add important value for customers.

“As electronic devices like cell phones become more sophisticated, they could potentially have the ability to read this kind of photonic labeling,” Shtein said. “So I could imagine a future where woven-in labels are a useful feature for consumers as well as recyclers.”

The team has applied for patent protection and is evaluating ways to move forward with the commercialization of the technology.
The research was supported by the National Science Foundation and the Under Secretary of Defense for Research and Engineering.

Source:

Gabe Cherry, College of Engineering, University of Michigan / Textination

Aerogel (c) Outlast Technologies GmbH
31.01.2023

Aerogel: Frozen Smoke for Clothing and Work Safety

Comprised of up to 99.8 percent air, aerogel is the lightest solid in the world. The material, which is also called “frozen smoke” due to its appearance and physical properties, exhibits extremely low heat conductivity which exceeds other insulations many times over. This is why NASA has already been using aerogel for aerospace projects for many years.

Despite this, it has not been possible to bind the material to textiles in a high concentration and enable straightforward further processing over the roughly 90-year history of the material. Outlast Technologies GmbH has developed an innovative process - a patent has already been filed for -  for permanently adhering large amounts of aerogel to different media, like nonwoven fabric, felt and composites materials. Their original properties are retained throughout, so they can easily be further processed using conventional production methods.

Comprised of up to 99.8 percent air, aerogel is the lightest solid in the world. The material, which is also called “frozen smoke” due to its appearance and physical properties, exhibits extremely low heat conductivity which exceeds other insulations many times over. This is why NASA has already been using aerogel for aerospace projects for many years.

Despite this, it has not been possible to bind the material to textiles in a high concentration and enable straightforward further processing over the roughly 90-year history of the material. Outlast Technologies GmbH has developed an innovative process - a patent has already been filed for -  for permanently adhering large amounts of aerogel to different media, like nonwoven fabric, felt and composites materials. Their original properties are retained throughout, so they can easily be further processed using conventional production methods.

The fabrics sold under the Aersulate name are only 1 to 3 mm thick and achieve very high insulation values which are largely retained even under pressure and in moist conditions. Despite their high performance, they are still soft and can be used for shoes, clothing and work safety products, as well as for sleeping bags and technical applications.
 
“Thanks to its extraordinary physical properties, NASA has already been using aerogel for many years,” remarked Volker Schuster, Head of Research and Development at Outlast Technologies. “For example, for the insulation of its Mars rovers and for capturing dust from the tail of a comet during the Stardust mission,” he continued. Since the development of aerogel by American scientist and chemical engineer Samuel Stephens Kistler in 1931, no-one had been able to apply the versatile material to textiles in large amounts without changing their original properties, despite intensive research. This means that the products were often not only very rigid, but made processing with conventional production methods impossible due to their high degree of dust abrasion. With the newly developed Aersulate technology, which was presented for the first time in June 2022, the Heidenheim-based specialist for textile thermoregulation is opening a different chapter in insulation history.

High-performance insulation just 1 to 3 mm thick
“The consistency of aerogel can be best described as liquid dust particles which spread uncontrollably throughout a room within seconds thanks to their minimal thickness,” explained Schuster. “This is why processing is a big challenge.” Outlast Technologies has managed, after a development period of around five years, to bring an innovative process involving the adhering of aerogel between multiple layers of material to market maturity. Depending on the area of application, nonwoven fabric, felt and different composite materials can be used as the media. What is special here is that the properties of the respective textiles are not adversely affected by the Aersulate technology, meaning that they can easily be further processed with conventional means and under industrial conditions despite their acquired thermal properties.
 
As a silicate-based solid, aerogel is obtained from natural quartz sand, yet exhibits a density over 1,000 times lower than glass manufactured from the same raw material. The extraordinary thermo-insulating properties of the material are thanks to its extremely porous structure, which enables it to be composed of up to 99.8 percent air.
 
“One liter of aerogel weighs just 50 g,” explained Schuster. “Just 10 g of the material has the same surface area as a soccer field, though.” Thanks to these properties, Aersulate textiles exceed all other previously known insulation materials in terms of performance, despite the fact that they are only 1 to 3 mm thick. Tests carried out by the German Institute for Textile and Fiber Research in Denkendorf (DITF) using the Alambeta method showed that the thermal resistance of an Aersulate fleece is more than double that of a conventional fleece of the same thickness. Add to this the fact that the thermo-insulating properties of Aersulate products remain high despite pressure and wetness, while they decrease enormously with other conventional materials like felt and polyurethane foam (PU) under these conditions.

Work safety and functional clothing with Aersulate
Thanks to the textile medium, thin Aersulate products are especially suitable for the shoe and clothing industry, as well as all areas of work safety. The user benefits from different properties, depending on the intended use. “With a glove made of Aersulate just 1 mm thick, you can put your hand into boiling water without being scalded, for example,” explained Schuster. “The material’s extremely hydrophobic properties play quite literally into our hands here.” In the case of knee patches on work and functional pants, as well as shoes and soles, on the other hand, the material properties also become relevant when compression occurs. This is because the thermo-insulation properties of other materials would be reduced little by little due to moisture from the outside and sweat from the inside on the one hand, and by the continual influence of body weight on the other.
          
In addition to the human body, luggage and technical devices can also be protected from extreme temperatures and the effects of weather with Aersulate. For this purpose, corresponding cell phone or equipment pockets could be sewn into garments, for example, to maintain their battery life even at very cold outside temperatures and to safeguard the devices from overheating in case of high heat exposure. “With the broad range of possible textile medium materials, Aersulate is suitable for all applications requiring high thermal resistance on the one hand, where only a little space is available and both compression and moisture can be expected on the other,” said Schuster in summary.

Source:

Outlast Technologies / Textination

Photo: Performance Days
18.10.2022

Eco Award & Performance Award for innovative winter fabrics 24/25

  • Jury presents two awards for outstanding fabric Innovation

The next PERFORMANCE DAYS will take place from November 3-4, 2022 at the MOC Ordercenter in Munich. Visitors also have the opportunity to follow the events online. Thanks to the new platform The Loop, all important information is available all year round, including current trends, new material innovations and extended tools for ease of use. The focus of the curated PERFORMANCE FORUM continues in winter honoring the winners of both awards. This year, in addition to a PERFORMANCE AWARD, the jury also presented an ECO PERFORMANCE AWARD.

  • Jury presents two awards for outstanding fabric Innovation

The next PERFORMANCE DAYS will take place from November 3-4, 2022 at the MOC Ordercenter in Munich. Visitors also have the opportunity to follow the events online. Thanks to the new platform The Loop, all important information is available all year round, including current trends, new material innovations and extended tools for ease of use. The focus of the curated PERFORMANCE FORUM continues in winter honoring the winners of both awards. This year, in addition to a PERFORMANCE AWARD, the jury also presented an ECO PERFORMANCE AWARD.

Sustainable & innovative: the award winners of the Winter 2024/25 season
As part of the winter edition of the sourcing fairs, the fabric highlights plus accessory trends in the individ-ual categories for the winter season 2024/25 will be on display at the PERFORMANCE FORUM.
 
Particularly striking this year was the high levels of innovation and quality of many submitted fabrics on the one hand, but on the other hand – also as a result of this year’s Focus Topic – the sustainable component. “We wish to enable our visitors to make the best decision in terms of material selection, also in terms of CO2 neutrality and ultimately also in terms of textile recyclability,” states Marco Weichert, CEO of PERFORMANCE DAYS.  

Nevertheless, the road to CO2 neutrality remains a long one, yet the approaches adopted with the Focus Topic ongoing until the coming spring can be seen in a positive light. In general, manufacturers are increasingly relying on the use of natural fibers when possible, such as Tencel™ or other plant fibers – most of them also prove a low CO2 balance during production. The issue of recycling comes with many new facets and wide spanning trends. The portfolio ranges from the recycling of marine waste, such as old buoys, plastic waste or fishing nets, to the recycling of waste from the automotive and computer industries, such as old car tires or computer chips. Natural dyeing methods are also gaining in importance, as is the return of fabrics to the textile cycle.

In the Marketplace, visitors have the opportunity to view over 19,000 products from exhibitors, including the fabric highlights of the individual categories at the PERFORMANCE FORUM. In order for visitors to experience the fabrics in terms of haptics, design and structure in as realistic a form as possible, the PERFORMANCE FORUM has been equipped with innovative 3D technology, including innovative tools such as 3D images, video animations and U3MA data for download.

The jury has also presented two awards for outstanding fabrics for the Winter Season 2024/25 – with the PERFORMANCE AWARD going to Long Advance Int. Co Ltd., and the ECO PERFORMANCE AWARD to PontetortoSpa.

The ECO PERFORMANCE AWARD goes to “9203/M/RC” from PontetortoSpa: High Performance despite maximum sustainability
The fabric is a blend of 23 % hemp, 69 % recycled polyester and 9 % recycled elastane. Moreover, the material boasts a low CO2 footprint during production and focuses on low release levels of microplastics into the environment. “9203/M/RC” belongs to Pontetorto's Techno Stretch organic series, which boast an excellent 4-way stretch with great elasticity. In addition, it guarantees fast drying and optimal breathability. The polyester yarn is manufactured by the mechanical recycling of plastic bottles. Hemp, the most water–repellent among natural fibers, allows for quick drying and provides optimal comfort. Hemp is considered an extremely sustainable natural fiber due to its origin from an anti–bacterial plant that requires neither pesticides nor chemical fertilizers during its growth and consumes extremely little water.

PERFORMANCE AWARD for “LPD-22015-Y4E” from Long Advanced Int. Co. Ltd.: Perfect recycling for top performance
The monocomponent 2layer fabric is a mixture of 45 % polyester mechanical stretch and 55 % recycled polyester from recycled textiles, laminated with a PET Membrane, with a weight of 147 grams.
The special feature of the “LPD 22015-Y4E” is the recycling of fabric and cutting waste. Waste is thus returned to the textile cycle and used to spin new yarn. In the future, manufacturers will have to ensure that all fabric can be recycled. Accordingly, the production of waste is then reduced by 30 % compared to conventional processes. Furthermore, the jury praised the feel and the extraordinary look of the material.

The entire PERFORMANCE FORUM including both awards can be experienced live at the fair on October 26-27, 2022 in Portland, Oregon, and in Munich at the PERFORMANCE DAYS fair on November 03-04, 2022. As of now, all innovative materials can also be found online in the Marketplace of the PERFORMANCE DAYS Loop, with the option to order free samples directly from the exhibitor.

(c) A3/Christian Strohmayr
10.05.2022

Fraunhofer reduces CO2 footprint and recycles trendy lightweight carbon material

Neo-ecology through innovative paper technology

To reduce the CO2 footprint, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV Augsburg research with a state-of-the-art wetlaid nonwoven machine for recycling carbon fibers. The production processes are similar to those of a paper manufacturing machine. The crucial difference: we turn not paper fibers into the paper but recycled carbon fibers into nonwoven roll fabrics. The carbon fiber thus gets a second life and finds an environmentally friendly way in nonwovens, such as door panels, engine bonnets, roof structures, underbody protection (automotive), and heat shields (helicopter tail boom), as well as in aircraft interiors.

“Wetlaid technology for processing technical fibers is currently experiencing a revolution following centuries of papermaking tradition.”
Michael Sauer, Researcher at Fraunhofer IGCV

Neo-ecology through innovative paper technology

To reduce the CO2 footprint, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV Augsburg research with a state-of-the-art wetlaid nonwoven machine for recycling carbon fibers. The production processes are similar to those of a paper manufacturing machine. The crucial difference: we turn not paper fibers into the paper but recycled carbon fibers into nonwoven roll fabrics. The carbon fiber thus gets a second life and finds an environmentally friendly way in nonwovens, such as door panels, engine bonnets, roof structures, underbody protection (automotive), and heat shields (helicopter tail boom), as well as in aircraft interiors.

“Wetlaid technology for processing technical fibers is currently experiencing a revolution following centuries of papermaking tradition.”
Michael Sauer, Researcher at Fraunhofer IGCV

The wetlaid technology used is one of the oldest nonwoven forming processes (around 140 BC - 100 AD). As an essential industry sector with diverse fields of application, wetlaid nonwovens are no longer only found in the classic paper. Instead, the application areas extend, for example, from adhesive carrier films, and packaging material, to banknotes and their process-integrated watermarks and security features. In the future, particularly sustainable technology fields will be added around battery components, fuel cell elements, filtration layers, and even function-integrated material solutions, e.g., EMI shielding function.

Fraunhofer IGCV wetlaid nonwovens line is specifically designed as a pilot line. In principle, very different fiber materials such as natural, regenerated, and synthetic fibers can be processed, mainly recycled and technical fibers. The system offers the highest possible flexibility regarding material variants and process parameters. In addition, sufficiently high productivity is ensured to allow subsequent scaled processing trials (e.g., demonstrator production).

The main operating range of the wetlaid line relates to the following parameters:

  • Processing speed: up to 30 m/min
  • Role width: 610 mm
  • Grammage: approx. 20–300 gsm
  • Overall machinery is ≥ IP65 standard for processing, e.g., conductive fiber materials
  • Machine design based on an angled wire configuration with high dewatering capacity, e.g., for processing highly diluted fiber suspensions or for material variants with high water retention capacity.
  • Machine modular system design with maximum flexibility for a quick change of material variants or a quick change of process parameters. The setup allows short-term hardware adaptations as well as project-specific modifications.

Research focus: carbon recycling at the end of the life cycle
The research focus of Fraunhofer IGCV is primarily in the field of technical staple fibers. The processing of recycled carbon fibers is a particular focus. Current research topics in this context include, for example, the research, optimization, and further development of binder systems, different fiber lengths and fiber length distributions, nonwoven homogeneity, and fiber orientation. In addition, the focus is on the integration of digital as well as AI-supported methods within the framework of online process monitoring. Further research topics, such as the production of gas diffusion layers for fuel cell components, the further development of battery elements, and filtration applications, are currently being developed.

Source:

Fraunhofer Institute for Casting, Composite and Processing Technology IGCV

Nicolas Meletiou, Pixabay
01.03.2022

Textiles and the environment: the role of design in Europe’s circular economy

From the perspective of European consumption, textiles have on average the fourth highest negative life cycle impact on the environment and climate change, after food, housing and mobility. A shift to a circular textile production and consumption system with longer use, and more reuse and recycling could reduce those impacts along with reductions in overall consumption. One important measure is circular design of textiles to improve product durability, repairability and recyclability and to ensure the uptake of secondary raw materials in new products.

Key messages

From the perspective of European consumption, textiles have on average the fourth highest negative life cycle impact on the environment and climate change, after food, housing and mobility. A shift to a circular textile production and consumption system with longer use, and more reuse and recycling could reduce those impacts along with reductions in overall consumption. One important measure is circular design of textiles to improve product durability, repairability and recyclability and to ensure the uptake of secondary raw materials in new products.

Key messages

  • In 2019, the EU textile and clothing sector had a turnover of EUR162 billion, employing over 1.5 million people across 160,000 companies. As was the case in many sectors, between 2019 and 2020, the COVID-19 crisis decreased turnover by 9% for textiles as a whole and by 17% for clothing.
  • In 2020, textile consumption in Europe had on average the fourth highest impact on the environment and climate change from a global life cycle perspective. It was the consumption area with the third highest impact on water and land use, and the fifth highest in terms of raw material use and greenhouse gas emissions.
  • To reduce the environmental impacts of textiles, a shift towards circular business models, including circular design, is crucial. This will need technical, social and business model innovation, as well as behavioural change and policy support.
  • Circular design is an important enabler of the transition towards sustainable production and consumption of textiles through circular business models. The design phase plays a critical role in each of the four pathways to achieving a circular textile sector: longevity and durability; optimised resource use; collection and reuse; and recycling and material use.

Textiles are identified as a key value chain in the EU circular economy action plan and will be addressed in the forthcoming European Commission’s 2022 EU strategy for sustainable and circular textiles and EU sustainable products initiative. This briefing aims to improve our understanding of the environmental and climate impacts of textiles from a European perspective and to identify design principles and measures to increase circularity in textiles. It is underpinned by a report from the EEA’s European Topic Centre on Circular Economy and Resource Use available here.

1. Production, trade and consumption of textiles
Textiles is an important sector for the EU economy. In 2019, the EU textile and clothing sector had a turnover of EUR162 billion, employing over 1.5 million people in 160,000 companies. As was the case for many sectors, between 2019 and 2020, the COVID-19 health and economic crisis decreased turnover by 9% for textiles as a whole and by 17% for clothing (Euratex, 2021).

In 2020, 6.9 million tonnes of finished textile products were produced in the EU-27. EU production specialises in carpets, household textiles and other textiles (including non-woven textiles, technical and industrial textiles, ropes and fabrics). In addition to finished products, the EU produces intermediate products for textiles, such as fibres, yarns and fabrics (Köhler et al., 2021).

The textiles sector is labour intensive compared with others. Almost 13 million full-time equivalent workers were employed worldwide in the supply chain to produce the amount of clothing, textiles and footwear consumed in the EU-27 in 2020. This makes the textiles sector the third largest employer worldwide, after food and housing. Most production takes place in Asia, where low production costs come at the expense of workers’ health and safety.
 
Textiles are highly globalised, with Europe being a significant importer and exporter. In 2020, 8.7 million tonnes of finished textile products, with a value of EUR125 billion, were imported into the EU-27. Clothing accounts for 45% of imports in terms of volume, followed by household textiles, other textiles and footwear (Eurostat, 2021a). The EU imports mainly from China, Bangladesh and Turkey, and exports mainly to the United Kingdom, Switzerland and the United States (Euratex, 2020).

Consumption
European households consume large amounts of textile products. In 2019, as in 2018, Europeans spent on average EUR600 on clothing, EUR150 on footwear and EUR70 on household textiles (Köhler et al., 2021; Eurostat, 2021b).

The response to the COVID-19 pandemic, involving stay-at-home measures and the closure of companies and shops, decreased textile production and demand overall (Euratex, 2021). As a result, the consumption of clothing and footwear per person decreased in 2020, relative to 2019, while the consumption of household textiles slightly increased. Average textile consumption per person amounted to 6.0kg of clothing, 6.1kg of household textiles and 2.7kg of shoes in 2020 (see Figure 1).

Apart from this COVID-related drop in consumption in 2020, the estimated consumption of clothing and footwear stayed relatively constant over the last decade, with slight fluctuations between years (see Figure 2). Similarly, the consumption of household textiles was also relatively steady, with a slight increase over the decade.

When calculating the ‘estimated consumption’ based on production and trade data from 2020, and excluding industrial/technical textiles and carpets, total textile consumption is 15kg per person per year, consisting of, on average:

  • 6.0kg of clothing
  • 6.1kg of household textiles
  • 2.7kg footwear.

For 2020, this amounts to a total consumption of 6.6 million tonnes of textile products in Europe. Textile consumption estimates are uncertain, as they vary by study, often using different scopes and calculation methods.

2. Environmental and climate impacts of textiles
The production and consumption of textiles has significant impacts on the environment and climate change. Environmental impacts in the production phase result from the cultivation and production of natural fibres such as cotton, hemp and linen (e.g. use of land and water, fertilisers and pesticides) and from the production of synthetic fibres such as polyester and elastane (e.g. energy use, chemical feedstock) (ETC/WMGE, 2021b). Manufacturing textiles requires large amounts of energy and water and uses a variety of chemicals across various production processes. Distribution and retail are responsible for transport emissions and packaging waste.

During use and maintenance — washing, drying and ironing — electricity, water and detergents are used. Chemicals and microfibres are also emitted into the waste water. Meanwhile, textiles contribute to significant amounts of textile waste. At the end of their life, textiles often end up in general waste and are incinerated or landfilled. When textile waste is collected separately, textiles are sorted and reused, recycled or disposed of, depending on their quality and material composition. In 2017, it was estimated that less than 1% of all textiles worldwide are recycled into new products (Ellen MacArthur Foundation, 2017).

To illustrate the magnitude of the impacts of textile consumption on raw material use, water and land use and greenhouse gas emissions compared with other consumption categories, we have updated our calculations of the life cycle environmental and climate impacts in the EU. We used input-output modelling based on data from the Exiobase database and Eurostat. In line with the reduced textile consumption level in 2020 because of the COVID-19 pandemic, the environmental impacts decreased from 2019 to 2020.

Raw material use
Large amounts of raw materials are used for textile production. To produce all clothing, footwear and household textiles purchased by EU households in 2020, an estimated 175 million tonnes of primary raw materials were used, amounting to 391kg per person. Roughly 40% of this is attributable to clothes, 30% to household textiles and 30% to footwear. This ranks textiles as the fifth highest consumption category in Europe in terms of primary raw material use (see Figure 3).

The raw materials used include all types of materials used in producing natural and synthetic fibres, such as fossil fuels, chemicals and fertilisers. It also includes all building materials, minerals and metals used in the construction of production facilities. Transport and retail of the textile products are included as well. Only 20% of these primary raw materials are produced or extracted in Europe, with the remainder extracted outside Europe. This shows the global nature of the textiles value chain and the high dependency of European consumption on imports. This implies that 80% of environmental impacts generated by Europe’s textile consumption takes place outside Europe. For example, cotton farming, fibre production and garment construction mostly take place in Asia (ETC/WMGE, 2019).

Water use
Producing and handling textiles requires large quantities of water. Water use distinguishes between ‘blue’ water (surface water or groundwater consumed or evaporated during irrigation, industry processes or household use) and ‘green’ water (rain water stored in the soil, typically used to grow crops) (Hoekstra et al., 2012).

To produce all clothing, footwear and household textiles purchased by EU households in 2020, about 4,000 million m³ of blue water were required, amounting to 9m³ per person, ranking textiles’ water consumption in third place, after food and recreation and culture (see Figure 4).

Additionally, about 20,000 million m³ of green water was used, mainly for producing cotton, which amounts to 44m³ per person. Blue water is used fairly equally in producing clothing (40%), footwear (30%) and household and other textiles (30%). Green water is mainly consumed in producing clothing (almost 50%) and household textiles (30%), of which cotton production consumes the most.

Water consumption for textiles consumed in Europe mostly takes place outside Europe. It is estimated that producing 1kg of cotton requires about 10m³ of water, typically outside Europe (Chapagain et al., 2006).

Land use
Producing textiles, in particular natural textiles, requires large amounts of land. The land used in the supply chain of textiles purchased by European households in 2020 is estimated at 180,000 km², or 400m² per person. Only 8% of the land used is in Europe. Over 90% of the land use impact occurs outside Europe, mostly related to (cotton) fibre production in China and India (ETC/WMGE, 2019). Animal-based fibres, such as wool, also have a significant land use impact (Lehmann et al., 2018). This makes textiles the sector with the third highest impact on land use, after food and housing (see Figure 5). Of this, 43% is attributable to clothes, 35% to footwear (including leather shoes, which have a high land use impact because of the need for cattle pasture) and 23% to household and other textiles.

Greenhouse gas emissions
The production and consumption of textiles generate greenhouse gas emissions, in particular from resource extraction, production, washing and drying, and waste incineration. In 2020, producing textile products consumed in the EU generated greenhouse gas emissions of 121 million tonnes carbon dioxide equivalent (CO2e) in total, or 270kg CO2e per person. This makes textiles the household consumption domain responsible for the fifth largest impact on climate change, after housing, food, transport and mobility, and recreation and culture (see Figure 6). Of this, 50% is attributable to clothes, 30% to household and other textiles, and 20% to footwear. While greenhouse gas emissions have a global effect, almost 75% are released outside Europe, mainly in the important textile-producing regions in Asia (ETC/WMGE, 2019).

About 80% of the total climate change impact of textiles occurs in the production phase. A further 3% occurs in distribution and retail, 14% in the use phase (washing, drying and ironing), and 3% during end of life (collection, sorting, recycling, incineration and disposal) (ECOS, 2021; Östlund et al., 2020).

Textiles made from natural fibres, such as cotton, generally have the lowest climate impact. Those made from synthetic fibres (especially nylon and acrylic) generally have a higher climate impact because of their fossil fuel origin and the energy consumed during production (ETC/WMGE, 2021b; Beton et al., 2014).

3. Design as an enabler of circular business models for textiles
To reduce the environmental and climate change impacts of textiles, shifting towards circular business models is crucial to save on raw materials, energy, water and land use, emissions and waste (ETC/WMGE, 2019). Implementing and scaling circular business models requires technical, social and business model innovation; as well as enablers from policy, consumption and education (EEA, 2021).

Circular design is an important component of circular business models for textiles. It can ensure higher quality, longer lifetimes, better use of materials, and better options for reuse and recycling. While it is important to enable the recycling and reuse of materials, life-extending strategies, such as design for durability, ease of reuse, repair and remanufacturing, should be prioritised. Preventing the use of hazardous chemicals and limiting toxic emissions and release of microplastics at all life cycle stages should be incorporated into product design.

Designing for circularity is the most recent development in design for sustainability. Expanding a technical and product-centric focus to a focus on large-scale system-level changes (considering both production and consumption systems) shows that this latest development requires many more disciplines than traditional engineering design. Product design as a component of a circular business model depends on consumer behaviour and policy to realise its potential and enable implementation. Figure 7 shows the linkages between the circular business model, product design, consumer behaviour and policy. All are needed to slow down and close the loop, making it circular.

(c) Ligne Roset
22.02.2022

Home textile trends for 2022: A craving for constancy

Sometimes loud, sometimes very gentle – but always on the move: the world of textiles has real expertise in the art of the quick change. The home textile trends for 2022 see nature quietly and discreetly settling inside our homes, making a clear statement – it’s time to take a fresh look at familiar things.

Home textile trends for 2022: back to basics
Before the pandemic, our homes were just one part of our lives. We spent much of the day out and about. The coronavirus pandemic changed all that. Many people spent more time within their own four walls than ever before – our homes took on a central role in our lives. “Home living” became an inescapable theme last year. In times when instability seems to be everywhere, many people switch their focus to the essentials and crave security and peace, turning their homes into a natural refuge where they can recharge their batteries. This trend is also influencing the interiors and lifestyle sector.

Sometimes loud, sometimes very gentle – but always on the move: the world of textiles has real expertise in the art of the quick change. The home textile trends for 2022 see nature quietly and discreetly settling inside our homes, making a clear statement – it’s time to take a fresh look at familiar things.

Home textile trends for 2022: back to basics
Before the pandemic, our homes were just one part of our lives. We spent much of the day out and about. The coronavirus pandemic changed all that. Many people spent more time within their own four walls than ever before – our homes took on a central role in our lives. “Home living” became an inescapable theme last year. In times when instability seems to be everywhere, many people switch their focus to the essentials and crave security and peace, turning their homes into a natural refuge where they can recharge their batteries. This trend is also influencing the interiors and lifestyle sector.

Pure nature in colour and form
The connection between nature and home living is becoming increasingly important when it comes to textile design. It’s a matter of creating a symbiosis between natural materials, colours and textiles to infuse rooms with a warm atmosphere. Soft textures, amorphous shapes and muted earthy tones define the home textile trends for 2022.

Rediscovering the classics: bouclé & corduroy
When most people think of bouclé, the first image that springs to mind is probably the world-famous and timeless Coco Chanel suit from the 1950s. In the 1980s and 1990s, the fabric disappeared from the trend radar. But this year it’s celebrating a fantastic comeback in interior design. Bouclé hits just the right spot between soft and hard-wearing. The upholstery is typically made of cotton and is especially durable. Whether on a sofa, armchair, cushion or as curtains, bouclé fabric is a real all-rounder and gives any room a cosy vibe. Paired with wood or metal, it softens the more hard-edged elements.

Another tactile highlight from days gone by is enjoying a revival, too – corduroy. A timeless classic that is quite rightly settling back in to our homes. Its soft structure means the fabric is well-suited for sofas and seating furniture of various kinds, with its characteristic vertical furrows making the material particularly exciting. And best of all, corduroy fits into any interior design style with ease – contrary to its stereotype of being stuffy.

A mix & match of natural materials and shapes
Natural materials like linen, wool and wood immediately lend an organic, vibrant quality to any home. The natural connection is especially apparent from last year’s DIY boom, with many walls now adorned by macramé – decorative art made by knotting wool. Cushions and blankets made of woven and braided wool in muted cream tones also create a natural and cosy look. Organic patterns and structures inspired by nature are now a must in every home.

Catapulted straight into the 2022 textile trends from the fashion world, “organic camouflage” gives camo patterns a makeover. In warm earth and pastel shades, this on-trend motif calls to mind soft, sandy beaches, the sea or the forest. On a rug or a cushion, “organic camouflage” creates a vibrant look when paired with a low-key couch.

Take the plunge with bold patterns
Whether on wallpaper, rugs or accessories, floral prints in sumptuous colour combinations are still in fashion when it comes to fabric design. In dark shades of green, they forge an elegant connection to nature, and dramatic floral prints on wallpaper make a statement in any room. But even small accessories and decorative elements like floral cushions or blankets on a monochrome sofa or armchair can have a big impact. Combined with light hues and patterns, the overall result is a harmonious interplay of colours and textures. Alongside floral textiles, upholstered furniture with geometric prints is a trend that demands the courage to be different. Large and small geometric patterns add depth to any material and are an artful way of bringing life into the home.

Sustainable materials and textiles
The global sustainability trend also raises questions concerning textile production. Where does the product come from? Is the manufacturing process environmentally friendly? The textile industry has responded with fabrics made from recycled polyester or resource-friendly hemp, cork as a substitute for wood, or fair-trade organic cotton. Alternatives to animal-derived fabrics are also becoming more common in the textile industry. Vegetarian or vegan leather can be produced from many natural resources, from apples and pineapples to mushrooms and cacti. The range of sustainable and environmentally friendly textiles has expanded in recent years and is expected to continue to grow.

Source:

imm cologne / Koelnmesse

(c) STFI
14.12.2021

Funding Project Raw Material Classification of Recycled Fibers

For centuries, old textiles have been used to make tear fibers and processed into new textile products. This effective recycling is one of the oldest material cycles in the world. Today, it is not only clothing that is recycled, but also high-quality technical textiles. As the products of the textile industry evolve, so do the demands on textile recycling. The basis for this is a clear assessment and classification of raw materials.

For centuries, old textiles have been used to make tear fibers and processed into new textile products. This effective recycling is one of the oldest material cycles in the world. Today, it is not only clothing that is recycled, but also high-quality technical textiles. As the products of the textile industry evolve, so do the demands on textile recycling. The basis for this is a clear assessment and classification of raw materials.

In the research project of the German Institutes of Textile and Fiber Research Denkendorf (DITF) and the Sächsisches Textilforschungsinstitut e.V. (STFI - Saxony Textile Research Institute), a methodology is being developed that will make it possible to analyze the tearing as well as the subsequent processes with regard to fiber quality. The systematic analysis should make it possible to optimize the subsequent spinning processes in such a way that the recycled content of the yarn can be increased without the yarn properties differing significantly from those of a yarn consisting of 100% good fibers. These yarns can then be processed into sustainable textile products such as clothing or composite components.

The project, which is funded by the BMWi/IGF, is scheduled to run for two years and will end on December 31, 2022. The main benefits for the participating companies are to enable them to make greater use of secondary raw materials, to open up new markets through technologies or products developed in the project, to initiate synergies and long-term cooperation, and to prepare a joint market presence.    

The project includes several steps:

  • Material selection and procurement
    Cotton fibers to be processed are obtained from used textiles (T-shirts) and waste from the cotton spinning mill. Aramid fibers are processed from used protective clothing and technical textiles.
  • Optimization of the preparation / dissolution of the textiles
    To ensure that the fibers are detached from the corresponding textiles as gently as possible and with a not too high reduction, exact settings have to be found for the tearing process, which are technologically very demanding and require a lot of experience.
  • Determination of the quality criteria for the evaluation of the fiber dissolution
    In order to define the quality criteria, the fibers coming from the tearing mill are determined by means of an MDTA-4 measuring device from Textechno GmbH & Co. KG. The criteria determined are to be used to characterize the (lowest possible) fiber shortening caused by the tearing process.
  • Determination of optimized settings in the spinning process
    In order to determine the optimum settings for producing a yarn from the recycled fibers, they are spun after the rotor spinning process. By adjusting the spinning process, the aim is to produce a yarn that has good uniformity and also appropriate firmness.
  • Production and comparison of yarns from recycled raw materials
    In order that the recycled fibers - consisting of aramid and cotton - can each be used to produce an area-measured material, the material is to be processed at industrial scale. For this purpose, the fibers are processed over a complete blowroom line with following sliver production over adapted cards. After drawing and the following roving production, yarns are produced according to the rotor or ring spinning process. The finished yarns are used to produce knitted fabrics.
  • Coordination, analysis of results and preparation of reports
    The final report is prepared by the DITF and the STFI. The results will be transferred through publications, technical information to associations and trade fair presentations. Regular meetings with the participating companies are planned.

Textination spoke with Stephan Baz, Deputy Head of the Competence Center Staple Fiber, Weaving & Simulation, Head of Staple Fiber Technology and Markus Baumann, Research Associate at the Competence Center Staple Fiber, Weaving & Simulation (both DITF) as well as Bernd Gulich, Head of Department Nonwovens/Recycling and Johannes Leis, Research Associate Focus Nonwovens/Recycling (both STFI) about the current status of the funding project.

What is the current status of the project?
We are currently in the phase of carrying out trials and the iterative optimization of several project components. As expected, several loops are necessary for the mechanical preparation itself and also for the adjustment of the spinning process with the different variants. Ultimately, after all, the project aims at coordinating the processes of mechanical preparation and spinning as processing in order to achieve optimum results. At the same time, determining the quality criteria of the fibers produced is not trivial. This also requires the further development of processes and test methods that can be implemented productively in industry and that allow the quality of the fibers produced to be assessed effectively and unaffected by residual yarns, for example. What is really remarkable is the interest and willingness of the industry to drive the project work forward. The considerable quantities of materials required for our trials were purchased from ReSales Textilhandel und -recycling GmbH, Altex Textil-Recycling GmbH & Co. KG and Gebrüder Otto GmbH & Co. KG. Furthermore, with Temafa Maschinenfabrik GmbH, Nomaco GmbH & Co. KG, Schill + Seilacher GmbH, Spinnerei Neuhof GmbH & Co. KG and Maschinenfabrik Rieter AG, many members of the project-supporting committee are actively involved in the project, from consulting to the providing of technologies. The company Textechno Herbert Stein GmbH & Co. KG has provided a testing device of the type MDTA4 for the duration of the project and supports our work with regard to the evaluation of the mechanically prepared fibers. We are of course particularly pleased about this, as it has allowed us to look at and analyze several technologies in both mechanical preparation, testing and spinning. We expect to be able to make more detailed statements at the beginning of the coming year.

Which approaches do you think are particularly promising?
With regard to technologies, we must refer to the evaluation and analysis of the trials, which are currently still ongoing. We will be able to go into more detail in the first quarter of next year.

Of course, things are already emerging. With meta-aramid waste, promising approaches could be found very quickly; with post-consumer cotton, this is considerably more complex. Obviously, there is a link between the quality of the raw material and the quality of the products. In some cases, we have already been able to determine very low average fiber lengths in the procured goods; to a certain extent, these are of course directly reflected in the output of our processes. From this, and this is not a new finding, a great importance of the design of the textiles is again derived.

What are the challenges?
In addition to the expected high short fiber content, the residual yarns after the tearing process are an issue of particular focus. The proportion of these residual yarns can vary between the materials and preparation technologies, but the further dissolution of the products of the tearing process is essential.

If the processes are considered further in a utilization phase, the question of design naturally also arises for the best possible use of recycled fibers. Many problems, but also the approaches to solutions for the use of comparatively short fibers, can also be expected to apply to the (multiple) use of mechanically recycled fibers.

Can we speak of upcycling in the final product?
We see yarn-to-yarn recycling neither as upcycling nor downcycling, but as closed-loop recycling. The background is that the products are to go into the same application from which they came and have to compete with primary material. This means that certain specific requirements have to be met and at the same time there is considerable price pressure. In the case of downcycling, a significant reduction in properties is accepted, while in the case of upcycling, the higher-priced application can make up for the reprocessing effort. In the attempt to produce yarn material again from yarn material, both are only permissible to a small extent. This represents the particular challenge.

What does a recyclate prepared from used textiles mean for the spinning process?
Part of this question is to be answered in the project by the detailed classification of the processed fibers and is thus the subject of the tests currently underway. It turns out that, in addition to the rather obvious points such as significantly reduced fiber length, process disturbances due to undissolved fabrics and yarn pieces, there are also less obvious aspects to be considered, such as a significantly increased outgoing quantity for processing in the spinning process. The outgoing quantity is of particular interest here, because in the end the newly produced yarn should also contain a considerable proportion of prepared fibers.

What consequences does this have for textile machinery manufacturing?
The consequences that can already be estimated at the present time are that, particularly in the processing of cotton, the machinery in the spinning preparatory mill is specialized in the processing of (new) natural fibers with a certain amount of dirt. In contrast to new fibers, processed fibers are clean fibers with a significantly higher proportion of short fibers. Elements that are good at removing dirt also reject an increased amount of short fibers, which can lead to unintentionally high waste quantities under certain circumstances. It is therefore necessary to adapt the established machine technology to the new requirement profile of the raw material "processed fibers". Analogous adaptations are probably necessary along the entire processing chain up to the yarn. In the drafting system of the spinning machine, of course, this is due more to the high short fiber ratio than to elements that have been optimized for cleaning out dirt and foreign substances.

Source:

Textination GmbH

(c) Toray
23.11.2021

Toray Industries: A Concept to change Lives

Founded in January 1926, Tokyo-based Japanese chemical company Toray Industries, Inc. is known as the world's largest producer of PAN (polyacrylonitrile)-based carbon fibers. But its overall portfolio includes much more. Textination spoke with Koji Sasaki, General Manager of the Textile Division of Toray Industries, Inc. about innovative product solutions, new responsibilities and the special role of chemical companies in today's world.

Toray Industries is a Japanese company that - originating in 1926 as a producer of viscose yarns - is on the home stretch to its 100th birthday. Today, the Toray Group includes 102 Japanese companies and 180 overseas. They operate in 29 countries. What is the current significance of the fibers and textiles business unit for the success of your company?

Founded in January 1926, Tokyo-based Japanese chemical company Toray Industries, Inc. is known as the world's largest producer of PAN (polyacrylonitrile)-based carbon fibers. But its overall portfolio includes much more. Textination spoke with Koji Sasaki, General Manager of the Textile Division of Toray Industries, Inc. about innovative product solutions, new responsibilities and the special role of chemical companies in today's world.

Toray Industries is a Japanese company that - originating in 1926 as a producer of viscose yarns - is on the home stretch to its 100th birthday. Today, the Toray Group includes 102 Japanese companies and 180 overseas. They operate in 29 countries. What is the current significance of the fibers and textiles business unit for the success of your company?

The fibers’ and textiles’ business is both the starting point and the foundation of Toray's business development today. We started producing viscose yarns in 1926 and conducted our own research and development in nylon fibers as early as 1940. And since new materials usually require new processing methods, Toray also began investing in its own process technology at an early stage. On the one hand, we want to increase our sales, and on the other hand, we want to expand the application possibilities for our materials. For this reason, Toray also began to expand its business from pure fibers to textiles and even clothing. This allows us to better respond to our customers' needs while staying at the forefront of innovation.

Over the decades, Toray has accumulated a great deal of knowledge in polymer chemistry and organic synthesis chemistry - and this know-how is the foundation for almost all of our other business ventures. Today, we produce a wide range of advanced materials and high-value-added products in plastics, chemicals, foils, carbon fiber composites, electronics and information materials, pharmaceuticals, medicine and water treatment. However, fibers and textiles remain our most important business area, accounting for around 40% of the company's sales.

What understanding, what heritage is still important to you today? And how do you live out a corporate philosophy in the textile sector that you formulate as "Contributing to society through the creation of new value with innovative ideas, technologies and products"?

Toray has consistently developed new materials that the world has never seen before. We do this by focusing on our four core technologies: Polymer chemistry, organic synthetic chemistry, biotechnology and nanotechnology. We do this by focusing on our four core technologies: Polymer chemistry, organic synthetic chemistry, biotechnology and nanotechnology. For textiles, this means we use new polymer structures, spinning technologies and processing methods to develop yarns with unprecedented properties. We always focus on the needs and problems of the market and our customers.

This approach enables us to integrate textiles with new functions into our everyday lives that natural fibers and materials cannot accomplish. For example, we offer sportswear and underwear that absorb water excellently and dry very quickly, or rainwear and outdoor clothing with excellent water-repellent properties that feature a less bulky inner lining. Other examples include antibacterial underwear, uniforms, or inner linings that provide a hygienic environment and reduce the growth of odor-causing bacteria. People enjoy the convenience of these innovative textiles every day, and we hope to contribute to their daily comfort and improve their lives in some way.

In 2015, the United Nations adopted 17 sustainable development goals – simply known as the 2030 Agenda, which came into force on January 01, 2016. Countries were given 15 years to achieve them by 2030. In your company, there is a TORAY VISION 2030 and a TORAY SUSTAINABILITY VISION. How do you apply these principles and goals to the textile business? What role does sustainability play for this business area?

Sustainability is one of the most important issues facing the world today - not only in the textile sector, but in all industries. We in the Toray Group are convinced that we can contribute to solving various problems in this regard with our advanced materials. At the same time, the trend towards sustainability offers interesting new business approaches. In our sustainability vision, we have set four goals that the world should achieve by 2050. And we have defined which problems need to be addressed to achieve this.

We must:

  1. accelerate measures to combat climate change,
  2. implement sustainable, recycling-oriented solutions in the use of resources and in production,
  3. provide clean water and air, and
  4. contribute to better healthcare and hygiene for people around the world.

We will drive this agenda forward by promoting and expanding the use of materials that respond to environmental issues. In the textile sector, for example, we offer warming and cooling textiles – by eliminating the need for air conditioning or heating in certain situations, they can help reduce energy costs. We also produce environmentally friendly textiles that do not contain certain harmful substances such as fluorine, as well as textiles made from biomass, which use plant-based fibers instead of conventional petrochemical materials. Our product range also includes recycled materials that reduce waste and promote effective use of resources.

The TORAY VISION 2030, on the other hand, is our medium-term strategic plan and looks at the issue of sustainability from a different angle: Toray has defined the path to sustainable and healthy corporate growth in it. In this plan, we are focusing on two major growth areas: Our Green Innovation Business, which aims to solve environmental, resource and energy problems, and the Life Innovation Business, which focuses on improving medical care, public health, personal safety and ultimately a longer expectancy of life.

Innovation by Chemistry is the claim of the Toray Group. In a world where REACH and Fridays for Future severely restrict the scope of the chemical industry, the question arises as to what position chemistry can have in the textile industry. How do chemistry, innovation and sustainability fit together here?

The chemical industry is at a turning point today. The benefits that this industry can bring to civilization are still enormous, but at the same time, disadvantages such as the waste of resources and the negative impact on the environment and ecosystems are becoming increasingly apparent. In the future, the chemical industry will have to work much more towards sustainability - there is no way around it.

As far as textiles are concerned, we believe there are several ways to make synthetic materials more sustainable in the future. One of these, as I said, is materials made from plants instead of petrochemical raw materials. Another is to reduce the amount of raw materials used in production in the first place – this can be achieved, for example, by collecting and recycling waste materials from production or sales. Biodegradable materials that reduce the impact of waste products on the environment are another option worth pursuing, as is the reduction of environmentally harmful substances used in the production process. We are already looking at all of these possibilities in Toray's synthetic textiles business. At the same time, by the way, we make sure to save energy in our own production and minimize the impact on the environment.

Toray's fibers & textiles segment focuses on synthetic fibers such as nylon, polyester and acrylic, as well as other functional fibers. In recent years, there has been a clear trend on the market towards cellulosic fibers, which are also being traded as alternatives to synthetic products. How do you see this development – on the one hand for the Toray company, and on the other hand under the aspect of sustainability, which the cellulosic competitors claim for themselves with the renewable raw material base?

Natural fibers, including cellulose fibers and wool, are environmentally friendly in that they can be easily recycled and are rapidly biodegradable after disposal. However, to truly assess their environmental impact, a number of other factors must also be considered: Primarily, there is the issue of durability: precisely because natural fibers are natural, it is difficult to respond to a rapid increase in demand, and quality is not always stable due to weather and other factors.

Climatic changes such as extreme heat, drought, wind, floods and damages from freezing can affect the quantity and quality of the production of natural fibers, so that the supply is not always secured. In order to increase production, not only does land have to be cleared, but also large amounts of water and pesticides have to be used to cultivate it – all of which is harmful to the environment.

Synthetic fibers, on the other hand, are industrial products manufactured in controlled factory environments. This makes it easier to manage fluctuations in production volume and ensure consistent quality. In addition, certain functional properties such as resilience, water absorption, quick drying and antibacterial properties can be embedded into the material, which can result in textiles lasting longer in use.

So synthetic fibers and natural fibers, including cellulose fibers, have their own advantages and disadvantages – there is no panacea here, at least not at the moment. We believe: It is important to ensure that there are options that match the consumer's awareness and lifestyle. This includes comfort in everyday life and sustainability at the same time.

To what extent has the demand for recycled products increased? Under the brand name &+™, Toray offers a fiber made from recycled PET bottles. Especially with the "raw material base: PET bottles", problems can occur with the whiteness of the fiber. What distinguishes your process from that of other companies and to what extent can you compete with new fibers in terms of quality?

During the production of the "&+" fiber, the collected PET bottles are freed from all foreign substances using special washing and filtering processes. These processes have not only allowed us to solve the problem of fiber whiteness – by using filtered, high-purity recycled polyester chips, we can also produce very fine fibers and fibers with unique cross sections. Our proven process technologies can also be used to incorporate specific textures and functions of Toray into the fiber. In addition, "&+" contains a special substance in the polyester that allows the material to be traced back to the recycled PET bottle fibers used in it.

We believe that this combination of aesthetics, sustainability and functionality makes the recycled polyester fiber "&+" more competitive than those of other companies. And indeed, we have noticed that the number of requests is steadily increasing as companies develop a greater awareness of sustainability as early as the product planning stage.

How is innovation management practiced in Toray's textile division, and which developments that Toray has worked on recently are you particularly proud of?

The textile division consists of three sub-divisions focusing on the development and sale of fashion textiles (WOMEN'S & MEN'S WEAR FABRICS DEPT.), sports and outdoor textiles (SPORTS WEAR & CLOTHING MATERIALS FABRICS DEPT.) and, specifically for Japan, textiles for uniforms used in schools, businesses and the public sector (UNIFORM & ADVANCED TEXTILES DEPT.).

In the past, each division developed its own materials for their respective markets and customers. However, in 2021, we established a collaborative space to increase synergy and share information about textiles developed in different areas with the entire department. In this way, salespeople can also offer their customers materials developed in other departments and get ideas for developing new textiles themselves.

I believe that the new structure will also help us to respond better to changes in the market. We see, for example, that the boundaries between workwear and outdoor are blurring – brands like Engelbert Strauss are a good example of this trend. Another development that we believe will accelerate after the Corona pandemic is the focus on green technologies and materials. This applies to all textile sectors, and we need to work more closely together to be at the forefront of this.

How important are bio-based polyesters in your research projects? How do you assess the future importance of such alternatives?

I believe that these materials will play a major role in the coming years. Polyester is made from purified terephthalic acid (PTA), which again consists of paraxylene (PX) and ethylene glycol (EG). In a first step, we already offer a material called ECODEAR™, which uses sugar cane molasses waste as a raw material for EG production.

About 30% of this at least partially bio polyester fiber is therefore biologically produced, and the material is used on a large scale for sportswear and uniforms. In the next step, we are working on the development of a fully bio-based polyester fiber in which the PTA component is also obtained from biomass raw materials, such as the inedible parts of sugar cane and wood waste.

Already in 2011, we succeeded in producing a prototype of such a polyester fiber made entirely from biomass. However, the expansion of production at the PX manufacturer we are working with has proven to be challenging. Currently, we are only producing small sample quantities, but we hope to start mass production in the 2020s.

Originally starting with yarn, now a leading global producer of synthetic fibers for decades, you also work to the ready-made product. The range extends from protective clothing against dust and infections to smart textiles and functional textiles that record biometric data. What are you planning in these segments?

In the field of protective clothing, our LIVMOA™ brand is our flagship material. It combines high breathability to reduce moisture inside the garment with blocking properties that keep dust and other particles out. The textile is suitable for a wide range of work environments, including those with high dust or grease levels and even cleanrooms. LIVMOA™ 5000, a high quality, also demonstrates antiviral properties and helps to ease the burden on medical personnel. The material forms an effective barrier against bacteria and viruses and is resistant to hygroscopic pressure. Due to its high breathability, it also offers high wearing comfort.

Our smart textile is called hitoe™. This highly conductive fabric embeds a conductive polymer – a polymer compound that allows electricity to pass through - into the nanofiber fabric. hitoe™ is a high-performance material for detecting biosignals, weak electrical signals that we unconsciously emit from our bodies.

In Japan, Toray has developed products for electrocardiographic measurements (ECGs) that meet the safety and effectiveness standards of medical devices. And in 2016, we submitted an application to the Japanese medical administrative authorities to register a hitoe™ device as a general medical device – this registration process is now complete. Overall, we expect the healthcare sector, particularly medical and nursing applications, to grow – not least due to increasing infectious diseases and growing health awareness among the elderly population. We will therefore continue to develop and sell new products for this market.

In 1885, Joseph Wilson Swan introduced the term "artifical silk" for the nitrate cellulose filaments he artificially produced. Later, copper, viscose and acetate filament yarns spun on the basis of cellulose were also referred to as artifical silk. Toray has developed a new innovative spinning technology called NANODESIGN™, which enables nano-level control of the fineness and shape of synthetic fibers. This is expected to create functions, aesthetics and textures that have not existed before. For which applications do you intend to use these products?

In NANODESIGN™ technology, the polymer is split into a number of microscopic streams, which are then recombined in a specific pattern to form a new fiber. By controlling the polymer flow with extreme precision, the fineness and cross-sectional shape of the fiber can be determined much more accurately than was previously possible with conventional microfiber and nanofiber spinning technologies. In addition, this technology enables the combination of three or more polymer types with different properties in one fiber – conventional technologies only manage two polymer types. This technology therefore enables Toray to specify a wide range of textures and functions in the production of synthetic fibers that were not possible with conventional synthetic fibers – and even to outperform the texture and feel of natural fibers. Kinari, our artificial silk developed with NANODESIGN technology, is a prime example here, but the technology holds many more possibilities – especially with regard to our sustainability goals.

What has the past period of the pandemic meant for Toray's textile business so far? To what extent has it been a burden, but in which areas has it also been a driver of innovation? What do you expect of the next 12 months?

The Corona catastrophe had a dramatic impact on the company's results: The Corona catastrophe had a dramatic impact on the company's results: In the financial year 2020, Toray's total sales fell by about 10% to 188.36 billion yen (about 1.44 billion euros) and operating profit by about 28% to 90.3 billion yen (about 690 million euros). The impact on the fiber and textile business was also significant, with sales decreasing by around 13% to 719.2 billion yen (approx. 5.49 billion euros) and operating profit by around 39% to 36.6 billion yen (approx. 280 million euros).

In the financial year 2021, however, the outlook for the fibers and textiles sector is significantly better: So far, the segment has exceeded its goals overall, even if there are fluctuations in the individual areas and applications. In the period from April to June, we even returned to the level of 2019. This is partly due to the recovering sports and outdoor sector. The fashion apparel market, on the other hand, remains challenging due to changing lifestyles that have brought lock-downs and home-office. We believe that a full recovery in business will not occur until the travel and leisure sector returns to pre-Corona levels.

Another side effect of the pandemic that we feel very strongly, is the growing concern about environmental issues and climate change. As a result, the demand for sustainable materials has also increased in the apparel segment. In the future, sustainability will be mandatory for the development and marketing of new textiles in all market segments. Then again, there will always be the question of how sustainable a product really is, and data and traceability will become increasingly important. In the coming years, the textile division will keep a close eye on these developments and develop materials that meet customers' needs.

About the person:
Koji Sasaki joined Toray in 1987. In his more than 30 years with the company, he has held various positions, including a four-year position as Managing Director of Toray International Europe GmbH in Frankfurt from 2016 to 2020. Since 2020, Koji Sasaki has been responsible for Toray's textile division and serves as acting chairman of Toray Textiles Europe Ltd. In these roles, he supervises the company's development, sales and marketing activities in the apparel segment, including fashion, sports and work or school uniforms.

The interview was conducted by Ines Chucholowius, Managing partner Textination GmbH

(c) PERFORMANCE DAYS
16.11.2021

PERFORMANCE DAYS 2021: Hybrid Event in December

From December 1 to 2, 2021, the industry will meet up again live at the trade fair center in Munich. Trade visitors, industry insiders and experts can look forward to inter-personal exchanges, intensive networking, exciting fabric innovations and various other program highlights. The fair will go ahead in strict compliance with the current official hygiene regulations and in close cooperation with the Messe München authorities. Planned as a hybrid event, PERFORMANCE DAYS offers the possibility to follow what is on offer digitally.

From December 1 to 2, 2021, the industry will meet up again live at the trade fair center in Munich. Trade visitors, industry insiders and experts can look forward to inter-personal exchanges, intensive networking, exciting fabric innovations and various other program highlights. The fair will go ahead in strict compliance with the current official hygiene regulations and in close cooperation with the Messe München authorities. Planned as a hybrid event, PERFORMANCE DAYS offers the possibility to follow what is on offer digitally.

Live in Munich: PERFORMANCE DAYS in Hall A6
In Hall A6 on the grounds of the New Trade Center in Munich, trade visitors can look forward to an extensive portfolio of exhibitors showcasing their latest functional textiles and fabric innovations for the upcoming winter season, winter 2023/24. Exhibitors who are unable to present their highlights on site can also be accessed via the PERFORMANCE DAYS LOOP digital platform throughout the course of the fair. As part of the newly developed “remote booths” concept, trade visitors will for the first time also find collections from exhibitors who cannot be in Munich in person for the trade show. Interactive exchanges via chat, call or video call is planned.

Two further PERFORMANCE DAYS fairs are planned as live events: The Functional Fabric Fair by PERFORMANCE DAYS in Portland, Oregon, USA on November 17-18, 2021 and Functional Textiles Shanghai by PERFORMANCE DAYS on December 6-7, 2021. Registration is open at www.functionalfabricfair.com/ and www.functionaltextilesshanghai.com/

PERFORMANCE FORUM together with USA Fair
As part of the PERFORMANCE FORUM, a select jury of experts assembles for two days prior to the fair to exchange views on the latest fabric innovations for the winter 23/24 season. In order to ensure a more global market overview, the PERFORMANCE FORUM will curate highlights for the first time in conjunction with the US fair in Portland. Consequently, the next fair in Munich will not only feature the latest products from exhibitors at the Munich fair, but also highlights from the fair in Portland. This year’s Focus Topic in cooperation with the Vaude Academy will engage with the topic “The Sustainable Future of Nylon” and a specific hand-chosen selection of fabric materials. Furthermore, as part of the winter fair, the “sustain & innovate” conference on sustainability, organized in close cooperation with SAZsport, will take an in-depth look at the topic comprising all its aspects along with speakers, webinars and discussion rounds. The program will be broadcast live from the fair and thus accessible for all who wish to follow it online in digital form.  

Eco Award and Performance Award for Innovative Winter Fabrics 23/24
This year, in addition to a PERFORMANCE AWARD, the jury also presented an ECO PERFORMANCE AWARD. An integral part of the winter edition of PERFORMANCE DAYS is the presentation of the fabric highlights and accessory trends in the respective categories for the Winter Season 2023/24 at the PERFORMANCE FORUM. The well-known segments will be joined for the first time this winter by the Shoes & Bags category, while the renowned Lifestyle Category will be continued under its new title, “Function Meets Fashion”. The high level of innovation and quality of many of the fabrics submitted this year are particularly striking.

“The fusion of the two PERFORMANCE FORUMs of our fairs in Munich and Portland has lead to a significant increase in quality and innovation. Thanks to the new partnership, not only were we able to get new, exciting manufacturers on board, but there was also a significant increase in participation in general“, says Marco Weichert, CEO of PERFORMANCE DAYS.

Natural fabrics such as organic cotton, wool or canvas remain in demand. These are joined by significantly more plant fibers such as hemp, coconut shell, bamboo or fibers derived from pineapple or banana leaves. The additional use of castor oil, zinc or ginger supports the antibacterial effect, ensures enhanced breathability, optimum temperature management and makes the fabric soft, light and kind to the skin. The topic of recycling presents itself in various new facets and features exciting trends. The portfolio ranges from the recycling of marine waste, such as old buoys, plastic waste or fishing nets, to the recycling of waste from the automotive and computer industries, such as old car tires or computer chips. Natural dyeing methods are also gaining increasing importance, as is the recycling of materials into the textile loop.

In the Marketplace, visitors have the opportunity to view over 13,000+ products from exhibitors, including the fabric highlights of the individual categories at the PERFORMANCE FORUM. In order to be able to present the fabrics to the digital visitors as realistically as possible in terms of feel, design and structure, the PERFORMANCE FORUM has been equipped with groundbreaking 3D technology, including innovative tools such as 3D images, video animations and U3M files for download.

In addition to the PERFORMANCE AWARD WINNER, which goes to drielease/Optimer, there is also an ECO PERFORMANCE AWARD WINNER, awarded to Long Advance.

Completely new look: With the innovative Dricomfort Geo, drirelease turns to a blend of 6 % Lycra, 44 % polyester and 50 % recycled polyester. The processing of the various fibers in the knitting process, in combination with the Dricomfort GEO finishing, makes the reversible interlock fabric unique.

Unique, new pattern and knit designs are possible thanks to a special jacquard knitting process used to process the recycled polyester yarn. The material impresses with its lightness and versatility. The GEO technology also ensures optimal body temperature management. The adaptable technology provides excellent thermal regulation features through efficient heat management and enhanced moisture transport to optimize comfort and performance. Moreover, GEO boasts UV protection up to 50+.

New recycling variant: Long Advance presents LNT-21191-Z4C, a post consumer nylon that opens up a new world to recycling. The fabric, which consists of 7 % elastane and 93% recycled polyamide via Mass Balance, introduces new facets to the topic of recycling. BASF is using tire waste from now on and processes them into a new fiber. fiber. Due to the recycling, the need for synthetic fabrics are reduced to replace petroleum-based plastics with plastics made from renewable raw materials.

Photo: pixabay
10.08.2021

Stand-up paddle board made from renewable lightweight mater

Stand-up paddling has become a popular sport. However, conventional surfboards are made of petroleum-based materials such as epoxy resin and polyurethane.

Researchers at the Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut, WKI, want to replace plastic boards with sustainable sports equipment: They are developing a stand-up paddle board that is made from one hundred percent renewable raw materials. The ecological lightweight material can be used in many ways, such as in the construction of buildings, cars and ships.

Stand-up paddling has become a popular sport. However, conventional surfboards are made of petroleum-based materials such as epoxy resin and polyurethane.

Researchers at the Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut, WKI, want to replace plastic boards with sustainable sports equipment: They are developing a stand-up paddle board that is made from one hundred percent renewable raw materials. The ecological lightweight material can be used in many ways, such as in the construction of buildings, cars and ships.

Stand-up paddling (SUP) is a sport that is close to nature, but the plastic boards are anything but environmentally friendly. As a rule, petroleum-based materials such as epoxy resin, polyester resin, polyurethane and expanded or extruded polystyrene are used in combination with fiberglass and carbon fiber fabrics to produce the sports equipment. In many parts of the world, these plastics are not recycled, let alone disposed of correctly. Large quantities of plastic end up in the sea and collect in huge ocean eddies. For Christoph Pöhler, a scientist at Fraunhofer WKI and an avid stand-up paddler, this prompted him to think about a sustainable alternative. In the ecoSUP project, he is driving the development of a stand-up paddle board that is made from 100 percent renewable raw materials and which is also particularly strong and durable. The project is funded by the German Federal Ministry of Education and Research (BMBF). The Fraunhofer Center for International Management and Knowledge Economy IMW is accompanying the research work, with TU Braunschweig acting as project partner.

Recovering balsa wood from rotor blades
“In standard boards, a polystyrene core, which we know as styrofoam, is reinforced with fiberglass and sealed with an epoxy resin. We, instead, use bio-based lightweight material,” says the civil engineer. Pöhler and his colleagues use recycled balsa wood for the core. This has a very low density, i.e. it is light yet mechanically stressable. Balsa wood grows mainly in Papua New Guinea and Ecuador, where it has been used in large quantities in wind turbines for many years – up to six cubic meters of the material can be found in a rotor blade. Many of the systems are currently being disconnected from the grid. In 2020 alone, 6000 were dismantled. A large proportion of this is burnt. It would make more sense to recover the material from the rotor blade and recycle it in accordance with the circular economy. “This was exactly our thinking. The valuable wood is too good to burn,” says Pöhler.

Since the entire sandwich material used in conventional boards is to be completely replaced, the shell of the ecological board is also made from one hundred percent bio-based polymer. It is reinforced with flax fibers grown in Europe, which are characterized by very good mechanical properties. To pull the shell over the balsa wood core, Pöhler and his team use the hand lay-up and vacuum infusion processes. Feasibility studies are still underway to determine the optimal method. The first demonstrator of the ecological board should be available by the end of 2022. “In the interests of environmental protection and resource conservation, we want to use natural fibers and bio-based polymers wherever it is technically possible. In many places, GFRP is used even though a bio-based counterpart could do the same,” Pöhler sums up.

Patented technology for the production of wood foam
But how is it possible to recover the balsa wood from the rotor blade — after all, it is firmly bonded to the glass-fiber reinforced plastic (GFRP) of the outer shell? First, the wood is separated from the composite material in an impact mill. The density differences can be used to split the mixed-material structures into their individual components using a wind sifter. The balsa wood fibers, which are available as chips and fragments, are then finely ground. “We need this very fine starting material to produce wood foam. Fraunhofer WKI has a patented technology for this,” explains the researcher. In this process, the wood particles are suspended to form a kind of cake batter and processed into a light yet firm wood foam that holds together thanks to the wood’s own binding forces. The addition of adhesive is not required. The density and strength of the foam can be adjusted. “This is important because the density should not be too high. Otherwise, the stand-up paddle board would be too heavy to transport.”

Initially, the researchers are focusing on stand-up paddle boards. However, the hybrid material is also suitable for all other boards, such as skateboards. The future range of applications is broad: For example, it could be used as a facade element in the thermal insulation of buildings. The technology can also be used in the construction of vehicles, ships and trains.

(c) Fraunhofer ITWM
27.07.2021

Simulation Software TexMath - Simulating Technical Textiles realistically

From high-performance textiles to compression and sportswear: The modular software program »TexMath« of the Fraunhofer Institute for Industrial Mathematics ITWM enables both the simulation of mechanical material properties and the optimization of textile products.

Accelerated development and optimized design of technical textiles while reducing experiments? The demand for techniques that can realize this is especially high in areas such as the sports, medical, and clothing industries. The »Technical Textiles« team of the  »Flow and Material Simulation« department at Fraunhofer ITWM has taken up this challenge and is developing simulation methods that allow efficient prediction of textile behavior under stretching, shear, bending, torsion, or compression. It is also possible to simulate wrinkling under stretching as well as shrinkage of yarns or critical shear angles throughout the manufacturing process.

From high-performance textiles to compression and sportswear: The modular software program »TexMath« of the Fraunhofer Institute for Industrial Mathematics ITWM enables both the simulation of mechanical material properties and the optimization of textile products.

Accelerated development and optimized design of technical textiles while reducing experiments? The demand for techniques that can realize this is especially high in areas such as the sports, medical, and clothing industries. The »Technical Textiles« team of the  »Flow and Material Simulation« department at Fraunhofer ITWM has taken up this challenge and is developing simulation methods that allow efficient prediction of textile behavior under stretching, shear, bending, torsion, or compression. It is also possible to simulate wrinkling under stretching as well as shrinkage of yarns or critical shear angles throughout the manufacturing process.

The »TexMath« simulation software they developed ensures that process chains in production can be adapted to new materials in advance. Complicated patterns and layers can be mapped with the help of the software and a direct connection to the textile machine can be made. Desired woven, knitted and warp-knitted products are accurately simulated with the software and their material properties computed. In addition to evaluating a particular textile design using simulation, the tools also provide optimization of performance characteristics for different design variations. The goal of the software, according to team leader Dr. Julia Orlik, is to »realize the design according to product properties and target criteria.«

TexMath consists of several components: »MeshUp«, »FibreFEM« and »FIFST«. Each of the components included in TexMath has its specific field of application. In addition, the tools have interfaces to each other as well as connections to the software »GeoDict®« of the Fraunhofer spin-off Math2Market, which can be used, for example, to perform fluid mechanical simulations on the textiles.

One area of application for the TexMath software is the optimization of compression textiles for the medical sector or for sports. For optimal effectiveness, the fit of the material is particularly important. For example, the knitting process can be simulated with TexMath to create a bandage with predefined compression properties and thus design the optimal knitted fabric. This virtual bandage is then loaded in another simulation and put on a virtual arm or leg. Thanks to TexMath, the calculated pressure profile makes it possible to evaluate the compression properties of the bandage in advance and also to directly control the knitting machine according to the optimal design.

»TexMath can also be used to design spacer textiles, such as those used for the upper material of sports shoes and for the production of high-performance textiles, and to optimize them in advance in terms of structure and fluid mechanics,« say Dr. Julia Orlik and department head Dr. Konrad Steiner, naming further areas of application for the software.

The newly developed input interface is particularly user-friendly. The textile class (i.e. knitted, warp-knitted, woven and spacer fabrics) can be easily set. The new graphic interface allows simple and fast configuration.

MeshUp for Structure Generation of Woven Patterns and Stitches
Knitted and woven fabrics are produced with the aid of knitting or weaving machines. Each textile is based on a looping diagramm, which is read into the machine or is firmly pre-defined in the machine. MeshUp is the software module of TexMath, in which looping diagramm for various woven and knitted fabrics with different types of binding, the yarn path and all contact points between different yarns are created, graphically displayed and translated into the corresponding input formats for further simulations in TexMath with FISFT and FiberFEM. In addition, MeshUp also provides the geometry as volume data (voxel format) for calculation tools such as GeoDict and FeelMath.

FiberFEM to Calculate Effective Mechanical Properties of a Periodic Textile Structure
With FiberFEM, woven and braided textiles, spacer fabrics, scrims and trusses can be calculated and optimized regarding their effective mechanical material properties. A special feature of FiberFEM is that, in addition to tensile and shear properties, effective bending and torsional properties of textiles can also be determined based on their textile structure and yarn properties.

As input variables FiberFEM requires the microstructure description from MeshUp, the fiber cross-section geometry, as well as mechanical fiber properties such as tensile stiffness and friction. As output the effective mechanical textile quantities are calculated. Besides the calculation of the effective mechanical material properties for already existing woven or knitted textiles for technical and medical applications, the approach also offers the potential for the targeted design and optimization of new textiles with a given mechanical property profile.

For example, the relaxation behavior of a textile can be determined from the weave or knit pattern and the yarn relaxation times for viscoelastic yarns. Coefficients of friction between the yarns are also taken into account and are directly included in the simulation of the effective properties or identified from the experimental validation with the fabric.

FIFST to Calculate the Deformation and Load of Textiles
The tool FIFST is specialized for dynamic simulations of stretchable knitted fabrics and teir production. For example, the knitting process can be simulated, the pull-off from the knitting machine, the shrinkage to a relaxed textile and also the further deformation during tightening can be calculated. This means that the design of the knitted fabric can also be adapted to predefined tension profiles and individualized machine control is possible for the production of personalized textiles or product-specific designs.

The numerical implementation uses the finite element method with non-linear truss elements, which has been extended for contact problems by an additional internal variable - the sliding of threads at contact nodes. The friction law is implemented with the Euler-Eutelwein model, which was extended by an additional adhesion term. Adhesion thus allows different pre-strains in the respective meshes. The elastic energy is calculated directly from the yarn force-elongation curves.  

One of the most important unique selling points of FIFST is the special technology of assigning several elements to specific threads and their arrangement in the thread as well as the simultaneous contact sliding at millions of nodes. Thus FIFST enables multi-scale simulation of large knitted or woven shell components, taking into account the local textile structure.

Another functionality of the software is to virtually drag textiles over a surface triangulation given in STL format. In the video, woven mask (knitted is also possible) is extended in the plane at 6 points and pulled against the face surface. Its knots are projected onto the face and continue to slide on the surface until the mask is fully in place. If you know frictional properties of yarns on the face, you can investigate further folding formation and also influence it specifically. As a further potential for optimization, FIFST allows to minimize pore sizes of dressed textiles on particularly curved surface areas. This can be achieved by increasing the pre-tension in yarns or by modifying the lapping diagram or the binding cartridge.


For a Test demoversion, please contact

Fraunhofer Institute for Industrial Mathematics ITWM
Fraunhofer-Platz 1
67663 Kaiserslautern

Phone: +49 631 31600-4342

texmath@itwm.fraunhofer.de    

Source:

Fraunhofer Institute for Industrial Mathematics ITWM

Photo: pixabay
18.05.2021

ECO PERFORMANCE AWARD and PERFORMANCE AWARD for innovative Summer Fabrics 2023

The digital Performance Days will kick off on May 17 through to May 21, providing online access to even more information, current trends, all the latest material innovations and enhanced tools while providing all within the industry the opportunity to interact with one another and with exhibitors.

The focus of the trend-setting PERFORMANCE FORUM in summer will highlight the winners of the two awards. This year, the jury will present a PERFORMANCE AWARD as well as an ECO PERFORMANCE AWARD.

The digital Performance Days will kick off on May 17 through to May 21, providing online access to even more information, current trends, all the latest material innovations and enhanced tools while providing all within the industry the opportunity to interact with one another and with exhibitors.

The focus of the trend-setting PERFORMANCE FORUM in summer will highlight the winners of the two awards. This year, the jury will present a PERFORMANCE AWARD as well as an ECO PERFORMANCE AWARD.

Function revisited: Outstanding fabric innovations for the Summer 2023 season
Plant-based fibers such as hemp, organic cotton, bamboo, wool, kapok or coconut shell remain in demand, with manufacturers increasingly refraining from the use of environmentally harmful chemicals, avoiding micro plastics, advocating natural dyeing processes and striving to either return fabrics back into the cycle, to recycle plastic and other waste or to produce fibers in such a way that they are biodegradable.

In the Marketplace, visitors have the opportunity to view more than 9.000 exhibitors’ products, including the fabric highlights of the individual PERFORMANCE FORUM categories. In order to present the fabrics to visitors in digital form as realistically as possible in terms of feel, design and structure, the PERFORMANCE FORUM has been equipped with state-of-the-art 3D technology, including innovative tools such as 3D images, video animations and U3M files for download.

Exceptional: PERFORMANCE AWARD & ECO PERFORMANCE AWARD Winners
For the Spring/Summer 2023 season, the jury also presented two awards for outstanding new developments – so in addition to the PERFORMANCE AWARD, presented to the winner Trenchant Textiles, there is also an ECO PERFORMANCE AWARD winner, in this year’s case, Utenos Trikotazas.

Sustainability at the highest level, wellbeing for body & soul:
With its fully biodegradable, brushed fleece material made of 11% hemp, 63% organic cotton and 26 % Tencel, Utenos Trikotazas fully convinced the jury and picked up the ECO PERFORMANCE AWARD for its sustainable comfort. The extremely comfy material is pleasant on the skin and impresses with an incredibly soft feel. Hemp is known for its natural anti-bacterial properties and natural UV protection. In combination with organic cotton and Tencel, this fabric guarantees ideal warmth and odour regulation.

Function redesigned, breaking down borders and creating space for the new: In keeping with the Focus Topic of the digital fair week “Still Physical – Your Success Story of 2020”, Trenchant Textiles combined functional features with fashionable design in its new fabric construction, fully deserving of the PERFORMANCE AWARD. The membrane on the outer side, SlickrB, is made of non-toxic, sustainable polypropylene membrane. By printing dot patterns on the surface of the membrane, the fabric provides greater abrasion resistance while maintaining its breathability properties. Absolutely revolutionary: patterns and colors can be altered individually according to preference. The inner liner made of N15DW (15D woven polyamide) also provides tear resistance as well as sufficient, adequate stretch.

(c) Befeni GmbH
27.04.2021

Befeni: FashionTech contra Fast Fashion

  • Sustainable fashion through highly automated just-in-time production on customer demand

The Befeni Group, based in Langenfeld (North Rhine-Westphalia) and Bangkok (Thailand), is one of the world's leading fashion tech companies with over 200 employees and around 200,000 customised shirts and blouses sold.

Thanks to highly automated processes and just-in-time production, the fashion start-up, which has been on the market for four years, is able to offer individually designed and custom-made fashion of high quality within a very short time. In addition to shirts and blouses, the range also includes jumpers, underwear and accessories.

  • Sustainable fashion through highly automated just-in-time production on customer demand

The Befeni Group, based in Langenfeld (North Rhine-Westphalia) and Bangkok (Thailand), is one of the world's leading fashion tech companies with over 200 employees and around 200,000 customised shirts and blouses sold.

Thanks to highly automated processes and just-in-time production, the fashion start-up, which has been on the market for four years, is able to offer individually designed and custom-made fashion of high quality within a very short time. In addition to shirts and blouses, the range also includes jumpers, underwear and accessories.

At Befeni, customers are measured personally and their data is then recorded in an online system. On this basis, a pattern is created in the in-house production in Bangkok and the garment is produced as an individual one-off. The customised order is then handed over personally by trained Befeni fashion consultants.

By deliberately avoiding middlemen, the company relies on a global value chain and offers fashion from in-house production at convincing conditions: The employees in Bangkok receive above-average pay. The individually made-to-measure shirt is available at a fixed price of 39.90 EUR. And the products are sold exclusively through 5,000 qualified fashion consultants in direct sales.

Sustainable Fashion as a future market

Constant new trends, quickly produced seasonal items in quantities and the disposal of surplus items are part of everyday life in today's fashion world. In the wake of the Corona crisis, this situation has become even more acute.

„We believe that the fast fashion trend is finite and that a rethink will take place among customers, the fashion industry and producers," says Maik Ernst, founder and CEO of Befeni. "Through our highly automated business model, we are able to sell directly from our fair, in-house production, excluding any middlemen. This way, we deliver the high-quality and handmade product a maximum of 3 weeks after receiving the customer's order - with personal advice from over 5,000 qualified, independent fashion consultants."

Jan Fennel, founder of Befeni and managing director of the in-house production in Bangkok, adds: "We also want our employees in Asia to benefit from the direct connection between production and customers. We are proud to give them pleasure not only through a monetary contribution, but also through direct feedback and appreciation - for example via video directly from the customers. With our working conditions, we also want to show that health, fun and care are a central part of the work in our team.“

Rethinking: How fashion is produced and offered

The Befeni tipping principle
The company has developed a system where satisfied customers can give a tip to "their" personal tailors. This goes directly to the tailors in the company's own production without deduction. The company wants to set an example and sees this approach as proof that an international fashion company can actively work for better working conditions in the manufacturing countries.

Facts and figures four years after the company was founded

  • Production
    Befeni produced 30% more blouses and shirts in 2020 compared to the previous year.
    No fast fashion, sustainable, demand-oriented production: production only starts after customer order, made to measure according to the individual measurements of the customers.
  • Increase in turnover
    Turnover generated in 2020: around EUR 6 million, +155% compared to the previous year
  • Number of customers
    +100% compared to the previous year: the number of customers rose from 40,000 to over 80,000, of which almost 10,000 are in Austria
  • Personnel policy
    Permanent employment of employees, above-average salaries and tip principle
  • Customizing: fashion according to individual customer wishes
    Customers can choose from more than 80 fabrics, different collar and cuff shapes and designs for each fashion piece.
photo: pixabay
20.04.2021

Biomolecules from renewable Raw Materials for the Textile Industry

Water-repellent and more: coating textiles sustainably with chitosan

Textiles can be coated with the biopolymer chitosan and thus made water-repellent by binding hydrophobic molecules. The good thing is that this can also replace toxic and petroleum-based substances that are currently used for textile finishing. In the last few years Fraunhofer IGB and partners in the HydroFichi project have researched how this can be done: A technology has been developed to provide fibers with the desired properties using biotechnological processes and chitosan.

Water-repellent and more: coating textiles sustainably with chitosan

Textiles can be coated with the biopolymer chitosan and thus made water-repellent by binding hydrophobic molecules. The good thing is that this can also replace toxic and petroleum-based substances that are currently used for textile finishing. In the last few years Fraunhofer IGB and partners in the HydroFichi project have researched how this can be done: A technology has been developed to provide fibers with the desired properties using biotechnological processes and chitosan.

The manufacture of textiles is, even nowadays, still largely characterized by the use of chemicals: biotechnological processes, enzymes and renewable raw materials have so far played a subordinate role. For example, at present chiefly perfluorinated chemicals are used when finishing textiles to obtain water- and oil-repellent properties. These are harmful to health and also only degradable to a small degree, which is why they remain in the environment for so long.

The Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB has been researching sustainable biobased alternatives for some time. In the HydroFichi project – short for Hydrophobic Finishing with Chitosan – which was completed at the end of January 2021, researchers at the institute developed a way of producing chitosan from waste streams and using the biopolymer not only as a sizing agent in the processing of yarns, but also for the functionalization of textiles in the finishing process.

Chitosan from waste for environmental protection, medical purposes or textiles
Chitosan is a renewable raw material that is derived from chitin; after cellulose, it is the second most common naturally occurring biopolymer. Sources of the nitrogen-containing polysaccharide can be crab shells from fishing waste, insect skins and shells that result from the production of animal feed, or – as a vegan variant – the cell walls of mushrooms. The structure of the two molecules is very similar; the only difference is an acetyl group, which is removed when it is converted to chitosan. Chitin is insoluble in water and most organic solvents. Chitosan is also not readily soluble; however, the addition of mild acids makes the biopolymer water-soluble and it can therefore be used as a textile auxiliary.

In order to isolate chitosan from a particular waste stream, chitin must first be obtained from the starting materials by means of demineralization and deproteinization and then its derivative chitosan. The properties of chitosan can be individually adapted by choosing the appropriate conditions. The biomolecule produced in this way can be used directly in a wide variety of practical applications – for example as a flocculant in wastewater treatment or as a drug carrier in medicines.

There are also numerous conceivable uses for chitosan in the textile industry. In sizing, for example, the efficiency of the natural substance has proved convincing in pilot scale tests carried out by the German Institutes of Textile and Fiber Research Denkendorf. Here, the effectiveness was shown in the significantly lower roughness of the yarns after weaving textile fabrics. The values achieved with chitosan from insects were comparable to those from commercial crab shells. In the future, this fact will enable completely new possibilities of extraction in line with the bioeconomy.

As a renewable raw material, chitosan replaces fossil chemicals
“Our aim in the HydroFichi project was to provide the textile industry with a raw material for a wide variety of applications that can be obtained from renewable educts, at the same time avoiding chemicals that damage the environment and health,” explains project manager Dr. Achim Weber, deputy head of the innovation field Functional Surfaces and Materials at Fraunhofer IGB. “In addition to simple coating with chitosan, which protects the fibers, we were also able to use the substance as an anchor molecule to create cross-linking points for a wide variety of functional groups and thus to provide textiles with specific properties such as making them water-repellent. Chitosan can therefore function as a matrix material or template at the same time, and this can be done with a wide variety of fiber materials.”

The finishes were evaluated using standardized tests, but also with specially designed test stands and methods. For example, measurements on treated textiles showed contact angles of over 140°. This means that the fabrics are very water-repellent and confirms that the processing of the textiles has been successful. In a next step, the technology developed at the IGB is to be transferred from the laboratory scale to the much larger pilot scale in order to make the sustainable biomolecule ready for market use as quickly as possible, for example in the sports and outdoor sector.

For the first time biotechnological processes in textile finishing
In the project, the IGB scientists and four partners from the textile industry – the German Institutes of Textile and Fiber Research Denkendorf (DITF), J.G. Knopf's Sohn GmbH, Helmbrechts, and Textilchemie Dr. Petry, Reutlingen – were able for the first time to establish biotechnological processes in raw material extraction and finishing that have proven to be compatible with all textile processes. So far, this is a unique selling point in the finishing of textiles. “We have all recognized the great potential of chitosan for efficient hydrophobization and as a functional carrier. And, thanks to the good cooperation, we were able to successfully establish techniques for tailor-made functionalization of textiles,” adds Dr. Thomas Hahn, who conducts research in the innovation field of Industrial Biotechnology at the IGB. “In addition, other fields of application for the biopolymer are very promising. That is why we initiated the follow-up project ExpandChi immediately after HydroFichi, in which together with our partners techniques are to be developed to use biobased chitosan as a functional carrier to replace other synthetic polymers, for example for a special anti-wrinkle or flame-retardant coating. The textile industry is very interested in utilizing such a sustainable biomolecule as quickly as possible.“

The “HydroFichi” project was funded by the German Federal Ministry of Education and Research (BMBF) under promotional reference 031B0341A; the follow-up project “ExpandChi”, which began in February 2021, is funded under promotional reference 031B1047A.

(c) JUMBO-Textil GmbH & Co. KG. CEO Andreas Kielholz (r.) and Business Development Manager Patrick Kielholz in the state-of-the-art production facility of JUMBO-Textil GmbH & Co. KG.
23.03.2021

JUMBO-Textil – Innovative Narrow Textiles redefined

A dynamic family business as a future-oriented solution partner for high-tech elastics
 
The various branches of the German textile and fashion industry generate a combined annual turnover of around € 32 billion. Of the approximately 1,400 companies, the vast majority are medium-sized. Special solutions made in Germany are in demand. The importance of technical textiles has been growing for years - as has their share of turnover. Textination spoke with Andreas and Patrick Kielholz about innovative product solutions, the importance of family businesses in today's world, traditions and innovations, challenges and the courage to fail, aircraft construction, the automotive industry, medical technology and diving suits.

A dynamic family business as a future-oriented solution partner for high-tech elastics
 
The various branches of the German textile and fashion industry generate a combined annual turnover of around € 32 billion. Of the approximately 1,400 companies, the vast majority are medium-sized. Special solutions made in Germany are in demand. The importance of technical textiles has been growing for years - as has their share of turnover. Textination spoke with Andreas and Patrick Kielholz about innovative product solutions, the importance of family businesses in today's world, traditions and innovations, challenges and the courage to fail, aircraft construction, the automotive industry, medical technology and diving suits.


The history of today's company "JUMBO-Textil GmbH & Co. KG" goes back to the last millennium. Founded in 1909 in Wuppertal, you have moved beyond the production of pure yard goods for the lingerie industry and are now a demanded competence partner for high-tech solutions for narrow textiles. Which industries do you focus on when developing your technical textiles?

Andreas Kielholz: JUMBO-Textil focuses on particular competences in the field of narrow textiles and not on specific industries. We produce narrow fabrics, narrow braids and knitted fabrics. In these three fields we bring out our special competences: Elastics, individual solutions and individually fabricated elements in combination with non-textile components. There is, of course, a long-standing intensive cooperation with customers from the automotive industry, for example. In this sense, JUMBO-Textil is also an "interior expert". However, this does not imply a focus on a specific industry. Quite the opposite: We are very broadly positioned in terms of industries. New sectors are opening up all the time; most recently, we supplied the toy industry with textiles specially developed for babies and toddlers. We also supplied the medical technology sector with narrow-textile solutions in form of skin-friendly elastics.


Speaking of Elastics - how did the specialization come about?

Patrick Kielholz: The specialization in elastic narrow textiles began as early as the 1920s. In our entrance area you can see one of the first specialized braiding machines that was purchased for this purpose. It is about 100 years old. A landmark decision: It made the step from apparel textiles to technical textiles, which - many years later – became essential for survival, if not possible, then at least considerably easier.
 

What characterizes elastics? Why is the property so important for technical textiles?

Andreas Kielholz: Technical textiles, as well known, are textiles that are developed for a specific technical function. They have to, if you like, be capable of doing something: securing a load, sealing an opening, protecting from heat ... Many of these industrial functions can only be accomplished with elastic textiles - from applications in aircraft construction to protective suits for divers and to textiles in medicine. It is often the specific, highly precisely defined strength-elongation-ratio that makes use in such extreme, highly demanding applications possible. Innovative fibers are manufactured and finished by us on highly modern, digitally controlled equipment. In this way, we achieve highest precision and safety in the elongation properties and and produce a textile high-tech product with high-performance fibers for extreme, often individually requested technical applications.
 

And what does your product portfolio look like for your customers as a whole?

Patrick Kielholz: The spectrum ranges from woven tapes and belts to braided tape, tubular braids and braided cords to nets - in all widths, made from numerous raw materials and with specific, even demanding properties, special features and fabrications. As a solution partner, we often guide our customers from the initial idea to the finished product.
The importance of narrow textiles as components is growing visibly. Since they are very light, very efficient and at the same time very quiet, they are being used more frequently as an alternative to components made of other materials. The demands placed on the textiles are growing with their tasks: Their specifications are becoming increasingly more precise, the tolerances increasingly tighter. In the automotive sector and in protective equipment, for example, fire safety requirements play an important role. Therefore, we only have success with narrow textiles that are permanently flame retardant. We are currently addressing many inquiries for fitness bands with highly precisely defined strength-elongation-ratios. We are also responding to the sustainability question with our portfolio: We are increasingly working on projects with recycled materials or recyclable products. This development is embedded in a comprehensive sustainability strategy, which we are addressing for the entire Group - also in connection with the new planning of our sister company vombaur GmbH & Co KG.

 
What has particularly influenced the company's development process of about 110 years? Were there any significant changes of direction or decisions?

Andreas Kielholz: In the 1970s, we broadened our range enormously by no longer producing technical narrow textiles only for the apparel industry, but for all industries. At the same time, we continued to specialize - in elastics. This is not a contradiction: We implement what we are particularly good at, however, for all industries.
In the recent history of the company, we made a strong push with our new building in 2016. Optimal production conditions were created. With a variety of new production plants, we are at the advanced level of technology and high production capacity. The environment also has an effect on our team. You can feel that people enjoy working here. At the beginning of 2019, we again set an important strategic course when we combined our competencies with vombaur GmbH & Co KG under the umbrella of Textation Group GmbH & Co. KG.
 

These two traditional companies for demanding high-tech narrow textiles will remain independent as companies and brands. Why did you decide to take this step, what is the market response and what can you recommend to other producers in terms of partnerships?

Andreas Kielholz: We have had very good experiences as a sister company: Knowledge transfer, trade show appearances, digitization workshops - the partnership is beneficial in many ways. But - unlike in real life - we were able to choose our sister. The partner companies have to be compatible. Sure, you have to pay attention to that. They should have things in common without doing exactly the same thing. Because if they are too similar, there is a risk of competition, even cannibalization of one of the brands.
Our construct is perceived by our market companions as a good and elegant solution. We could serve as a role model for one or the other. Perhaps we will also expand our circle in the next few year, which we are open to. And our move has also been well received by our customers. In addition to all the other positive effects, succession issues can also be solved more easily in the Group. We are thereby demonstrating future prospects and security.
 

In the medium-sized textile industry, companies were and still are shaped by people - founding personalities, owners, families who live and breathe textile tradition and innovation. In your opinion, what qualities do people need to have in order to be successful in our niche-oriented German industry?

Andreas Kielholz: Successful and formative are people with curiosity and drive. People who like to explore new territories, first in their thinking and then consistently in their implementation. You should be able to inspire others in these explorations. In addition, you should keep a close eye on the market and act accordingly, i.e., constantly questioning the status quo. Self-criticism is therefore also important: Is our path still the right one? Are we fulfilling our aspirations? To move forward as a company, you have to work tirelessly not only in, but also on the company.    

Patrick Kielholz: The important thing is to recognize change and see it as an opportunity, not as a threat. I fully agree with that. However, I would strongly question the idea that it is the one founder, the one owner, and therefore individual people who make a company successful. We live in a very complex and fast-paced world that cannot be overseen and comprehended by a single person. Don't get me wrong, great ideas can come from individuals and help a company succeed. But we can't rely on that. A company today must be managed in such a way that ideas are developed by divergent teams. An environment must be created that gives each person the opportunity to make a difference. A leader must therefore understand how to develop functioning teams.
 

Mr. Kielholz Snr., you are the managing partner of JUMBO-Textil GmbH & Co. KG and one of the managing directors of vombaur GmbH & Co KG. For about two years now, you have your son Patrick at your side as Business Development Manager of JUMBO-Textil. How did that come about? Did you encourage your son to follow in your footsteps?

Andreas Kielholz: Not explicitly. My sons - there's also Kevin, Patrick's brother - had a lot of freedom in their childhood and youth. It was always up to them how they wanted to live their lives. During their school education and their studies, I tried to support everything in a trusting manner. Education has a lot to do with leading by example. I always had a lot of joy in what I did, even if it wasn't always easy. They witnessed this joy every day - and so I may have implicitly encouraged them.  
The fact that Patrick is now part of the team, performing a very good job and already bears a lot of responsibility - of course I'm very happy about that. He is a good, trustworthy corrective for me, because he can do some things better than I can. There is a high chance that Kevin will also join us after completing his technical studies.
 

Mr. Kielholz Jr., you completed your studies with a master's thesis on family businesses. How do you assess the future of family businesses in a global textile industry in general? And where do you see JUMBO-Textil here?

Patrick Kielholz: Family businesses are usually employers that retain their employees for a long time - by providing a family-like working environment and a corporate culture that creates trust. These include values that are important to the younger generations. Status symbols are becoming less important. This can create a working environment in which highly innovative and flexible work can be done - if it is not prevented by an overly patriarchal structure. Family businesses can usually still work on this. We are trying to create such an innovation-friendly environment in the Textation Group with JUMBO-Textil and vombaur, and in this way to be the best solution partner for narrow textiles in the future.
 

You manufacture exclusively in Germany. Why? Have you never been tempted to benefit from lower wage levels in other countries?

Andreas Kielholz: We position ourselves as a highly qualified solutions partner and aim to provide our customers with excellent expertise in the field of narrow textiles. We can do this best in a country with very good education and training opportunities, which for us, is Germany as a location. Of course, we also work in close cooperation with partners in Eastern Europe.
 

Customized instead of solutions for major customers: The topic of individualization up to batch size 1 takes up a lot of space today. At the new site in Sprockhövel, you have invested significantly in innovative production technology. What is your opinion of individual product solutions, and in which areas of application have you already implemented them successfully?
     
Andreas Kielholz: We don't produce tailored suits; we produce goods by the meter. Batch size 1 - this has a special meaning for us: We develop in exchange with our customers for one project - a car seat in an off-road vehicle, a crab on a crane, an exoskeleton, a baby grab ring, whatever - so we develop a textile component for this one project. Individually specified for the particular concrete application and its requirements - for example, with regard to elongation, temperature resistance, skin-friendliness, etc. All the properties of the textile are configured individually. And then it is produced in the required quantity. This is definitely a customized solution. So; if the customer project is the tailored suit, then "individualization up to batch size 1" is our day-to-day business. Because that's what we do.
 

What does it take for such solutions?

Patrick Kielholz: A close exchange is important for such individual solutions, but also precise industry knowledge and knowledge of the applicable standards. We assist some customers all the way to product registration and advice on technical delivery conditions and documentation. For individual solutions, know-how and experience go far beyond technical textile expertise. The key basis here is to understand the customer's product, the manufacturing process and its purpose. We want to offer a complete solution that provides the greatest value for the respective client company. This starts with the selection of the raw material and ends with the use by the end consumers..


Breaking new ground means being willing to make decisions, overcoming fears - and therefore also having the courage to fail. Not each project can succeed. In retrospect, which entrepreneurial decision are you particularly glad you made?

Andreas Kielholz: The courageous decisions to reconstruct JUMBO-Textil, the corporate alliance with vombaur and the planned new building here are among them - and: having my son on the Executive Board. He brings a new, different perspective to the company, which enriches us enormously. In addition, I simply enjoy it. Who sees their grown-up children every day?

Patrick Kielholz: Yes, that took courage to fail. (laughs) Seriously, not every result of a decision can be dated as firmly as the commissioning of our new building. We are right in the middle of some processes. We started digitization early on, for example, and it will certainly never be completed. It has an infinite number of facets - from materials management to product development, from quality assurance to internal and external processes. It’s an unbelievably dynamic topic that is constantly evolving and opening up new potential for improvement. You need smart people who want to work as a team to advance the issues, otherwise you'll be lagging behind instead of moving forward. The same applies to sustainability - also a topic that must be viewed as an opportunity rather than an unwanted evil, as is so often the case.

Andreas Kielholz: That's the crux of the matter: As a company, it's important not to be driven by such major issues, but to actively drive development forward yourself.
 

How important is the concept of sustainability in corporate decision-making? Which certifications do you use and where do you go beyond legal requirements?

Andreas Kielholz: Our quality management system is certified according to IATF 16949:2016, an extension of ISO 9001 developed by the automotive industry. We have also been awarded Formula Q-Capability according to the VW Group's customer-specific certification with a score of 95%. In the area of environment and sustainability, we are certified to the environmental management standard ISO 14001:2015, and many of our products meet the OEKO-TEX® Product Class I certificate. In addition, we expressly stand by the claim to enforce human rights, labor, social and ecological standards in economic value-added processes, as formulated in the Code of Conduct of the German Textile and Fashion Industry.

Patrick Kielholz: A specific feature of family businesses becomes apparent here as well. The demands on the company and the values it stands for are much more personal demands. People must and want to be measured against these demands as individuals. They cannot and do not want to hide in the anonymity of stock corporations. A family business owner is also personally connected to the stakeholders of his company and therefore has a stronger interest in pursuing social, environmental and economic sustainability.


How do you judge the efforts of other countries, such as China, to increasingly address the issue of sustainability? Will this mean that an important unique selling point in the comparison between Europe and Asia will be lost in the future?

Andreas Kielholz: The topic of sustainability has not yet reached its peak, in other words: demand will continue to rise here as well. China is getting stronger, but Europe is also working on not losing its pioneering role. Increased demand and competition will benefit us all, especially agile companies.
 

The COVID19 pandemic has also left its mark on the textile and clothing industry. When you look back on just under a year of "state of emergency" - what positive experiences do you take with you, where do you see a need for improvement, for what support are you grateful and where did you feel left alone?

Andreas Kielholz: By facing up to the challenges early on and - thanks to our timely, multi-layered controlling - always knowing where we stand, we were able to adapt quickly. This is how we have largely come through the crisis well. The newly developed forms of work - mobile working and video conferencing, partly also in-house - will continue to exist. We have also made significant progress in digitalisation and new media.

     
If you had to introduce your company in 100 words to someone who does not know JUMBO-Textil: What would you say? What makes you unique?

Patrick Kielholz: JUMBO-Textil is a solution partner - our customers are always at the center of our thoughts and actions. For them and their projects, we develop and manufacture sophisticated technical narrow textiles: precise, custom-fit and Made in Germany.

Andreas Kielholz: I don't even need that many words: Highest quality standards, intensive customer relationship, reliability and unique Elastics expertise.

Patrick Kielholz: These were eight. (laughs)

The Interview was conducted by Ines Chucholowius,
Managing partner of Textination GmbH

 

(c) STF Swiss Textile & Fashion Institute
23.02.2021

Sustainability Management in Textiles - Interview with Sonja Amport, Director of STF

Contact restrictions, mandatory use of face masks, home office: The Coronavirus has turned our daily lives upside down and reduced public life almost to zero. The impact of the pandemic has even further in-creased the existing pressure for action to achieve the Sustainable Development Goals. And that is why, it is not surprising that the issues of sustainability, climate protection and digitization are gaining ground in the industry's and consumers' awareness. New management qualities are required.

Textination talked to Sonja Amport, Director of the STF Swiss Textile & Fashion Institute, about the new training course CAS Sustainability Management in Textiles. After career experiences in the industry and in associations, the business economist with a master's degree in International Management has been contributing her knowledge of textiles, education, business administration, as well as marketing and sales to STF with vigor and passion since 2015.

Contact restrictions, mandatory use of face masks, home office: The Coronavirus has turned our daily lives upside down and reduced public life almost to zero. The impact of the pandemic has even further in-creased the existing pressure for action to achieve the Sustainable Development Goals. And that is why, it is not surprising that the issues of sustainability, climate protection and digitization are gaining ground in the industry's and consumers' awareness. New management qualities are required.

Textination talked to Sonja Amport, Director of the STF Swiss Textile & Fashion Institute, about the new training course CAS Sustainability Management in Textiles. After career experiences in the industry and in associations, the business economist with a master's degree in International Management has been contributing her knowledge of textiles, education, business administration, as well as marketing and sales to STF with vigor and passion since 2015.

The history of the STF Swiss Textile & Fashion Institute began in 1881. In this year Pablo Picasso was born and Billy the Kid was shot. The Tales of Hoffmann by Jacques Offenbach was premiered and Thomas Alva Edison built the world's first electric power station. The Breuninger department store opened at Stuttgart's market square and Rudolph Karstadt's first store in Wismar.
What led to the foundation of STF during this period of time and what values do you still feel committed to today?

In 1881, the textile industry in Switzerland was thriving. Companies in the sector of spinning, weaving, finishing and others burgeoned. However, there was a shortage of trained specialists who could have operated or repaired the machines. This is why the companies teamed up and founded the STF Swiss Textile & Fashion Institute - a place for education and training of specialists for the Swiss textile and clothing industry. For this reason, the STF is still organized as a cooperative today. Therefore, we are still committed to the values of competence, customer orientation, innovation, inspiration and passion to this day.

If you had to introduce your educational institution in 100 words to someone who doesn't know the Schweizerische Textilfachschule: How does the school define itself today and on which fields of activity does it focus?
The STF Swiss Textile & Fashion Institute stands for sustainable educational competence covering the entire life cycle of a textile, fashion or lifestyle product. With the "STF-LAB", the STF positions itself as an educational service provider with three business fields. The core field is "Education", where the STF offers numerous training and further education courses, from basic education to bachelor's and master's degrees. In the "Incubator & Makerspace" (STF Studio), the main focus is on shared infrastructure, mutual inspiration and the thereby together achieved progress. In the third business field, "Think Tank & Consulting", the school acts as a think tank, where experts can be "hired" and part-time management is offered.

Keyword life-long education: What further education programs does the STF offer for the textile and clothing industry, even after a successful degree?
Which industry sectors and which countries are you focusing on?

Firstly, we offer a variety of informal modular courses for the textile and clothing industry as well as retail, in which one can achieve a good overview of a specific topic within 45 lessons. Such as: Welding & Bonding, Smart & Functional Textiles, Start-up in Fashion or the Steiger Stitch Module, where you learn to program your own knitting designs and then knit them on a "Shared Machine" at STF. We also offer two-week intensive summer courses each year, for example in Sustainable Fashion Design. In terms of formal education, I can recommend our master’s program in Product Management Fashion & Textile in German or our two CAS in Sustainability Management in Textiles. Once with face-to-face classes in German and once via e-learning in English. At the moment, we are focusing our programs on Germany, Austria and Switzerland (DACH region). Our internationalization strategy was abruptly stopped due to Covid-19. With our English master's programs, we were focusing particularly on the Indian and Chinese markets We are now strategically repositioning ourselves with English language courses and will start marketing again from 2022 onwards. The goal is to provide flexible, modular master's programs with a high e-learning component, so that costs remain moderate and travelling can be reduced.

Sustainability has changed from a buzzword to a matter of course: The latest OTTO Trend Study even says, that sustainable consumption has entered the mainstream society. What does this mean for the textile and clothing industry? Are the companies positioned in terms of personnel in such a way, that they have professionally incorporated this complex of topics into their service portfolio?
Swiss companies have recognized, that they only have a chance against foreign competitors, if they are capable of innovation, consistently operating in a niche and can stand out through sustainable production. Sustainability is therefore an absolutely central USP. With this in mind, many companies are dealing this and, of course, also send their employees to us for further training.

The STF offers - so far being the only one in the German-speaking area - an internationally recognized further education in the field of Sustainability Management in Textiles as a Certificate of Advanced Studies CAS. Which sub-areas from design, production, process optimization to marketing does the certificate cover?
The STF offers the internationally recognized University of Applied Sciences certificate in collaboration with SUPSI, the Scuola Universitaria Professionale della Svizzera Italiana in Ticino.

In the degree program, we look from a holistic perspective and at the entire value chain of a textile, i.e. from design to production and to marketing, global challenges, where sustainability acts as a multilateral solution. In addition, the normative and strategic management of sustainability, topics related to social responsibility as well as initiatives and standards for the textile industry are highlighted. An important element of the CAS are raw materials and products, i.e. not only sustainable fibers but also fabrics or the use of chemical agents. Last but not least, aspects around biodiversity, animal welfare, marketing, labeling as well as possible future scenarios and best practice examples are highlighted.

Who could be interested in the CAS Sustainability Management in Textiles and why? What impact can the certificate have on a career?
The CAS is attractive for managers who are generally concerned about the strategic orientation of a company, as well as for specialist employees in design, product development, purchasing, sales or quality management who are responsible for operationalizing the sustainability strategy. And of course we always welcome young designers with their own fashion labels willing to break new, sustainable grounds and to stand out from the rest. The push in professional life is strongly related to one's own personality. So far, however, all graduates have found attending the further education program to be extremely beneficial for their own career paths.

What about the formal aspects of the CAS? For example, are there selection criteria, by when do you have to register, what does the curriculum look like, and what are the fees for attendants?
We start the educational courses at the end of August each year. Early registration, preferably by mid-May, is recommended to secure a place. In the face-to-face course, 120 lessons take place in Zurich and Ticino, costs of CHF 5,900. -, including teaching materials and examination fees, can be expected. In the e-learning course, with a few days of on-site attendance, the content is taught synchronously by Microsoft Teams, usually by the same lecturers. Here, the fee is CHF 5,600.

These costs do not include personal expenses as well as travel and accommodation costs.

Those who are interested can find the facts & figures on our homepage (available in German only):
(www.stf.ch/kurse/cas or www.stf.ch/kurse/cas-online)

The COVID-19 pandemic has clearly shown us the limitations of mobility. How have you responded to this as an educational institution?
Physical limitations can easily be overcome with e-learning. One of the reasons why our classes continued regularly throughout the pandemic period. For the period after Covid-19, we are planning, in addition to face-to-face study modules, further online-only seminars, such as our CAS-Online. These will be offered increasingly in English as well. We are also currently testing possible forms of hybrid lessons. Meaning, while some are educated on-site in Zurich, people who have to travel a long way, such as those from Germany, Austria and Switzerland (DACH region), can attend the lessons virtually and live from a distance.

The past year has left its mark on the textile and apparel industry. When you look back on a year of "state of emergency" - what positive experiences do you take with you, where do you see a need for improvement?
It was definitely a year of a state of emergency! One positive aspect is, that we at STF were ready and able to teach online from day one of the lockdown. The learners, students and my team all showed the greatest understanding and flexibility. But as an institute in the textile, fashion and lifestyle sector, teaching also thrives on visual materials. Being able to feel and smell the yarns and fabrics, as well as to discuss the experiences in person, are important learning experiences. It is definitely a challenge to implement such key learning elements online. Overall, Covid-19 has catapulted us forward as an institution in regards to the topic of digitization by what feels like two years. However, I would be grateful if we could return to normality as soon as possible and to an everyday life with "less distance".

Breaking new ground means willingness to make decisions, overcoming fears - and thus courage to fail. Not every project can succeed. In retrospect, which decision that you made for the STF profile are you particularly pleased about?
I'm proud to say that most of the projects we tackle are successful. There is almost always a way. Sometimes, as you move forward, you just have to adjust the direction a bit to get where you want to go. A groundbreaking innovation was certainly the modularization of (almost) all degree programs. Students can therefore benefit from a wide range of choices and create their own curriculum.

A second decision I'm grateful for was that, as a small institute, we invested a lot in expanding our digital capabilities and infrastructure at a very early stage, which we are now benefiting from. With very well-trained lecturers and a learning platform, a VM platform and modern 3D software in various subject areas, we consider ourselves a pioneer in e-learning and digitalization across Europe. Capabilities, which also pay off in terms of sustainability.

The interview was conducted by Ines Chucholowius, Managing Director of Textination GmbH

 

Further information:

(c) PERFORMANCE DAYS functional fabric fair
29.12.2020

PERFORMANCE DAYS: Positive Feedback for Online Fair and sustain & innovate Conference

As a result of the Corona pandemic, the PERFORMANCE DAYS fair on December 9th - 10th and the accompanying sustain&innovate conference for sustainability on December 10 could only take place in digital form. Nevertheless: exhibitors, visitors and partners can look back on a successful event. The focus topic “Nothing to Waste – Closing the Loop“ relating to the issue of the textile circular economy in the course of the sustain&innovate conference also provided great discussion material while generating a positive response.

As a result of the Corona pandemic, the PERFORMANCE DAYS fair on December 9th - 10th and the accompanying sustain&innovate conference for sustainability on December 10 could only take place in digital form. Nevertheless: exhibitors, visitors and partners can look back on a successful event. The focus topic “Nothing to Waste – Closing the Loop“ relating to the issue of the textile circular economy in the course of the sustain&innovate conference also provided great discussion material while generating a positive response.

The PERFORMANCE DAYS team also expresses its satisfaction. Because despite the event being solely a digital event on the 9th and 10th of December 2020, an estimated 15,000 participants made extensive use of the comprehensive online offerings of the 191 digital exhibitors, among them drirelease/OPTIMER, Merryson, Stotz, HeiQ, Schoeller Textil, Long Advance, Dry-Tex, Utenos, Fidlock, Cifra, dekoGraphics and Jia Meir, during the week of the fair. The popular “Contact Supplier” function was supplemented with a new online tool that allows exhibitors to be contacted directly via chat, call or per video. A total of 3,250 fabric sample orders were placed with exhibitors. The variety on offer included fabric innovations for Autumn/Winter 2022/2023 within the top class PERFORMANCE FORUM and an extensive digital supporting program via live-stream with informative webinars, talks and rounds of discussions. Best of all: the resulting videos will be available on demand on the PERFORMANCE DAYS website free of charge.  
 
Finally standard: PERFORMANCE FORUM with sustainable materials
Innovative, sustainable and cutting-edge: the 240 fabrics plus accessory trends at this year’s PERFORMANCE FORUM impressed throughout with exciting environmentally conscious solutions. Natural fibers such as hemp, organic cotton, bamboo, wool or coconut shell remain in demand, while manufacturers are also increasingly refraining from the use of environmentally harmful chemicals, avoiding microplastics, advocating natural dyeing processes and either trying to return fabrics to the cycle, recycle plastic and other waste in order to produce fibres in such a way that they are biodegradable. This environmental awareness is also reflected in this year’s FOCUS TOPIC – so here the 24 best fabrics not only score in terms of sustainability, but also demonstrate that they are both functional and can be returned to the textile cycle, true to the motto “Nothing to Waste – Closing the Loop.   

In the Marketplace section, visitors have the opportunity to view more than 9,500 exhibitor products, including the fabric highlights of the individual categories of the PERFORMANCE FORUMS. In order to be able to digitally present the fabrics to visitors as realistically as possible in terms of feel, design and structure, the Forum has been equipped with innovative 3D technology, including innovative tools such as 3D images, video animations and U3M files for download.  

From fiber to fiber: successful sustain&innovate conference generates discussion  
Textile circular economy is considered part of the solution to the global waste problem, curbing the consumption of resources and reducing climate damaging greenhouse gases. But what exactly is the circular economy and how can it succeed? Most importantly, how far are fiber manufacturers in developing mono-component fabrics that can eventually be returned back into the textile cycle?    
The Focus Topic of this year’s sustainability conference, launched in cooperation with SPORTSFASHION by SAZ, offered a platform for discussion and strove to enlighten with evocative talks, discussion rounds and webinars. Christiane Dolva, Head of Sustainability at Fjällräven, got to the heart of the matter at the start of the expert talks on the second day of the fair, outlining how important emotional consistency is for the brand itself and ultimately also for the consumer – especially when it comes to textile recycling. Durability, good quality, in combination with timeless design are more important than ever today and in the future in terms of sustainable action. Added to this is the possibility of reviving products by means of a repair service. Equally exciting: the development of new technologies in terms of recycling. Erik Bang from the H&M Foundation provided a first glimpse of the new Greenmachine, which should make it possible to separate mixed fabrics such as cotton and polyester as early as 2021. Alternatively, old clothing is converted into new fibres thanks to companies such as WornAgain, Re:newcell, Spinnova or Infinited Fiber, which soon promises to be more than just a mere vision. For those who wish to gain insight into the supply chain of their purchased garment, the start-up know your stuff lets customers track the journey of the respective garment by simply scanning a QR code on the garment in a store or online.    
 
Free extensive retrospective
The next edition of PERFORMANCE DAYS is planned as a hybrid fair and will take place on May 19th and May 20th, 2021 in Munich as well as online. Until then, the PERFORMANCE DAYS platform will remain accessible, for instance with the Marketplace and further inspiring topics of (video) material stories to make online sourcing even easier. The talks from the first day of the fair and the conference will be accessible free of charge on the fair website.

The most importantt links:
Highlights of Expert Talks & Webinars
https://www.performancedays.com/digital-fair/expert-talk-webinar.html

Marketplace:
https://www.performancedays.com/marketplace.html

3D-Forum:
https://www.performancedays.com/digital-fair/forum-highlights/3d-forum.html

PERFORMANCE COLORS by Nora Kühner
https://www.performancedays.com/digital-fair/color-trends.html

More information:
Performance Days
Source:

PERFORMANCE DAYS functional fabric fair

Fraunhofer IZM: Jessica Smarsch (c) Jessica Smarsch
01.12.2020

Fraunhofer IZM: High-Tech Fashion – art and science for the clothes of tomorrow

For most people, the word "fashion" evokes thoughts of cuts, colors and patterns - but why not of live evaluations of vital functions or training sessions for rehabilitation patients? Up to now, products of the fashion industry have been largely analogous. The project Re-FREAM, however, was created to design smart clothes in the digital area. Here, researchers and artists work side by side, developing innovative and sustainable ideas and implementation options for the fashion industry, while simultaneously providing impulses for user-oriented synergies between textiles and technology.

For most people, the word "fashion" evokes thoughts of cuts, colors and patterns - but why not of live evaluations of vital functions or training sessions for rehabilitation patients? Up to now, products of the fashion industry have been largely analogous. The project Re-FREAM, however, was created to design smart clothes in the digital area. Here, researchers and artists work side by side, developing innovative and sustainable ideas and implementation options for the fashion industry, while simultaneously providing impulses for user-oriented synergies between textiles and technology.

The writer Maxim Gorki summed up the connection between two social spheres that were long believed to be irreconcilable: "Just as science is the intellect of the world, art is its soul". In the project Re-FREAM they are connected because fashion is not limited to the decision of the external, it is directly afflicted with sociological, technological and ecological world views. It is less and less sufficient to present only the beautiful, because the dark sides of the fashion industry must also be uncovered and countered with sustainable production cycles and fair working conditions. It is precisely this rethinking and redesigning of processes, production methods, but also of functionality and traditions in the world of fashion that is part of the Re-FREAM project.

The aim is to create an interaction between fashion, design, science and urban manufacturing in order to combine creative visions with sustainable technological solutions. In teams, artists and scientists developed projects together and then presented their innovative aesthetics at the virtual Ars Electronica Festival 2020.

The cooperation with Fraunhofer IZM's scientists opens up entirely new technological possibilities for artists: Microelectronics not only serves as a fashion accessory but is also brings new functions to clothing. With the help of integration technologies, clothing can be integrated into networks and textile-integrated sensor technology can be used, which opens up perspectives of wearable applications in the field of e-health.

One difficulty that Fraunhofer researchers are facing is the electronic contact points between electronics and textiles, because these must be manufacturable on an industrial scale and function reliably under typical textile mechanical stress and washing without any loss of performance. The electronic modules are a further challenge. At Fraunhofer IZM, the electronic components are miniaturized to such an extent that they do not stand out in the garment. The connecting conductor tracks are finally laminated or embroidered onto the fabrics.

Each sub-project in Re-FREAM is a unique joint effort, a fact that reflects the versatility of the cooperation partners. The Italian designer Giulia Tomasello, for example, wants to reveal taboos around female health in her project "Alma" and realize a monitoring of the vaginal flora. The team consisting of designers, an anthropologist and Fraunhofer researchers is developing underwear with an integrated pH sensor, designed to enable a non-invasive diagnosis of bacterial vaginosis and fungal diseases in everyday life and prevent serious inflammation.

In the gusset of the underwear, the reusable biosensor collects data and transmits them to a module measuring approximately 1 cm². Thanks to a modular design, the microcontroller can be easily removed from the textiles. The textile sensor, too, can be removed from the underwear. In addition to the technological solution, aesthetic requirements are another main focus. Other potential applications would be the monitoring of abnormal uterine bleeding as well as menopause. "Through close cooperation with the artists, we have gained very special insights into the user's perspective, and they in turn into that of application-oriented technologies. We have always challenged each other and have now found a solution that combines medical technology, wearables and a circular production method to empower women," says Max Marwede, who provided technical support for "Alma" at Fraunhofer IZM.

In the "Connextyle" project around designer and product developer Jessica Smarsch, the team also focuses on developing user-oriented garments: The tops, which are equipped with textile printed circuit boards and laminated EMG sensors, measure muscle activity and thus optimize rehabilitation processes for patients. An app provides visual feedback from the collected data, generates reports on the healing process and makes it easier for therapists to adapt the measures ideally.

Soft Robotics are the key point in the "Lovewear" project, because here inclusive underwear was developed, which is intended to help people with physical limitations in particular to explore their own intimacy and develop a greater awareness of their own body. Through interaction with a connected pillow, which functions as an interface, compressed air inserts are activated in the lace fabric. Instead of the commonly used silicon-based materials, Soft Robotics are made of textiles and thermoplastic materials. The researchers thus avoid the long curing process of silicone-based approaches and enable faster and more cost-effective mass production with available textile machines.

Particularly challenging and at the same time fruitful is the collaboration in creating sustainable and circular production designs in fashion. Ecological principles are taken into account at the design stage, minimizing negative environmental impacts throughout the product life cycle. This includes the reliability of the component contacts, the length of time the sensors adhere to the textile, the choice of materials and the modular design for reuse of the microcontrollers. However, the teams do not create individual pieces - they want to show that the path to high-tech fashion can also be an environmentally friendly one. They also worked on circular business models that fit the sustainable mission of the projects.

Thus Fraunhofer IZM’s expertise in the fields of e-textiles and circular design represents a considerable added value in the Re-FREAM project. With further investigations on suitable conductive materials, the researchers are currently developing sensory textiles and textile-suitable interconnection technologies. They are also working on thermoplastic substrates that can be integrated into almost any textile.

Re-FREAM is part of the STARTS (Science + Technology + Arts) program, which is funded as an initiative of the European Commission within the Horizon 2020 research and innovation program.

Source:

Fraunhofer Institute for Reliability and Microintegration IZM

Carl Meiser GmbH & Co. KG (c) Carl Meiser GmbH & Co. KG
06.10.2020

Nopma - Experts for antimicrobial finishing: Technical textile coatings from the Swabian Alb

The Carl Meiser GmbH & Co. KG - started in the early 1950s as a day- and nightwear manufacturer. Over the last 20 years the company has become a specialist in the field of technical textiles. With its brand nopma Technical Textiles the company is present as developer and producer of textile solutions via coatings. The main products are nopma anti-slip - textiles with anti-slip effect, nopma adhesion - adhesive pre-coated films, spacer fabrics and substrates for lamination in automotive interiors, nopma ceramics - abrasive more resistant textile surfaces and nopma silicones - silicone coatings on textile surfaces.

Textination talked to the managing director, Jens Meiser, who joined the company in 2005, realigned the division and developed it into a service provider, about his plans and objectives.

The Carl Meiser GmbH & Co. KG - started in the early 1950s as a day- and nightwear manufacturer. Over the last 20 years the company has become a specialist in the field of technical textiles. With its brand nopma Technical Textiles the company is present as developer and producer of textile solutions via coatings. The main products are nopma anti-slip - textiles with anti-slip effect, nopma adhesion - adhesive pre-coated films, spacer fabrics and substrates for lamination in automotive interiors, nopma ceramics - abrasive more resistant textile surfaces and nopma silicones - silicone coatings on textile surfaces.

Textination talked to the managing director, Jens Meiser, who joined the company in 2005, realigned the division and developed it into a service provider, about his plans and objectives.

Founded in 1952, Carl Meiser GmbH & Co.KG has changed from a day- and nightwear manufacturer to an innovator in the field of technical textiles, presenting themselves as a specialist for plastic-based coating processes. If you had to introduce yourself in 100 words to someone who does not know the company: What has influenced you most in this development process and what makes you unique?
Innovation is the new normal - This has been true for the textile industry not just since Sars CoV-2. Our industry was one of the first to be disrupted in the early 1990s and has always been subject to constant change. This urge for further development, which is essential for survival, has left its mark on us intensively and has enabled us to manage huge leaps in innovation in recent years

Today we regard ourselves as an innovative development and production service provider with a focus on textile coating. We develop and produce almost exclusively customized special solutions.

Through the combination of coatings on textiles these hybrid materials receive completely new properties.

You manufacture exclusively at your location in Germany. Why? Have you never been tempted to set up subsidiaries in other countries, for example to benefit from lower wage levels?
Today we supply global supply chains from our headquarter in southern Germany. Although we produce in a high-wage country, much more important for us are know-how and the drive of our team to create something new. Globalization will continue to be the key to success in the future. Therefore, subsidiaries in North America and Asia could be very interesting for us in the medium- and long-term perspective. However, this is still too early for us.

You use CIP and Kaizen techniques intensively in your company. How did a Japanese concept come about in the Swabian Alb?
KAIZEN, the change for the better, are actually German virtues. The urge to improve and optimize things is in all of us. Due to the continuous improvement process we do not stand still but evolve constantly. Besides, there is the personal affinity to Japan. A look at another culture simply opens the horizon. And if you additionally recognize parallels in the working methods, it’s even better. 

10 years ago, you turned your attention to new markets: aviation, automotive, protection, caravan and furniture manufacturing, to name just a few. Some of these segments have collapsed significantly during the Covid 19 pandemic. What market development do you expect in the medium term and what consequences will this have for your company?
Of course, the aviation or automotive industry, for example, have substantial problems during or due to the Covid-19 pandemic. Quite honestly, many of these problems existed before. They were further tightened, as if a fire accelerator has been used. Of course, these cut-backs are also hitting us hard economically. But we are pursuing long-term goals. As a medium-sized company, you have to have the resilience to continue on your path. Thanks to our specialisation and the split of our industrial sectors, which we drive forward every day, we manage to decouple ourselves more and more from economic developments in individual industries. For our customers this is a great advantage of relying on a very stable partner with long-term orientation.

We are positive about the future. Megatrends like sustainability, digitization and ongoing globalization will lead to new business models in the above-mentioned sectors, as in many others, and to renewed growth. Our coatings on textiles and flexible woven materials can contribute a wide range of solutions to this. If, for example, materials become lighter with identical usage properties or suddenly become biodegradable, because of biodegradable plastics, many new opportunities will arise.

Tailor-made instead of solutions for major customers: The topic of individualization down to batch size 1 is making up a large part of the discussion today. In 2015, you opened a large development laboratory where you have a wide range of testing technologies for textiles and plastics available. What do you think about individual product solutions, and in which application areas have you successfully implemented them?
In principle, we do not use any standards. We live individualization with the smallest possible batch sizes. In our field, we do not manage batch size 1, but we start with MOQs of 300 running meters at process-safe series production. We have very few finished products, and above all we have no collections. Our development laboratory is the key for this. Together with our customers we have the possibilities to realize very lean development processes.

Even on a laboratory scale, we can develop and test new products within just a few hours. We then strive to scale up to production at a very early stage in order to obtain production series results. This way, we offer our clients speed and power that represent a special potential for our partners.

You register important input factors in the production process and evaluate them in monthly environmental analyses. What are these factors in concrete terms and to what extent have their analyses already changed production operations? How do you define environmental management for your company?
For us, environmental management means a holistic approach. In principle, we operate production units and manufacture products that consume many resources. Due to the high production volumes, this continues to accumulate. Because of this, it is self-understanding that we record and evaluate our input and output flows and derive measures from them. This makes economic sense, but is also necessary because of our responsibility for our environment. Specifically, these are energy consumption values, consumption data of primary chemicals, electricity load peaks, our Co2 footprint, just to name a few. This consideration has changed us in many areas. Today we operate a power plant with gas condensing technology, our free roof areas are greened or carry photovoltaic modules, we offer our employees and visitors electric filling stations and finally we have converted the entire power supply of our factory to environmentally friendly hydroelectric power.

With nopma, you have been building up a brand for the technical textiles industry since several years and communicate this via an Individual website parallel to Carl Meiser GmbH & Co. KG. How did this brand name come about and what is the product portfolio behind it?
This is the name of a first technical textile product from the 1990s. It was a textile - coated with dots. Dots on a knitted fabric. NOPMA. My father created this brand.

In 2016 you invested in an additional production line for nopma products and were able to start a directly serial delivery in the NAFTA area. How do you currently assess the market opportunities for North America and Mexico?
We continue to see opportunities in globalization and thus on the North American market also. However, these markets are still severely affected by the pandemic and there are major distortions. When these return to normal, we surely will see more success on these markets again.

As an innovation leader, Meiser offers solvent-free PU adhesive systems as pre-coatings for lamination. How do you assess the importance of such innovations in the context of REACH?
These innovations offer our customers the opportunity to decouple themselves from the pressure REACH triggers in some industries. However, we also have some products that have been developed newly in recent months. This keeps us busy, but also creates opportunities to open up new market segments.

How have you felt about the corona era to date - as a company and personally? What would you on no account want to go through again and what might you even consider maintaining on a daily basis?
I think this time has also strengthened us as a society, as people and even as entrepreneurs. Each crisis you go through makes you a little more relaxed for the unforeseen, but also more motivated to achieve your goals. In my opinion, there have been a lot of positive things in the last few months. Suddenly, for example, digitalization tools have become accepted in our everyday lives, and I feel that people are paying more attention to others again. Hopefully this will stay this way.

The futuristic "tube" escalator at the Elbphilharmonie Concert Hall is just as impressive as the building itself and the longest escalator in western Europe. In August, a start-up based in Cologne installed an UV technology that keeps the handrails clean at all times. At the same time, you presented an antiviral functional coating that can be applied to all textiles in the form of yard goods. How does this work and for what purposes will this technology be suitable?
We have already been working with antimicrobial finishing techniques for many years. This already started with the swine flu in 2009/2010, when we made initial contacts with a young start-up and launched a development. Due to a lack of market interest, however, this had to be discontinued after a few months. Today we are experts in the field of "antimicrobial equipment by means of coatings". We were also able to build up an enormous amount of knowledge on the subject of approval and biocide regulation. Today, we can support our customers holistically in these areas. The function by skin-compatible active substances from the cosmetics sector with a vesicle booster can kill viruses and bacteria within a few minutes.
Since the pandemic has shown us the enormous importance of a new level of hygiene, the applications are very diverse and differentiated. We have already realized the use in personal protective equipment, work furniture, vehicles and for example gloves. In principle, every application is predestined where textile carriers are exposed to many touches by different persons in high frequency. Here our nopma products offer a new level of protection and hygiene.

To break new ground means decisiveness, overcoming fears - and thus the courage to fail. Not every project can succeed. In retrospect - about which entrepreneurial decision are you particularly glad to have made it?
We fail again and again. This is part of the game. But it has never happened that we did not learn anything. The pandemic situation is another good example. In spring we accepted our corporate responsibility for our society and were one of two companies in Baden-Württemberg to achieve certification for FFP protective masks. Since we did not want to participate in the revolver market at that time, we offered these products only to the public sector at favourable pre-crisis prices. However, the decision makers could not make up their minds for weeks and did not order. This disappointed our whole team very much at that time. Today we have overcome this and have taken a lot of knowledge with us from this development.


The interview was conducted by Ines Chucholowius, CEO Textination GmbH

Intertextile 1 (c) Messe Frankfurt / Intertextile Shanghai Apparel Fabrics
15.09.2020

Intertextile Apparel: Digitale Lösungen verbinden Lieferanten und Käufer

Die Veranstalter der Intertextile Shanghai Apparel Fabrics sind entschlossen, digitale Lösungen zu nutzen und so Aussteller und Besucher zu unterstützen, die weder an der Frühjahrsausgabe der Intertextile in Shanghai im März, noch an der kommenden Herbstausgabe vom 23. - 25. September teilnehmen konnten und können. Zu der in diesem Monat stattfindenden Messe werden rund 3.400 Aussteller aus mehr als 20 Ländern und Regionen erwartet. Mit der mobilen Intertextile-App, einer Online-Business-Matching-Plattform mit verschiedenen Zusatzfunktionen, nutzt die Intertextile weiterhin ihr vielfältiges Netzwerk in der Textilindustrie, um bei der Adressierung von Beschaffungsbedarf und der Entwicklung neuer Geschäftschancen zu helfen.

Die Veranstalter der Intertextile Shanghai Apparel Fabrics sind entschlossen, digitale Lösungen zu nutzen und so Aussteller und Besucher zu unterstützen, die weder an der Frühjahrsausgabe der Intertextile in Shanghai im März, noch an der kommenden Herbstausgabe vom 23. - 25. September teilnehmen konnten und können. Zu der in diesem Monat stattfindenden Messe werden rund 3.400 Aussteller aus mehr als 20 Ländern und Regionen erwartet. Mit der mobilen Intertextile-App, einer Online-Business-Matching-Plattform mit verschiedenen Zusatzfunktionen, nutzt die Intertextile weiterhin ihr vielfältiges Netzwerk in der Textilindustrie, um bei der Adressierung von Beschaffungsbedarf und der Entwicklung neuer Geschäftschancen zu helfen.

"Um uns auf die Herbstausgabe der Intertextile vorzubereiten, haben wir in engem Kontakt mit Ausstellern und Besuchern aus Übersee gestanden. Uns ist bewusst, dass einige im September möglicherweise nicht nach China reisen werden können. Wir verstehen, dass in diesen Zeiten alternative Lösungen notwendig sind, um unseren Ausstellern und Besuchern dabei zu helfen, die durch den Ausbruch von COVID-19 verursachten Hemmnisse zu überwinden. Deshalb haben wir die derzeit verfügbaren Online-Tools und -Dienste evaluiert und nach neuen Wegen gesucht, um die Branche digital zu verbinden ", sagte Wendy Wen, Senior General Manager der Messe Frankfurt (HK) Ltd.

"Unsere digitalen Lösungen werden allen Szenarien gerecht - Lieferanten und Einkäufer aus dem In- und Ausland, die seit dem Ausbleiben der Frühjahrsausgabe von Intertextile bestrebt waren, miteinander in Kontakt zu treten, und dies gleichzeitig als Werbemöglichkeit oder Geschäfts- und Networking-Angebote vor der Herbst-Ausgabe nutzen. Dies wird einen nahtlosen Informationsaustausch für internationale Online- und Offline-Geschäfte vor, während und nach der Messe ermöglichen, um die Erholung der Branche wirklich zu unterstützen ", so Frau Wen weiter.

Maximierung der Bekanntheit und der Geschäftsmöglichkeiten von Marken:
Mit den digitalen Lösungen der Intertextile erhalten Aussteller Zugriff auf deren wertvolle Datenbank - mehr als 100.000 Käufer aus über 100 Ländern und Regionen. Um inländische Käufer zu erreichen, können Aussteller die mobile Intertextile-App herunterladen und selbst Produktinformationen und Fotos hochladen. Sie können mit Käufern interagieren indem sie ihre jüngsten Unternehmensneuigkeiten, Entwicklungen und Verkaufsförderungsmaßnahmen teilen.
Die Aussteller haben außerdem Zugriff auf die Kontakte der Käufer, sodass sie über die integrierte Messenger-Funktion der App Online- oder Vor-Ort-Meetings im Voraus planen können. Die mobile App enthält Informationen zur Messe wie beispielsweise Updates zu Karten, Verkehr und Rahmenprogrammen, was sie zu einem All-in-One-Tool für Aussteller macht, die Komfort auf der Messe und gleichzeitig zusätzliche Aufmerksamkeit bevorzugen, die nicht auf die dreitägige Ausstellungsdauer beschränkt ist.

Als besondere Maßnahme als Reaktion auf COVID-19 erweitert die Intertextile ihr Angebot für Aussteller und Besucher, auf deren Online-Business-Matching-Plattform Connect PLUS zugreifen zu können. Diese wird normalerweise nur zur Planung von Geschäftstreffen vor Ort vor der Messe verwendet. Connect PLUS ist jetzt verfügbar für Online-Business-Matching vor und nach der Messe. Basierend auf datengesteuerten intelligenten Empfehlungen können Aussteller Käuferprofile aus Übersee aus der Intertextile-Datenbank abrufen und proaktiv Verbindungsanfragen senden. Mit Instant Messaging- und Videoanruffunktionen eignet sich die Plattform für Aussteller, um Käufer aus Übersee zu kontaktieren, die nicht an der Intertextile teilnehmen können. Dies ist auch ein perfektes Instrument für das Business-Matching nach der Veranstaltung und zur Steigerung der Sourcing-Effizienz. Aussteller können darüber hinaus Sponsoren-Pakete nutzen, um auf der Plattform zu werben und so ihre Bekanntheit steigern.

Weitere Informationen zu den digitalen Lösungen der Intertextile finden Sie online: https://intertextile-shanghai-apparel-fabrics-autumn.hk.messefrankfurt.com/shanghai/en/Online_Platforms.html

Online-Inhalte für Teilnehmer aus Übersee
Das Team der Intertextile bereitet eine verstärkte Weitergabe von Inhalten vor der Veranstaltung in Form von Webinaren vor, die als "Textile e-Dialogue" -Serie bezeichnet werden. Durch die Bewerbung von Aussteller-Webinaren vor der Veranstaltung über Newsletter und die Website der Messe, wird dies dem Online-Publikum ermöglichen, um sich über die neuesten Branchennachrichten zu informieren und gleichzeitig mit den Ausstellern über Fragen und Antworten zu interagieren.

Während der Messe werden Rahmenprogramme wie Produktpräsentationen für Käufer vor Ort und das Online-Publikum live übertragen, die wiederum in Echtzeit Fragen stellen und Antworten bekommen können. Die Präsentationen werden aufgezeichnet und zum Anzeigen und Teilen auf Social-Media-Plattformen zur Verfügung gestellt, so dass Aussteller und Käufer aus Übersee und aus verschiedenen Zeitzonen die Highlights der Messe nach Belieben kennenlernen können.

Intertextile Shanghai Apparel Fabrics - Die Herbstausgabe 2020 findet vom 23. bis 25. September gleichzeitig mit der Yarn Expo Autumn, der CHIC und der PH Value im Nationalen Ausstellungs- und Kongresszentrum (Shanghai) statt. Die Messe wird von der Messe Frankfurt (HK) Ltd., dem Sub-Council of Textile Industry, CCPIT, und dem China Textile Information Center gemeinsam organisiert.