Textination Newsline

Reset
89 results
Converting CO2 to Solid Carbon Nanofibers (c) Zhenhua Xie/Brookhaven National Laboratory and Columbia University; Erwei Huang/Brookhaven National Laboratory
22.01.2024

Converting CO2 to Solid Carbon Nanofibers

Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material.

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia University have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure. As the scientists describe in the journal Nature Catalysis, this approach could successfully lock carbon away in a useful solid form to offset or even achieve negative carbon emissions.

Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material.

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia University have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure. As the scientists describe in the journal Nature Catalysis, this approach could successfully lock carbon away in a useful solid form to offset or even achieve negative carbon emissions.

“You can put the carbon nanofibers into cement to strengthen the cement,” said Jingguang Chen, a professor of chemical engineering at Columbia with a joint appointment at Brookhaven Lab who led the research. “That would lock the carbon away in concrete for at least 50 years, potentially longer. By then, the world should be shifted to primarily renewable energy sources that don’t emit carbon.”

As a bonus, the process also produces hydrogen gas (H2), a promising alternative fuel that, when used, creates zero emissions.

Capturing or converting carbon?
The idea of capturing CO2 or converting it to other materials to combat climate change is not new. But simply storing CO2 gas can lead to leaks. And many CO2 conversions produce carbon-based chemicals or fuels that are used right away, which releases CO2 right back into the atmosphere.

“The novelty of this work is that we are trying to convert CO2 into something that is value-added but in a solid, useful form,” Chen said.

Such solid carbon materials—including carbon nanotubes and nanofibers with dimensions measuring billionths of a meter—have many appealing properties, including strength and thermal and electrical conductivity. But it’s no simple matter to extract carbon from carbon dioxide and get it to assemble into these fine-scale structures. One direct, heat-driven process requires temperatures in excess of 1,000 degrees Celsius.

“It’s very unrealistic for large-scale CO2 mitigation,” Chen said. “In contrast, we found a process that can occur at about 400 degrees Celsius, which is a much more practical, industrially achievable temperature.”

The tandem two-step
The trick was to break the reaction into stages and to use two different types of catalysts—materials that make it easier for molecules to come together and react.

“If you decouple the reaction into several sub-reaction steps you can consider using different kinds of energy input and catalysts to make each part of the reaction work,” said Brookhaven Lab and Columbia research scientist Zhenhua Xie, lead author on the paper.

The scientists started by realizing that carbon monoxide (CO) is a much better starting material than CO2 for making carbon nanofibers (CNF). Then they backtracked to find the most efficient way to generate CO from CO2.

Earlier work from their group steered them to use a commercially available electrocatalyst made of palladium supported on carbon. Electrocatalysts drive chemical reactions using an electric current. In the presence of flowing electrons and protons, the catalyst splits both CO2 and water (H2O) into CO and H2.

For the second step, the scientists turned to a heat-activated thermocatalyst made of an iron-cobalt alloy. It operates at temperatures around 400 degrees Celsius, significantly milder than a direct CO2-to-CNF conversion would require. They also discovered that adding a bit of extra metallic cobalt greatly enhances the formation of the carbon nanofibers.

“By coupling electrocatalysis and thermocatalysis, we are using this tandem process to achieve things that cannot be achieved by either process alone,” Chen said.

Catalyst characterization
To discover the details of how these catalysts operate, the scientists conducted a wide range of experiments. These included computational modeling studies, physical and chemical characterization studies at Brookhaven Lab’s National Synchrotron Light Source II (NSLS-II)—using the Quick X-ray Absorption and Scattering (QAS) and Inner-Shell Spectroscopy (ISS) beamlines—and microscopic imaging at the Electron Microscopy facility at the Lab’s Center for Functional Nanomaterials (CFN).

On the modeling front, the scientists used “density functional theory” (DFT) calculations to analyze the atomic arrangements and other characteristics of the catalysts when interacting with the active chemical environment.

“We are looking at the structures to determine what are the stable phases of the catalyst under reaction conditions,” explained study co-author Ping Liu of Brookhaven’s Chemistry Division who led these calculations. “We are looking at active sites and how these sites are bonding with the reaction intermediates. By determining the barriers, or transition states, from one step to another, we learn exactly how the catalyst is functioning during the reaction.”

X-ray diffraction and x-ray absorption experiments at NSLS-II tracked how the catalysts change physically and chemically during the reactions. For example, synchrotron x-rays revealed how the presence of electric current transforms metallic palladium in the catalyst into palladium hydride, a metal that is key to producing both H2 and CO in the first reaction stage.

For the second stage, “We wanted to know what’s the structure of the iron-cobalt system under reaction conditions and how to optimize the iron-cobalt catalyst,” Xie said. The x-ray experiments confirmed that both an alloy of iron and cobalt plus some extra metallic cobalt are present and needed to convert CO to carbon nanofibers.

“The two work together sequentially,” said Liu, whose DFT calculations helped explain the process.

“According to our study, the cobalt-iron sites in the alloy help to break the C-O bonds of carbon monoxide. That makes atomic carbon available to serve as the source for building carbon nanofibers. Then the extra cobalt is there to facilitate the formation of the C-C bonds that link up the carbon atoms,” she explained.

Recycle-ready, carbon-negative
“Transmission electron microscopy (TEM) analysis conducted at CFN revealed the morphologies, crystal structures, and elemental distributions within the carbon nanofibers both with and without catalysts,” said CFN scientist and study co-author Sooyeon Hwang.

The images show that, as the carbon nanofibers grow, the catalyst gets pushed up and away from the surface. That makes it easy to recycle the catalytic metal, Chen said.

“We use acid to leach the metal out without destroying the carbon nanofiber so we can concentrate the metals and recycle them to be used as a catalyst again,” he said.

This ease of catalyst recycling, commercial availability of the catalysts, and relatively mild reaction conditions for the second reaction all contribute to a favorable assessment of the energy and other costs associated with the process, the researchers said.

“For practical applications, both are really important—the CO2 footprint analysis and the recyclability of the catalyst,” said Chen. “Our technical results and these other analyses show that this tandem strategy opens a door for decarbonizing CO2 into valuable solid carbon products while producing renewable H2.”

If these processes are driven by renewable energy, the results would be truly carbon-negative, opening new opportunities for CO2 mitigation.

Source:

Brookhaven National Laboratory

Bakery Pexels at Pixabay
08.01.2024

BakeTex: Textile baking mat supports bakeries in saving energy

The ongoing energy crisis is increasingly pushing the bakery trade to its limits. Bakeries everywhere are having to close because they can no longer afford the sharp rise in the cost of electricity and gas. The use of energy-efficient ovens and the optimisation of production processes are important components that help to save energy. Researchers at the Fraunhofer Application Centre for Textile Fibre Ceramics TFK in Münchberg have now developed another building block: a textile baking base.
 
In bakeries, trays are normally used as a base for the baked goods in combination with baking paper or flour, which not only leads to large amounts of waste, but also to health problems (baker's asthma). The baking trays are also heavy and their mass increases the energy consumption in the oven, as they have to be heated with every baking process.

The ongoing energy crisis is increasingly pushing the bakery trade to its limits. Bakeries everywhere are having to close because they can no longer afford the sharp rise in the cost of electricity and gas. The use of energy-efficient ovens and the optimisation of production processes are important components that help to save energy. Researchers at the Fraunhofer Application Centre for Textile Fibre Ceramics TFK in Münchberg have now developed another building block: a textile baking base.
 
In bakeries, trays are normally used as a base for the baked goods in combination with baking paper or flour, which not only leads to large amounts of waste, but also to health problems (baker's asthma). The baking trays are also heavy and their mass increases the energy consumption in the oven, as they have to be heated with every baking process.

With this in mind, the Bavarian Research Foundation approved a research project in 2021 to develop an alternative to conventional baking trays, which was successfully completed in 2023. The project partners were the Fraunhofer Application Centre for Textile Fibre Ceramics TFK from Münchberg, Fickenschers Backhaus GmbH from Münchberg and Weberei Wilhelm Zuleeg GmbH from Helmbrechts.

The aim of the project was to develop an energy-saving, pollutant-free and reusable textile baking mat with an integrated non-stick effect for use in industrial bakeries. Lightweight and heat-resistant textiles offer the potential to lower the preheating temperature in the oven and thus reduce energy consumption.
 
In a first step, a thin para-aramid fabric made of 120 g/m² long staple fibre yarn was therefore produced and stretched on a metallic frame. "The leno weave proved to be particularly suitable for the weave. Its characteristic lattice structure ensures that the textile is not only light but also permeable to air," says Silke Grosch from the Fraunhofer Application Centre TFK.

"In addition, by fixing the threads in place, the fabric cannot warp during washing and retains its shape for a long time." Finally, a full-surface silicone coating ensures that the baked goods do not stick to the baking base. This means that the previously necessary baking paper and flour layer can be dispensed with. To ensure that the rolls come out of the oven just as crispy and brown as with a standard baking tray, only the baking programme needs to be adjusted. Another key advantage of the textile baking tray is that it can be folded and therefore stored in a space-saving manner.

In the course of the fourth industrial revolution (Industry 4.0), the baking tray will be equipped with intelligent additional functions. On the one hand, the production data in the bakery can be determined using RFID chips or QR codes, and on the other hand, baked goods can be advertised in a targeted manner using customised branding.

Prof. Dr Frank Ficker, Head of the Fraunhofer Application Centre TFK, sums up: "With the textile baking base, we have developed a contemporary and resource-saving product together with our project partners that is characterised by its low weight and high flexibility. Together with the potential energy savings, this makes it interesting for many bakeries."

The Fraunhofer Application Centre for Textile Fibre Ceramics TFK in Münchberg specialises in the development, manufacture and testing of textile ceramic components. It is part of the Fraunhofer Centre for High Temperature Lightweight Construction HTL in Bayreuth, a facility of the Fraunhofer Institute for Silicate Research ISC with headquarters in Würzburg.

Source:

Fraunhofer Application Centre for Textile Fibre Ceramics
Translation Textination

JUMBO-Textil production © JUMBO-Textil GmbH & Co. KG
28.11.2023

JUMBO-Textil: "For us, leadership means team development."

With its high-quality technical narrow textiles, JUMBO-Textil stands for high-tech - whether woven, braided or knitted. As an elastic specialist and solution partner, the company develops and produces individual innovations for customers worldwide. The 70-strong team must be as diverse and flexible as the products it designs. Textination spoke to industrial engineer Carl Mrusek about the current challenges facing family businesses. Carl Mrusek, who has been Chief Sales Officer (CSO) at Textation Group GmbH & Co. KG, to which JUMBO-Textil belongs, for almost a year now, is in charge of strategic corporate development as well as other areas of responsibility.

 

With its high-quality technical narrow textiles, JUMBO-Textil stands for high-tech - whether woven, braided or knitted. As an elastic specialist and solution partner, the company develops and produces individual innovations for customers worldwide. The 70-strong team must be as diverse and flexible as the products it designs. Textination spoke to industrial engineer Carl Mrusek about the current challenges facing family businesses. Carl Mrusek, who has been Chief Sales Officer (CSO) at Textation Group GmbH & Co. KG, to which JUMBO-Textil belongs, for almost a year now, is in charge of strategic corporate development as well as other areas of responsibility.

 

"In a family business, tradition is the foundation, innovation is the way forward," they say. The image of family-run companies has changed significantly in recent years - old-fashioned values and outdated business concepts have given way to a strong corporate culture, a strong sense of regional responsibility and sustainable planning. How does JUMBO-Textil combine its corporate values and traditions with a contemporary management style?

Carl Mrusek: As a family business, there is a close bond between the employees and the company and vice versa; the continuity of human relationships is important and valuable. JUMBO-Textil also has a tradition of one thing in particular: contemporary corporate management, both technically and professionally, as well as in terms of management style and values. Especially in a family business, which is often managed by the same person for decades, it is crucial to question corporate values and management style and to promote change. A company that has been operating successfully internationally for almost 115 years must be adaptable. For us, reacting quickly to changes, even anticipating them and moving forward accordingly, is at the heart of smart business practices. The specialization in elastics in the 1920s is an example of the foresighted power of change, as is the strategically important turn to technical textiles in the 1970s. A recent example is the merger with vombaur under the umbrella of the Textation Group.

The most important thing in any company is its employees. We would not be able to attract and retain them with outdated traditions and working methods. For us, the focus is not on the company management, but on joint success, and in a complex world, this is usually the result of successful cooperation and not an announcement from the boss. Leadership clearly means setting and pursuing strategic goals, but today it also means team development. Finding the best people, bringing them together and motivating them to achieve the goal.

 

Team spirit and vision development: How do you achieve this at JUMBO-Textil?

Carl Mrusek: As a team! JUMBO-Textil has systematically expanded its management team. In addition to the Managing Director, our CEO Andreas Kielholz, the Chief Operational Officer Patrick Kielholz, the Chief Financial Officer Ralph Cammerath, the Chief Technology Officer Dr. Sven Schöfer and myself as Chief Sales Officer work here. This shows that we are convinced of the idea of cooperation: We also work together on corporate development and strategic issues. The same applies to the individual teams - in organizational specialist teams or in interdisciplinary project teams. The tasks for which we are responsible may be different, but each is equally important.

 

Is that why you start the introduction of contact persons on your website with the Junior Sales Manager? And the C-level representatives are at the end?

Carl Mrusek: Yes, all JUMBO-Textil heads are the head of the company for us. All JUMBO-Textil faces represent the company. This is also reflected in the order of the contact persons on the website. Visitors should be able to quickly find the person who can help them and not find out who runs the company. That's what the legal notice is for. (laughs)

 

What is JUMBO-Textil's mission statement and vision for the future, and what needs to change in order to achieve this vision?

Carl Mrusek: We are currently working on the strategic direction of the Textation Group, which JUMBO-Textil GmbH & Co. KG and vombaur GmbH & Co. KG are part of. In this context, we have developed the Group's corporate vision and mission and updated our mission statement. This serves as a foundation for strategy development and is only sustainable if employees are involved in this process through surveys and workshops. I don't want to give too much away yet, but this much is already clear: strong teams, the right people in the right place, taking responsibility at all levels, sustainability as the basis for innovation - these will be the four cornerstones. You can already see from this: To achieve our vision, we cannot flip a switch. We must always remain open to change, always new - from product development to personnel recruitment. But as I said, we have a tradition of doing this.

 

JUMBO-Textil is not an industry specialist, but combines expertise for demanding high-tech narrow textiles. Who is in charge of challenging customer projects - do you decide in a team or rather top-down, where is the responsibility for an order placed?

Carl Mrusek: As a team, we decide which projects to implement and how to prioritize them. The corporate strategy determines the "direction of travel". In addition to the sales side, the development side of new projects also plays a decisive role. I therefore coordinate intensively with Dr. Sven Schöfer (CTO) and his team, as the focus here is on the technical development and implementation of our products. In the end, project processing is always a team effort between Sales and Development in close cooperation with Production..

 

Between above-standard pay, a 4-day week and the much-vaunted work-life balance in the current situation on the job market, companies are more likely to be in the position of applicants than vice versa. What are you doing to remain attractive as an employer for new colleagues? And how do you keep the enthusiasm of your skilled employees at a consistently high level?

Carl Mrusek: An important approach for us is education. Training young people and proving to them during their apprenticeship: JUMBO-Textil is your place to be. We therefore already start recruiting skilled workers through our school visits and school internships. As a state-of-the-art company, we offer an attractive salary level and a pleasant and healthy working environment.

Applicants today also often want to organize their working hours and work arrangements individually and flexibly, for a variety of reasons. With modern working models and thanks to our ongoing progress in digitalization, we support them wherever possible. People also want to work for a company that they can identify with. Environmental and climate protection are just as important to our employees and applicants as social standards in our supply chain. The fact that we have set ourselves ambitious goals with our sustainability strategy and are consistently pursuing them with firmly scheduled steps - our climate-neutral energy generation is a concrete example that has already been implemented. Furthermore, we vigorously encourage our business partners to respect human and employee rights and are committed to the Code of Conduct of the German textile and fashion industry. All of this helps us to recruit staff.

 

What larger, more capital-intensive companies can partially make up for with financial resources, SMEs have to manage through agility and adaptability - especially in situations of crisis. To what extent are these requirements also reflected in your organizational structure and the requirements profile for employees?

Carl Mrusek: Exactly, that is the advantage that family businesses have over large corporations: We can make decisions quickly and react on a daily basis if necessary. Hierarchies are flat and coordination processes are short. An exciting suggestion doesn't have to be prepared by agencies and coordinated across several levels before it is approved by the management and can be implemented. The go-ahead can also come immediately over lunch: "Great idea, we'll do it." In a corporate group, this fails because only very few employees have the opportunity to have lunch with the management. - And we only talk about business in exceptional cases. Most of the time, the break is about family, the weather, sports and leisure plans - lunch topics, in other words. - We need responsible team players who are willing to make a change. People who work with others on an equal footing, who are committed to the company and its goals with drive and expertise and who are keen to try new things.

 

It now takes much more than a fruit basket and a gym to motivate current and potential employees. Working in a meaningful way and participating in a climate-friendly transformation is particularly important to many people. What does JUMBO-Textil do specifically to not just quote SDGs in a statement, but to live them in everyday company life?

Carl Mrusek: We have set ourselves a specific climate target: By 2035, our administrative and production operations at our headquarters will be climate-neutral. Realistic steps have been defined to achieve this. We have already achieved an important interim goal: at our headquarters in Sprockhövel, we only use green electricity from the sun, wind and water. We offset the unavoidable emissions for our heat generation with CO2 compensation services. We are also developing more and more products from recyclable and recycled materials. Our vehicle fleet is currently being converted to purely electric or hybrid models.

 

Diversification and internationalization are part of every corporate strategy these days. But what do these terms mean for the management style of a medium-sized company in Sprockhövel? Do you consciously build interdisciplinary international teams?

Carl Mrusek: We live in a hyper-diverse society. This is also reflected in our company. Our teams consist of people with different international backgrounds, without us having to actively control this. The age structure is now also very mixed. We see the different perspectives as an asset, an opportunity and a success factor. We - and that ultimately means our customers and their projects - benefit from the variety of perspectives that flow into our solutions. As with many companies in the technical textiles sector, the proportion of women in some teams is still somewhat unbalanced. However, it is fortunately increasing steadily.

 

Generational change and succession planning are core issues for family-run companies. How important is it for JUMBO-Textil to professionalize its management team and to what extent is the company open to external specialists and managers?

Carl Mrusek: A company that closes its doors to external specialists and managers is also closing a door to success. That would be foolish. At JUMBO-Textil, we try to combine and balance the close ties, personal continuity and flexibility of a family-run company, the passion and innovative spirit of a start-up and the solidity and financial strength of a group. With Patrick Kielholz as COO, the next generation of the family is represented at management level, as is the external view and the diversity of perspectives provided by the other new members at C-level. The Textation Group, which also includes Patrick Kielholz's brother Kevin Kielholz, supports the company and enables it to think and act bigger than medium-sized family businesses often do. JUMBO-Textil is an elastic specialist. And what distinguishes our product also distinguishes us as an organization. We span the advantages of a family business as well as those of a start-up and a group. If I may use the image of elasticity here and not stretch it too far. (laughs)

Researchers made shape-changing fibers by encapsulating a balloon-like tube in a braided textile sheath. (c) : Muh Amdadul Hoque. Researchers made shape-changing fibers by encapsulating a balloon-like tube in a braided textile sheath.
27.09.2023

Artificial Muscle Fibers Could Serve as Cell Scaffolds

In two new studies, North Carolina State University researchers designed and tested a series of textile fibers that can change shape and generate force like a muscle. In the first study, the researchers focused on the materials’ influence on the artificial muscles’ strength and contraction length. The findings could help researchers tailor the fibers for different applications.

In the second, proof-of-concept study, the researchers tested their fibers as scaffolds for live cells. Their findings suggest the fibers – known as “fiber robots” – could potentially be used to develop 3D models of living, moving systems in the human body.

In two new studies, North Carolina State University researchers designed and tested a series of textile fibers that can change shape and generate force like a muscle. In the first study, the researchers focused on the materials’ influence on the artificial muscles’ strength and contraction length. The findings could help researchers tailor the fibers for different applications.

In the second, proof-of-concept study, the researchers tested their fibers as scaffolds for live cells. Their findings suggest the fibers – known as “fiber robots” – could potentially be used to develop 3D models of living, moving systems in the human body.

“We found that our fiber robot is a very suitable scaffold for the cells, and we can alter the frequency and contraction ratio to create a more suitable environment for cells,” said Muh Amdadul Hoque, graduate student in textile engineering, chemistry and science at NC State. “These were proof-of concept studies; ultimately, our goal is to see if we can study these fibers as a scaffold for stem cells, or use them to develop artificial organs in future studies.”
 
Researchers made the shape-changing fibers by encapsulating a balloon-like tube, made of a material similar to rubber, in a braided textile sheath. Inflating the interior balloon with an air pump makes the braided sheath expand, causing it to shorten.

The researchers measured the force and contraction rates of fibers made from different materials in order to understand the relationship between material and performance. They found that stronger, larger diameter yarns generated a stronger contraction force. In addition, they found that the material used to make the balloon impacted the magnitude of the contraction and generated force.
 
“We found that we could tailor the material properties to the required performance of the device,” said Xiaomeng Fang, assistant professor of textile engineering, chemistry and science at NC State. “We also found that we can make this device small enough so we can potentially use it in fabric formation and other textile applications, including in wearables and assistive devices.”
 
In a follow-up study, researchers evaluated whether they could use the shape-changing fibers as a scaffold for fibroblasts, a cell type found in connective tissues that help support other tissues or organs.

“The idea with stretching is to mimic the dynamic nature of how your body moves,” said Jessica Gluck, assistant professor of textile engineering, chemistry and science at NC State, and a study co-author.

They studied the cells’ response to the motion of the shape-changing fibers, and to different materials used in the fibers’ construction. They found the cells were able to cover and even penetrate the fiber robot’s braiding sheath. However, they saw decreases in the cells’ metabolic activity when the fiber robot’s contraction extended beyond a certain level, compared to a device made of the same material that they kept stationary.

The researchers are interested in building on the findings to see if they could use the fibers as a 3D biological model, and to investigate whether movement would impact cell differentiation. They said their model would be an advance over other existing experimental models that have been developed to show cellular response to stretching and other motion, since they can only move in two dimensions.
 
“Typically, if you want to add stretch or strain on cells, you would put them onto a plastic dish, and stretch them in one or two directions,” Gluck said. “In this study, we were able to show that in this 3D dynamic culture, the cells can survive for up to 72 hours.

“This is particularly useful for stem cells,” Gluck added. “What we could do in the future is look at what could happen at the cellular level with mechanical stress on the cells. You could look at muscle cells and see how they’re developing, or see how the mechanical action would help differentiate the cells.”

The study, “Effect of Material Properties on Fiber-Shaped Pneumatic Actuators Performance” was published in Actuators on March 18. Emily Petersen was a co-author. The study was funded by start-up funding awarded to Fang from the Department of Textile Engineering, Chemistry and Science at NC State.

The study, “Development of a Pneumatic-Driven Fiber-Shaped Robot Scaffold for Use as a Complex 3D Dynamic Culture System” was published online in Biomimetics on April 21. In addition to Gluck, Hoque and Fang, co-authors included Nasif Mahmood, Kiran M. Ali, Eelya Sefat, Yihan Huang, Emily Petersen and Shane Harrington. The study was funded by the NC State Wilson College of Textiles, the Department of Textile Engineering, Chemistry and Science and the Wilson College of Textiles Research Opportunity Seed Fund Program.

Source:

North Carolina State University, Laura Oleniacz. Übersetzung Textination

Carbon U Profil (c) vombaur GmbH & Co. KG
19.09.2023

"After all, a spaceship is not made off the peg."

Interview with vombaur - pioneers in special textiles
Technical narrow textiles, custom solutions, medium-sized textile producer and development partner for filtration textiles, composite textiles and industrial textiles: vombaur. Digitalisation, sustainability, energy prices, pioneering work and unbroken enthusiasm – Textination spoke to two passionate textile professionals: Carl Mrusek, Chief Sales Officer (CSO), and Johannes Kauschinger, Sales Manager for Composites and Industrial Textiles, at vombaur GmbH, which, as well as JUMBO-Textil, belongs to the Textation Group.
 

Interview with vombaur - pioneers in special textiles
Technical narrow textiles, custom solutions, medium-sized textile producer and development partner for filtration textiles, composite textiles and industrial textiles: vombaur. Digitalisation, sustainability, energy prices, pioneering work and unbroken enthusiasm – Textination spoke to two passionate textile professionals: Carl Mrusek, Chief Sales Officer (CSO), and Johannes Kauschinger, Sales Manager for Composites and Industrial Textiles, at vombaur GmbH, which, as well as JUMBO-Textil, belongs to the Textation Group.
 
If you look back at your history and thus to the beginnings of the 19th century, you will see a ribbon manufactory and, from 1855, a production of silk and hat bands. Today you produce filtration textiles, industrial textiles and composites textiles. Although you still produce narrow textiles today, the motto "Transformation as an opportunity" seems to be a lived reality at vombaur.
 
Carl Mrusek, Chief Sales Officer: Yes, vombaur has changed a few times in its almost 220-year history.  Yet the company has always remained true to itself as a narrow textiles manufacturer. This testifies to the willingness of the people in the company to change and to their curiosity. Successful transformation is a joint development, there is an opportunity in change. vombaur has proven this many times over the past almost 220 years: We have adapted our product portfolio to new times, we have built new factory buildings and new machinery, we have introduced new materials and developed new technologies, we have entered into new partnerships – as most recently as part of the Textation Group. We are currently planning our new headquarters. We are not reinventing ourselves, but we will go through a kind of transformation process with the move into the brand new, climate-friendly high-tech space.

 

Could you describe the challenges of this transformation process?
 
Johannes Kauschinger, Sales Manager for Composites and Industrial Textiles: A transformation usually takes place technically, professionally, organisationally and not least – perhaps even first and foremost – culturally. The technical challenges are obvious. Secondly, in order to manage and use the new technologies, appropriate expertise is needed in the company. Thirdly, every transformation entails new processes, teams and procedures have to be adapted. And finally, fourthly, the corporate culture also changes. Technology can be procured, expertise acquired, the organisation adapted. Time, on the other hand, cannot be bought. I therefore consider the greatest challenge to be the supply of human resources: In order to actively shape the transformation and not be driven by development, we need sufficient skilled workers.

 

Visiting your website, the claim "pioneering tech tex" immediately catches the eye. Why do you see your company as a pioneer, and what are vombaur's groundbreaking or pioneering innovations?

Carl Mrusek: With our unique machine park, we are pioneers for seamless circular woven textiles. And as a development partner, we break new ground with every order. We are always implementing new project-specific changes: to the end products, to the product properties, to the machines. It happens regularly that we adapt a weaving machine for a special seamless woven shaped textile, sometimes even develop a completely new one.
 
With our young, first-class and growing team for Development and Innovation led by Dr. Sven Schöfer, we repeatedly live up to our promise of "pioneering tech tex" by developing special textile high-tech solutions with and for our customers. At the same time, we actively explore new potentials. Most recently with sustainable materials for lightweight construction and research into novel special filtration solutions, for example for the filtration of microplastics. A state-of-the-art textile technology laboratory is planned for this team in the new building.

 

The development of technical textiles in Germany is a success story. From a global perspective, we manage to succeed with mass-produced goods only in exceptional cases. How do you assess the importance of technical textiles made in Germany for the success of other, especially highly technological industries?

Carl Mrusek: We see the future of industry in Europe in individually developed high-tech products. vombaur stands for high-quality, reliable and durable products and made-to-order products. And it is precisely this – custom-fit products, instead of surplus and throwaway goods – that is the future for sustainable business in general.

 

What proportion of your production is generated by being project-based as opposed to a standard range, and to what extent do you still feel comfortable with the term "textile producer"?

Johannes Kauschinger: Our share of special solutions amounts to almost 90 percent. We develop technical textile solutions for our customers' current projects. For this purpose, we are in close contact with the colleagues from our customers' product development departments. Especially in the field of composite textiles, special solutions are in demand. This can be a component for space travel – after all, a spaceship is not manufactured off the peg. We also offer high-quality mass-produced articles, for example in the area of industrial textiles, where we offer round woven tubulars for conveyor belts. In this sense, we are a textile producer, but more than that: we are also a textile developer.

 

In August, Composites Germany presented the results of its 21st market survey. The current business situation is viewed very critically, the investment climate is becoming gloomier and future expectations are turning negative. vombaur also has high-strength textile composites made of carbon, aramid, glass and hybrids in its portfolio. Do you share the assessment of the economic situation as reflected in the survey?

Carl Mrusek: We foresee a very positive development for vombaur because we develop in a very solution-oriented way and offer our customers genuine added value. This is because future technologies in particular require individual, reliable and lightweight components. This ranges from developments for the air taxi to wind turbines. Textiles are a predestined material for the future. The challenge here is also to offer sustainable and recyclable solutions with natural raw materials such as flax and recycled and recyclable plastics and effective separation technologies.

 

There is almost no company nowadays that does not use the current buzzwords such as climate neutrality, circular economy, energy efficiency and renewable energies. What is your company doing in these areas and how do you define the importance of these approaches for commercial success?

Carl Mrusek: vombaur pursues a comprehensive sustainability strategy. Based on the development of our mission statement, we are currently working on a sustainability declaration. Our responsibility for nature will be realised in a very concrete and measurable way through our new building with a green roof and solar system. In our product development, the high sustainability standards – our own and those of our customers – are already flowing into environmentally friendly and resource-saving products and into product developments for sustainable projects such as wind farms or filtration plants.

 

Keyword digitalisation: medium-sized businesses, to which vombaur belongs with its 85 employees, are often scolded for being too reluctant in this area. How would you respond to this accusation?

Johannes Kauschinger:

We often hear about the stack crisis at the present time. Based on this, we could speak of the stack transformation. We, the small and medium-sized enterprises, are transforming ourselves in a number of different dimensions at the same time: Digital transformation, climate neutrality, skilled labour market and population development, independence from the prevailing supply chains. We are capable of change and willing to change. Politics and administration could make it a bit easier for us in some aspects. Key words: transport infrastructure, approval times, energy prices. We do everything we can on our side of the field to ensure that small and medium-sized enterprises remain the driving economic force that they are.

 

 

How do you feel about the term shortage of skilled workers? Do you also take unconventional paths to find and retain talent and skilled workers in such a specialised industry? Or does the problem not arise?

Carl Mrusek: Of course, we are also experiencing a shortage of skilled workers, especially in the industrial sector. But the development was foreseeable. The topic played a major role in the decision to move together with our sister company JUMBO-Textil under the umbrella of the Textation Group. Recruiting and promoting young talent can be better mastered together – for example with cross-group campaigns and cooperations.

 

If you had to describe a central personal experience that has shaped your attitude towards the textile industry and its future, what would it be?

Johannes Kauschinger: A very good friend of my family pointed out to me that we live in an area with a very active textile industry, which at the same time has problems finding young talents. I visited two companies for an interview and already on the tour of each company, the interaction of people, machines and textiles up to the wearable end product was truly impressive. In addition, I was able to learn a profession with a very strong connection to everyday life. To this day, I am fascinated by the wide range of possible uses for textiles, especially in technical applications, and I have no regrets whatsoever about the decision I made back then.

Carl Mrusek: I came into contact with the world of textiles and fashion at a young age. I still remember the first time I went through the fully integrated textile production of a company in Nordhorn with my father Rolf Mrusek. Since then, the subject has never left me. Even before I started my studies, I had made a conscious decision to pursue a career in this industry and to this day I have never regretted it, on the contrary. The diversity of the special solutions developed in the Textation Group fascinates me again and again.

 

vombaur is a specialist for seamless round and shaped woven narrow textiles and is known throughout the industry as a development partner for filtration textiles, composite textiles and industrial textiles made of high-performance fibres. Technical narrow textiles from vombaur are used for filtration – in the food and chemical industries, among others. As high-performance composite materials, they are used, for example, in aircraft construction or medical technology. For technical applications, vombaur develops specially coated industrial textiles for insulation, reinforcement or transport in a wide range of industrial processes – from precision mechanics to the construction industry. The Wuppertal-based company was founded in 1805. The company currently employs 85 people.

Sectors

  • Aviation & Automotive
  • Sports & Outdoor   
  • Construction & Water Management
  • Safety & Protection   
  • Chemistry & Food
  • Plant construction & electronics   
  • Medicine & Orthopaedics

 

Point of View: Let’s end fast fashion, Prof Minna Halme. Photo: Veera Konsti / Aalto University
18.08.2023

Point of View: Let’s end fast fashion

Focusing on short-term profit isn’t sustainable. So what can we do to move in the right direction: favour resilience over efficiency in all industries.

We buy cheap products knowing we’ll need to replace them soon. We throw out used items rather than repairing or re-using them. Our employers plan in terms of financial quarters despite hoping to remain relevant and resilient longer-term. Even countries prioritise short-term economic output, focusing on gross domestic product (GDP) above any other indicator.

But does this way of living, working and weighing decisions make sense in the 21st century?

Our global obsession with economic short-term efficiency – and how to transform it – is a conundrum that Professor of Sustainability Management Minna Halme has been thinking about for most of her career. Even as a business school student, she felt flummoxed by how focused her classes were on short-term goals.

Focusing on short-term profit isn’t sustainable. So what can we do to move in the right direction: favour resilience over efficiency in all industries.

We buy cheap products knowing we’ll need to replace them soon. We throw out used items rather than repairing or re-using them. Our employers plan in terms of financial quarters despite hoping to remain relevant and resilient longer-term. Even countries prioritise short-term economic output, focusing on gross domestic product (GDP) above any other indicator.

But does this way of living, working and weighing decisions make sense in the 21st century?

Our global obsession with economic short-term efficiency – and how to transform it – is a conundrum that Professor of Sustainability Management Minna Halme has been thinking about for most of her career. Even as a business school student, she felt flummoxed by how focused her classes were on short-term goals.

'It was about selling more, about maximising shareholder profits, about economic growth – but not really asking, Why? What's the purpose of all this?'

Halme says. 'Even 20-year-old me somehow just felt that this was strange.

'What are we trying to do here? Are we trying to create a better economy for all, or most, people? Whose lives are we trying to improve when we are selling more differently-packaged types of yoghurt or clothes that quickly become obsolete?'

Halme has devoted her career to studying these questions. Today, she is a thought leader in innovative business practices, with recognitions including serving on Finland's National Expert Panel for Sustainable Development and on the United Nation's Panel on Global Sustainability.

Her ultimate goal? Pioneering, researching and advocating for alternative ways of thinking that prioritise values like long-term economic sustainability and resilience – alternatives that she and other experts believe would provide more lasting, widespread benefit to all.

How traditional indicators have failed
One way in which our preference for economic efficiency shapes how we measure a country's overall well-being or status is GDP. This isn't the fault of the originator of the modern concept of GDP, who specifically warned against using it in this way in the 1930s.

'GDP was never meant to tell us about the wellbeing of the citizens of a country,' Halme says. Seventy-five years ago, however, it was easy to conflate the two. Many countries were more committed to redistributing their wealth among their citizens, and population surveys show that until the 1970s, GDP often correlated with general wellbeing.

But with the rise of increasingly heedless free-market capitalism, this became less the case – and GDP's shortcomings became all the more apparent. 'We are in a situation where the wealth distribution is more and more trickling up to those who already have capital. Those who don't have it are in declining economic positions,' Halme says. In fact, the richest 1% of the global population now own nearly half of the world's wealth.

Some governments, such as Finland's, do take indicators of environmental and social progress into account. 'But none is considered as important for decision-making as GDP,' Halme says – and GDP is also considered the arbiter of a government's success. It is that attitude that, through her work advising the Finnish government on sustainability practises as well as in her own research, Halme is trying to shift.

Where industries have failed
Our often-exclusive focus on the economy – and, in particular, on making profits as quickly and efficiently as possible – doesn’t provide a clear picture of how everyone in a society is faring. Worse yet, it has encouraged industries to act with a short-term view that makes for longer-term problems.

Fast fashion is one example. At the moment, supply chains for clothing – as for most other goods – are linear. Raw materials come from one place and are transformed step by step, usually at different factories around the world, using materials, energy and transport that are “cheap” because their high environmental costs aren’t included. They are ultimately purchased by a consumer, who wears the product temporarily before discarding it. To expand profit margins, the industry pushes fast-changing trends. A shocking amount of this clothing ends up in landfill – some of it before it's even been worn.

As the COVID lockdowns showed, this kind of linear supply system isn't resilient. Nor is it sustainable.

Currently, fashion is estimated to be the world's second most polluting industry, accounting for up to 10% of all greenhouse gas emissions. Aalto University researchers have reported that the industry produces more than 92 million tonnes of landfill waste per year. By 2030, that is expected to rise to 134 million tonnes.

Cutting fashion's carbon footprint isn't just good for the environment; it will help the longer-term prospects of the industry itself. 'With this kind of wrong thinking about efficiency, you're eroding the basis of our long-term resilience both for ecology and for society,' Halme says.

Getting out of this trap, she and other researchers say, requires a complete paradigm shift. 'It's really difficult to just tweak around the edges,' she says.

Towards resilience
For several years, Halme researched and studied ecological efficiency, looking at ways that businesses could make more products with a smaller environmental impact. But gradually she realised this wasn't the answer. Although businesses could innovate to have more efficient products and technologies, their absolute use of natural resource use kept growing.

'I began to think, "If not efficiency, then what?"' Halme says. She realised the answer was resilience: fostering ways for systems, including the environment, to continue and even regenerate in the future, rather than continuing to degrade them in the present.

The solution isn’t more of anything, even ‘sustainable’ materials. It’s less.

'The only way to fix fast fashion is to end it,' Halme and her co-authors write. This means designing clothes to last, business models that make reuse and repair more accessible, and prioritising upcycling. Recycling systems also need to be overhauled for when an item really is at the end of its life – particularly regarding blended synthetic fibres, which are difficult to separate and break down.

This would upend the current focus on short-term revenue above all else. And, says Halme, it is one more example of how we need better ways to measure the success of these industries, taking into account factors like resilience and sustainability – rather than just short-term profits.

And while individuals can make an impact, these changes ultimately have to be industry-led.

'Textiles are a good example, because if they break quickly, and if you don't have repair services nearby, or if the fabrics are of such lousy quality that it doesn't make any sense to repair them, then it's too much trouble for most people,' Halme says. 'So most solutions should come from the business side. And the attempt should be to make it both fashionable and easy for consumers to make ecologically and socially sustainable choices.'

What will it take?
The ultimate challenge, says Lauri Saarinen, Assistant Professor at the Aalto University Department of Industrial Engineering and Management, is how to shift towards a more sustainable model while keeping companies competitive. But he believes there are ways.

One option is to keep production local. 'If we compete with low-cost, offshore manufacturing by doing things more locally, and in a closed loop, then we get the double benefit of actually providing some local work and moving towards a more sustainable supply chain,' Saarinen says. For example, if clothing were produced closer to consumers, it would be easier to send garments back for repair or for brands to take back used items and resell them.

Local production is yet another example of the need to rethink how we measure societal success. After all, outsourcing and offshoring in favour of cheaper production may appear to cut costs in short term, but this is done at the expense of what Halme and other experts argue really matters – longer-term economic viability, resilience and sustainability.

Shifting towards this kind of thinking isn't easy. Still, Saarinen and Halme have seen promising signs.

In Finland, for example, Halme points to the start-up Menddie, which makes it easy and convenient to send items away for repairs or alterations. She also highlights the clothing and lifestyle brand Marimekko, which re-sells its used items in an online secondhand shop, and the Anna Ruohonen label, a made-to-measurecollection and customer on-demand concept which creates no excess garments.

It's these kinds of projects that Halme finds interesting – and that, through her work, she hopes to both advocate for and pioneer.

At the moment, she says, these changes haven't yet added up to a true transformation. On a global scale, we remain far from a genuine shift towards longer-term resilience. But as she points out, that can change quickly. After all, it has in the past. Just look at what got us here.

'The pursuit of economic growth became such a dominant focus in a relatively short time – only about seven decades,' she says. 'The shift toward longer-term resilience is certainly possible. Scientists and decision-makers just need to change their main goal to long-term resilience. The key question is, are our most powerful economic players wise enough to do so?'

As part of her research, Halme has led projects pioneering the kinds of changes that the fashion industry could adapt. For example, along with her Aalto colleague Linda Turunen, she recently developed a measurement that the fashion industry could use to classify how sustainable a product really is – measuring things like its durability, how easily it can be recycled, and whether its production uses hazardous chemicals – which could help consumers to decide whether to buy. Her colleagues curated a recent exhibition that showcased what we might be wearing in a sustainable future, such as a leather alternative made from discarded flower cuttings, or modular designs to get multiple uses from the same garment – turning a skirt into a shirt, for example.
 
Because all of this requires longer-term thinking, innovation and investment, industry is reticent to make these shifts, Halme says. One way to encourage industries to change more quickly is with regulation. In the European Union, for example, an updated set of directives now requires companies with more than 500 employees to report on a number of corporate responsibility factors, ranging from environmental impact to the treatment of employees. These rules won't just help inform consumers, investors and other stakeholders about a company's role in global challenges. They’ll also help assess investment risks – weighing whether a company is taking the actions necessary to be financially resilient in the long-term.

Source:

Aalto University, Amanda Ruggeri

Functional textiles – an alternative to antibiotics University of Borås
04.07.2023

Functional textiles – an alternative to antibiotics

Tuser Biswas conducts research that aims to develop modern medical textiles that are good for both the environment and human health. Textiles with antimicrobial properties could reduce the use of antibiotics.

Tuser Biswas conducts research that aims to develop modern medical textiles that are good for both the environment and human health. Textiles with antimicrobial properties could reduce the use of antibiotics.

His work involves research and teaching activities within the area of textile material technology. The current research involves resource-efficient inkjet printing of functional materials on various textile surfaces for advanced applications.
 
The conventional textile industry devours natural resources in the form of water, energy, and chemicals. A more resource-efficient way to produce textiles is with ink jet printing. Tuser Biswas, who recently defended his doctoral thesis in Textile Material Technology, seeks to develop methods for functional textiles. He has shown that it is possible to print enzymes on textiles. These are proteins that function as catalysts in the body, as they set chemical processes in motion without themselves changing. They could, for example, be used in medical textiles with antimicrobial properties or to measure biological or chemical reactions.

“Ever since the industrial revolution, our society has used an abundance of synthetic and harsh chemicals. Our research works to replace these chemicals with environmentally friendly and bio-based materials,” said Tuser Biswas.
 
Promising results with enzymes on textiles
Developing a good enzyme ink was not entirely easy and it took a number of attempts before he finally, to his great joy, had successful results. Tuser Biswas explained that the most important result is to show how a printed enzyme could bind another enzyme to the surface of a fabric. Although the activity of the enzymes decreased by 20-30 percent after printing, the results are still promising for future applications. At the same time, the work has provided new knowledge about many fundamental questions about printing biomaterials on fabric.

“Before starting the project, we found several related studies that focused on producing a finished product. But we wanted to study the fundamental challenges of this subject, and now we know how to make it work,” said Tuser Biswas.

He is now seeking funding to continue researching the subject and has so far received a grant from the Sjuhärad Savings Bank Foundation. During the Days of Knowledge event in April 2023, he presented his research to representatives from the City of Borås and business, the Sjuhärad Savings Bank Foundation, and the University of Borås.
     
Medical textiles instead of antibiotics
Tuser Biswas hopes that continued research in textile technology can provide alternatives to using antibiotics. With increasing antibiotic resistance, it is an important issue not only locally but worldwide.

“Instead of treating the patient with a course of antibiotics, one can act preventively and more effectively by damaging the bacteria on the surface where they start to grow. In a wound dressing, for example. Nanoparticle-based antimicrobials can reduce growth effectively. It is possible as nanoparticles can interact better with the bacterial membrane and reach the target more easily than conventional antimicrobials.”

Source:

Lina Färm. Translation by Eva Medin. University of Borås

Thread-like pumps can be woven into clothes (c) LMTS EPFL
27.06.2023

Thread-like pumps can be woven into clothes

Ecole Polytechnique Fédérale de Lausanne (EPFL) researchers have developed fiber-like pumps that allow high-pressure fluidic circuits to be woven into textiles without an external pump. Soft supportive exoskeletons, thermoregulatory clothing, and immersive haptics can therefore be powered from pumps sewn into the fabric of the devices themselves.

Many fluid-based wearable assistive technologies today require a large and noisy pump that is impractical – if not impossible – to integrate into clothing. This leads to a contradiction: wearable devices are routinely tethered to unearable pumps. Now, researchers at the Soft Transducers Laboratory (LMTS) in the School of Engineering have developed an elegantly simple solution to this dilemma.

Ecole Polytechnique Fédérale de Lausanne (EPFL) researchers have developed fiber-like pumps that allow high-pressure fluidic circuits to be woven into textiles without an external pump. Soft supportive exoskeletons, thermoregulatory clothing, and immersive haptics can therefore be powered from pumps sewn into the fabric of the devices themselves.

Many fluid-based wearable assistive technologies today require a large and noisy pump that is impractical – if not impossible – to integrate into clothing. This leads to a contradiction: wearable devices are routinely tethered to unearable pumps. Now, researchers at the Soft Transducers Laboratory (LMTS) in the School of Engineering have developed an elegantly simple solution to this dilemma.

“We present the world’s first pump in the form of a fiber; in essence, tubing that generates its own pressure and flow rate,” says LMTS head Herbert Shea. “Now, we can sew our fiber pumps directly into textiles and clothing, leaving conventional pumps behind.” The research has been published in the journal Science.

Lightweight, powerful…and washable
Shea’s lab has a history of forward-thinking fluidics. In 2019, they produced the world’s first stretchable pump.

“This work builds on our previous generation of soft pump,” says Michael Smith, an LMTS post-doctoral researcher and lead author of the study. “The fiber format allows us to make lighter, more powerful pumps that are inherently more compat-ible with wearable technology.”

The LMTS fiber pumps use a principle called charge injection electrohydrodynamics (EHD) to generate a fluid flow without any moving parts. Two helical electrodes embedded in the pump wall ionize and accelerate molecules of a special non-conductive liquid. The ion movement and electrode shape generate a net forward fluid flow, resulting in silent, vibration-free operation, and requiring just a palm-sized power supply and battery.

To achieve the pump’s unique structure, the researchers developed a novel fabrication technique that involves twisting copper wires and polyurethane threads together around a steel rod, and then fusing them with heat. After the rod is removed, the 2 mm fibers can be integrated into textiles using standard weaving and sewing techniques.

The pump’s simple design has a number of advantages. The materials required are cheap and readily available, and the manufacturing process can be easily scaled up. Because the amount of pressure generated by the pump is directly linked to its length, the tubes can be cut to match the application, optimizing performance while minimizing weight. The robust design can also be washed with conventional detergents.

From exoskeletons to virtual reality
The authors have already demonstrated how these fiber pumps can be used in new and exciting wearable technologies. For example, they can circulate hot and cold fluid through garments for those working in extreme temperature environments or in a therapeutic setting to help manage inflammation; and even for those looking to optimize athletic performance.

“These applications require long lengths of tubing anyway, and in our case, the tubing is the pump. This means we can make very simple and lightweight fluidic circuits that are convenient and comfortable to wear,” Smith says.

The study also describes artificial muscles made from fabric and embedded fiber pumps, which could be used to power soft exoskeletons to help patients move and walk.

The pump could even bring a new dimension to the world of virtual reality by simulating the sensation of temperature. In this case, users wear a glove with pumps filled with hot or cold liquid, allowing them to feel temperature changes in response to contact with a virtual object.

Pumped up for the future
The researchers are already looking to improve the performance of their device. “The pumps already perform well, and we’re confident that with more work, we can continue to make improvements in areas like efficiency and lifetime,” says Smith. Work has already started on scaling up the production of the fiber pumps, and the LMTS also has plans to embed them into more complex wearable devices.

“We believe that this innovation is a game-changer for wearable technology,” Shea says.

More information:
EPFL Fibers exoskeleton wearables
Source:

Celia Luterbacher, School of Engineering | STI

DOMOTEX (c) Deutsche Messe AG
30.05.2023

"DOMOTEX is and will remain the home of the entire industry"

Interview on the trade fair landscape for floor coverings in Germany

The effects of the Corona pandemic were felt in almost all areas of social and economic life. The trade fair industry in particular was severely affected, with many events cancelled or postponed. With the return to normality, the question arises as to what significance leading trade fairs will have in the post-Corona era and how the competition between different organisers will develop. For its KLARTEXT interview series, Textination talked to Ms Sonia Wedell-Castellano, Global Director of DOMOTEX Events.

 

Interview on the trade fair landscape for floor coverings in Germany

The effects of the Corona pandemic were felt in almost all areas of social and economic life. The trade fair industry in particular was severely affected, with many events cancelled or postponed. With the return to normality, the question arises as to what significance leading trade fairs will have in the post-Corona era and how the competition between different organisers will develop. For its KLARTEXT interview series, Textination talked to Ms Sonia Wedell-Castellano, Global Director of DOMOTEX Events.

 

After DOMOTEX was unable to take place in 2021 and 2022 due to the pandemic, the trade fair returned in 2023 with a successful event. Nevertheless, the number of exhibitors has almost halved compared to 2020. How do you assess the future importance of leading trade fairs after the industry had to come to terms with online meetings and travel restrictions for a long period of time?

I think it is important to remember that this was the first DOMOTEX since the outbreak of the pandemic, and at a time when the global economic situation is rather difficult. Of course, this situation has made some companies reluctant to participate in DOMOTEX 2023, so we have not yet been able to welcome all companies back as exhibitors at the show. In addition, there were still significant travel restrictions in place at the beginning of the year, for example in China, which simply made it more difficult for our exhibitors to participate in a trade fair abroad. As far as our expectations for the next event are concerned, I can say that many companies - even those that did not exhibit this year - have communicated their interest in wanting to be back at DOMOTEX 2024.
 
We are certain that leading trade fairs and exhibitions in general will continue to be of great importance in the future! You may be able to cultivate existing customers at digital events, but you can't generate new ones. The focus of DOMOTEX is on products you can touch, on the haptic experience on site. You can't transfer that to the digital world. Even the chance encounters at the stand or in the halls do not happen digitally. But a trade fair thrives on personal encounters, personal exchanges. Business is done between people, not between screens. Both exhibitors and visitors have told us quite clearly that they want and need DOMOTEX to be a trade fair where people are present.

 

The degree of internationalisation among DOMOTEX visitors was between 62 and 67 percent in the last three years of the event before the pandemic; in 2023 it even reached 69 percent. Would you agree that leading international trade fairs in Germany are now primarily only important for export-oriented companies? And what does that imply for the economic efficiency of trade fairs?

Certainly, leading international trade fairs in Germany are particularly interesting for export-oriented companies, but not exclusively. That doesn't change anything at all about the profitability of trade fairs. We generate our turnover with all our exhibitors, regardless of whether they are export-oriented or only interested in the Germany-Austria-Switzerland region. That's why satisfied exhibitors are very important to us. And an exhibitor is satisfied when he can do good business or make good contacts at our fairs. It's more and more about the right quality of visitors, less about the quantity. In any case, all our exhibitors very much welcome international visitors!

 

For the 2024 edition, Deutsche Messe has announced that its DOMOTEX concept has been changed to focus on different areas each year: Carpet & Rugs in the odd-numbered years and Flooring in the even-numbered years. Flooring covers wood and laminate flooring, parquet, design flooring, resilient floor coverings, carpets, outdoor flooring and application and installation technology. Carpet & Rugs stands for hand-made carpets and runners as well as for machine-woven carpets.

Yet you say that the Carpet & Rugs segment in particular needs an annual presentation platform, while the flooring segment would like to see DOMOTEX every two years as the central platform for the industry due to longer innovation cycles. Doesn't that actually mean that floor coverings are only in Hannover every other year, but carpets continue to exhibit annually in Hannover? Could you clarify that?

DOMOTEX - Home of Flooring will take place in 2024 and in all even years: This is a DOMOTEX with all exhibitors as we know them from the past. So, from herringbone parquet to outdoor coverings, oriental carpets and contemporary designs - everything, under one roof. In the odd years, i.e. from 2025, there will then be DOMOTEX - Home of Carpets and Rugs, with a focus on suppliers of fitted carpets. The background to this is that the hard flooring industry had wanted DOMOTEX to be held every two years. After this year's DOMOTEX, the suppliers of wall-to-wall carpets have again clearly spoken out in favour of an annual platform. With our new focus model, we are meeting the needs that the market has expressed to us.

 

Messe Frankfurt has declared a new product segment for next year's Heimtextil - interestingly, under the name Carpets & Rugs. While the watchword at DOMOTEX in the even year 2024 is Flooring, Heimtextil offers an alternative trade fair venue for carpets. How do you assess this situation - do exhibitors now have to choose between Hannover and Frankfurt and what does this mean for the split concept?

No, exhibitors from the carpet sector will not have to choose between Hannover and Frankfurt in future - because DOMOTEX is and will remain the home of the entire industry, even in the even years! At DOMOTEX, Home of Flooring means, as I explained earlier, that we present the entire spectrum of floor coverings and carpets. But what is even more important is that we have been told by exhibitors and many visitors that the market does not want to be split up any further. Through the many (small) events, the flooring industry is only competing with itself. To put it bluntly: if only some of the exhibitors take part in ten events, it can't really work. The critical mass is missing. A trade fair is only as good as its participants and they often don't have the time to visit several events.    

 

Another innovation for DOMOTEX is the country focus. What do you expect from this and why did you choose "Insight Italy" for 2024?

With our new special presentation, we want to arouse the curiosity of our visitors - especially retailers, architects and contractors - and highlight the international character of DOMOTEX. After all, what could be more exciting than getting to know a country in depth?  

That is why the INSIGHT concept will in future feature a different country at each DOMOTEX - Home of Flooring. Special exhibition areas will showcase innovations and products, present partnerships with designers and universities, and stage trends. In addition, the conference will provide insights into the respective market and references.  
In 2024, we will start with Italy, a very design-savvy and creative country from which many trends come.

 

Deutsche Messe wants to strengthen the Hannover venue for the leading trade fair DOMOTEX and to hold additional fairs only in Shanghai and in Gaziantep. There will be no Carpet Expo in Istanbul. What influence does the changing entrepreneurial landscape in terms of production countries and markets have on your international concept?

First of all, it must be noted that the business landscape for carpets has not changed in Turkey. Here, only the associations have decided to organise a carpet fair in Istanbul in the future. The background is the continuing visa problem for Turkish exhibitors in Germany as well as the immensely high inflation in Turkey, which makes foreign participation extremely costly for Turkish companies. We would have liked to organise a carpet fair in Istanbul together with the Turkish associations, but not at any price and not on their terms alone. Hannover is and will remain the international platform for DOMOTEX, and we will continue to strengthen this location.

But of course, we also keep an eye on the global market and keep our eyes and ears open at all times, for all our brands, by the way. It was only in this way that DOMOTEX asia/Chinafloor in Shanghai was able to develop into what is now a very successful event. The potential was there, we were in the right place at the right time. If we hadn't seized the opportunity at the time, there would still be a strong floor coverings trade fair in Shanghai - but it would be run by one of our competitors and it wouldn't be called DOMOTEX today.

Many thanks to Ms Sonia Wedell-Castellano for the KLARTEXT.

(c) nova-Institut GmbH
14.03.2023

Bacteria instead of trees, textile and agricultural waste

For the third time, the nova-Institut awarded the "Cellulose Fibre Innovation of the Year" prize at the "Cellulose Fibres Conference 2023" in Cologne, 8-9 March 2023.

The yearly conference is a unique meeting point of the global cellulose fibres industry. 42 speakers from twelve countries highlighted the innovation potential of cellulosic fibres and presented the latest market insights and trends to more than 220 participants from 30 countries.

Leading international experts introduced new technologies for recycling of cellulose rich raw materials and practices for circular economy in textiles, packing and hygiene, which were discussed in seven panel discussion with active audience participation.    

Prior to the conference, the conference advisory board had nominated six remarkable innovations. The winners were elected in an exciting head-to-head live-voting by the conference audience on the first day of the event.

For the third time, the nova-Institut awarded the "Cellulose Fibre Innovation of the Year" prize at the "Cellulose Fibres Conference 2023" in Cologne, 8-9 March 2023.

The yearly conference is a unique meeting point of the global cellulose fibres industry. 42 speakers from twelve countries highlighted the innovation potential of cellulosic fibres and presented the latest market insights and trends to more than 220 participants from 30 countries.

Leading international experts introduced new technologies for recycling of cellulose rich raw materials and practices for circular economy in textiles, packing and hygiene, which were discussed in seven panel discussion with active audience participation.    

Prior to the conference, the conference advisory board had nominated six remarkable innovations. The winners were elected in an exciting head-to-head live-voting by the conference audience on the first day of the event.

The collaboration between Nanollose (AU) and Birla Cellulose (IN) with tree-free lyocell from bacterial cellulose called Nullarbor™ is the winning cellulose fibre innovation 2023, followed by Renewcell (SE) cellulose fibres made from 100 % textile waste, while Vybrana – the new generation banana fibre from Gencrest Bio Products (IN) won third place.
    
Winner: Nullarbor™ – Nanollose and Birla Cellulose (AU/IN)
In 2020, Nanollose and Birla Cellulose started a journey to develop and commercialize treefree lyocell from bacterial cellulose, called Nullarbor™. The name derives from the Latin “nulla arbor” which means “no trees”. Initial lab research at both ends led to the joint patent application “production of high-tenacity lyocell fibres made from bacterial cellulose”.
Nullarbor is significantly stronger than lyocell made from wood-based pulp; even adding small amounts of bacterial cellulose to wood pulp increases the fibre toughness. In 2022, the first pilot batch of 260 kg was produced with 20 % bacterial pulp share. Several high-quality fabrics and garments were produced with this fibre. The collaboration between Nanollose and Birla Cellulose now focuses on increasing the production scale and amount of bacterial pulp in the fibre.  

Second place: Circulose® – makes fashion circular – Renewcell (SE)
Circulose® made by Renewcell is a branded dissolving pulp made from 100 % textile waste, like worn-out clothes and production scraps. It provides a unique material for fashion that is 100 % recycled, recyclable, biodegradable, and of virgin-equivalent quality. It is used by fibre producers to make staple fibre or filaments like viscose, lyocell, modal, acetate or other types of man-made cellulosic fibres. In 2022, Renewcell, opened the world’s first textile-to-textile     
chemical recycling plant in Sundsvall, Sweden – Renewcell 1. The plant is expected to reach an annual capacity of 120,000 tonnes.

Third place: Vybrana – The new generation banana fibre – Gencrest Bio Products (IN)
Vybrana is a Gencrest’s Sustainable Cellulosic Fibre upcycled from agrowaste. Raw fibres are extracted from the banana stem at the end of the plant lifecycle. The biomass waste is then treated by the Gencrest patented Fiberzyme technology. Here, cocktail enzyme formulations remove the high lignin content and other impurities and help fibre fibrillation. The company's proprietary cottonisation process provides fine, spinnable cellulose staple fibres suitable for blending with other staple fibres and can be spun on any conventional spinning systems giving yarns sustainable apparel. Vybrana is produced without the use of heavy chemicals and minimized water consumption and in a waste-free process where balance biomass is converted to bio stimulants Agrosatva and bio-based fertilizers and organic manure.

Vadim Zharkov: https://youtu.be/x9gCrhIPaPM
28.02.2023

‘Smart’ Coating Could Make Fabrics into Protective Gear

Precisely applied metal-organic technology detects and captures toxic gases in air.

A durable copper-based coating developed by Dartmouth researchers can be precisely integrated into fabric to create responsive and reusable materials such as protective equipment, environmental sensors, and smart filters, according to a recent study.
 
The coating responds to the presence of toxic gases in the air by converting them into less toxic substances that become trapped in the fabric, the team reports in Journal of the American Chemical Society.

Precisely applied metal-organic technology detects and captures toxic gases in air.

A durable copper-based coating developed by Dartmouth researchers can be precisely integrated into fabric to create responsive and reusable materials such as protective equipment, environmental sensors, and smart filters, according to a recent study.
 
The coating responds to the presence of toxic gases in the air by converting them into less toxic substances that become trapped in the fabric, the team reports in Journal of the American Chemical Society.

The findings hinge on a conductive metal-organic technology, or framework, developed in the laboratory of corresponding author Katherine Mirica, an associate professor of chemistry. First reported in JACS in 2017, the framework was a simple coating that could be layered onto cotton and polyester to create smart fabrics the researchers named SOFT—Self-Organized Framework on Textiles. Their paper demonstrated that SOFT smart fabrics could detect and capture toxic substances in the surrounding environment.

For the newest study, the researchers found that—instead of the simple coating reported in 2017—they can precisely embed the framework into fabrics using a copper precursor that allows them to create specific patterns and more effectively fill in the tiny gaps and holes between threads.

The researchers found that the framework technology effectively converted the toxin nitric oxide into nitrite and nitrate, and transformed the poisonous, flammable gas hydrogen sulfide into copper sulfide. They also report that the framework’s ability to capture and convert toxic materials withstood wear and tear, as well as standard washing.
 
The versatility and durability the new method provides would allow the framework to be applied for specific uses and in more precise locations, such as a sensor on protective clothing, or as a filter in a particular environment, Mirica said.

“This new method of deposition means that the electronic textiles could potentially interface with a broader range of systems because they’re so robust,” she said. “This technological advance paves the way for other applications of the framework’s combined filtration and sensing abilities that could be valuable in biomedical settings and environmental remediation.”
The technique also could eventually be a low-cost alternative to technologies that are cost prohibitive and limited in where they can be deployed by needing an energy source, or—such as catalytic converters in automobiles—rare metals, Mirica said.
 
“Here we’re relying on an Earth-abundant matter to detoxify toxic chemicals, and we’re doing it without any input of outside energy, so we don’t need high temperature or electric current to achieve that function,” Mirica said.

Co-first author Michael Ko, initially observed the new process in 2018 as he attempted to deposit the metal-organic framework onto thin-film copper-based electrodes, Mirica said. But the copper electrodes would be replaced by the framework.

“He wanted it on top of the electrodes, not to replace them,” Mirica said. “It took us four years to figure out what was happening and how it was beneficial. It’s a very straightforward process, but the chemistry behind it is not and it took us some time and additional involvement of students and collaborators to understand that.”

The team discovered that the metal-organic framework “grows” over copper, replacing it with a material with the ability to filter and convert toxic gases, Mirica said. Ko and co-author Lukasz Mendecki, a postdoctoral scholar in the Mirica Group from 2017-18, investigated methods for applying the framework material to fabric in specific designs and patterns.

Co-first author Aileen Eagleton, who is also in the Mirica Group, finalized the technique by optimizing the process for imprinting the metal-organic framework onto fabric, as well as identifying how its structure and properties are influenced by chemical exposure and reaction conditions.

Future work will focus on developing new multifunctional framework materials and scaling up the process of embedding the metal-organic coatings into fabric, Mirica said.

Source:

Dartmouth / Textination

Photo unsplash
21.02.2023

Consortium for enzymatic textile recycling gains new supporters

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

The two-year cooperation project will not only enable the biological recycling of polyester articles on an industrial scale, but also develop thorough sorting and disassembly technologies for complex textile waste. Existing members voted unanimously for PVH Corp. to join the consortium, saying the common goal is to support the development of viable solutions that address the fashion industry's contribution to climate change..

Carbios has developed a technology using highly selective enzymes that can recycle mixed feedstocks, reducing the laborious sorting required by current thermomechanical recycling processes. For textiles made from blended fibres, the patented enzyme acts only on the PET polyester contained within. This innovative process produces recycled PET (r-PET) that is equivalent in quality to virgin PET and can be used to produce new textile fibres.

Textile waste treatment and recycling
Globally, only 13% of textile waste is currently recycled, mainly for low-value applications such as upholstery, insulation or rags. The remaining 87% is destined for landfill or incineration. To work on improving textile recycling technologies, consortium members will supply feedstock in the form of clothing, underwear, footwear and sportswear. In 2023, a new PET textile waste facility will be commissioned at the Carbios demonstration plant, notably as part of the LIFE Cycle of PET project co-funded by the European Union.  This is in anticipation of future regulations, such as the separate collection of textile waste, which will be mandatory in Europe from 1 January 2025.

From fibre to fibre: circularity of textiles
Today, the textile industry relies largely on non-renewable resources to produce fibres and fabrics, partly turning to recycled PET bottles for recycled polyester fibres. However, this resource will become scarce as PET bottles are used exclusively for the production of new bottles in the food and beverage industry. In a circular economy, the materials used to produce textiles are obtained from recycled or renewable raw materials produced by regenerative processes. In addition to supplying raw materials for the demonstration plant, the consortium members also aim to produce new products from r-PET fibres using the company's biorecycling process.

"Partnering with Carbios and its consortium members demonstrates our continued commitment to incorporating more circular materials into our collections," said Esther Verburg, EVP, Sustainable Business and Innovation, Tommy Hilfiger Global and PVH Europe. "We are excited to support the development of Carbios' enzymatic recycling technology and to leverage new solutions that can help us drive fashion sustainably."

More information:
Carbios textile recycling enzymatic
Source:

Carbios / Textination

In the future, one will be able to use their phone to read the clothing woven-in labels made with inexpensive photonic fibers. (c) Marcin Szczepanski/Lead Multimedia Storyteller, University of Michigan College of Engineering. In the future, one will be able to use their phone to read the clothing woven-in labels made with inexpensive photonic fibers.
15.02.2023

The new butterfly effect: A ‘game changer’ for clothing recycling?

Photonic fibers borrow from butterfly wings to enable invisible, indelible sorting labels

Less than 15% of the 92 million tons of clothing and other textiles discarded annually are recycled—in part because they are so difficult to sort. Woven-in labels made with inexpensive photonic fibers, developed by a University of Michigan-led team, could change that.
 
“It’s like a barcode that’s woven directly into the fabric of a garment,” said Max Shtein, U-M professor of materials science and engineering and corresponding author of the study in Advanced Materials Technologies. “We can customize the photonic properties of the fibers to make them visible to the naked eye, readable only under near-infrared light or any combination.”

Photonic fibers borrow from butterfly wings to enable invisible, indelible sorting labels

Less than 15% of the 92 million tons of clothing and other textiles discarded annually are recycled—in part because they are so difficult to sort. Woven-in labels made with inexpensive photonic fibers, developed by a University of Michigan-led team, could change that.
 
“It’s like a barcode that’s woven directly into the fabric of a garment,” said Max Shtein, U-M professor of materials science and engineering and corresponding author of the study in Advanced Materials Technologies. “We can customize the photonic properties of the fibers to make them visible to the naked eye, readable only under near-infrared light or any combination.”

Ordinary tags often don’t make it to the end of a garment’s life—they may be cut away or washed until illegible, and tagless information can wear off. Recycling could be more effective if a tag was woven into the fabric, invisible until it needs to be read. This is what the new fiber could do.
 
Recyclers already use near-infrared sorting systems that identify different materials according to their naturally occurring optical signatures—the PET plastic in a water bottle, for example, looks different under near-infrared light than the HDPE plastic in a milk jug. Different fabrics also have different optical signatures, but Brian Iezzi, a postdoctoral researcher in Shtein’s lab and lead author of the study, explains that those signatures are of limited use to recyclers because of the prevalence of blended fabrics.

“For a truly circular recycling system to work, it’s important to know the precise composition of a fabric—a cotton recycler doesn’t want to pay for a garment that’s made of 70% polyester,” Iezzi said. “Natural optical signatures can’t provide that level of precision, but our photonic fibers can.”

The team developed the technology by combining Iezzi and Shtein’s photonic expertise—usually applied to products like displays, solar cells and optical filters—with the advanced textile capabilities at MIT’s Lincoln Lab. The lab worked to incorporate the photonic properties into a process that would be compatible with large-scale production.
 
They accomplished the task by starting with a preform—a plastic feedstock that comprises dozens of alternating layers. In this case, they used acrylic and polycarbonate. While each individual layer is clear, the combination of two materials bends and refracts light to create optical effects that can look like color. It’s the same basic phenomenon that gives butterfly wings their shimmer.

The preform is heated and then mechanically pulled—a bit like taffy—into a hair-thin strand of fiber. While the manufacturing process method differs from the extrusion technique used to make conventional synthetic fibers like polyester, it can produce the same miles-long strands of fiber. Those strands can then be processed with the same equipment already used by textile makers.

By adjusting the mix of materials and the speed at which the preform is pulled, the researchers tuned the fiber to create the desired optical properties and ensure recyclability. While the photonic fiber is more expensive than traditional textiles, the researchers estimate that it will only result in a small increase in the cost of finished goods.

“The photonic fibers only need to make up a small percentage—as little as 1% of a finished garment,” Iezzi said. “That might increase the cost of the finished product by around 25 cents—similar to the cost of those use-and-care tags we’re all familiar with.”

Shtein says that in addition to making recycling easier, the photonic labeling could be used to tell consumers where and how goods are made, and even to verify the authenticity of brand-name products. It could be a way to add important value for customers.

“As electronic devices like cell phones become more sophisticated, they could potentially have the ability to read this kind of photonic labeling,” Shtein said. “So I could imagine a future where woven-in labels are a useful feature for consumers as well as recyclers.”

The team has applied for patent protection and is evaluating ways to move forward with the commercialization of the technology.
The research was supported by the National Science Foundation and the Under Secretary of Defense for Research and Engineering.

Source:

Gabe Cherry, College of Engineering, University of Michigan / Textination

Photo: pixabay
08.02.2023

6 out of 10 consumers pay attention to sustainability criteria when shopping

ESG aspects are most important to consumers when it comes to food and clothing. Young people in particular demand information and transparency: sustainability labels, certifications and reports ensure trust. For retailers and manufacturers, sustainability is becoming a must.

Under what conditions are the cows kept whose milk I drink? Does the manufacturer of my new T-shirt tolerate child labor? Does the retailer I trust deal fairly with employees and business partners? The majority of Germans ask themselves questions like these before making a purchasing decision. When shopping, 59 percent of consumers always or at least frequently pay attention to the ecological, economic or social sustainability of retailers and manufacturers. Among those under 35, the figure is even hugher with two-thirds, and among those over 55, one in two. These are the findings of a representative survey of 1,000 people in Germany commissioned by the auditing and consulting firm PwC Germany.

ESG aspects are most important to consumers when it comes to food and clothing. Young people in particular demand information and transparency: sustainability labels, certifications and reports ensure trust. For retailers and manufacturers, sustainability is becoming a must.

Under what conditions are the cows kept whose milk I drink? Does the manufacturer of my new T-shirt tolerate child labor? Does the retailer I trust deal fairly with employees and business partners? The majority of Germans ask themselves questions like these before making a purchasing decision. When shopping, 59 percent of consumers always or at least frequently pay attention to the ecological, economic or social sustainability of retailers and manufacturers. Among those under 35, the figure is even hugher with two-thirds, and among those over 55, one in two. These are the findings of a representative survey of 1,000 people in Germany commissioned by the auditing and consulting firm PwC Germany.

Sustainability is no longer a question of "if", but "how".
"Sustainability has become mainstream in recent years. For companies, paying attention to sustainability in their supply chains has already become a must," comments Dr. Christian Wulff. The Head of Retail and Consumer Goods at PwC Germany is convinced that companies will already have to give good reasons in the near future if they do not pay attention to the environment, social aspects and good corporate governance when producing a product. "The issue of sustainability is therefore no longer a question of whether, but of how," the retail expert continues.

Sustainability includes various aspects in the three areas of environment, social and sustainable governance (ESG). In the case of environmental sustainability, the focus is on issues relating to animal welfare - such as the conditions in which animals are kept or animal testing - and the use of recyclable materials. 40 percent of Germans would like to be informed about this before making a purchase. In the social sphere, the majority of respondents would like to know whether retailers and manufacturers comply with human rights (58 percent) - for example, whether they tolerate forced or child labor in their value chains. In terms of governance, one in two respondents would like to know about supply chains and be able to trace products before making a purchase.

Sustainability is particularly important for food
How closely consumers look at sustainability also depends on the product: For example, sustainability is particularly important to them when it comes to food. 81 percent of Germans pay attention to at least one of the three ESG criteria when buying food, i.e. environment, social issues or good corporate governance. But these criteria are also relevant when buying textiles: As many as 63 percent say they look at how sustainably the item was produced when buying clothing or shoes. While environmental aspects play the biggest role for food (62 percent), consumers are paying more attention to social aspects for clothing, shoes and accessories (52 percent).

Almost every second person has recently switched to sustainable products
The growing importance of ESG aspects in the purchasing behavior of German consumers is also evidenced by the shifts toward buying sustainable products. The trend toward sustainable products is clearest in the case of food: 45 percent of respondents state that they have consciously switched to more sustainable products within the past two years. By contrast, only 17 percent admit to switching (back) to less sustainable products, with one in three stating a lack of financial resources as the reason.

For just under half of those surveyed, a possible switch to more sustainable products would be supported by better availability in stationary retail. Legal regulations are also seen as helpful, both in terms of product labeling (38 percent) and for the production process (37 percent). More eye-catching product placement in stores would also help (37 percent).

Young people in particular demand transparency and education
Consumers' need for transparency in ESG matters is significant: According to the survey, almost three quarters of Germans obtain information about environmental sustainability issues at least occasionally. Two-thirds research aspects of social sustainability. A good half regularly find out about sustainable corporate governance.

Age has a major influence on how intensively people deal with the issue: While 80 percent of 16- to 24-year-olds find out about the environmental aspects of a product before buying it, only 59 percent of those over 65 do. "Younger people in particular are actively informing themselves and demanding transparency around ESG criteria," sums up Christian Wulff.

Consumers want information on packaging and online
To meet this need for information, the PwC expert advises manufacturers and retailers to provide detailed information about ESG aspects of products, especially online. "Keeping the associated, significantly increasing flood of data up to date at all times is increasingly becoming a challenge for companies that can only be solved by significant investments in new technologies."

Consumers agree on what companies can do to lend more credibility to their sustainability activities: A solid two-thirds consider recognized sustainability labels, certifications or independently audited sustainability reports to be suitable for credibly communicating activities in terms of ESG. "The results of our survey show that labels and independent certifications are very important in gaining the trust of customers. It is therefore worthwhile to have ESG measures confirmed by external organizations," says Christian Wulff.

Retailers and manufacturers should focus on transparency
"Manufacturers and retailers are faced with the task of ensuring a high level of transparency with regard to the sustainability of their products. This calls for honesty, but also creativity: In the case of fashion, for example, it is conceivable to trace the individual stages of the supply chain in detail and to show the costs incurred in the process. In this way, consumers can understand exactly how a price comes about," concludes Christian Wulff.

Source:

PwC / Textination

Aerogel (c) Outlast Technologies GmbH
31.01.2023

Aerogel: Frozen Smoke for Clothing and Work Safety

Comprised of up to 99.8 percent air, aerogel is the lightest solid in the world. The material, which is also called “frozen smoke” due to its appearance and physical properties, exhibits extremely low heat conductivity which exceeds other insulations many times over. This is why NASA has already been using aerogel for aerospace projects for many years.

Despite this, it has not been possible to bind the material to textiles in a high concentration and enable straightforward further processing over the roughly 90-year history of the material. Outlast Technologies GmbH has developed an innovative process - a patent has already been filed for -  for permanently adhering large amounts of aerogel to different media, like nonwoven fabric, felt and composites materials. Their original properties are retained throughout, so they can easily be further processed using conventional production methods.

Comprised of up to 99.8 percent air, aerogel is the lightest solid in the world. The material, which is also called “frozen smoke” due to its appearance and physical properties, exhibits extremely low heat conductivity which exceeds other insulations many times over. This is why NASA has already been using aerogel for aerospace projects for many years.

Despite this, it has not been possible to bind the material to textiles in a high concentration and enable straightforward further processing over the roughly 90-year history of the material. Outlast Technologies GmbH has developed an innovative process - a patent has already been filed for -  for permanently adhering large amounts of aerogel to different media, like nonwoven fabric, felt and composites materials. Their original properties are retained throughout, so they can easily be further processed using conventional production methods.

The fabrics sold under the Aersulate name are only 1 to 3 mm thick and achieve very high insulation values which are largely retained even under pressure and in moist conditions. Despite their high performance, they are still soft and can be used for shoes, clothing and work safety products, as well as for sleeping bags and technical applications.
 
“Thanks to its extraordinary physical properties, NASA has already been using aerogel for many years,” remarked Volker Schuster, Head of Research and Development at Outlast Technologies. “For example, for the insulation of its Mars rovers and for capturing dust from the tail of a comet during the Stardust mission,” he continued. Since the development of aerogel by American scientist and chemical engineer Samuel Stephens Kistler in 1931, no-one had been able to apply the versatile material to textiles in large amounts without changing their original properties, despite intensive research. This means that the products were often not only very rigid, but made processing with conventional production methods impossible due to their high degree of dust abrasion. With the newly developed Aersulate technology, which was presented for the first time in June 2022, the Heidenheim-based specialist for textile thermoregulation is opening a different chapter in insulation history.

High-performance insulation just 1 to 3 mm thick
“The consistency of aerogel can be best described as liquid dust particles which spread uncontrollably throughout a room within seconds thanks to their minimal thickness,” explained Schuster. “This is why processing is a big challenge.” Outlast Technologies has managed, after a development period of around five years, to bring an innovative process involving the adhering of aerogel between multiple layers of material to market maturity. Depending on the area of application, nonwoven fabric, felt and different composite materials can be used as the media. What is special here is that the properties of the respective textiles are not adversely affected by the Aersulate technology, meaning that they can easily be further processed with conventional means and under industrial conditions despite their acquired thermal properties.
 
As a silicate-based solid, aerogel is obtained from natural quartz sand, yet exhibits a density over 1,000 times lower than glass manufactured from the same raw material. The extraordinary thermo-insulating properties of the material are thanks to its extremely porous structure, which enables it to be composed of up to 99.8 percent air.
 
“One liter of aerogel weighs just 50 g,” explained Schuster. “Just 10 g of the material has the same surface area as a soccer field, though.” Thanks to these properties, Aersulate textiles exceed all other previously known insulation materials in terms of performance, despite the fact that they are only 1 to 3 mm thick. Tests carried out by the German Institute for Textile and Fiber Research in Denkendorf (DITF) using the Alambeta method showed that the thermal resistance of an Aersulate fleece is more than double that of a conventional fleece of the same thickness. Add to this the fact that the thermo-insulating properties of Aersulate products remain high despite pressure and wetness, while they decrease enormously with other conventional materials like felt and polyurethane foam (PU) under these conditions.

Work safety and functional clothing with Aersulate
Thanks to the textile medium, thin Aersulate products are especially suitable for the shoe and clothing industry, as well as all areas of work safety. The user benefits from different properties, depending on the intended use. “With a glove made of Aersulate just 1 mm thick, you can put your hand into boiling water without being scalded, for example,” explained Schuster. “The material’s extremely hydrophobic properties play quite literally into our hands here.” In the case of knee patches on work and functional pants, as well as shoes and soles, on the other hand, the material properties also become relevant when compression occurs. This is because the thermo-insulation properties of other materials would be reduced little by little due to moisture from the outside and sweat from the inside on the one hand, and by the continual influence of body weight on the other.
          
In addition to the human body, luggage and technical devices can also be protected from extreme temperatures and the effects of weather with Aersulate. For this purpose, corresponding cell phone or equipment pockets could be sewn into garments, for example, to maintain their battery life even at very cold outside temperatures and to safeguard the devices from overheating in case of high heat exposure. “With the broad range of possible textile medium materials, Aersulate is suitable for all applications requiring high thermal resistance on the one hand, where only a little space is available and both compression and moisture can be expected on the other,” said Schuster in summary.

Source:

Outlast Technologies / Textination

(c) Continuum
24.01.2023

... and they actually can be recycled: Wind Turbine Blades

The Danish company Continuum Group ApS with its subsidiary companies in Denmark (Continuum Aps) and the UK (Continuum Composite Transformation (UK) Limited) wants to give end-of-life wind blades and composites a new purpose, preventing them going to waste. The goal is to reduce the amounts of CO2 emitted to the atmosphere by the current waste streams, delivering a value to Europe’s Net Zero efforts.

Continuum states that it ensures all wind turbine blades are 100% recyclable and plans to build industrial scale recycling factories across Europe.

Net zero is the phrase on everyone’s lips, and as 2030 rapidly approaches we constantly hear updates about wind energy generating renewable energy that powers millions of European homes – but what happens when those turbine blades reach the end of their lifespan?

The Danish company Continuum Group ApS with its subsidiary companies in Denmark (Continuum Aps) and the UK (Continuum Composite Transformation (UK) Limited) wants to give end-of-life wind blades and composites a new purpose, preventing them going to waste. The goal is to reduce the amounts of CO2 emitted to the atmosphere by the current waste streams, delivering a value to Europe’s Net Zero efforts.

Continuum states that it ensures all wind turbine blades are 100% recyclable and plans to build industrial scale recycling factories across Europe.

Net zero is the phrase on everyone’s lips, and as 2030 rapidly approaches we constantly hear updates about wind energy generating renewable energy that powers millions of European homes – but what happens when those turbine blades reach the end of their lifespan?

Currently the general answer is to put them into landfill or co-process them into cement, but neither is planet friendly. Many countries in Europe look to ban landfill from 2025, so this option is likely to be eliminated in the near future.

Continuum provides an alternative: When the end of their first life arrives, Continuum recycles them into new, high performing composite panels for the construction, and related industries. The vision of the Danes: Abandon the current landfilling, and drastically reduce CO2 emitted during currently applied incineration & co-processing in cement factories by 100 million tons by 2050, via their mechanical composite recycling technology and their industrial scale factories.  

The technology is proven, patented, and ready to go, says Reinhard Kessing, co-founder and CTO of Continuum Group ApS, who has spent more than 20 years of research and development in this field, and advanced the reclamation of raw materials from wind blades and other composite products and transformation of these materials into new, high performing panel products.

By working with partners, Continuum’s cost-effective solution covers end-to-end logistics and processes. This spans from the collection of the end-of-life blades through to the reclamation of the pure clean raw materials and then the remanufacturing of all those materials into high value, highly performing, infinitely recyclable composite panels for the construction industry or the manufacture of many day-to-day products such as facades, industrial doors, and kitchen countertops. The panels are 92% recycled blade material and are said to outperform competing products.

Nicolas Derrien: Chief Executive Officer of Continuum Group ApS said: “We need solutions for the disposal of wind turbine blades in an environmentally friendly manner, we need it now, and we need it fast, and this is where Continuum comes in! As a society we are rightly focussed on renewable energy production, however the subject of what to do with wind turbine blades in the aftermath of that production has not been effectively addressed. We’re changing that, offering a recycling solution for the blades and a construction product that will outperform most other existing construction materials and be infinitely recyclable, and with the lowest carbon footprint in its class.”

Martin Dronfield, Chief Commercial Officer of Continuum Group ApS and Managing Director of Continuum Composite Transformation (UK) Ltd, adds: “We need wind energy operators & developers across Europe to take a step back and work with us to solve the bigger picture challenge. Continuum is offering them a service which won’t just give their business complete and sustainable circularity to their operations but help protect the planet in the process.“

Each Continuum factory in Europe will have the capacity to recycle a minimum of 36,000 tons of end-of-life turbine blades per year and feed the high value infinitely recyclable product back into the circular economy by 2024/25.

Due to an investment by Climentum Capital and a grant from the UK’s ‘Offshore Wind Growth Partnership’, Continuum are planning for the first of six factories in Esbjerg to be operational by the end of 2024 and for a second factory in the United Kingdom to follow on just behind it. After that they are looking to build another four in France, Germany, Spain, and Turkey by 2030.

As part of their own pledge to promote green behaviour, Continuum have designed their factories to be powered by only 100% green energy and to be zero carbon emitting environments; meaning no emissions to air, no waste fluids to ground, and no carbon fuel combustion.

Source:

Continuum / Textination

04.01.2023

Circular Economy: It could all be so simple... or not

Interview with Henning Wehland & Robert Kapferer, Circularity Germany

Interview with Henning Wehland & Robert Kapferer, Circularity Germany

I'm a very curious guy by nature. That's why I offered to help out at a well-known hot dog station in Münster (Germany) this year, to draw attention to the shortage of staff in the gastronomy. I wrote an article about it on LinkedIn, which was in turn reacted to by Ines Chucholowius.
From her profile, I could see that she is a consultant for strategic marketing and communication in the textile industry. Not entirely serious, she offered me a job in her office. Like pushing a button, the pictures in my mind set in: Textile industry, exciting! Merchandising, contacts in the industry, collaborations, and I agreed to a short chat, at the end of which we spoke on the phone and arranged to meet.
 
She told me about her website TEXTINATION.de. And we were already involved in an exciting, heated exchange about perception and truth in the textile industry. Without further ado, we left it at that and I went home with a chunk of new information about an exciting field. Our dialogue on social media continued and eventually Ines offered me the chance to feed my die-hard curiosity with the support of TEXTINATION.de. I could write a blog on the site, about people, products, service providers, producers, startups or trends that interest me, to add to my half-knowledge about the textile industry.

Textile waste into the front ... new T-shirt out the back
During this exchange and a long brainstorming session, certain terms kept tickling my attention:
Circular economy, recycling, recyclable material loops. Circular Economy, Recycling, Recyclables. Even though there are many different definitions and some even distinguishing between different aspects: the former thought from waste that flows back into production as a secondary raw material, a more modern approach avoiding waste already in production - the general consensus is really only that circular economy is a cycle in which waste is used as a source for something new.

Sounds like useful additions for all areas of the manufacturing real economy to me. Ines introduced me to Robert Kapferer: He runs a startup called Circularity Germany in Hamburg. His company, founded in 2021 and consisting of Robert and another partner, is an offshoot of the Dutch-based company Circularity B.V. Its founder Han Hamers, with a degree in child psychology and a professional background in the textile dyeing industry, had the idea five years ago for a production facility that spins new yarn exclusively from textile production waste and old textiles turning it into T-shirts, polo shirts and sweatshirts.
Whether this works, and if so, how, is what I wanted to find out, and Ines and I arranged to meet Robert for a 90-minute online conference.

Robert, originally an industrial engineer, comes from a less sustainable industry. He worked for 11 years as managing director for AVECO Material und Service GmbH, where he was responsible for the workwear of more than 50,000 employees.

At the beginning of our conversation, he emphasizes that a moment in January 2021 changed his life and from then on, he wanted to dedicate himself to the topic of circular economy with all his might. That was when he met Han Hamers, who inspired him to found Circularity Germany. His enthusiasm and passion for the subject sound credible, and he begins to describe the differences between chemical and mechanical recycling methods. In summary, the mechanical process of shredding and the subsequent spinning shortens the fibers and thus restricts their properties for further processing. The advantage lies primarily in the comparatively uncomplicated, fast and more cost-efficient process. In the chemical variant, chemical waste remains, but the processed materials are broken down again into their basic building blocks in such a way that they have almost all the same properties as a so-called virgin raw material. Circularity Germany stands for the mechanical process.

And then comes the sentence that gets all our attention: "We've advanced a spinning technology so much that it relies exclusively on waste-based raw materials."
This sentence almost doesn't stand out because Robert still talks - quite excitingly - about the fact that they are planning a production and manufacturing facility where everything from knitting yarn to relatively fine thread can be spun and then further processed into fabric. And here Ines and I ask intensively: Essential requirements for industrial production still seem to be unresolved, and necessary processes are still in the planning stage. For example, the question of whether to work with pre-consumer or post-consumer waste. Pre-consumer waste is cutting waste from the production of clothes, which corresponds to about 10% of the processed material. Post-consumer waste we know as used textiles.

As long as production still takes place in India, Circularity currently uses mainly pre-consumer waste. These come exclusively from sewing factories in the Tirupur region in the south of India. When using used textiles, which exist in large quantities in Germany (according to a study, 28-40% of all garments produced are thrown away unworn), Circularity produces blended yarns of cotton and polyester. The company does not offer pure cotton yarns.

Textiles are treated with chemicals to varying degrees - workwear in particular cannot do without them. The fact that Han Hemers is also collecting used textile stocks from the Dutch army in order to reintroduce them renewed into the consumer cycle is therefore not reassuring. Military clothing has to be finished with all kinds of additives.

Therefor I ask how he can dispel doubts in a consumer’s mind like mine, with a healthy half-knowledge of mask deals and greenwashing, that a well-intentioned vision will be followed by a dark awakening. This concern cannot yet be resolved after the conversation.

We limit ourselves to what is planned: Robert has the dream of reversing the globalized process of textile production. He wants to end the decoupling of cotton growing regions and far-flung production such as Asia with subsequent shipping of ready-made goods to Europe. In the future, existing used textiles and/or cutting wastes are to be collected on site, recycled and processed locally into new textiles.

I believe him in having this dream. However, some of my questions about sustainability remain unanswered - which is why I have my doubts about whether the idea is currently capable of performing and competing.
What are the reasons for this? For one thing, I think it's always difficult to do necessary pioneering work. Especially when listening to smart comments at the regulars' table that large companies are already working intensively on the principle of circular economy. But sometimes, apart from the term "circular economy" and a vague commitment to it, not much remains.

Circularity Germany is committed to developing a technology based exclusively on waste. The interview points out that this also includes making production more environmentally friendly and eliminating transport routes, which further reduces the burden on the environment. When all the requirements for realizing this dream have been met and a product that is competitive in terms of both quality and price can be launched on the market, it is up to the consumer to decide. Here one would have the credible argument of sustainability and a socially and environmentally fair process. Circularity would then not have to worry about PR.

It needs to be given time and, above all, attention. But perhaps the industry should get involved right here and now, and invest in startups like this and make sure that problems are cleared out of the way. Because one thing has become clear to us in this conversation:

It could all be so simple. Circular economy is achievable, but the road there is still costly and rocky. That's why we wish Robert and his team every success and, above all, perseverance. Thank you for the interview.

Short and sweet: the profile of the company in the attached factsheet for download.

 

 

(c) Messe Karlsruhe, Jürgen Rösner
05.07.2022

The dream of owning a small home - or: How will we live tomorrow?

For the house and home textiles industry, the question is what consequences the current living trends will have for their furnishing concepts in the future: Adaptive habitat and modular houses, cohousing, senior citizens' residences or villages, between long-stay apartments, which are experiencing great growth in the hotel sector, and tiny houses for private users, suppliers will develop new ideas.

Since 2018, Messe Karlsruhe has been organizing Europe's largest Tiny House Festival. The NEW HOUSING - Tiny House Festival underlines the great interest in the Tiny House living trend.

For the house and home textiles industry, the question is what consequences the current living trends will have for their furnishing concepts in the future: Adaptive habitat and modular houses, cohousing, senior citizens' residences or villages, between long-stay apartments, which are experiencing great growth in the hotel sector, and tiny houses for private users, suppliers will develop new ideas.

Since 2018, Messe Karlsruhe has been organizing Europe's largest Tiny House Festival. The NEW HOUSING - Tiny House Festival underlines the great interest in the Tiny House living trend.

From 01 to 03 July 2022, around 7,000 Tiny House enthusiasts - significantly more than expected - came together at Messe Karlsruhe to experience the diversity and range of small, alternative forms of living. In a Tiny House village of 25 small houses on the open-air grounds of Messe Karlsruhe, they had the opportunity to network with each other and to find out and exchange information about living in the smallest of spaces from manufacturers, suppliers, self-builders, organizations and associations.

"The NEW HOUSING - Tiny House Festival pays outstanding attention to the trend towards sustainable living and thus has a forward-looking effect, especially here in Karlsruhe. As organizer of the festival and at the same time as initiator of the Tiny House Association, we bring the community together and set an example for smart developments in the topics of building and living," says Britta Wirtz, Managing Director of Messe Karlsruhe.

Project manager Frank Thieme adds: "Tiny Houses create quality living space on small areas that are not suitable for classic residential development, for example because they are only available temporarily. Here, the festival serves the trend of sustainable use of land to create living space and drives the development towards lower resource consumption and the use of innovative building materials."

On the open-air grounds of Messe Karlsruhe, companies were there to answer questions and provide first-hand information. Exhibitors from all over Germany were present, including market leaders as well as carpentry shops and start-ups that have built up a second mainstay with the construction of Tiny Houses.

For the first time, companies from other European countries, including Latvia, Poland and Belgium, also presented themselves. A new element in 2022 was an information mile in the entrance area of the trade fair with a wide range of advisory services for future Tiny House residents as well as suppliers and outfitters.

There, regional Tiny House organizations and the Tiny House Association, among others, were there to answer questions and provide information about their work. Regina Schleyer, chairwoman of the board of the Tiny House Association, which structurally represents over 2,000 members in German-speaking countries, says: "The number of visitors is really overwhelming. The interest is very high, people are very open-minded and interested in the association. We succeeded in presenting what local offers are being developed in the associations nationwide. We are truly very satisfied with the fair, a complete success."

The visitors traveled to Karlsruhe from all over Germany and beyond its borders to find out about small alternative forms of living. They particularly appreciated the opportunity to meet the manufacturers in person and to visit the Tiny Houses on site.

The lecture program at the festival complemented the exhibition and offered insights into successful self-build stories, topics such as self-sufficiency, sustainability and finding a suitable site, as well as informative literature. Topic-relevant lectures with experts shared tips and tricks as well as experiences within the Tiny House community.

The next NEW HOUSING - Tiny House Festival will take place from June 30 to July 2, 2023 at Messe Karlsruhe.

Source:

Messe Karlsruhe / Textination

(c) Oeti
31.05.2022

OEKO-TEX® Association celebrates 30th birthday

The international OEKO-TEX® Association, which consists of a total of 17 independent research and testing institutes in Europe and Japan, turns thirty this year. As one of the founding members, OETI is taking this as an opportunity to talk to OEKO-TEX® expert Helene Melnitzky (Head of the Ecology Department at OETI) about the role of the OEKO-TEX® Association, market trends and current OEKO-TEX® certifications and labels.

The international OEKO-TEX® Association, which consists of a total of 17 independent research and testing institutes in Europe and Japan, turns thirty this year. As one of the founding members, OETI is taking this as an opportunity to talk to OEKO-TEX® expert Helene Melnitzky (Head of the Ecology Department at OETI) about the role of the OEKO-TEX® Association, market trends and current OEKO-TEX® certifications and labels.

The international OEKO-TEX® Association is celebrating its thirtieth anniversary this year. What role has it played so far with regard to the product safety of textile and leather products?
Helene Melnitzky:
In the area product safety1, OEKO-TEX® has had a great impact over the last three decades by ensuring certain pollutant additives, some of which were found in large quantities in textiles 30 years ago, no longer exist. The OEKO-TEX® Association was also the first to limit certain heavy metals. Based on our actions, legal provisions were ultimately passed. We have been testing banned dyes since before there even was an EU regulation in this regard. Of course, we now test according to the EU regulation, but in this respect OEKO-TEX® was a clear trailblazer.

In addition to product safety, OEKO-TEX® has been working on the topics of ‘environmentally friendly textile products manufactured under fair working conditions for 30 years, which also included leather products for the last five years, and with STeP by OEKO-TEX® on the ‘certification of environmentally friendly production sites’ since 2013. In one way or another, we have been preparing the market for thirty years. In the process, we are always creating new things: currently the Impact Calculator and, in autumn-2022, a new certification for brands and retailers: RESPONSIBLE BUSINESS by OEKO-TEX®.

How does that benefit the customers of OEKO-TEX®?
Helene Melnitzky:
Customers can use these calculations for external communication to demonstrate on their products or webpages that their products have a lower footprint than their competitors. This means that customers sourcing everything regionally will have a smaller footprint than companies that source products from different countries. In the future, it will be necessary to display the water and carbon footprint on the product, so that consumers can decide whether they want to buy product A or B.

How is the aspect of fair working conditions taken into account?
Helene Melnitzky:
This topic has also been gaining significant momentum over the last ten years. There is now enough pressure on brands and retailers to improve local working conditions. We cover this area as part of our STeP by OEKO-TEX® certification2 with our ‘social responsibility’ module. The advantage for our customers is that they can subsequently use the MADE IN GREEN by OEKO-TEX® label to show how they have performed in the social module.

What does Transparency with MADE IN GREEN by OEKO-TEX® mean?
Helene Melnitzky:
Everything that is written on the product is transparent. The MADE IN GREEN by OEKO-TEX® label is a traceable product label for all types of textiles and leather items that have been produced in environmentally friendly factories and at safe and socially responsible workplaces. Furthermore, the MADE IN GREEN by OEKO-TEX® label gives consumers the certainty that the textile or leather product is made from materials tested for harmful substances. In order to ensure that textile or leather products with the MADE IN GREEN by OEKO-TEX® label have been produced using environmentally friendly processes under socially acceptable working conditions, manufacturing and wet production sites must be certified according to STeP by OEKO-TEX®.

For a year now, it has been possible to have recycled materials STANDARD 100 certified and display that certification as a hangtag to communicate that the product consists of a certain proportion3 of recycled materials. Which market demand is this certification addressing?
Helene Melnitzky:
There is an increasing demand that at least part of the product must be made from recycled material. This is partly attributable to market pressure because raw materials are scarce and expensive. However, we are also voluntarily informing consumers about recycling as part of the circular economy.

What is your outlook for the next few years?
Helene Melnitzky:
Producing textile and leather products in a more environmentally friendly and fair manner, while making the value chain more transparent, is a global challenge that sets new environmental standards. In the long term, however, it also involves important economic and social aspects. The goal is to raise awareness of these interdependencies and a common understanding of environmental issues – among producers and, of course, end consumers. It is clear that the demand for certified and traceable products is growing among consumers. This trend is reflected in purchasing behaviour and thus in manufacturing. Nevertheless, there’s still a lot to do.


1 STANDARD 100 by OEKO-TEX® und LEATHER STANDARD by OEKO-TEX®
2 The STeP by OEKO-TEX® certification includes the modules Chemical Management, Environmental Performance, Environmental Management, Quality Management, Occupational Health and Safety, and Social Responsibility
3 To qualify, the product must contain at least 20 per cent recycled material.

Foto: Lalit Kumar, Unsplash
29.03.2022

The man-made fibers industry at the turning point of time

"You don't tear down a house before the new one is ready for occupancy."

Textination talked to the Managing Director of the Industrievereinigung Chemiefaser e.V., Dr. Wilhelm Rauch, about his assessment of the turning point that the man-made fibers industry is currently facing. What are the risks and threats, and what needs to change in order to remain a competitive player on the global market.

"You don't tear down a house before the new one is ready for occupancy."

Textination talked to the Managing Director of the Industrievereinigung Chemiefaser e.V., Dr. Wilhelm Rauch, about his assessment of the turning point that the man-made fibers industry is currently facing. What are the risks and threats, and what needs to change in order to remain a competitive player on the global market.

US President Joe Biden has called his Russian counterpart Vladimir Putin a war criminal in connection with the invasion of Ukraine. The United Nations' highest court, the International Court of Justice in The Hague, has ordered Russia to immediately end its war against Ukraine. How do you personally assess Russia's behavior?
Dr. Rauch:
With family roots in the Rhineland, Central and East Germany, I grew up at a time when, as a result of the division of Europe, families were separated and people were ruthlessly shot in the middle of Germany who wanted to cross the inner-German demarcation line towards the West. Since 1989, the fall of the Iron Curtain has led us into a period that lasted more than 30 years and allowed us, at least in Europe, to experience an era of peaceful coexistence between the great power blocs, intensive trade relations and prosperous states.

It is more than shocking to see today how Russia is trying to turn back the wheel of history in Europe with a brutality that the youngest generation growing up in Europe has fortunately not had to experience so far, and it brings back the worst memories of the Cold War, which everyone hoped would never return. If today in Ukraine even facilities for the peaceful use of nuclear energy are fired upon, a dimension has been reached that one does not want to extrapolate any further. In addition to the unspeakable human suffering caused, which we can only begin to alleviate by accepting Ukrainian refugees, in the long term all trust in political promises is being gambled away, which, however, is essential both for peaceful coexistence and for economic cooperation. We are facing a reordering of the world in which supply relationships and dependencies with or on autocratic states must be evaluated much more sensitively for each individual case.

The economic consequences of the Russia-Ukraine conflict are becoming increasingly clear. The Association of German Chambers of Commerce and Industry (DIHK) is correcting its forecast for 2022, but does not yet see a recession. What are your expectations for the industry in the current fiscal year?
Dr. Rauch:
The man-made fibers industry has been severely affected by the SARS-CoV-2 pandemic in the last two years. Planned investments were first postponed and then finally abandoned. By the end of 2022, three man-made fibers producers will close their doors in Germany compared to 2019. The industry started the current year on a very hopeful note, although previous issues such as REACH and, above all, energy costs were already increasing in severity before the Russia-Ukraine war. The economic consequences of the war will have a negative impact both directly in the form of increased energy prices and indirectly through changes in international competitive conditions.

What do the war in Ukraine and the economic sanctions against Russia entail for the upstream supply chains of the manmade fiber industry?
Dr. Rauch:
The immediate upstream supply chains will not be affected much by this war at first. However, we must expect supply chains in other industries to be disrupted. If, for example, certain raw materials or products are no longer available, this can have a noticeable impact, starting with logistics (mobility) and extending to components in production technology facilities. An example of this is the availability of cable harnesses, which were previously produced in Ukraine and are indispensable in many electronic components for man-made fibers production.

What is the relevance of Ukraine and Russia as sales markets for IVC member companies?
Dr. Rauch:
If we take the last year before the outbreak of the SARS-CoV-2 pandemic as the reference year, exports to Ukraine and the Russian Federation account for around 1.6% of total exports of man-made fibers from Germany. On average, a loss of sales to these countries can be tolerated, although it should not be forgotten that in individual cases - depending on a company's product portfolio - the impact can be quite significant. Looking beyond the horizon, it is not only the direct exports of man-made fibers to the war region that are of significance, but also deliveries of products in which man-made fibers are processed. Here, there are now interrupted supply relationships that result in order losses for the man-made fibers industry.

Certain industries are particularly affected by the consequences - what does this mean for the man-made fibers sector as a supplier industry?
Dr. Rauch:
Wherever production is cut back along the downstream value chain in which man-made fibers were used, the effects will be noticeable with a temporal delay. This applies, for example, to deliveries to the automotive sector, where the production of new vehicles comes to a standstill due to a lack of components originating from Ukraine.

How are exploding energy prices and the gas embargo affecting man-made fibers producers in the DACH region?
Dr. Rauch:
Even before the Russia-Ukraine war, European energy costs were already at a level that hit our members hard. For example, European gas costs currently rose by ten times from approx. 12 EUR/MWh to approx. 120 EUR/MWh as a result of the war, while in the USA they "only" rose by two and a half times from approx. 8 EUR/MWh to approx. 18 EUR/MWh. The situation is similar for electricity prices in Germany in particular, which have also risen by a factor of 10 from an already high level. Further price increases in Europe cannot be ruled out, but are more likely. Against this background, moderate adjustments in man-made fibers prices are only a drop in the bucket. A market development with virtually exploding energy costs cannot be reliably depicted by any company, nor can it be priced in such a way as to cover costs.

As the industry association of the man-made fibers industry, what do you think of "Freeze for Peace" or a stop to all Russian gas and raw material imports?
Dr. Rauch:
In Germany in particular, we have deliberately made ourselves dependent on Russian gas, contrary to all international warnings, by defining it as necessary for the bridge technology of electricity generation that we will need after the shutdown of coal- and nuclear-based power plants, before the availability of a sufficient amount of so-called "green" energy is assured. Gas is also needed for heating purposes and as a raw material, so it takes on the function of an all-rounder.

A boycott-related import stop would not only have serious negative consequences for the man-made fibers sector, but for the entire German industry and the majority of private households. As I mentioned at the beginning, it is the order of the day to help alleviate human suffering by taking in Ukrainian refugees. But this is not the end of the crisis. It must be assumed that the war situation will not be resolved in the near future. However, in order to cope with a protracted crisis situation, our economic strength must be maintained in order to be able to cope with the challenges ahead. An import freeze would be counterproductive in this respect. Since, due to the latest developments, gas deliveries are now to be paid for in rubles, there is rather a risk that Russia, for its part, will stop gas deliveries. In their effect, the two scenarios do not differ. The only thing that is certain is the fact that the availability of Russian gas to Europe is no longer guaranteed. Ultimately, the Russian demand to switch payments to rubles, which is not only aimed at revaluing the ruble, makes it clear that Russia is not dependent on Europe as a buyer of its gas. This would mean that a "freeze for peace" would lead to nothing. In the Far East, there is already a potential buyer of Russian gas to obtain it cheaply and safely, and which is also a major competitor of the European chemical fiber industry: China.

Are agreements with the United Arab Emirates and Qatar a good substitute solution for gas and oil supplies from Russia?
Dr. Rauch:
It is not a question of evaluating a measure in the sense of good or bad, but of whether it appears suitable in this particular situation to reduce unilateral dependencies on an aggressor before sustainable solutions are available in sufficient quantity. In this respect, there should initially be no ideological barriers in the measures to be examined for feasibility. The agreements concluded with the United Arab Emirates and Qatar after certainly careful political scrutiny are individual decisions and represent only one piece in the mosaic among many.

Does the saying "First we had bad luck, then we were not lucky at all" apply to the current economic performance of the industry - or: how do you assess the influence of the Corona pandemic and the war situation in this respect?
Dr. Rauch:
Both the SARS-CoV-2 pandemic and the Russia-Ukraine war are events with a global character. While the first event affected all countries equally sooner or later, the impact of the Russia-Ukraine war must be assessed in a more differentiated manner. The consequences of the war primarily affect companies in Europe, and there in particular those countries which - as mentioned above - have placed themselves in unilateral dependencies like Germany. This does not apply to the man-made fibers industry in particular. Although there are many fellow sufferers in other industries, this does not improve the situation, of course.

What does the industry expect from the political leaders in Berlin and Brussels in the future?
Dr. Rauch:
The wish list can be fixed to a few core elements:
In the long term, we need a supply of energy and raw materials that is not based on the dependence of a few autocratic states. On the way there, against the backdrop of the Russia-Ukraine war, previous exit scenarios from coal and nuclear energy must be reconsidered without prejudice with regard to their timeline. Or to put it more concisely: You don't tear down a house before the new one is ready for occupancy.

But energies from renewable raw materials must also be offered at prices that allow global competitiveness. According to a study by DECHEMA and FutureCamp, the chemical industry has calculated a price of 4 ct/kWh (including all taxes and fees). We are miles away from this today.

The revision of REACH must not lead to further bureaucracy and requirements that tie up capacity in companies. What we need in Europe is not dotting the i on Maslow's hierarchy of needs, but to ensure that we do not slide down the levels step by step and that the i dot floats in the air without an "i".

European economic policy must focus on the international competitiveness of European industry. It is not sufficient to consider and regulate the European Union only from the point of view of the internal market. The planned carbon border mechanism is such an example. It is intended to impose customs duties on imports that carry a high CO2 burden. This may protect the domestic market, but it does nothing at all to help export-oriented European industry such as the man-made fibers sector on the international world market, because European production costs remain too high by global standards despite the carbon border taxes.

The European Commission must increasingly recognize the European industry and with it the man-made fibers industry as problem solvers. Man-made fibers are indispensable as products for the energy turnaround (rotor blades for wind turbines), lightweight construction in mobility (lightweight car bodies in composite systems), sustainable road construction (geotextiles to reinforce the road surface and increase its service life), reduction of steel-reinforced concrete and thus cement, sand and gravel (reinforcement with high-tensile man-made fibers) and medical products (medical masks, bandaging materials, stents).

In Europe, we again need more market economy and no small-scale regulations that are adapted again and again and proliferate into an impenetrable thicket.

With all the wishes to politicians mentioned above, let me finally mention the following with regard to the current situation: In 1961, after the Berlin Wall was built, Russian and American tanks faced each other at Checkpoint Charlie at a distance of less than 50 meters, ready to fire.

A year later, in October 1962, nuclear-equipped American and Russian naval units met head-on in the Cuban Missile Crisis. Both John F. Kennedy and Nikita S. Khrushchev - bitter rivals in the contest of political systems - were sensible enough at the time not to let the situation escalate.

At present, I wish our national, European and transatlantic politicians’ unconditional determination in the defense of our free democratic values, but I also appeal to all politicians worldwide to take to heart one of Albert Einstein's fundamental perceptions: "I don't know what weapons will be used in the Third World War. But I can tell you what they'll use in the Fourth - rocks!"

Source:

Textination

The Interview was conducted by Ines Chucholowius, CEO Textination GmbH