Textination Newsline

Reset
5 results
wind energy Photo: Carlos / Saigon - Vietnam, Pixabay
21.02.2024

Composites' hopes are pinned on wind energy and aviation sectors

Composites Germany - Results of the 22nd Composites Market Survey

  • Critical assessment of the current business situation
  • Future expectations brighten
  • Investment climate remains subdued
  • Different expectations of application industries
  • Growth drivers with slight shifts
  • Composites index points in different directions

For the 22nd time, Composites Germany has collected current key figures on the market for fiber-reinforced plastics. All member companies of the supporting associations of Composites Germany: AVK and Composites United as well as the associated partner VDMA were surveyed.
In order to ensure that the different surveys can be compared without any problems, no fundamental changes were made to the survey. Once again, mainly qualitative data was collected in relation to current and future market developments.

Composites Germany - Results of the 22nd Composites Market Survey

  • Critical assessment of the current business situation
  • Future expectations brighten
  • Investment climate remains subdued
  • Different expectations of application industries
  • Growth drivers with slight shifts
  • Composites index points in different directions

For the 22nd time, Composites Germany has collected current key figures on the market for fiber-reinforced plastics. All member companies of the supporting associations of Composites Germany: AVK and Composites United as well as the associated partner VDMA were surveyed.
In order to ensure that the different surveys can be compared without any problems, no fundamental changes were made to the survey. Once again, mainly qualitative data was collected in relation to current and future market developments.

Critical assessment of the current business situation
After consistently positive trends were seen in the assessment of the current business situation in 2021, this has slipped since 2022. There is still no sign of a trend reversal in the current survey. The reasons for the negative sentiment are manifold and were already evident in the last survey.

At present, politicians do not seem to be able to create a more positive environment for the industry with appropriate measures. Overall, Germany in particular, but also Europe, is currently experiencing a very difficult market environment.

However, the main drivers of the current difficult situation are likely to be the persistently high energy and commodity/raw material prices. In addition, there are still problems in individual areas of the logistics chains, for example on the main trade/container routes, as well as a cautious consumer climate. A slowdown in global trade and uncertainties in the political arena are currently fueling the negative mood in the market.

Despite rising registration figures, the automotive industry, the most important application area for composites, has not yet returned to its former volume. The construction industry, the second most important key area of application, is currently in crisis. Although the order books are still well filled, new orders are often failing to materialize. High interest rates and material costs coupled with the high cost of living are having a particularly negative impact on private construction, but public construction is also currently unable to achieve the targets it has set itself. According to the ZDB (Zentralverband Deutsches Baugewerbe), the forecasts in this important sector remain gloomy: "The decline in the construction industry is continuing. Turnover will fall by 5.3% in real terms this year and we expect a further 3% drop next year. Residential construction remains responsible for the decline, which will slump by 11% in real terms this year and continue its downward trajectory at -13% in 2024."

It is not only the assessment of the general business situation that remains pessimistic. The situation of their own companies also continues to be viewed critically. The picture is particularly negative for Germany. Almost 50% of respondents are critical of the current business situation in Germany. The view of global business and Europe is somewhat more positive. Here, "only" 40% and 35% of respondents respectively assess the situation rather negatively.

Future expectations brighten
Despite the generally rather subdued assessment of the business situation, many of those surveyed appear to be convinced that the mood is improving, at least in Europe. When asked about their assessment of future general business development, the values for Europe and the world are more optimistic than in the last survey. The survey participants do not currently expect the situation in Germany to improve.

Respondents were more optimistic about their own company's future expectations for Europe and the global market.

The participants seem to be assuming a moderate short to medium-term recovery of the global economy. The forecasts are more optimistic than the assessment of the current situation. It is striking that the view of the German region is more critical in relation to Europe and the global economy. 28% of those surveyed expect the general market situation in Germany to develop negatively. Only 13% expect the current situation to improve. The figures for Europe and the world are better.

Investment climate remains subdued
The current rather cautious assessment of the economic situation continues to have an impact on the investment climate.

While 22% of participants in the last survey still assumed an increase in personnel capacity (survey 1/2023 = 40%), this figure is currently only 18%. In contrast, 18% even expect a decrease in personnel.

The proportion of respondents planning to invest in machinery is also declining. While 56% of respondents in the last survey still expected to make such investments, this figure has now fallen to 46%.

Different expectations of application industries
The composites market is characterized by a high degree of heterogeneity in terms of both materials and applications. In the survey, the participants are asked to give their assessment of the market development of different core areas.

The expectations are extremely varied. The two most important application areas are the mobility and construction/infrastructure sectors. Both are currently undergoing major upheavals or are affected by declines, which is also clearly reflected in the survey. Growth is expected above all in the wind energy and aviation sectors.

Growth drivers with slight shifts
In terms of materials, there has been a change in the assessment of growth drivers. While the respondents in the last 9 surveys always named GRP as the material from which the main growth impetus for the composites sector is to be expected, the main impetus is now once again expected to come from CFRP or across all materials.

There is a slight regional shift. Germany is seen less strongly as a growth driver. In contrast, Europe (excluding Germany) and Asia are mentioned significantly more.

Composites index points in different directions
The numerous negative influences of recent times continue to be reflected in the overall Composites Index. This continues to fall, particularly when looking at the current business situation. On the other hand, there is a slight improvement in expectations for future market development, although this remains at a low level.

The total volume of processed composites in Europe in 2022 was already declining, and a further decline must also be expected for 2023. This is likely to be around 5% again.

It remains to be seen whether it will be possible to counteract the negative trend. Targeted intervention, including by political decision-makers, would be desirable here. However, this cannot succeed without industry/business. Only together will it be possible to maintain and strengthen Germany as a business/industry location. For composites as a material group in general, there are still very good opportunities to expand the market position in both new and existing markets due to the special portfolio of properties. However, the dependency on macroeconomic developments remains. It is now important to develop new market areas through innovation, to consistently exploit opportunities and to work together to further implement composites in existing markets. This can often be achieved better together than alone. With its excellent network, Composites Germany offers a wide range of opportunities.

The next composites market survey will be published in July 2024.

Source:

Composites Germany

(c) Fraunhofer IAP
08.06.2021

Fraunhofer IAP: Recyclable, Fiber-reinforced Material made from Bio-based Polylactic Acid

"Packaging made from bio-based plastics has long been established. We are now supporting the further development of these materials for new areas of application. If in the future the market also offers plant-based materials for technically demanding tasks such as vehicle construction, the bioeconomy will take a decisive step forward," explained Uwe Feiler, Parliamentary State Secretary at the Federal Ministry of Food and Agriculture, in Potsdam. The occasion was the handover of a grant to the Fraunhofer Institute for Applied Polymer Research IAP. The Fraunhofer IAP wants to develop a composite material that consists entirely of bio-based polylactic acid (PLA) and is significantly easier to recycle than conventional fiber composites.

"Packaging made from bio-based plastics has long been established. We are now supporting the further development of these materials for new areas of application. If in the future the market also offers plant-based materials for technically demanding tasks such as vehicle construction, the bioeconomy will take a decisive step forward," explained Uwe Feiler, Parliamentary State Secretary at the Federal Ministry of Food and Agriculture, in Potsdam. The occasion was the handover of a grant to the Fraunhofer Institute for Applied Polymer Research IAP. The Fraunhofer IAP wants to develop a composite material that consists entirely of bio-based polylactic acid (PLA) and is significantly easier to recycle than conventional fiber composites.

The German Federal Ministry of Food and Agriculture (BMEL) is intensively promoting the development of biomaterials as part of its Renewable Resources funding program. More than 100 projects are currently underway, covering a wide range of topics: from plastics that are degradable in the sea to natural fiber-reinforced lightweight components for the automotive sector. The projects are supported by the Agency for Renewable Resources, the BMEL project management agency responsible for the Renewable Resources funding program.

Easier recycling of fiber-reinforced plastics
PLA is one of the particularly promising bio-based materials. The global market for this polymer is growing by around 10 percent a year. PLA is also used, among other things, as a matrix in fiber-reinforced plastics. In these mechanically resilient plastics, reinforcing fibers are embedded in a plastic matrix.

The Fraunhofer IAP project is now focusing on these reinforcing fibers: "We are further developing our PLA fibers in order to transfer them to industrial scale together with partners from industry. These fibers are ideally suited for reinforcing PLA plastics. The resulting self-reinforcing single-component composite promises great recycling benefits. Since the fiber and the matrix of PLA are chemically identical, complex separation steps are not necessary," explains Dr. André Lehmann, expert for fiber technology at Fraunhofer IAP.

Novel PLA fibers and films are more thermally stable
The challenge with this approach is that conventional PLA has a relatively low temperature resistance. Technical fibers can be produced most economically using the melt spinning process. The Fraunhofer IAP team is now using more thermally stable stereocomplex PLA (sc-PLA) for the fibers. The term stereocomplex refers to a special crystal structure that the PLA molecules can form. Sc-PLA fibers have a melting point that is 40 - 50 °C higher and can therefore withstand the incorporation process in a matrix made of conventional PLA. In the project, the researchers are developing and optimizing a melt spinning process for sc-PLA filament yarns. The partner in this work package is Trevira GmbH, a manufacturer of technical and textile fiber and filament yarn specialties that are in demand from automotive suppliers and contract furnishers, among others. Furthermore, the development of a manufacturing process for sc-PLA reinforced flat films is planned. The international adhesive tape manufacturer tesa SE is participating in this task, and will test the suitability of sc-PLA films as adhesive foils. In a third work package, the Fraunhofer IAP will finally process the filaments in a double pultrusion process to produce granules suitable for injection molding.

Bio-based solutions for the automotive and textile industries
The scientists led by Dr. André Lehmann are certain that the self-reinforced PLA material can conquer many new areas of application. The automotive and textile industries are already showing interest in bio-based materials that are also easier to recycle. In terms of price, PLA would already be competitive here, and now the material is also to be made technically fit for the new tasks.

Professor Alexander Böker, head of Fraunhofer IAP, says: "The steadily growing demand from industry for sustainable solutions underlines how important it is to develop biobased and at the same time high-performance materials. With our research, we are also actively driving the development of a sustainable and functioning circular economy and therefore very much welcome the support from the federal government."

Information on the project is available at fnr.de under the funding code 2220NR297X.

(c) Porsche AG
04.05.2021

Fraunhofer: Lightweight and Ecology in Automotive Construction

  • The “Bioconcept-Car” moves ahead

In automobile racing, lightweight bodies made from plastic and carbon fibers have been standard for many years because they enable drivers to reach the finish line more quickly. In the future, lightweight-construction solutions could help reduce the energy consumption and emissions of everyday vehicles. The catch is that the production of carbon fibers is not only expensive but also consumes considerable amounts of energy and petroleum. In collaboration with Porsche Motorsport and Four Motors, researchers at the Fraunhofer WKI have succeeded in replacing the carbon fibers in a car door with natural fibers. This is already being installed in small series at Porsche. The project team is now taking the next step: Together with HOBUM Oleochemicals, they want to maximize the proportion of renewable raw materials in the door and other body parts - using bio-based plastics and paints.

  • The “Bioconcept-Car” moves ahead

In automobile racing, lightweight bodies made from plastic and carbon fibers have been standard for many years because they enable drivers to reach the finish line more quickly. In the future, lightweight-construction solutions could help reduce the energy consumption and emissions of everyday vehicles. The catch is that the production of carbon fibers is not only expensive but also consumes considerable amounts of energy and petroleum. In collaboration with Porsche Motorsport and Four Motors, researchers at the Fraunhofer WKI have succeeded in replacing the carbon fibers in a car door with natural fibers. This is already being installed in small series at Porsche. The project team is now taking the next step: Together with HOBUM Oleochemicals, they want to maximize the proportion of renewable raw materials in the door and other body parts - using bio-based plastics and paints.

Carbon fibers reinforce plastics and therefore provide lightweight components with the necessary stability. Mass-produced natural fibers are not only more cost-effective but can also be produced in a considerably more sustainable manner. For the “Bioconcept-Car” pilot vehicle, researchers at the Fraunhofer WKI have developed body parts with 100 percent natural fibers as reinforcing components.

“We utilize natural fibers, such as those made from hemp, flax or jute. Whilst natural fibers exhibit lower stiffnesses and strengths compared to carbon fibers, the values achieved are nonetheless sufficient for many applications,” explained Ole Hansen, Project Manager at the Fraunhofer WKI. Due to their naturally grown structure, natural fibers dampen sound and vibrations more effectively. Their lesser tendency to splinter can help to reduce the risk of injury in the event of an accident. Furthermore, they do not cause skin irritation during processing.

The bio-based composites were successfully tested by the Four Motors racing team in the “Bioconcept-Car” on the racetrack under extreme conditions. Porsche has actually been using natural fiber-reinforced plastics in a small series of the Cayman GT4 Clubsport since 2019. During production, the researchers at the Fraunhofer WKI also conducted an initial ecological assessment based on material and energy data. “We were able to determine that the utilized natural-fiber fabric has a better environmental profile in its production, including the upstream chains, than the fabric made from carbon. Thermal recycling after the end of its service life should also be possible without any problems,” confirmed Ole Hansen.

In the next project phase of the "Bioconcept-Car", the researchers at the Fraunhofer WKI, in collaboration with the cooperation partners HOBUM Oleochemicals GmbH, Porsche Motorsport and Four Motors, will develop a vehicle door with a biogenic content of 85 percent in the overall composite consisting of fibers and resin. They intend to achieve this by, amongst other things, utilizing bio-based resin-hardener blends as well as bio-based paint systems. The practicality of the door - and possibly additional components - will again be tested by Four Motors on the racetrack. If the researchers are successful, it may be possible to transfer the acquired knowledge into series production at Porsche.

The German Federal Ministry of Food and Agriculture (BMEL) is funding the “Bioconcept-Car” project via the project-management agency Fachagentur Nachwachsende Rohstoffe e. V. (FNR).

Background
Sustainability through the utilization of renewable raw materials has formed the focus at the Fraunhofer WKI for more than 70 years. The institute, with locations in Braunschweig, Hanover and Wolfsburg, specializes in process engineering, natural-fiber composites, surface technology, wood and emission protection, quality assurance of wood products, material and product testing, recycling procedures and the utilization of organic building materials and wood in construction. Virtually all the procedures and materials resulting from the research activities are applied industrially.

 

  • EU Project ALMA: Thinking Ahead to Electromobility

E-mobility and lightweight construction are two crucial building blocks of modern vehicle development to drive the energy transition. They are the focus of the ALMA project (Advanced Light Materials and Processes for the Eco-Design of Electric Vehicles). Nine European organizations are now working in the EU project to develop more energy-efficient and sustainable vehicles. Companies from research and industry are optimizing the efficiency and range of electric vehicles, among other things by reducing the weight of the overall vehicle. The Fraunhofer Institute for Industrial Mathematics ITWM is providing support with mathematical simulation expertise.

According to the low emissions mobility strategy, the European Union aims to have at least 30 million zero-emission vehicles on its roads by 2030. Measures to support jobs, growth, investment, and innovation are taken to tackle emissions from the transport sector. To make transport more climate-friendly, EU measures are being taken to promote jobs, investment and innovation. The European Commission's Horizon 2020 project ALMA represents one of these measures.

Photo: Pixabay
16.02.2021

Carbon with Multiple Lives: Bringing Innovations in Carbon Fiber Recycling to Market

When it comes to the future of motorized mobility, everyone talks about the power drive: How much e-car, how much combustion engine can the environment tolerate and how much do people need? At the same time, new powertrains place ineased demands not only on the engine, but also on its housing and the car body: Carbon fibers are often used for such demanding applications. Like the powertrain of the future, the materials on the vehicle should also be environmentally friendly. That is why recycling of carbon fibers is required. Institutes of the Zuse Community have developed solutions for this.

Carbon fibers consist almost completely of pure carbon. It is extracted from the plastic polyacrylonitrile at 1,300 degrees Celsius, using a lot of energy. The advantages of carbon fibers: They have almost no dead weight, are enormously break-resistant and sturdy. These properties are needed, for example, in the battery box of electric vehicles in structural components of a car body.

When it comes to the future of motorized mobility, everyone talks about the power drive: How much e-car, how much combustion engine can the environment tolerate and how much do people need? At the same time, new powertrains place ineased demands not only on the engine, but also on its housing and the car body: Carbon fibers are often used for such demanding applications. Like the powertrain of the future, the materials on the vehicle should also be environmentally friendly. That is why recycling of carbon fibers is required. Institutes of the Zuse Community have developed solutions for this.

Carbon fibers consist almost completely of pure carbon. It is extracted from the plastic polyacrylonitrile at 1,300 degrees Celsius, using a lot of energy. The advantages of carbon fibers: They have almost no dead weight, are enormously break-resistant and sturdy. These properties are needed, for example, in the battery box of electric vehicles in structural components of a car body.

The Saxon Textile Research Institute (STFI), for instance, is currently working with industrial partners on combining the static-mechanical strengths of carbon fibers with vibration damping properties to improve the housings of electric motors in cars. The project, which is funded by the German Federal Ministry for Economic Affairs and Energy, is aimed at developing hybrid nonwovens that contain other fibers, in addition to carbon fiber, as a reinforcement. "We want to combine the advantages of different fiber materials and thereby develop a product that is optimally tailored to the requirements", explains Marcel Hofmann, head of department of Textile Lightweight Construction at STFI.

The Chemnitz researchers would therefore complement previous nonwoven solutions. They look back on 15 years of working with recycled carbon fibers. The global annual demand for the high-value fibers has almost quadrupled in the past decade, according to the AVK Industry Association to around 142,000 t most recently. "Increasing demand has brought recycling more and more into focus", says Hofmann. According to him, carbon fiber waste is available for about one-tenth to one-fifth of the price of primary fibers, but they still need to be processed. The key issue for the research success of recycled fibers is competitive applications. STFI has found these not only in cars, but also in the sports and leisure sector as well as in medical technology, for example in components for computer tomography. "While metals or glass fibers cast shadows as potential competing products, carbon does not interfere with the image display and can fully exploit its advantages", explains Hofmann.
 
Using Paper Know-How
If recycled carbon fibers can pass through the product cycle again, this significantly improves their carbon footprint. At the same time it applies: The shorter the carbon fibers, the less attractive they are for further recycling. With this in mind, the Cetex Research Institute and the Papiertechnische Stiftung (PTS), both members of the Zuse Community, developed a new process as part of a research project that gives recycled carbon fibers, which previously seemed unsuitable, a second product life. "While classic textile processes use dry processing for the already very brittle recycled carbon fibers in fiber lengths of at least 80 mm, we dealt with a process from the paper industry that processes the materials wet. At the end of the process, in very simplified terms, we obtained a laminar mat made of recycled carbon fibers and chemical fibers", says Cetex project engineer Johannes Tietze, explaining the process by which even 40 mm short carbon fibers can be recycled into appealing intermediates.

The resulting product created in a hot pressing process serves as the base material for heavy-duty structural components. In addition, the mechanical properties of the semi-finished products were improved by combining them with continuous fiber-reinforced tapes. The researchers expect the recycled product to compete with glass-fiber-reinforced plastics, for example in applications in rail and vehicle construction. The results are now being incorporated into further research and development in
the cooperation network of Ressourcetex, a funded association with 18 partners from industry and science.

Successful Implementation in the Automotive Industry
Industrial solutions for the recycling of carbon fiber production waste are being developed at the Thuringian Institute of Textile and Plastics Research (TITK). Several of these developments were industrially implemented with partners at the company SGL Composites in Wackersdorf, Germany. The processing of the so-called dry waste, mainly from production, is carried out in a separate procedure. "Here, we add the opened fibers to various processes for nonwoven production", says the responsible head of the department at TITK, Dr. Renate Lützkendorf . In addition to developments for applications e.g. in the BMW i3 in the roof or rear seat shell, special nonwovens and processes for the production of Sheet Molding Compounds (SMC) were established at TITK. These are thermoset materials consisting of reaction resins and reinforcing fibers, which are used to press fiber-plastic composites. This was used, for example, in a component for the C-pillar of the BMW 7 Series. "In its projects, TITK is primarily focusing on the development of more efficient processes and combined procedures to give carbon fiber recycling materials better opportunities in lightweight construction applications, also in terms of costs", says Lützkendorf. The focus is currently on the use of CF recycled fibers in thermoplastic processes for sheet and profile extrusion. "The goal is to combine short- and continuous-fiber reinforcement in a single, high-performance process step."

1) Since February 1st, 2021, Dr.-Ing. Thomas Reussmann succeeds Dr.-Ing. Renate Lützkendorf, who retired 31 January.

Source:

Zuse Community

Wind energy plant © Timo Klostermeier / pixelio.de
11.10.2016

WIND POWER INDUSTRY AT COMPOSITES EUROPE 2016

Offshore expansion and onshore repowering ensure growth

  • Wind theme day with guided tour November 29th
  • Lectures about material trends

With an investment volume of EUR 14 billion in the offshore sector alone, the European wind power industry has set a new record high in the first half of 2016. This figure and the view on the still open approval procedures in this segment as well as the onshore upcoming generational change from existing to modern facilities (repowering) show that the potential for growth is far from being exploited. Also in America as well as in Asia and the Pacific area a new emerging wind energy sector is also driving demand for fiber composites. The COMPOSITES EUROPE exhibition will be showing in Dusseldorf from November 29th to December 1st 2016 the latest trends and developments.

Theme Day: Wind meets Composites

Offshore expansion and onshore repowering ensure growth

  • Wind theme day with guided tour November 29th
  • Lectures about material trends

With an investment volume of EUR 14 billion in the offshore sector alone, the European wind power industry has set a new record high in the first half of 2016. This figure and the view on the still open approval procedures in this segment as well as the onshore upcoming generational change from existing to modern facilities (repowering) show that the potential for growth is far from being exploited. Also in America as well as in Asia and the Pacific area a new emerging wind energy sector is also driving demand for fiber composites. The COMPOSITES EUROPE exhibition will be showing in Dusseldorf from November 29th to December 1st 2016 the latest trends and developments.

Theme Day: Wind meets Composites

Sector specialists such as Gaugler & Lutz, DD Compound, 3D Core, LAP and Power & Composite Technology will be showing current technologies at the COMPOSITES EUROPE, latest machine tools and manufacturing processes for the wind power industry. A highlight for all wind experts: On November 29th will be the theme day „Wind meets Composites" at the fair. This day will be sponsored by GUNNAR International, Weissenberger, Hexion and SAERTEX. Engineers of aerodynamics, materials science, lightweight construction and production technology will be able to exchange ideas with purchasers, exhibitors and wind energy specialists in the composite sector. The focus will be, among other things, on topics such as the influence of material selection, on design, weight, stability, processing or production processes as well as on certification, standardization and automation in rotor blade construction.
 
Guided theme walks

An optimal overview of exhibitors' offer on the topic wind is given to visitors by the opportunity of taking part at guided tours. Here they will specifically directed to various exhibitors from the wind segment, where they can get within 10 minutes information about their products and innovations. There will be two guided tours on November 29th: tour 1 will take place between 12:00 AM and 01.00 PM and tour 2 in the afternoon between 02:00 and 03:00 PM. Participating exhibitors include Airtech, GUNNAR International, Agilent Technologies, RH Cutting Technology, Granta Design, DD Compound and Armacell Benelux. The lecture is in English. Participation is free, but the number of participants is limited. Between the two round trips the participants have the opportunity to strengthen themselves at the "Wind Lunch" at the booth of Hexion (Hall 8a / booth G31).
Click here to register for the guided tours: www.composites-europe.com/guided-tours

 
Lectures at COMPOSITES Forum

On the afternoon of the wind theme day the COMPOSITES Forum provides an overview of the latest challenges in research, design, quality management, transportation and production of rotor blades. Starting at 3:00 PM Sinoi will discuss "Challenges and approaches in the construction of large onshore blades". Euros will hold a lecture on "Potentials and limits of composites in rotor blade construction" and the Fraunhofer Institute for Wind Energy and Energy System Technology will be presenting "Composite trends for wind turbine blades". Pontis Engineering also has a slot in the lecture program. From 04.00 PM it will be about "Challenges in design and manufacturing of large wind turbine blades". Access to the lecture area is free of charge for visitors. The COMPOSITES Forum is located in Hall 8, Booth B45.

Click here for a complete overview on the topic wind:
https://www.composites-europe.com/windenergie_527.html

About COMPOSITES EUROPE:
350 exhibitors from 30 countries will attend the COMPOSITES EUROPE, European Trade Fair and Forum for Composite Materials, Technology and Applications from November 29th to December 1st in Dusseldorf. The exhibition shows the entire range of fiber-reinforced plastics, from raw materials to manufacturing processes, to lightweight construction innovations in automotive engineering, aviation, boat building, wind power industry and construction. COMPOSITES EUROPE is organized by Reed Exhibitions in cooperation with the European sector association EuCIA and the economic association Composites Germany, a consortium of branch associations and clusters AVK, CCeV, CFK-Valley Stade and VDMA AG Hybrid Light Construction Technologies.