Textination Newsline

Reset
112 results
a touch-sensing hairband Hybrid Body Lab/Provided
19.05.2025

Plants you wear: LivingLoom weaves seeds into textiles

Humans’ relationships with plants is largely utilitarian, serving our needs. We generally either eat them or make things out of them.
 
Researchers in the College of Human Ecology (CHE) have developed a design and fabrication approach that treats these living things as companions to humans, with seeds woven into hydrogel material for hairbands, wristbands, hats and sandals, among other applications. The seeds grow into sprouts if taken care of properly.      

“For most of human history, we have lived alongside plants, and they’ve been leveraged by humans to be used as food or spun into yarns for fabric,” said Cindy Hsin-Liu Kao, associate professor of human centered design (CHE). “We’re really interested in thinking about what it might mean if we could design a more mutual, collaborative relationship with plants. Could this help us reimagine our relationships with the environment, toward more sustainable futures?”

Humans’ relationships with plants is largely utilitarian, serving our needs. We generally either eat them or make things out of them.
 
Researchers in the College of Human Ecology (CHE) have developed a design and fabrication approach that treats these living things as companions to humans, with seeds woven into hydrogel material for hairbands, wristbands, hats and sandals, among other applications. The seeds grow into sprouts if taken care of properly.      

“For most of human history, we have lived alongside plants, and they’ve been leveraged by humans to be used as food or spun into yarns for fabric,” said Cindy Hsin-Liu Kao, associate professor of human centered design (CHE). “We’re really interested in thinking about what it might mean if we could design a more mutual, collaborative relationship with plants. Could this help us reimagine our relationships with the environment, toward more sustainable futures?”

A touch-sensing hairband is among the potential applications for LivingLoom, a design inquiry and fabrication approach integrating living plants into textiles. Other applications include a self-caring hat, a garden pillow, a Rattan woven bag and outdoor activity-encouraging sandals.

Jingwen Zhu, doctoral student in human behavior design, is lead author of “LivingLoom: Investigating Human-Plant Symbiosis Through Integrating Living Plants Into (E-)Textiles,” published April 25 and presented by Zhu at the Association for Computing Machinery Conference on Human Factors in Computing Systems (CHI ’25), held April 26-May 1 in Yokohama, Japan. The work won a Best Paper award at the conference, an honor reserved for the top 1% of submissions.

LivingLoom is an extension of a prototyping approach called EcoThreads, developed in Kao’s Hybrid Body Lab. EcoThreads involves two fabrication methods – wet spinning and thread coating – to fabricate functional threads from biomaterials.

In wet spinning, polymers are extruded into a coagulation bath, where the polymer solidifies into fibers. The key difference in LivingLoom: Chia seeds are incorporated into the spinning solution, a hydrogel, so that the resulting yarn contains seeds that will grow when properly cared for.

The seed-integrated yarns are then woven into textiles using a digital Jacquard loom, used to design of novel textile structures that allow for water retention and root support. Through this process, the seeds are prepared with nutrients, growing space and water, and will grow in plant-integrated textiles.

Kao and her group conducted a diary-based user study to explore how people would wear and care for plant-infused textiles in everyday settings. The researchers recruited 10 participants to wear a LivingLoom wristband for three days and chronicle their observations. The experiment was conducted in late summer, so the participants could wear short sleeves while taking part.

Participants were asked to wear the wristband for two to eight hours a day for three straight days, after which they returned the bands and were interviewed by the research team. When the user took off the device, they put it in a container to protect the growing plants.

According to Zhu, several of the participants said they had experience caring for houseplants, but “this was the first time it was a wearable, so the proximity was very close and it actually established a very intimate relationship” with the plant. Others described the symbiosis between themselves and the plant; when the plant needed water, for example, they would also get a drink.
      
Participants would also see parallels in the morning, after a good night’s sleep.

“They would put the plants back in the container at night,” Zhu said, “and in the morning they’d notice that the plants had grown taller. It was similar to how they would feel recharged by getting enough rest.”

Kao said that while houseplants grew in popularity during the pandemic as people were spending more time at home, the proximity between the wearer and LivingLoom makes the relationship stronger. “You have these living plants, these living things, directly on the skin surface and I think we seldom have that experience,” she said.

The relationships became emotional for some participants, Zhu said. “One participant said they felt connected when they woke up and saw the sprouts growing really well,” she said. “And one participant said she felt really sad when one of the sprouts fell off, because it’s so close to her body and it made her feel strongly connected.”

Of the other potential applications for LivingLoom, Zhu said, “a lot of people felt that the hat and the hairband makes a lot of sense because it’s an area where people naturally wear decorative accessories, they don’t really interfere with activity that much, and it’s naturally exposed to sunlight.”

Kao said LivingLoom could have digital agricultural and food science applications, as well. “In addition to seeds, we can weave in digital traces and yarn-embedded sensors that could be used for automatic soil condition monitoring, for example,” she said. “There is rich potential for use cases – not only on the wearable scale, but also for our environment.”

Other co-authors are Samantha Chang ’26 and Ruth Zhao, an undergraduate at the University of Pennsylvania.
This project was supported by the National Science Foundation; the Cornell Atkinson Center for Sustainability Academic Venture Fund; and the College of Human Ecology Faculty Sustainability Research Grant.

Source:

Tom Fleischman, Cornell Chronicle

Customized Hotel Rooms Foster Customer Loyalty	Photo kin-shing-lai, Unsplash
27.04.2025

Customizable Hotel Rooms Foster Customer Loyalty

Hotel guests who can customize their rooms by selecting the layout, snack bar offerings, and softness of the pillows are more likely to become loyal customers of that hotel and recommend it to others.
 
A new study published in Cornell Hospitality Quarterly finds that guests who gain some sense of ownership for their hotel room show a greater attachment to the brand after they check out. Encouraging “psychological ownership” of hotel rooms offers a new, cost-effective strategy to enhance customer loyalty, said study coauthor Suzanne Shu, dean of faculty and research at Cornell University’s SC Johnson College of Business and John S. Dyson Professor of Marketing at the Charles H. Dyson School of Applied Economics and Management.
 

Hotel guests who can customize their rooms by selecting the layout, snack bar offerings, and softness of the pillows are more likely to become loyal customers of that hotel and recommend it to others.
 
A new study published in Cornell Hospitality Quarterly finds that guests who gain some sense of ownership for their hotel room show a greater attachment to the brand after they check out. Encouraging “psychological ownership” of hotel rooms offers a new, cost-effective strategy to enhance customer loyalty, said study coauthor Suzanne Shu, dean of faculty and research at Cornell University’s SC Johnson College of Business and John S. Dyson Professor of Marketing at the Charles H. Dyson School of Applied Economics and Management.
 
“These very small interventions, including allowing people to choose their room at the time of check-in or encouraging them to move the furniture around, can have a big impact on the sense of ownership that people feel and the loyalty they have towards the hotel,” Shu said.

The paper, “Increasing Hotel Loyalty through Psychological Ownership,” relied on four separate studies that showed the tangible benefits of increasing guests’ psychological ownership of their rooms. The study defined psychological ownership as a perceptual state that is “best described as the territorial feeling that something is ‘mine.’”

The impact of psychological ownership of hotel rooms
While the concept of psychological ownership has been used to study employee behavior in organizational settings, Shu and one of the paper’s coauthors, Joann Peck, a professor of marketing at the University of Wisconsin-Madison, were the first researchers to apply it to the field of marketing in a paper published in 2009.

Shu compared the concept to the sales process involving a consumer who test-drives a car and begins to feel attached to it even before making an offer on it. “What our research shows is that that will affect decisions like how much you’re willing to pay for it, because you really think of it as yours and value it a lot more,” she said.     

After exploring the concept’s effect on public spaces like parks, Shu wanted to explore whether psychological ownership would apply to spaces that consumers don’t own, such as a hotel room. She and her coauthors created four experiments that tested whether three strategies that promote psychological ownership would have an impact on the hotel guest experience: controlling the space, investing oneself in it, and having intimate knowledge of it.

The first experiment they designed was conducted at the campus hotel at the University of Wisconsin-Madison, where they asked prospective guests to choose their hotel room from a map, allowing them to pick a layout and floor.

“The process didn’t make their check-in process any smoother, any shorter or more convenient, but it increased their willingness to be loyal to the hotel, come back to the hotel and refer this hotel to other people around them,” said Rin Yoon, a coauthor of the paper and a PhD candidate in marketing at the Samuel Curtis Johnson Graduate School of Management who will be teaching at the University of Iowa next fall.

In another experiment, the study analyzed a set of 14,689 reviews of a hotel in Hawaii on TripAdvisor. The assessment showed that guests who felt a sense of ownership for their hotel room wrote longer reviews and reported higher satisfaction levels on the app.

The study determined that guests who wrote reviews with the possessive pronouns “my” or “our” were more likely to have gained some sense of psychological ownership of their room. “That was a sign that they did feel ownership,” Shu said. “People aren’t going to say, ‘my room’ or ‘our room,’ unless they did feel some sense that it was theirs while they were there.”
 
The final two experiments created hypothetical check-ins online that included assessing whether a customer personalizing a room or using the hotel’s data based on previous preferences was more effective in promoting brand loyalty. The study found that guests who customized their room on their own showed greater loyalty to their hotel.

Applying the study’s results
Hotel chains have already begun using some of the strategies identified in the study, including allowing guests to personalize their rooms at check-in. That process forces guests to “exert their time and effort and invest themselves in their room,” which can promote loyalty, Yoon said.

Another strategy hotels could adopt to promote psychological ownership is allowing guests to rearrange some of the furniture in their rooms. That is exactly what Shu did during a recent hotel stay during a business trip.

“One of the first things I did to get myself set up to work was move the table a little bit closer to the window and prop the door open so I could get more sunlight from the outside,” she said. “If you allow a guest to customize their environment a little bit more, they’ll end up feeling more ownership over it because it’s like at home — they can customize their space.”

Source:

Sherrie Negrea, Cornell Chronicle

Deakin researchers surpass silkworm silk by taking a holistic approach	© Freyla Ferguson / Deakin University
17.04.2025

Deakin researchers surpass silkworm silk by taking a holistic approach

Dr Ben Allardyce and PhD candidate Mr Martin Zaki from Deakin’s Institute for Frontier Materials’ (IFM) have delivered a world first in next generation materials research.

Silkworm silk is a protein-based fibre with mechanical properties rivalling petroleum-derived synthetic fibres yet spun using a fraction of the energy. Despite decades of research, aspects of natural silkworm spinning remain a mystery.

Dr Ben Allardyce and PhD candidate Mr Martin Zaki from Deakin’s Institute for Frontier Materials’ (IFM) have delivered a world first in next generation materials research.

Silkworm silk is a protein-based fibre with mechanical properties rivalling petroleum-derived synthetic fibres yet spun using a fraction of the energy. Despite decades of research, aspects of natural silkworm spinning remain a mystery.

The IFM discovery takes researchers one step closer to solving this mystery by wet spinning a new class of silk that produces fibres that outperform natural silk.
 
A materials breakthrough

This research, led by Dr Allardyce and Mr Zaki, with expert input from Sheffield University's Professor Chris Holland, involves sidestepping degumming - a commonplace industrial process - and experimenting with dissolving whole silk fibres.
Using this new technique, the team were able to produce a spinnable solution that better imitates silk as it is produced by the silkworm. This solution was wet spun using IFM’s state-of-the art pilot fibre and textile facility to produce fibres that more closely matched natural silk.

According to IFM’s Deputy Director Joe Razal, the team’s discovery is a world first and demonstrates how IFM researchers are creating new sustainable materials that have real-world application and impact.

‘Ben and Martin challenged the norm by creating silk fibres in a laboratory setting,’ Professor Razal said.

‘They wet spun a cocktail of solubilised, non-separated silk components that mimic the properties produced in nature.’

‘The team identified a way to recreate the fibre produced by the silkworm and unlock the potential for it to be just as biodegradable, tough and energy efficient. In fact, when spun under identical conditions, undegummed solutions produces fibres 8 times stronger and 218 times tougher than degummed silk feedstocks.’

Undegummed versus degummed silk
‘Traditionally, industry has used degumming to unravel the silkworms cocoon to produce their fibres. It is also commonly used by researchers to facilitate “unspinning” silk back into a solution that can then be solidified into new forms,’ Professor Holland said.
’However removing a key component to the natural material, the sericin gum coating, often comes with collateral damage to the silk proteins and so it’s often considered a necessary evil.’

Mr Zaki explains that the team wanted to produce better materials while simultaneously understanding how.

‘We took a step back and asked why has no one attempted this? Is it because it is too hard, or because everyone degums silk and no one has considered doing something different?

In industry, the largest portion of water waste, labour, and energy consumption usually comes from the degumming process. By-passing this step, we increase the potential of a more sustainable technology.’

‘Undegummed cocoons are normally insoluble,’ adds Dr Allardyce. ‘Our innovative process combines a milling step followed by a supersaturated solvent that enables dissolution.’

‘No-one has attempted to artificially spin undegummed silk before. And no-one has ever successfully dissolved undegummed cocoons and re-spun them in this way.’
 
Future applications
Degummed silk is used in nerve repair, coating foods to improve shelf-life and biodegradable batteries.

This ground-breaking research forges a new pathway to recreate a fibre with structures akin to native silk.

Dr Allardyce maintains that it’s also an innovation that could apply to other next generation fibres.

‘If the knowledge could be applied to other biopolymers - other proteins, cellulosic fibres - we could potentially produce new fibres that have a fraction of the energy input to synthetics but perform just as well while retaining the advantage of biodegradability.’

Source:

Deakin’s Institute for Frontier Materials’ (IFM)

Lincoln Laboratory staff member Steve Gillmer tests the elasticity of a bioabsorbable fabric in order to compare its stiffness to different types of human tissue. Photo: Glen Cooper/Lincoln Laboratory
24.03.2025

Knitted microtissue can accelerate healing

Lincoln Laboratory and MIT researchers are creating new types of bioabsorbable fabrics that mimic the unique way soft tissues stretch while nurturing growing cells.

Treating severe or chronic injury to soft tissues such as skin and muscle is a challenge in health care. Current treatment methods can be costly and ineffective, and the frequency of chronic wounds in general from conditions such as diabetes and vascular disease, as well as an increasingly aging population, is only expected to rise.

Lincoln Laboratory and MIT researchers are creating new types of bioabsorbable fabrics that mimic the unique way soft tissues stretch while nurturing growing cells.

Treating severe or chronic injury to soft tissues such as skin and muscle is a challenge in health care. Current treatment methods can be costly and ineffective, and the frequency of chronic wounds in general from conditions such as diabetes and vascular disease, as well as an increasingly aging population, is only expected to rise.

One promising treatment method involves implanting biocompatible materials seeded with living cells (i.e., microtissue) into the wound. The materials provide a scaffolding for stem cells, or other precursor cells, to grow into the wounded tissue and aid in repair. However, current techniques to construct these scaffolding materials suffer a recurring setback. Human tissue moves and flexes in a unique way that traditional soft materials struggle to replicate, and if the scaffolds stretch, they can also stretch the embedded cells, often causing those cells to die. The dead cells hinder the healing process and can also trigger an inadvertent immune response in the body.

"The human body has this hierarchical structure that actually un-crimps or unfolds, rather than stretches," says Steve Gillmer, a researcher in MIT Lincoln Laboratory's Mechanical Engineering Group. "That's why if you stretch your own skin or muscles, your cells aren't dying. What's actually happening is your tissues are uncrimping a little bit before they stretch."

Gillmer is part of a multidisciplinary research team that is searching for a solution to this stretching setback. He is working with Professor Ming Guo from MIT's Department of Mechanical Engineering and the laboratory's Defense Fabric Discovery Center (DFDC) to knit new kinds of fabrics that can uncrimp and move just as human tissue does.
The idea for the collaboration came while Gillmer and Guo were teaching a course at MIT. Guo had been researching how to grow stem cells on new forms of materials that could mimic the uncrimping of natural tissue. He chose electrospun nanofibers, which worked well, but were difficult to fabricate at long lengths, preventing him from integrating the fibers into larger knit structures for larger-scale tissue repair.

"Steve mentioned that Lincoln Laboratory had access to industrial knitting machines," Guo says. These machines allowed him to switch focus to designing larger knits, rather than individual yarns. "We immediately started to test new ideas through internal support from the laboratory."

Gillmer and Guo worked with the DFDC to discover which knit patterns could move similarly to different types of soft tissue. They started with three basic knit constructions called interlock, rib, and jersey.

"For jersey, think of your T-shirt. When you stretch your shirt, the yarn loops are doing the stretching," says Emily Holtzman, a textile specialist at the DFDC. "The longer the loop length, the more stretch your fabric can accommodate. For ribbed, think of the cuff on your sweater. This fabric construction has a global stretch that allows the fabric to unfold like an accordion."

Interlock is similar to ribbed but is knitted in a denser pattern and contains twice as much yarn per inch of fabric. By having more yarn, there is more surface area on which to embed the cells. "Knit fabrics can also be designed to have specific porosities, or hydraulic permeability, created by the loops of the fabric and yarn sizes," says Erin Doran, another textile specialist on the team. "These pores can help with the healing process as well."

So far, the team has conducted a number of tests embedding mouse embryonic fibroblast cells and mesenchymal stem cells within the different knit patterns and seeing how they behave when the patterns are stretched. Each pattern had variations that affected how much the fabric could uncrimp, in addition to how stiff it became after it started stretching. All showed a high rate of cell survival, and in 2024 the team received an R&D 100 award for their knit designs.

Gillmer explains that although the project began with treating skin and muscle injuries in mind, their fabrics have the potential to mimic many different types of human soft tissue, such as cartilage or fat. The team recently filed a provisional patent that outlines how to create these patterns and identifies the appropriate materials that should be used to make the yarn. This information can be used as a toolbox to tune different knitted structures to match the mechanical properties of the injured tissue to which they are applied.

"This project has definitely been a learning experience for me," Gillmer says. "Each branch of this team has a unique expertise, and I think the project would be impossible without them all working together. Our collaboration as a whole enables us to expand the scope of the work to solve these larger, more complex problems."

Source:

Anne McGovern | Lincoln Laboratory

© Hamilton Osoy, IFM. Researchers braid a computer fiber with a combination of metal and textile yarns. Covering the fiber computer with traditional yarns enables it to be easily integrated into fabrics and textiles.
04.03.2025

MIT Research: Fiber computers for apparel

MIT researchers developed a fiber computer and networked several of them into a garment that learns to identify physical activities.

What if the clothes you wear could care for your health?
MIT researchers have developed an autonomous programmable computer in the form of an elastic fiber, which could monitor health conditions and physical activity, alerting the wearer to potential health risks in real-time. Clothing containing the fiber computer was comfortable and machine washable, and the fibers were nearly imperceptible to the wearer, the researchers report.

MIT researchers developed a fiber computer and networked several of them into a garment that learns to identify physical activities.

What if the clothes you wear could care for your health?
MIT researchers have developed an autonomous programmable computer in the form of an elastic fiber, which could monitor health conditions and physical activity, alerting the wearer to potential health risks in real-time. Clothing containing the fiber computer was comfortable and machine washable, and the fibers were nearly imperceptible to the wearer, the researchers report.

Unlike on-body monitoring systems known as “wearables,” which are located at a single point like the chest, wrist, or finger, fabrics and apparel have an advantage of being in contact with large areas of the body close to vital organs. As such, they present a unique opportunity to measure and understand human physiology and health.
The fiber computer contains a series of microdevices, including sensors, a microcontroller, digital memory, bluetooth modules, optical communications, and a battery, making up all the necessary components of a computer in a single elastic fiber.

The researchers added four fiber computers to a top and a pair of leggings, with the fibers running along each limb. In their experiments, each independently programmable fiber computer operated a machine-learning model that was trained to autonomously recognize exercises performed by the wearer, resulting in an average accuracy of about 70 percent.

Surprisingly, once the researchers allowed the individual fiber computers to communicate among themselves, their collective accuracy increased to nearly 95 percent.
“Our bodies broadcast gigabytes of data through the skin every second in the form of heat, sound, biochemicals, electrical potentials, and light, all of which carry information about our activities, emotions, and health. Unfortunately, most — if not all — of it gets absorbed and then lost in the clothes we wear. Wouldn’t it be great if we could teach clothes to capture, analyze, store, and communicate this important information in the form of valuable health and activity insights?” says Yoel Fink, a professor of materials science and engineering at MIT, a principal investigator in the Research Laboratory of Electronics (RLE) and the Institute for Soldier Nanotechnologies (ISN), and senior author of a paper on the research, which has been published in Nature.

The use of the fiber computer to understand health conditions and help prevent injury will soon undergo a significant real-world test as well. U.S. Army and Navy service members will be conducting a monthlong winter research mission to the Arctic, covering 1,000 kilometers in average temperatures of -40 degrees Fahrenheit. Dozens of base layer merino mesh shirts with fiber computers will be providing real-time information on the health and activity of the individuals participating on this mission, called Musk Ox II.

“In the not-too-distant future, fiber computers will allow us to run apps and get valuable health care and safety services from simple everyday apparel. We are excited to see glimpses of this future in the upcoming Arctic mission through our partners in the U.S. Army, Navy, and DARPA. Helping to keep our service members safe in the harshest environments is a honor and privilege,” Fink says.

He is joined on the paper by co-lead authors Nikhil Gupta, an MIT materials science and engineering graduate student; Henry Cheung MEng ’23; and Syamantak Payra ’22, currently a graduate student at Stanford University; John Joannopoulos, the Francis Wright Professor of Physics at MIT and director of the Institute for Soldier Nanotechnologies; as well as others at MIT, Rhode Island School of Design, and Brown University.

Fiber focus
The fiber computer builds on more than a decade of work in the Fibers@MIT lab at the RLE and was supported primarily by ISN. In previous papers, the researchers demonstrated methods for incorporating semiconductor devices, optical diodes, memory units, elastic electrical contacts, and sensors into fibers that could be formed into fabrics and garments.

“But we hit a wall in terms of the complexity of the devices we could incorporate into the fiber because of how we were making it. We had to rethink the whole process. At the same time, we wanted to make it elastic and flexible so it would match the properties of traditional fabrics,” says Gupta.
 
One of the challenges that researchers surmounted is the geometric mismatch between a cylindrical fiber and a planar chip. Connecting wires to small, conductive areas, known as pads, on the outside of each planar microdevice proved to be difficult and prone to failure because complex microdevices have many pads, making it increasingly difficult to find room to attach each wire reliably.

In this new design, the researchers map the 2D pad alignment of each microdevice to a 3D layout using a flexible circuit board called an interposer, which they wrapped into a cylinder. They call this the “maki” design. Then, they attach four separate wires to the sides of the “maki” roll and connected all the components together.
“This advance was crucial for us in terms of being able to incorporate higher functionality computing elements, like the microcontroller and Bluetooth sensor, into the fiber,” says Gupta.

This versatile folding technique could be used with a variety of microelectronic devices, enabling them to incorporate additional functionality.

In addition, the researchers fabricated the new fiber computer using a type of thermoplastic elastomer that is several times more flexible than the thermoplastics they used previously. This material enabled them to form a machine-washable, elastic fiber that can stretch more than 60 percent without failure.

They fabricate the fiber computer using a thermal draw process that the Fibers@MIT group pioneered in the early 2000s. The process involves creating a macroscopic version of the fiber computer, called a preform, that contains each connected microdevice.

This preform is hung in a furnace, melted, and pulled down to form a fiber, which also contains embedded lithium-ion batteries so it can power itself.
“A former group member, Juliette Marion, figured out how to create elastic conductors, so even when you stretch the fiber, the conductors don’t break. We can maintain functionality while stretching it, which is crucial for processes like knitting, but also for clothes in general,” Gupta says.

Bring out the vote
Once the fiber computer is fabricated, the researchers use a braiding technique to cover the fiber with traditional yarns, such as polyester, merino wool, nylon, and even silk.

In addition to gathering data on the human body using sensors, each fiber computer incorporates LEDs and light sensors that enable multiple fibers in one garment to communicate, creating a textile network that can perform computation.

Each fiber computer also includes a Bluetooth communication system to send data wirelessly to a device like a smartphone, which can be read by a user.

The researchers leveraged these communication systems to create a textile network by sewing four fiber computers into a garment, one in each sleeve. Each fiber ran an independent neural network that was trained to identify exercises like squats, planks, arm circles, and lunges.

“What we found is that the ability of a fiber computer to identify human activity was only about 70 percent accurate when located on a single limb, the arms or legs.
However, when we allowed the fibers sitting on all four limbs to ‘vote,’ they collectively reached nearly 95 percent accuracy, demonstrating the importance of residing on multiple body areas and forming a network between autonomous fiber computers that does not need wires and interconnects,” Fink says.

Moving forward, the researchers want to use the interposer technique to incorporate additional microdevices.

Arctic insights
In February, a multinational team equipped with computing fabrics will travel for 30 days and 1,000 kilometers in the Arctic. The fabrics will help keep the team safe, and set the stage for future physiological “digital twinning” models.

“As a leader with more than a decade of Arctic operational experience, one of my main concerns is how to keep my team safe from debilitating cold weather injuries — a primary threat to operators in the extreme cold,” says U.S. Army Major Mathew Hefner, the commander of Musk Ox II. “Conventional systems just don’t provide me with a complete picture. We will be wearing the base layer computing fabrics on us 24/7 to help us better understand the body’s response to extreme cold and ultimately predict and prevent injury.”
 
Karl Friedl, U.S. Army Research Institute of Environmental Medicine senior research scientist of performance physiology, noted that the MIT programmable computing fabric technology may become a “gamechanger for everyday lives.”

“Imagine near-term fiber computers in fabrics and apparel that sense and respond to the environment and to the physiological status of the individual, increasing comfort and performance, providing real-time health monitoring and providing protection against external threats. Soldiers will be the early adopters and beneficiaries of this new technology, integrated with AI systems using predictive physiological models and mission-relevant tools to enhance survivability in austere environments,” Friedl says.

“The convergence of classical fibers and fabrics with computation and machine learning has only begun. We are exploring this exciting future not only through research and field testing, but importantly in an MIT Department of Materials Science and Engineering course ‘Computing Fabrics,’ taught with Professor Anais Missakian from the Rhode Island School of Design,” adds Fink.

This research was supported, in part, by the U.S. Army Research Office Institute for Soldier Nanotechnology (ISN), the U.S. Defense Threat Reduction Agency, the U.S. National Science Foundation, the Fannie and John Hertz Foundation Fellowship, the Paul and Daisy Soros Foundation Fellowship for New Americans, the Stanford-Knight Hennessy Scholars Program, and the Astronaut Scholarship Foundation.

Source:

Adam Zewe | MIT News

 ‘smart pyjamas’ to monitor sleep disorders © Luigi Occhipinti, Cambridge
21.02.2025

Scientists develop ‘smart pyjamas’ to monitor sleep disorders

Researchers have developed comfortable, washable ‘smart pyjamas’ that can monitor sleep disorders such as sleep apnoea at home, without the need for sticky patches, cumbersome equipment or a visit to a specialist sleep clinic.

The team, led by the University of Cambridge, developed printed fabric sensors that can monitor breathing by detecting tiny movements in the skin, even when the pyjamas are worn loosely around the neck and chest.

The sensors embedded in the smart pyjamas were trained using a ‘lightweight’ AI algorithm and can identify six different sleep states with 98.6% accuracy, while ignoring regular sleep movements such as tossing and turning. The energy-efficient sensors only require a handful of examples of sleep patterns to successfully identify the difference between regular and disordered sleep.

Researchers have developed comfortable, washable ‘smart pyjamas’ that can monitor sleep disorders such as sleep apnoea at home, without the need for sticky patches, cumbersome equipment or a visit to a specialist sleep clinic.

The team, led by the University of Cambridge, developed printed fabric sensors that can monitor breathing by detecting tiny movements in the skin, even when the pyjamas are worn loosely around the neck and chest.

The sensors embedded in the smart pyjamas were trained using a ‘lightweight’ AI algorithm and can identify six different sleep states with 98.6% accuracy, while ignoring regular sleep movements such as tossing and turning. The energy-efficient sensors only require a handful of examples of sleep patterns to successfully identify the difference between regular and disordered sleep.

The researchers say that their smart pyjamas could be useful for the millions of people in the UK who struggle with disordered sleep to monitor their sleep, and how it might be affected by lifestyle changes. The results are reported in the Proceedings of the National Academy of Sciences (PNAS).

Sleep is vital for human health, yet more than 60% of adults experience poor sleep quality, leading to the loss of between 44 and 54 annual working days, and an estimated one percent reduction in global GDP. Sleep behaviours such as mouth breathing, sleep apnoea and snoring are major contributors to poor sleep quality, and can lead to chronic conditions such as cardiovascular disease, diabetes and depression.

“Poor sleep has huge effects on our physical and mental health, which is why proper sleep monitoring is vital,” said Professor Luigi Occhipinti from the Cambridge Graphene Centre, who led the research. “However, the current gold standard for sleep monitoring, polysomnography or PSG, is expensive, complicated and isn’t suitable for long-term use at home.”

Home devices that are simpler than PSG, such as home sleep tests, typically focus on a single condition and are bulky or uncomfortable. Wearable devices such as smartwatches, while more comfortable to wear, can only infer sleep quality, and are not effective for accurately monitoring disordered sleep.

“We need something that is comfortable and easy to use every night, but is accurate enough to provide meaningful information about sleep quality,” said Occhipinti.

To develop the smart pyjamas, Occhipinti and his colleagues built on their earlier work on a smart choker for people with speech impairments. The team re-designed the graphene-based sensors for breath analysis during sleep, and made several design improvements to increase sensitivity.

“Thanks to the design changes we made, the sensors are able to detect different sleep states, while ignoring regular tossing and turning,” said Occhinpinti. “The improved sensitivity also means that the smart garment does not need to be worn tightly around the neck, which many people would find uncomfortable. As long as the sensors are in contact with the skin, they provide highly accurate readings.”

The researchers designed a machine learning model, called SleepNet, that uses the signals captured by the sensors to identify sleep states including nasal breathing, mouth breathing, snoring, teeth grinding, central sleep apnoea (CSA), and obstructive sleep apnoea (OSA). SleepNet is a ‘lightweight’ AI network, that reduces computational complexity to the point where it can be run on portable devices, without the need to connect to computers or servers.

“We pruned the AI model to the point where we could get the lowest computational cost with the highest degree of accuracy,” said Occhinpinti. “This way we are able to embed the main data processors in the sensors directly.”

The smart pyjamas were tested on healthy patients and those with sleep apnoea, and were able to detect a range of sleep states with an accuracy of 98.6%. By treating the smart pyjamas with a special starching step, they were able to improve the durability of the sensors so they can be run through a regular washing machine.

The most recent version of the smart pyjamas are also capable of wireless data transfer, meaning the sleep data can be securely transferred to a smartphone or computer.
“Sleep is so important to health, and reliable sleep monitoring can be key in preventative care,” said Occhipinti. “Since this garment can be used at home, rather than in a hospital or clinic, it can alert users to changes in their sleep that they can then discuss with their doctor. Sleep behaviours such as nasal versus mouth breathing are not typically picked up in an NHS sleep analysis, but it can be an indicator of disordered sleep.”

The researchers are hoping to adapt the sensors for a range of health conditions or home uses, such as baby monitoring, and have been in discussions with different patient groups. They are also working to improve the durability of the sensors for long-term use.

The research was supported in part by the EU Graphene Flagship, Haleon, and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI).

Source:

Reference:
Chenyu Tang, Wentian Yi et al. ‘A deep learning-enabled smart garment for accurate and versatile monitoring of sleep conditions in daily life.’ PNAS (2025). DOI: 10.1073/pnas.2420498122
Source: Sarah Collins, University of Cambridge; Übersetzung Textination mit KI

The DITF light lab. (c) DITF
20.01.2025

Textile daylight management when the winter sun is at an angle

When the sun is currently shining, shading textiles face particular challenges. On the one hand, they should allow as much daylight as possible into the rooms during the dark season. On the other hand, the angle of incidence of the sun's rays is so low that the light is particularly dazzling - much more so than in summer. The German Institutes of Textile and Fiber Research (DITF) are using special light measurement techniques to research suitable shading textiles.

Daylight enhances well-being and has many advantages over artificial lighting. Sensible daylight management can therefore increase the ability to perform and concentrate. As less artificial light is required and solar gains and losses are used for room air conditioning, daylight management also saves energy.

When the sun is currently shining, shading textiles face particular challenges. On the one hand, they should allow as much daylight as possible into the rooms during the dark season. On the other hand, the angle of incidence of the sun's rays is so low that the light is particularly dazzling - much more so than in summer. The German Institutes of Textile and Fiber Research (DITF) are using special light measurement techniques to research suitable shading textiles.

Daylight enhances well-being and has many advantages over artificial lighting. Sensible daylight management can therefore increase the ability to perform and concentrate. As less artificial light is required and solar gains and losses are used for room air conditioning, daylight management also saves energy.

Textile daylight systems influence the incidence of light and are mainly designed to be movable. Internal systems include, for example, roller blinds, folding blinds and curtains. External systems are external venetian blinds, awnings and screens that are guided in front of the façade. The DITF can precisely measure daylight behavior in its light and dark laboratories - even beyond existing standardized test methods. A test method developed in Denkendorf allows the glare control of solar protection devices to be re-evaluated and has been included in the standard to determine the cut-off angle. This cut-off angle describes the extent to which a solar protection device can block the transmission of direct light from a certain angle of incidence. In the currently valid standard, glare control is quantified using the two characteristics of normal and diffuse light transmittance. For solar protection devices with an openness coefficient of 1-3 %, a higher glare control class can be achieved. This applies to cut-off angles of 65° or less. The cut-off angle is determined by an angle-dependent measurement of the direct light transmittance. During the test, the solar protection textile is rotated in a modified test sample holder from the zero point until the direct light transmittance falls below a defined threshold value. This process is repeated after a gradual azimuthal rotation of the test sample, in other words a rotation of the textile in the test sample holder. Depending on the symmetry properties of the sample, up to 29 individual measurements may be required to determine the cut-off angle.

At the DITF, testing and development facilities for other photometric requirements such as incident light, self-luminous textiles and light-conducting textiles are available for industrial product developments.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf

Silk Yarn Photo: LoggaWiggler from Pixabay
14.01.2025

Discarded silk yarn can clean up polluted waterways

Cornell researchers have developed an elegant and sustainable way to clean up waterways: reusing one waste product to remove another.

Cornell researchers have developed an elegant and sustainable way to clean up waterways: reusing one waste product to remove another.

Led by Larissa Shepherd, Ph.D., assistant professor in the Department of Human Centered Design, in the College of Human Ecology, the team has proposed using discarded silk yarn for the removal of dye and oil from water. Studies on several different forms of silk: fabrics, yarns, and fibers revealed that yarn unraveled from silk fabric, soaked up methylene blue (MB), a common textile dye, from water at a substantially higher rate than other forms of silk they tested.
 
What’s more, the silk yarn can be cleaned and reused. Shepherd’s group found that the textile can withstand at least 10 cycles, with minimal loss of functionality.
 
Shepherd is the corresponding author of “Waste Bombyx Mori Silk Textiles as Efficient and Reuseable Bio-Adsorbents for Methylene Blue Dye Removal and Oil-Water Separation,” published in November 2024 in the journal Fibers. Co-authors are Hansadi Jayamaha, doctoral candidate in the field of fiber science, and Isabel Schorn ’26, a fiber science undergraduate.

Jayamaha found that 12 milligrams of silk filament yarn have 90% MB dye removal efficiency within 10 minutes of exposure, for concentrations up to 100 parts per million, substantially greater than the efficiency of other forms – even electrospun fiber mats or fabrics treated with the hollow silk microparticle spheres, which was a surprise, the researchers said.

“By creating the spheres,” Jayamaha said, “we were creating a more hydrophilic surface compared to the silk fabric, which is more hydrophobic. But by disassembling the fabric to the yarn stage, we are creating higher surface area, and that improves the adsorption.”

The group also tested silk textile adsorption capacity with oil, and found that Noil fabric (a textile that contains silk yarns composed of short fibers, rather than filament) displays oil adsorption capacities three times the initial weight of the fabric for corn oil, and close to twice the weight for gasoline.

Tests on both materials showed that, following a diminishment of function after the first cleaning-reuse cycle, the material maintained its functionality for the subsequent nine cycles.
This intrinsic property of silk as a dye adsorbent, the group found, can be achieved without chemical or other alteration of the material – just deconstructing the textile product.
     
“When you regenerate silk, you have to use very harsh chemicals,” Shepherd said. “In our case, we’re just using the fabrics themselves. Yes, we may have to unravel them to get the benefit, but that’s much better than putting these harsh chemicals out into the environment.”

Shepherd envisions “pillows” containing the silk yarn unraveled from discarded textiles and remnants from the cut and sew operations of the textiles industry as being an effective means of cleaning up spills and waste materials, including MB dye, which is detrimental to agricultural land and waterways when it is accidentally released from textile plants.

“We realized that we can kill two birds with one stone: We can get rid of waste textiles, which is a big issue in the textile industry in general,” Shepherd said. “And then we found that it’s actually really good at adsorbing, just because of its natural, structural properties.”

This work made use of the Cornell Center for Materials Research Shared Facilities, as well as the Cornell NanoScale Science and Technology Facility, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation. This work was partially funded by an American Association of Textiles Chemists and Colorists graduate research grant.

Source:

Tom Fleischman, Cornell Chronicle

Stains on the white cotton fabric treated with zinc oxide. Photo: Mikael Nyberg / University of Turku
11.12.2024

Self-cleaning cotton or a colour-changing print

For many years researchers from Nordic countries have worked for making textile industry more sustainable. Now there are prototypes of cotton which can clean itself and of textiles which are created of invasive lupines.  

How could future clothes and textiles become more ecofriendly, smart and sustainable? A research group from Nordic countries has tried to figure out this for many years and in October the prototypes they have made were presented in an exhibition in Turku.

A doctoral researcher Alicja Lawrynowicz from Faculty of Technology at the University of Turku has been developing two different smart textiles. In one of the projects researchers have created a cotton fabric which can clean itself without water.

For many years researchers from Nordic countries have worked for making textile industry more sustainable. Now there are prototypes of cotton which can clean itself and of textiles which are created of invasive lupines.  

How could future clothes and textiles become more ecofriendly, smart and sustainable? A research group from Nordic countries has tried to figure out this for many years and in October the prototypes they have made were presented in an exhibition in Turku.

A doctoral researcher Alicja Lawrynowicz from Faculty of Technology at the University of Turku has been developing two different smart textiles. In one of the projects researchers have created a cotton fabric which can clean itself without water.

This is possible because the fabric has been treated with mineral called zinc oxide.
 
The mineral forms a self-cleaning layer and stains on the fabric disappear when they are exposed to the daylight, in other words ultraviolet light. If stains disappear by themselves, it reduces the need of washing and garment burdens nature less.

Here you can see how the stains gradually disappear on the white cotton fabric that has been treated with zinc oxide.

In the other textile project, researchers have managed to develop non-toxic textile print which changes its colour when it is subjected to sunlight. Mineral hackmanite, which reacts to ultraviolet radiation, is used here. The mineral does not originate from mines but is created in a laboratory in Turku.

For first time ever, hackmanite is now used in textile prints. The mineral works as an ultraviolet censor and changes its colour when you have been too long time in the sun and must protect yourself. It can reduce the risk for the damage of the sun, says Alicja Lawrynowicz.

Material out to the market
Prototypes which now have been retrieved are not yet available in larger scale. So, what is going to happen with all discoveries?
The idea is that they are not going to stay in the laboratory. We hope that in the future our innovations will be used in industry, says Lawrynowicz.

The research is multidisciplinary, which means that there has been cooperation between different research groups. Research goes on also in other Nordic countries.  

Lupine can become textiles
In Denmark one research group has invested in ecofriendly colouring and created dyes out of big amounts of waste from local restaurants, among others avocado and onion peels. Avocado peels give textiles a beautiful yellow colour and onion creates brown nuances. In future these colours could replace traditional, toxic dyes.

At the same time researchers in Aalto University have produced textiles out of lupine, which is an invasive species in Finland.

Until now we have been removing lupines out of ditches and seeing it as a problem, but here researchers have created fibers and been able to weave a cloth out of it, says research coordinator Helen Salminen from the field of material science at the University of Turku.

Within the framework of the project researchers in Sweden have in turn worked on developing alternatives to plastic fibers (elastane) which are often used in jeans fabric for making fabric more elastic.

Cotton which contains a few percent of plastic fibers is difficult to recycle. This makes it difficult to use the fabric as a raw material for further processes. For that reason, it is important to find new ways to weave fabric so that fabric can be recycled and can be elastic without plastic fibers, says Alicja Lawrynowicz.

Source:

Aalto University, YLE Svenska about the NordForsk-funded project 'Beyond e-Textiles' and 'Interlaced' exhibition at the University of Turku

Waterfiltration Photo Manuel Darío Fuentes Hernández , Pixabay
10.11.2024

New filtration material could remove long-lasting chemicals from water

Membranes based on natural silk and cellulose can remove many contaminants, including “forever chemicals” and heavy metals.

Water contamination by the chemicals used in today’s technology is a rapidly growing problem globally. A recent study by the U.S. Centers for Disease Control found that 98 percent of people tested had detectable levels of PFAS, a family of particularly long-lasting compounds also known as “forever chemicals,” in their bloodstream.

A new filtration material developed by researchers at MIT might provide a nature-based solution to this stubborn contamination issue. The material, based on natural silk and cellulose, can remove a wide variety of these persistent chemicals as well as heavy metals. And, its antimicrobial properties can help keep the filters from fouling.

Membranes based on natural silk and cellulose can remove many contaminants, including “forever chemicals” and heavy metals.

Water contamination by the chemicals used in today’s technology is a rapidly growing problem globally. A recent study by the U.S. Centers for Disease Control found that 98 percent of people tested had detectable levels of PFAS, a family of particularly long-lasting compounds also known as “forever chemicals,” in their bloodstream.

A new filtration material developed by researchers at MIT might provide a nature-based solution to this stubborn contamination issue. The material, based on natural silk and cellulose, can remove a wide variety of these persistent chemicals as well as heavy metals. And, its antimicrobial properties can help keep the filters from fouling.

The findings are described in the journal ACS Nano, in a paper by MIT postdoc Yilin Zhang, professor of civil and environmental engineering Benedetto Marelli, and four others from MIT.

PFAS chemicals are present in a wide range of products, including cosmetics, food packaging, water-resistant clothing, firefighting foams, and antistick coating for cookware. A recent study identified 57,000 sites contaminated by these chemicals in the U.S. alone. The U.S. Environmental Protection Agency has estimated that PFAS remediation will cost $1.5 billion per year, in order to meet new regulations that call for limiting the compound to less than 7 parts per trillion in drinking water.

Contamination by PFAS and similar compounds “is actually a very big deal, and current solutions may only partially resolve this problem very efficiently or economically,” Zhang says. “That’s why we came up with this protein and cellulose-based, fully natural solution,” he says.

“We came to the project by chance,” Marelli notes. The initial technology that made the filtration material possible was developed by his group for a completely unrelated purpose — as a way to make a labelling system to counter the spread of counterfeit seeds, which are often of inferior quality. His team devised a way of processing silk proteins into uniform nanoscale crystals, or “nanofibrils,” through an environmentally benign, water-based drop-casting method at room temperature.

Zhang suggested that their new nanofibrillar material might be effective at filtering contaminants, but initial attempts with the silk nanofibrils alone didn’t work. The team decided to try adding another material: cellulose, which is abundantly available and can be obtained from agricultural wood pulp waste. The researchers used a self-assembly method in which the silk fibroin protein is suspended in water and then templated into nanofibrils by inserting “seeds” of cellulose nanocrystals. This causes the previously disordered silk molecules to line up together along the seeds, forming the basis of a hybrid material with distinct new properties.

By integrating cellulose into the silk-based fibrils that could be formed into a thin membrane, and then tuning the electrical charge of the cellulose, the researchers produced a material that was highly effective at removing contaminants in lab tests.

The electrical charge of the cellulose, they found, also gave it strong antimicrobial properties. This is a significant advantage, since one of the primary causes of failure in filtration membranes is fouling by bacteria and fungi. The antimicrobial properties of this material should greatly reduce that fouling issue, the researchers say.

“These materials can really compete with the current standard materials in water filtration when it comes to extracting metal ions and these emerging contaminants, and they can also outperform some of them currently,” Marelli says. In lab tests, the materials were able to extract orders of magnitude more of the contaminants from water than the currently used standard materials, activated carbon or granular activated carbon.

While the new work serves as a proof of principle, Marelli says, the team plans to continue working on improving the material, especially in terms of durability and availability of source materials. While the silk proteins used can be available as a byproduct of the silk textile industry, if this material were to be scaled up to address the global needs for water filtration, the supply might be insufficient. Also, alternative protein materials may turn out to perform the same function at lower cost.

Initially, the material would likely be used as a point-of-use filter, something that could be attached to a kitchen faucet, Zhang says. Eventually, it could be scaled up to provide filtration for municipal water supplies, but only after testing demonstrates that this would not pose any risk of introducing any contamination into the water supply. But one big advantage of the material, he says, is that both the silk and the cellulose constituents are considered food-grade substances, so any contamination is unlikely.

“Most of the normal materials available today are focusing on one class of contaminants or solving single problems,” Zhang says. “I think we are among the first to address all of these simultaneously.”

“What I love about this approach is that it is using only naturally grown materials like silk and cellulose to fight pollution,” says Hannes Schniepp, professor of applied science at the College of William and Mary, who was not associated with this work. “In competing approaches, synthetic materials are used — which usually require only more chemistry to fight some of the adverse outcomes that chemistry has produced. [This work] breaks this cycle! ... If this can be mass-produced in an economically viable way, this could really have a major impact.”

The research team included MIT postdocs Hui Sun and Meng Li, graduate student Maxwell Kalinowski, and recent graduate Yunteng Cao PhD ’22, now a postdoc at Yale University. The work was supported by the U.S. Office of Naval Research, the U.S. National Science Foundation, and the Singapore-MIT Alliance for Research and Technology.

Breakthrough in smart fabric for sensing and energy harvesting (c) University of Waterloo
26.08.2024

Breakthrough in smart fabric for sensing and energy harvesting

Imagine a coat that captures solar energy to keep you cozy on a chilly winter walk, or a shirt that can monitor your heart rate and temperature. Picture clothing athletes can wear to track their performance without the need for bulky battery packs.

University of Waterloo researchers have developed a smart fabric with these remarkable capabilities. The fabric has the potential for energy harvesting, health monitoring and movement tracking applications.

The new fabric can convert body heat and solar energy into electricity, potentially enabling continuous operation with no need for an external power source. Different sensors monitoring temperature, stress and more can be integrated into the material.

Imagine a coat that captures solar energy to keep you cozy on a chilly winter walk, or a shirt that can monitor your heart rate and temperature. Picture clothing athletes can wear to track their performance without the need for bulky battery packs.

University of Waterloo researchers have developed a smart fabric with these remarkable capabilities. The fabric has the potential for energy harvesting, health monitoring and movement tracking applications.

The new fabric can convert body heat and solar energy into electricity, potentially enabling continuous operation with no need for an external power source. Different sensors monitoring temperature, stress and more can be integrated into the material.

It can detect temperature changes and a range of other sensors to monitor pressure, chemical composition and more. One promising application is smart face masks that can track breath temperature and rate and detect chemicals in breath to help identify viruses, lung cancer and other conditions.

“We have developed a fabric material with multifunctional sensing capabilities and self-powering potential,” said Yuning Li, a professor in the Department of Chemical Engineering. “This innovation brings us closer to practical applications for smart fabrics.”

Unlike current wearable devices that often depend on external power sources or frequent recharging, this breakthrough research has created a novel fabric which is more stable, durable, and cost-effective than other fabrics on the market.

This research, conducted in collaboration with Professor Chaoxia Wang and PhD student Jun Peng from the College of Textile Science and Engineering at Jiangnan University, showcases the potential of integrating advanced materials such as MXene and conductive polymers with cutting-edge textile technologies to advance smart fabrics for wearable technology.

Li, director of Waterloo’s Printable Electronic Materials Lab, highlighted the significance of this advancement, which is the latest in the university’s suite of technologies disrupting health boundaries.

“AI technology is evolving rapidly, offering sophisticated signal analysis for health monitoring, food and pharmaceutical storage, environmental monitoring, and more. However, this progress relies on extensive data collection, which conventional sensors, often bulky, heavy, and costly, cannot meet,” Li said. “Printed sensors, including those embedded in smart fabrics, are ideal for continuous data collection and monitoring. This new smart fabric is a step forward in making these applications practical.”

The next phase of research will focus on further enhancing the fabric’s performance and integrating it with electronic components in collaboration with electrical and computer engineers. Future developments may include a smartphone app to track and transmit data from the fabric to healthcare professionals, enabling real-time, non-invasive health monitoring and everyday use.

The study is published in the Journal of Materials Science & Technology.

Source:

Waterloo University

Photo by John Zich
14.08.2024

New fabric makes urban heat islands more bearable

With applications in clothing, construction and food storage, the new textile reduces heat from both the sun and thermal radiation from nearby buildings.

This year has already seen massive heatwaves around the globe, with cities in Mexico, India, Pakistan and Oman hitting temperatures near or past 50 degrees Celsius (122 degrees Fahrenheit).  

As global temperatures and urban populations rise, the world’s cities have become “urban heat islands,” with tight-packed conditions and thermal radiation emitting from pavement and skyscraper trapping and magnifying these temperatures. With 68 percent of all people predicted to live in cities by 2050, this is a growing, deadly problem.

With applications in clothing, construction and food storage, the new textile reduces heat from both the sun and thermal radiation from nearby buildings.

This year has already seen massive heatwaves around the globe, with cities in Mexico, India, Pakistan and Oman hitting temperatures near or past 50 degrees Celsius (122 degrees Fahrenheit).  

As global temperatures and urban populations rise, the world’s cities have become “urban heat islands,” with tight-packed conditions and thermal radiation emitting from pavement and skyscraper trapping and magnifying these temperatures. With 68 percent of all people predicted to live in cities by 2050, this is a growing, deadly problem.

In a paper published in Science, researchers from the UChicago Pritzker School of Molecular Engineering (PME) detail a new wearable fabric that can help urban residents survive the worst impacts of massive heat caused by global climate change, with applications in clothing, building and car design, and food storage.  

In tests under the Arizona sun, the material kept 2.3 degrees Celsius (4.1 degrees Fahrenheit) cooler than the broadband emitter fabric used for outdoor endurance sports and 8.9 degrees Celsius (16 degrees Fahrenheit) cooler than the commercialized silk commonly used for shirts, dresses and other summer clothing.

This, the team hopes, will help many avoid the heat-related hospitalizations and deaths seen in global population centers this year alone.

“We need to reduce carbon emission and make our cities carbon negative or carbon neutral,” PME Asst. Prof. Po-Chun Hsu said. “But meanwhile, people are feeling the impact of these high temperatures.”

‘You have to consider the environment’
Existing cooling fabric for outdoor sports works by reflecting the sun’s light in a diffuse pattern so it doesn’t blind onlookers. But in an urban heat island, the sun is only one source of heat. While the sun bakes from above, thermal radiation emitted from buildings and pavement blast city-dwellers with blistering heat from the sides and below.

This means many materials that perform well in lab tests won’t help city-dwellers in Arizona, Nevada, California, Southeast Asia and China when predicted massive heatwaves hit them over the next few weeks.

“People normally focus on the performance or the material design of cooling textiles,” said co-first author Ronghui Wu, a postdoctoral researcher at PME. “To make a textile that has the potential to apply to real life, you have to consider the environment.”

One simple example of considering the environment is that people stand. They are wearing materials designed to reflect direct sunlight, but only their hats, shoulder coverings and the tops of their shoes – about 3 percent of their clothing – face that direct light. The other 97 of their clothes are being heated by the thermal radiation coming at them from the sides and below, which broadband emitter fabric does not fight.

The sun and sidewalk cook with different heats. Creating one material capable of protecting wearers from both provided a major engineering challenge for the team.

“Solar is visible light, thermal radiation is infrared, so they have different wavelengths. That means you need to have a material that has two optical properties at the same time. That's very challenging to do,” said co-first author Chenxi Sui, a PhD candidate at PME. “You need to play with material science to engineer and tune the material to give you different resonances at different wavelengths.”

The costs of comfort
Cooling a home too often means warming the planet, with the carbon impact of air conditioning and refrigeration systems contributing to climate change.  

“Our civilization actually uses about 10 to 15 percent of the energy in total just to make ourselves feel comfortable wherever we go,” Hsu said.

The risk from heat is not distributed evenly, however. In the U.S. and Japan, more than 90 percent of households have an air conditioner, a number that drops to 5 percent in India and parts of Africa.
 
The PME team’s new textile, which has received a provisional patent, can help provide a passive cooling system that can supplement and reduce the need for energy- and cost-intensive systems.

The applications go far beyond clothing.  

A thicker version of the fabric protected by an invisible layer of polyethylene could be used on the sides of buildings or cars, lowering internal temperatures and reducing the cost and carbon impact of air conditioning. Similarly, the material could be used to transport and store milk and other foods that would otherwise spoil in the heat, cutting refrigeration’s impact.

“You can save a lot of cooling, electricity and energy costs because this is a passive process,” Sui said.

Source:

Paul Dailing | University of Chicago

Atacama desert Photo by Fernando Rodrigues on Unsplash
23.07.2024

Reducing environmental & health impacts of global trade of 2nd hand clothes

The rise of fast-fashion, marked by rapid turnover of collections, has led to a sevenfold increase in the global trade of used clothing in the last 4 decades. With more than 80% of all purchased clothing items globally (62% in the EU) being disposed of as general garbage, which is incinerated or landfilled, this represents a massive waste of resources, causing severe environmental and health impacts. A report recently published by UNECE and the United Nations Economic Commission for Latin America and the Caribbean (ECLAC) contains an in-depth analysis of second-hand clothing trade between Europe and Chile, offers policy recommendations to the industry, exporting and importing countries to remedy this situation.

The rise of fast-fashion, marked by rapid turnover of collections, has led to a sevenfold increase in the global trade of used clothing in the last 4 decades. With more than 80% of all purchased clothing items globally (62% in the EU) being disposed of as general garbage, which is incinerated or landfilled, this represents a massive waste of resources, causing severe environmental and health impacts. A report recently published by UNECE and the United Nations Economic Commission for Latin America and the Caribbean (ECLAC) contains an in-depth analysis of second-hand clothing trade between Europe and Chile, offers policy recommendations to the industry, exporting and importing countries to remedy this situation.

According to UN Comtrade data, in 2021 the European Union (30%), China (16%), and the United States (15%) were the leading exporters of discarded clothes, while Asia (28%, predominantly Pakistan), Africa (19%, especially Ghana and Kenya), and Latin America (16%, mainly Chile and Guatemala) were the leading importers.  

This has been facilitated by the advent of low-cost synthetic fibres and by trade liberalization that allowed the offshoring of production to countries with low-wage labour. Large proportions of clothing are made from difficult-to-separate blended fibres, making opportunities for economic reuse and recycling rare, particularly in developed countries.

“When did we normalize throwing clothes away?”, questions Lily Cole, Climate Activist and Advisor to UNECE. “As the world, mostly the Global North, has produced and consumed fashion at an unrelenting rate, a handful of countries, mainly in the Global South, have become cemeteries for the world’s unloved clothes. While visiting the Atacama Desert, my attention was brought to the textile mountains and the shifting cultural, economic, and political landscapes that birthed them. Consumer awareness is very helpful, yet, ultimately, we need policies to curb systemic trends, which is why this report and its recommendations are so necessary.”

Europe: sorting and recycling capacities lag behind  
In Europe only 15-20% of disposed textiles are collected, usually through containers, door-to-door collection and donations. About half of the collected textiles are downcycled to be used as, for example, insulation, filling, and single-use industrial wipes. Only 1% is recycled into higher value outputs such as new clothing, while the remainder is exported to developing countries.  

Of the 55% of collected clothes that are reusable, only 5 percentage points have a value on second-hand markets in the EU, while 50 percentage points have a value on export markets.  

The European Union has thus tripled its exports of used clothes over the past 2 decades, from 550,000 to 1.7 million tons. Europe, including the United Kingdom, accounts now for more than a third of global used clothing exports, and this share could continue to grow as collection rates are expected to rise.  

A design-led circular economy approach to clothing is still in its infancy. The EU Circular Economy Action Plan (CEAP) was adopted in 2020, the EU Strategy for Sustainable and Circular Textiles was adopted in 2022, and the EU Ecodesign for Sustainable Products Regulation was adopted in 2023. However, these policies are still to bear fruit in the form of large-scale upstream solutions to the problems of textile waste. 

“The used clothes global market is constantly growing, and with it, its negative impacts. The textile industry has a key responsibility to adopt more sustainable practices, exporters and importers to adopt relevant policy decisions to foster traceability, circularity and sustainability. UN/CEFACT policy recommendations and standards will support this transition. And of course, we all have a role to play, as consumers, to make sustainable choices,” stressed UNECE Executive Secretary Tatiana Molcean.

The case of Chile: mountains of used clothes visible from the moon  
Most countries in Latin America (including Argentina, Brazil, Colombia, Mexico, and Peru) have introduced clothing import bans to protect their national textile and fashion industries and avoid the threats posed by clothing dumps.

By contrast, Chile levies zero tariffs, and applies no quantity restrictions in imports, only requiring shipments to be sanitised (by fumigation). It has thus become one of the top 10 importers in the world, and the first in Latin America, receiving 126,000 tons of textiles in 2021. 40% of these entered the country through the northern port of Iquique, where they are manually sorted, primarily by women, and separated into first, second, and third quality.

75% of all imported used clothes were deemed non-reusable, 30,000 tons of which are covering today 30 hectares of the Atacama desert, generating pollution and creating hazard to local communities’ health. At the same time, trade in second-hand garments also provides employment and formal and informal income for national and migrant populations in established stores and open-air markets across the country, and this must be factored in when redefining public policies.

“To address the environmental and social issues of used textile trade, the EU and Chile must work together on creating robust regulatory frameworks. A partnership between the European Union and Chile could pioneer innovative approaches to regulate and reduce the impact of second-hand textile trade, including by setting global standards for the trade of used textiles, focusing on sustainability and social responsibility." Highlights UNECLAC Executive Secretary, Mr. José Manuel Salazar-Xirinachs.  

Multifold recommendations
The report contains a series of recommendations to the textile industry, exporters and importers.   

To exporting countries

  • Make circular economy considerations central to the design of clothing, with mandatory targets for fibre composition that improve quality, durability, repairability, and recyclability  
  • Introduce an Extended Producer Responsibility (EPR) system holding producers responsible for the products they manufacture  
  • Develop more sorting and recycling plants, through financial incentives  
  • Develop minimum EU criteria for second-hand clothing exports through the use of digital product passports (DPPs)  
  • Run awareness-raising campaigns to encourage consumers to make more informed choices about their clothes

To importing countries – the example of Chile

  • Improve customs procedures & administrative measures at the port of Iquique to ensure digital traceability of flows of used clothing and textile based on the UN/CEFACT traceability standard   
  • Establish a Circular Economy Strategy for Textiles  
  • Set-up public-private alliances for recycling projects through tax extension schemes and funds to support entrepreneurship, innovation, and job creation for vulnerable groups, particularly in the Tarapacá region  
  • Improve the legal framework for waste management   
  • Implement a Regional Solid Waste Control Plan, involving inspections of sanitary landfills, clean points, and dumps to increase the enforcement capacity of regional health authorities  
  • Accelerate the adoption of the Chilean draft law on environmental quality of soils.

The report also recommends making changes to international trade agreements, such as the2023 Interim Trade Agreement between the EU and Chile, which includes a chapter on Trade and Sustainable Development, to step up bilateral cooperation, and using it as a template for other bilateral trade agreements between the EU and other countries.   

Download the Executive Summary

Source:

United Nations Economic Commission for Europe

Bread waste + fungi = yarn (c) Photos by Kanishka Wijayarathna (bread waste), Erik Norving (prototypes), Andreas Nordin (researchers) and Sofie Svensson (microscope).
17.07.2024

Bread waste + fungi = yarn

The production of new materials from fungi is an emerging research area. In a research project at the Swedish School of Textiles at the University of Borås, wet spinning of fungal cell wall material has shown promising results. In the project, fungi were grown on bread waste to produce textile fibers with potential in the medical technology field.

Sofie Svensson's project addresses, among other things, the UN's Global Goals 9, sustainable industry, innovation, and infrastructure, and Goal 12, sustainable consumption and production, as the project aimed to use sustainable methods in a resource- and cost-effective way, with less impact on people and the environment.

Sofie Svensson, who recently defended her dissertation in the field of Resource Recovery, explained:

The production of new materials from fungi is an emerging research area. In a research project at the Swedish School of Textiles at the University of Borås, wet spinning of fungal cell wall material has shown promising results. In the project, fungi were grown on bread waste to produce textile fibers with potential in the medical technology field.

Sofie Svensson's project addresses, among other things, the UN's Global Goals 9, sustainable industry, innovation, and infrastructure, and Goal 12, sustainable consumption and production, as the project aimed to use sustainable methods in a resource- and cost-effective way, with less impact on people and the environment.

Sofie Svensson, who recently defended her dissertation in the field of Resource Recovery, explained:

“My research project is about developing fibres spun from filamentous fungi for textile applications. The fungi were grown on bread waste from grocery stores. Waste that would otherwise have a significant environmental impact if discarded.”

The novelty of the project lies in the method used – wet spinning of cell wall material.

“Wet spinning is a method used to spin fibres (filaments) from materials such as cellulose. In this project, cell wall material from filamentous fungi was used to produce fibres through wet spinning. The cell wall material from the fungi contains various polymers, mainly polysaccharides such as chitin, chitosan, and glucan. The challenge was to spin the material. It took some time initially before we found the right conditions”, explained Sofie Svensson.

Antibacterial properties
Filamentous fungi were cultivated in bioreactors to produce fungal biomass. Cell wall material was then isolated from the fungal biomass and used to spin a filament, which was tested for its suitability in medical applications.

“Tests of the fibers showed compatibility with skin cells and also indicated an antibacterial effect”, said Sofie Svensson, adding:

“In the method we worked with, we focused on using milder processes and chemicals. The use of hazardous and toxic chemicals is currently a challenge in the textile industry, and developing sustainable materials is important to reduce environmental impact.”

What is the significance of the results?
“New materials from fungi are an emerging research area. Hopefully, this research can contribute to the development of new sustainable materials from fungi”, explained Sofie Svensson.

Interest from the surrounding community has been significant during the project, and many have had a positive attitude toward the development of this type of material.

When will we see products made from these fibers?
“This particular method is at the lab scale and still in the research stage”, she explained.

The doctoral project was conducted within the larger research project Sustainable Fungal Textiles: A novel approach for reuse of food waste.

What is the next step in research on fungal fibers?
“Future studies could focus on optimizing the wet spinning process to achieve continuous production of fungal fibers. Additionally, testing the cultivation of fungi on other types of food waste.”

How have you experienced your time as a doctoral student in Resource Recovery?
“It has been an intense period as a doctoral student, and I have been really challenged and developed a lot.”

What is your next step?
“I will be taking parental leave for a while before taking the next step, which is yet to be decided.”

Sofie Svensson defended her dissertation on 14 June at the Swedish Centre for Resource Recovery, University of Borås.
 
Read the dissertation: Development of Filaments Using Cell Wall Material of Filamentous Fungi Grown on Bread Waste for Application in Medical Textiles

Opponent: Han Hösten, Professor, Utrecht University
Main Supervisor: Akram Zamani, Associate Professor, University of Borås
Co-Supervisors: Minna Hakkarainen, Professor, KTH; Lena Berglin, Associate Professor, University of Borå

Source:

University of Borås, Solveig Klug

The yuck factor counteracts sustainable laundry habits Photo: Chalmers University of Technology | Mia Halleröd Palmgren
17.06.2024

The yuck factor counteracts sustainable laundry habits

Most people today would lean towards environmentally friendly life choices, but not at the expense of being clean. When it comes to our washing habits, the fear of being perceived as dirty often wins out over the desire to act in an environmentally friendly way. And the more inclined we are to feel disgusted, the more we wash our clothes. This is shown by a unique study from Chalmers University of Technology, Sweden, that examines the driving forces behind our laundering behaviours and provides new tools for how people's environmental impact can be reduced.

Most people today would lean towards environmentally friendly life choices, but not at the expense of being clean. When it comes to our washing habits, the fear of being perceived as dirty often wins out over the desire to act in an environmentally friendly way. And the more inclined we are to feel disgusted, the more we wash our clothes. This is shown by a unique study from Chalmers University of Technology, Sweden, that examines the driving forces behind our laundering behaviours and provides new tools for how people's environmental impact can be reduced.

Today, we wash our clothes more than ever before, and the emissions from laundering have never been higher. Some of the reasons are that we use each garment fewer times before throwing them in the laundry bin, technological advances have made it easier and cheaper to do laundry, and access to washing machines has increased. Of the global emissions of microplastics, 16–35 percent come from washing synthetic fibres. In addition, detergents contribute to eutrophication, and the use of energy and water for washing also has environmental impacts.

"Even though the machines have become more energy-efficient, it is how often we choose to wash that has the greatest impact on the climate – and we have never done as much washing as we do today. At the same time, most of us seem to be uninterested in changing our laundering behaviours to reduce climate impact," says Erik Klint, doctoral student at the Division of Environmental Systems Analysis at Chalmers.

He has led a recently published research study that takes a new, unexplored approach to our washing habits: to examine the underlying mechanisms of excessive laundering from a psychological perspective. The study focuses on two driving forces that affect washing behaviour: (1) environmental identity – how strongly we identify with the group of environmentally conscious people, and (2) how inclined we are to have feelings of disgust. Two clearly conflicting driving forces, the study shows.

"We humans are constantly faced with different goal conflicts. In this case, there is a conflict between the desire to reduce one's washing to save the environment and the fear of being perceived as a disgusting person with unclean clothes. Disgust is a strong psychological and social driving force. The study shows that the higher our sensitivity to disgust, the more we wash, regardless of whether we value our environmental identity highly. The feeling of disgust simply wins out over environmental awareness," he says.

Disgust is an evolutionarily linked emotion
The fact that disgust drives our behaviour so strongly has several bases. Erik Klint describes disgust as an evolutionarily conditioned emotion, which basically functions as a protection against infection or dangerous substances. In addition to this, the feeling of disgust is closely related to the feeling of shame and can thus also have an influence in social contexts.

"We humans don't want to do things that risk challenging our position in the group – such as being associated with a person who doesn't take care of their hygiene," he says.

This has implications for our washing behaviour.

“Here, an evolutionarily rooted driving force is set against a moral standpoint, and in most cases you're likely to react to that evolutionarily linked emotion," he says.

"Washing campaigns have the wrong starting point"
According to Erik Klint, the study highlights that today's campaigns and messages to get people to act in an environmentally friendly way have the wrong starting point, since they often fail to take into account the psychological aspects behind people's behaviour.

"It doesn't matter how sensible and research-based an argument you have, if they run counter to people's different driving forces, such as the desire to feel a sense of belonging to a group, then they won’t work," he says.

The questions "How do we get people to wash less”, and “How do we do it in a more environmentally friendly way?” are misplaced, says Erik Klint, who points out that the focus should instead be on the indirect behaviour which leads to the actual washing. It might be subtle, but he suggests that a better question is instead “How do we get people to generate less laundry, specifically laundry that needs to be cleaned by a washing machine?”

"You do laundry because the laundry basket is full, because your favourite sweater is dirty, or because there is a free laundry timeslot in your shared laundry. Therefore, the focus needs to be on what happens before we run the washing machine, i.e., the underlying behaviours that create a need to wash. For example, how much laundry we generate, how we sort the clothes in the machine, or when we think the washing machine is full," he says.

One of the study's main suggestions is to encourage people to use clothes more often before they end up in the laundry basket.

"It can be about targeting excessive washing, with messages such as 'most people use their T-shirt more than once.' But also replacing washing machine use with other actions, such as airing the garments, brushing off dirt, or removing individual stains by hand. One way could be to highlight the economic arguments here, as clothes get worn out when they go through the machine," he says.

Hoping to reduce the environmental impact of laundry
Gregory Peters, Professor of Quantitative Sustainability Assessment at Chalmers and co-author of the study, emphasises that the research is a unique combination of behavioural science and natural science.

"This study is part of a more extensive thesis that goes beyond the usual research framework for LCA – life cycle assessments – and has made it possible to create more holistic understanding of how we wash and what drives washing behaviour. The direct result we hope for is to contribute to reduced environmental impact from laundry, but it is possible that the research can be generalised to other areas where behaviour and technology interact," he says.

More about washing habits and climate impact

  • The amount of laundry washed by European consumers has increased significantly. In 2015, the average European washed four machine loads per week. Although this is 0.7 fewer loads than in 2000, it still represents a sharp increase since the washing capacity of the machines has grown sharply during the same period. In 2015, 64 percent of all washing machines had a capacity of more than six kilograms, compared with 2 percent in 2004. At the same time, most consumers state that they use the machine's full capacity.
  • In 2010, it was estimated that about 30 percent of the world's households had access to a washing machine, and in 2024, according to a review of half of the world's population, living in 18 countries in different parts of the world, 80 percent of the households had access to a washing machine. Sources: Statista (2024), Pakula and Stamminger (2010)
  • 16–35 percent of global emissions of microplastics come from washing synthetic fibres. Washing synthetic products leads to more than half a million tonnes of microplastics accumulating on the seabed every year. A single wash of polyester clothing can release 700,000 microplastic fibres that can then end up in the food chain.
Source:

Chalmers | Mia Halleröd Palmgren

Sensors made from ‘electronic spider silk’ printed on human skin (c) Huang Lab, Cambridge
27.05.2024

Sensors made from ‘electronic spider silk’ printed on human skin

Researchers have developed a method to make adaptive and eco-friendly sensors that can be directly and imperceptibly printed onto a wide range of biological surfaces, whether that’s a finger or a flower petal.

The method, developed by researchers from the University of Cambridge, takes its inspiration from spider silk, which can conform and stick to a range of surfaces. These ‘spider silks’ also incorporate bioelectronics, so that different sensing capabilities can be added to the ‘web’.

The fibres, at least 50 times smaller than a human hair, are so lightweight that the researchers printed them directly onto the fluffy seedhead of a dandelion without collapsing its structure. When printed on human skin, the fibre sensors conform to the skin and expose the sweat pores, so the wearer doesn’t detect their presence. Tests of the fibres printed onto a human finger suggest they could be used as continuous health monitors.

Researchers have developed a method to make adaptive and eco-friendly sensors that can be directly and imperceptibly printed onto a wide range of biological surfaces, whether that’s a finger or a flower petal.

The method, developed by researchers from the University of Cambridge, takes its inspiration from spider silk, which can conform and stick to a range of surfaces. These ‘spider silks’ also incorporate bioelectronics, so that different sensing capabilities can be added to the ‘web’.

The fibres, at least 50 times smaller than a human hair, are so lightweight that the researchers printed them directly onto the fluffy seedhead of a dandelion without collapsing its structure. When printed on human skin, the fibre sensors conform to the skin and expose the sweat pores, so the wearer doesn’t detect their presence. Tests of the fibres printed onto a human finger suggest they could be used as continuous health monitors.

This low-waste and low-emission method for augmenting living structures could be used in a range of fields, from healthcare and virtual reality, to electronic textiles and environmental monitoring. The results are reported in the journal Nature Electronics.

Although human skin is remarkably sensitive, augmenting it with electronic sensors could fundamentally change how we interact with the world around us. For example, sensors printed directly onto the skin could be used for continuous health monitoring, for understanding skin sensations, or could improve the sensation of ‘reality’ in gaming or virtual reality application.

While wearable technologies with embedded sensors, such as smartwatches, are widely available, these devices can be uncomfortable, obtrusive and can inhibit the skin’s intrinsic sensations.

Last year, some of the same researchers showed that if the fibres used in smart textiles were coated with materials that can withstand stretching, they could be compatible with conventional weaving processes. Using this technique, they produced a 46-inch woven demonstrator display.

“If you want to accurately sense anything on a biological surface like skin or a leaf, the interface between the device and the surface is vital,” said Professor Yan Yan Shery Huang from Cambridge’s Department of Engineering, who led the research. “We also want bioelectronics that are completely imperceptible to the user, so they don’t in any way interfere with how the user interacts with the world, and we want them to be sustainable and low waste.”

There are multiple methods for making wearable sensors, but these all have drawbacks. Flexible electronics, for example, are normally printed on plastic films that don’t allow gas or moisture to pass through, so it would be like wrapping your skin in cling film. Other researchers have recently developed flexible electronics that are gas-permeable, like artificial skins, but these still interfere with normal sensation, and rely on energy- and waste-intensive manufacturing techniques.

3D printing is another potential route for bioelectronics since it is less wasteful than other production methods, but leads to thicker devices that can interfere with normal behaviour. Spinning electronic fibres results in devices that are imperceptible to the user, but don't have a high degree of sensitivity or sophistication, and they’re difficult to transfer onto the object in question.

Now, the Cambridge-led team has developed a new way of making high-performance bioelectronics that can be customised to a wide range of biological surfaces, from a fingertip to the fluffy seedhead of a dandelion, by printing them directly onto that surface. Their technique takes its inspiration in part from spiders, who create sophisticated and strong web structures adapted to their environment, using minimal material.

The researchers spun their bioelectronic ‘spider silk’ from PEDOT:PSS (a biocompatible conducting polymer), hyaluronic acid and polyethylene oxide. The high-performance fibres were produced from water-based solution at room temperature, which enabled the researchers to control the ‘spinnability’ of the fibres. The researchers then designed an orbital spinning approach to allow the fibres to morph to living surfaces, even down to microstructures such as fingerprints.

Tests of the bioelectronic fibres, on surfaces including human fingers and dandelion seedheads, showed that they provided high-quality sensor performance while being imperceptible to the host.

“Our spinning approach allows the bioelectronic fibres to follow the anatomy of different shapes, at both the micro and macro scale, without the need for any image recognition,” said Andy Wang, the first author of the paper. “It opens up a whole different angle in terms of how sustainable electronics and sensors can be made. It’s a much easier way to produce large area sensors.”

Most high-resolution sensors are made in an industrial cleanroom and require the use of toxic chemicals in a multi-step and energy-intensive fabrication process. The Cambridge-developed sensors can be made anywhere and use a tiny fraction of the energy that regular sensors require.

The bioelectronic fibres, which are repairable, can be simply washed away when they have reached the end of their useful lifetime, and generate less than a single milligram of waste: by comparison, a typical single load of laundry produces between 600 and 1500 milligrams of fibre waste.

“Using our simple fabrication technique, we can put sensors almost anywhere and repair them where and when they need it, without needing a big printing machine or a centralised manufacturing facility,” said Huang. “These sensors can be made on-demand, right where they’re needed, and produce minimal waste and emissions.”

The research was supported in part by the European Research Council, Wellcome, the Royal Society, and the Biotechnology and Biological Sciences Research Council (BBSRC), part of UK Research and Innovation (UKRI).

Source:

Sarah Collins, University of Cambridge

(c) MIT Self Assembly Lab
29.04.2024

The 4D Knit Dress - Is this the future of fashion?

Developed by the Self-Assembly Lab, the 4D Knit Dress uses several technologies to create a custom design and a custom fit, while addressing sustainability concerns.

Until recently, bespoke tailoring — clothing made to a customer’s individual specifications — was the only way to have garments that provided the perfect fit for your physique. For most people, the cost of custom tailoring is prohibitive. But the invention of active fibers and innovative knitting processes is changing the textile industry.

“We all wear clothes and shoes,” says Sasha MicKinlay MArch ’23, a recent graduate of the MIT Department of Architecture. “It’s a human need. But there’s also the human need to express oneself. I like the idea of customizing clothes in a sustainable way. This dress promises to be more sustainable than traditional fashion to both the consumer and the producer.”

Developed by the Self-Assembly Lab, the 4D Knit Dress uses several technologies to create a custom design and a custom fit, while addressing sustainability concerns.

Until recently, bespoke tailoring — clothing made to a customer’s individual specifications — was the only way to have garments that provided the perfect fit for your physique. For most people, the cost of custom tailoring is prohibitive. But the invention of active fibers and innovative knitting processes is changing the textile industry.

“We all wear clothes and shoes,” says Sasha MicKinlay MArch ’23, a recent graduate of the MIT Department of Architecture. “It’s a human need. But there’s also the human need to express oneself. I like the idea of customizing clothes in a sustainable way. This dress promises to be more sustainable than traditional fashion to both the consumer and the producer.”

McKinlay is a textile designer and researcher at the Self-Assembly Lab who designed the 4D Knit Dress with Ministry of Supply, a fashion company specializing in high-tech apparel. The dress combines several technologies to create personalized fit and style. Heat-activated yarns, computerized knitting, and robotic activation around each garment generates the sculpted fit. A team at Ministry of Supply led the decisions on the stable yarns, color, original size, and overall design.

“Everyone’s body is different,” says Skylar Tibbits, associate professor in the Department of Architecture and founder of the Self-Assembly Lab. “Even if you wear the same size as another person, you're not actually the same.”

Active textiles
Students in the Self-Assembly Lab have been working with dynamic textiles for several years. The yarns they create can change shape, change property, change insulation, or become breathable. Previous applications to tailor garments include making sweaters and face masks. Tibbits says the 4D Knit Dress is a culmination of everything the students have learned from working with active textiles.

McKinlay helped produce the active yarns, created the concept design, developed the knitting technique, and programmed the lab’s industrial knitting machine. Once the garment design is programmed into the machine, it can quickly produce multiple dresses. Where the active yarns are placed in the design allows for the dress to take on a variety of styles such as pintucks, pleats, an empire waist, or a cinched waist.

“The styling is important,” McKinlay says. “Most people focus on the size, but I think styling is what sets clothes apart. We’re all evolving as people, and I think our style evolves as well. After fit, people focus on personal expression.”

Danny Griffin MArch ’22, a current graduate student in architectural design, doesn’t have a background in garment making or the fashion industry. Tibbits asked Griffin to join the team due to his experience with robotics projects in construction. Griffin translated the heat activation process into a programmable robotic procedure that would precisely control its application.

“When we apply heat, the fibers shorten, causing the textile to bunch up in a specific zone, effectively tightening the shape as if we’re tailoring the garment,” says Griffin. “There was a lot of trial and error to figure out how to orient the robot and the heat gun. The heat needs to be applied in precise locations to activate the fibers on each garment. Another challenge was setting the temperature and the timing for the heat to be applied.”

“We couldn’t use a commercial heat gun — which is like a handheld hair dryer — because they’re too large,” says Griffin. “We needed a more compact design. Once we figured it out, it was a lot of fun to write the script for the robot to follow.”

A dress can begin with one design — pintucks across the chest, for example — and be worn for months before having heat re-applied to alter its look. Subsequent applications of heat can tailor the dress further.

Beyond fit and fashion
Efficiently producing garments is a “big challenge” in the fashion industry, according to Gihan Amarasiriwardena ’11, the co-founder and president of Ministry of Supply.

“A lot of times you'll be guessing what a season's style is,” he says. “Sometimes the style doesn't do well, or some sizes don’t sell out. They may get discounted very heavily or eventually they end up going to a landfill.”

“Fast fashion” is a term that describes clothes that are inexpensive, trendy, and easily disposed of by the consumer. They are designed and produced quickly to keep pace with current trends. The 4D Knit Dress, says Tibbits, is the opposite of fast fashion. Unlike the traditional “cut-and-sew” process in the fashion industry, the 4D Knit Dress is made entirely in one piece, which virtually eliminates waste.

“From a global standpoint, you don’t have tons of excess inventory because the dress is customized to your size,” says Tibbits.

McKinlay says she hopes use of this new technology will reduce the amount of waste in inventory that retailers usually have at the end of each season.

“The dress could be tailored in order to adapt to these changes in styles and tastes,” she says. “It may also be able to absorb some of the size variations that retailers need to stock. Instead of extra-small, small, medium, large, and extra-large sizes, retailers may be able to have one dress for the smaller sizes and one for the larger sizes. Of course, these are the same sustainability points that would benefit the consumer.”

The Self-Assembly Lab has collaborated with Ministry of Supply on projects with active textiles for several years. Late last year, the team debuted the 4D Knit Dress at the company’s flagship store in Boston, complete with a robotic arm working its way around a dress as customers watched. For Amarasiriwardena, it was an opportunity to gauge interest and receive feedback from customers interested in trying the dress on.

“If the demand is there, this is something we can create quickly” unlike the usual design and manufacturing process, which can take years, says Amarasiriwardena.

Griffin and McKinlay were on hand for the demonstration and pleased with the results. For Griffin, with the “technical barriers” overcome, he sees many different avenues for the project.

“This experience leaves me wanting to try more,” he says.

McKinlay too would love to work on more styles.

“I hope this research project helps people rethink or reevaluate their relationship with clothes,” says McKinlay. “Right now when people purchase a piece of clothing it has only one ‘look.’ But, how exciting would it be to purchase one garment and reinvent it to change and evolve as you change or as the seasons or styles change? I'm hoping that's the takeaway that people will have.”

Source:

Maria Iacobo | Olivia Mintz | School of Architecture and Planning, MIT Department of Architecture

textile waste AI generated image: Pete Linforth, Pixabay
02.04.2024

The Future of Circular Textiles: New Cotton Project completed

In a world first for the fashion industry, in October 2020 twelve pioneering players came together to break new ground by demonstrating a circular model for commercial garment production. Over more than three years, textile waste was collected and sorted, and regenerated into a new, man-made cellulosic fiber that looks and feels like cotton – a “new cotton” – using Infinited Fiber Company’s textile fiber regeneration technology.
 

In a world first for the fashion industry, in October 2020 twelve pioneering players came together to break new ground by demonstrating a circular model for commercial garment production. Over more than three years, textile waste was collected and sorted, and regenerated into a new, man-made cellulosic fiber that looks and feels like cotton – a “new cotton” – using Infinited Fiber Company’s textile fiber regeneration technology.
 
The pioneering New Cotton Project launched in October 2020 with the aim of demonstrating a circular value chain for commercial garment production. Through-out the project the consortium worked to collect and sort end-of-life textiles, which using pioneering Infinited Fiber technology could be regenerated into a new man-made cellulosic fibre called Infinna™ which looks and feels just like virgin cotton. The fibres were then spun into yarns and manufactured into different types of fabric which were designed, produced, and sold by adidas and H&M, making the adidas by Stella McCartney tracksuit and a H&M printed jacket and jeans the first to be produced through a collaborative circular consortium of this scale, demonstrating a more innovative and circular way of working for the fashion industry.
 
As the project completes in March 2024, the consortium highlights eight key factors they have identified as fundamental to the successful scaling of fibre-to-fibre recycling.

The wide scale adoption of circular value chains is critical to success
Textile circularity requires new forms of collaboration and open knowledge exchange among different actors in circular ecosystems. These ecosystems must involve actors beyond traditional supply chains and previously disconnected industries and sectors, such as the textile and fashion, waste collection and sorting and recycling industries, as well as digital technology, research organisations and policymakers. For the ecosystem to function effectively, different actors need to be involved in aligning priorities, goals and working methods, and to learn about the others’ needs, requirements and techno-economic possibilities. From a broader perspective, there is also a need for a more fundamental shift in mindsets and business models concerning a systemic transition toward circularity, such as moving away from the linear fast fashion business models. As well as sharing knowledge openly within such ecosystems, it also is important to openly disseminate lessons learnt and insights in order to help and inspire other actors in the industry to transition to the Circular Economy.

Circularity starts with the design process
When creating new styles, it is important to keep an end-of-life scenario in mind right from the beginning. As this will dictate what embellishments, prints, accessories can be used. If designers make it as easy as possible for the recycling process, it has the bigger chance to actually be feedstock again. In addition to this, it is important to develop business models that enable products to be used as long as possible, including repair, rental, resale, and sharing services.

Building and scaling sorting and recycling infrastructure is critical
In order to scale up circular garment production, there is a need for technological innovation and infrastructure development in end-of-use textiles collection, sorting, and the mechanical pre-processing of feedstock. Currently, much of the textiles sorting is done manually, and the available optical sorting and identification technologies are not able to identify garment layers, complex fibre blends, or which causes deviations in feedstock quality for fibre-to-fibre recycling. Feedstock preprocessing is a critical step in textile-to-textile recycling, but it is not well understood outside of the actors who actually implement it. This requires collaboration across the value chain, and it takes in-depth knowledge and skill to do it well. This is an area that needs more attention and stronger economic incentives as textile-to-textile recycling scales up.

Improving quality and availability of data is essential
There is still a significant lack of available data to support the shift towards a circular textiles industry. This is slowing down development of system level solutions and economic incentives for textile circulation. For example, quantities of textiles put on the market are often used as a proxy for quantities of post-consumer textiles, but available data is at least two years old and often incomplete. There can also be different textile waste figures at a national level that do not align, due to different methodologies or data years. This is seen in the Dutch 2018 Mass Balance study reports and 2020 Circular Textile Policy Monitoring Report, where there is a 20% difference between put on market figures and measured quantities of post-consumer textiles collected separately and present in mixed residual waste. With the exception of a few good studies such as Sorting for Circularity Europe and ReFashion’s latest characterization study, there is almost no reliable information about fibre composition in the post-consumer textile stream either. Textile-to-textile recyclers would benefit from better availability of more reliable data. Policy monitoring for Extended Producer Responsibility schemes should focus on standardising reporting requirements across Europe from post-consumer textile collection through their ultimate end point and incentivize digitization so that reporting can be automated, and high-quality textile data becomes available in near-real time.

The need for continuous research and development across the entire value chain
Overall, the New Cotton Project’s findings suggest that fabrics incorporating Infinna™ fibre offer a more sustainable alternative to traditional cotton and viscose fabrics, while maintaining similar performance and aesthetic qualities. This could have significant implications for the textile industry in terms of sustainability and lower impact production practices. However, the project also demonstrated that the scaling of fibre-to-fibre recycling will continue to require ongoing research and development across the entire value chain. For example, the need for research and development around sorting systems is crucial. Within the chemical recycling process, it is also important to ensure the high recovery rate and circulation of chemicals used to limit the environmental impact of the process. The manufacturing processes also highlighted the benefit for ongoing innovation in the processing method, requiring technologies and brands to work closely with manufacturers to support further development in the field.

Thinking beyond lower impact fibres
The New Cotton Project value chain third party verified LCA reveals that the cellulose carbamate fibre, and in particular when produced with a renewable electricity source, shows potential to lower environmental impacts compared to conventional cotton and viscose. Although, it's important to note that this comparison was made using average global datasets from Ecoinvent for cotton and viscose fibres, and there are variations in the environmental performance of primary fibres available on the market. However, the analysis also highlights the importance of the rest of the supply chain to reduce environmental impact. The findings show that even if we reduce the environmental impacts by using recycled fibres, there is still work to do in other life cycle stages. For example; garment quality and using the garment during their full life span are crucial for mitigating the environmental impacts per garment use.
          
Citizen engagement
The EU has identified culture as one of the key barriers to the adoption of the circular economy within Europe. An adidas quantitative consumer survey conducted across three key markets during the project revealed that there is still confusion around circularity in textiles, which has highlighted the importance of effective citizen communication and engagement activities.

Cohesive legislation
Legislation is a powerful tool for driving the adoption of more sustainable and circular practices in the textiles industry. With several pieces of incoming legislation within the EU alone, the need for a cohesive and harmonised approach is essential to the successful implementation of policy within the textiles industry. Considering the link between different pieces of legislation such as Extended Producer Responsibility and the Ecodesign for Sustainable Products Regulation, along with their corresponding timeline for implementation will support stakeholders from across the value chain to prepare effectively for adoption of these new regulations.

The high, and continuously growing demand for recycled materials implies that all possible end-of-use textiles must be collected and sorted. Both mechanical and chemical recycling solutions are needed to meet the demand. We should also implement effectively both paths; closed-loop (fibre-to-fibre) and open -loop recycling (fibre to other sectors). There is a critical need to reconsider the export of low-quality reusable textiles outside the EU. It would be more advantageous to reuse them in Europe, or if they are at the end of their lifetime recycle these textiles within the European internal market rather than exporting them to countries where demand is often unverified and waste management inadequate.

Overall, the learnings spotlight the need for a holistic approach and a fundamental mindset shift in ways of working for the textiles industry. Deeper collaboration and knowledge exchange is central to developing effective circular value chains, helping to support the scaling of innovative recycling technologies and increase availability of recycled fibres on the market. The further development and scaling of collecting and sorting, along with the need to address substantial gaps in the availability of quality textile flow data should be urgently prioritised. The New Cotton Project has also demonstrated the potential of recycled fibres such as Infinna™ to offer a more sustainable option to some other traditional fibres, but at the same time highlights the importance of addressing the whole value chain holistically to make greater gains in lowering environmental impact. Ongoing research and development across the entire value chain is also essential to ensure we can deliver recycled fabrics at scale in the future.

The New Cotton Project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101000559.

 

Source:

Fashion for Good

(c) RMIT University
26.02.2024

Cooling down with Nanodiamonds

Researchers from RMIT University are using nanodiamonds to create smart textiles that can cool people down faster.

The study found fabric made from cotton coated with nanodiamonds, using a method called electrospinning, showed a reduction of 2-3 degrees Celsius during the cooling down process compared to untreated cotton. They do this by drawing out body heat and releasing it from the fabric – a result of the incredible thermal conductivity of nanodiamonds.

Published in Polymers for Advanced Technologies, project lead and Senior Lecturer, Dr Shadi Houshyar, said there was a big opportunity to use these insights to create new textiles for sportswear and even personal protective clothing, such as underlayers to keep fire fighters cool.

The study also found nanodiamonds increased the UV protection of cotton, making it ideal for outdoor summer clothing.

Researchers from RMIT University are using nanodiamonds to create smart textiles that can cool people down faster.

The study found fabric made from cotton coated with nanodiamonds, using a method called electrospinning, showed a reduction of 2-3 degrees Celsius during the cooling down process compared to untreated cotton. They do this by drawing out body heat and releasing it from the fabric – a result of the incredible thermal conductivity of nanodiamonds.

Published in Polymers for Advanced Technologies, project lead and Senior Lecturer, Dr Shadi Houshyar, said there was a big opportunity to use these insights to create new textiles for sportswear and even personal protective clothing, such as underlayers to keep fire fighters cool.

The study also found nanodiamonds increased the UV protection of cotton, making it ideal for outdoor summer clothing.

“While 2 or 3 degrees may not seem like much of a change, it does make a difference in comfort and health impacts over extended periods and in practical terms, could be the difference between keeping your air conditioner off or turning it on,” Houshyar said. “There’s also potential to explore how nanodiamonds can be used to protect buildings from overheating, which can lead to environmental benefits.”

The use of this fabric in clothing was projected to lead to a 20-30% energy saving due to lower use of air conditioning.

Based in the Centre for Materials Innovation and Future Fashion (CMIFF), the research team is made up of RMIT engineers and textile researchers who have strong expertise in developing next-generation smart textiles, as well as working with industry to develop realistic solutions.

Contrary to popular belief, nanodiamonds are not the same as the diamonds that adorn jewellery, said Houshyar. “They’re actually cheap to make — cheaper than graphene oxide and other types of carbon materials,” she said. “While they have a carbon lattice structure, they are much smaller in size. They’re also easy to make using methods like detonation or from waste materials.”

How it works
Cotton material was first coated with an adhesive, then electrospun with a polymer solution made from nanodiamonds, polyurethane and solvent.

This process creates a web of nanofibres on the cotton fibres, which are then cured to bond the two.

Lead researcher and research assistant, Dr Aisha Rehman, said the coating with nanodiamonds was deliberately applied to only one side of the fabric to restrict heat in the atmosphere from transferring back to the body.  

“The side of the fabric with the nanodiamond coating is what touches the skin. The nanodiamonds then transfer heat from the body into the air,” said Rehman, who worked on the study as part of her PhD. “Because nanodiamonds are such good thermal conductors, it does it faster than untreated fabric.”

Nanodiamonds were chosen for this study because of their strong thermal conductivity properties, said Rehman. Often used in IT, nanodiamonds can also help improve thermal properties of liquids and gels, as well as increase corrosive resistance in metals.

“Nanodiamonds are also biocompatible, so they’re safe for the human body. Therefore, it has great potential not just in textiles, but also in the biomedical field,” Rehman said.

While the research was still preliminary, Houshyar said this method of coating nanofibres onto textiles had strong commercial potential.
 
“This electrospinning approach is straightforward and can significantly reduce the variety of manufacturing steps compared to previously tested methods, which feature lengthy processes and wastage of nanodiamonds,” Houshyar said.

Further research will study the durability of the nanofibres, especially during the washing process.

Source:

Shu Shu Zheng, RMIT University

Bacteria, eating Plastic and producing Multipurpose Spider Silk Photo: Kareni, Pixabay
05.02.2024

Bacteria, eating Plastic and producing Multipurpose Spider Silk

For the first time, researchers have used bacteria to “upcycle” waste polyethylene: Move over Spider-Man: Researchers at Rensselaer Polytechnic Institute have developed a strain of bacteria that can turn plastic waste into a biodegradable spider silk with multiple uses.

Their new study marks the first time scientists have used bacteria to transform polyethylene plastic — the kind used in many single-use items — into a high-value protein product.

That product, which the researchers call “bio-inspired spider silk” because of its similarity to the silk spiders use to spin their webs, has applications in textiles, cosmetics, and even medicine.

For the first time, researchers have used bacteria to “upcycle” waste polyethylene: Move over Spider-Man: Researchers at Rensselaer Polytechnic Institute have developed a strain of bacteria that can turn plastic waste into a biodegradable spider silk with multiple uses.

Their new study marks the first time scientists have used bacteria to transform polyethylene plastic — the kind used in many single-use items — into a high-value protein product.

That product, which the researchers call “bio-inspired spider silk” because of its similarity to the silk spiders use to spin their webs, has applications in textiles, cosmetics, and even medicine.

“Spider silk is nature’s Kevlar,” said Helen Zha, Ph.D., an assistant professor of chemical and biological engineering and one of the RPI researchers leading the project. “It can be nearly as strong as steel under tension. However, it’s six times less dense than steel, so it’s very lightweight. As a bioplastic, it’s stretchy, tough, nontoxic, and biodegradable.”

All those attributes make it a great material for a future where renewable resources and avoidance of persistent plastic pollution are the norm, Zha said.

Polyethylene plastic, found in products such as plastic bags, water bottles, and food packaging, is the biggest contributor to plastic pollution globally and can take upward of 1,000 years to degrade naturally. Only a small portion of polyethylene plastic is recycled, so the bacteria used in the study could help “upcycle” some of the remaining waste.

Pseudomonas aeruginosa, the bacteria used in the study, can naturally consume polyethylene as a food source. The RPI team tackled the challenge of engineering this bacteria to convert the carbon atoms of polyethylene into a genetically encoded silk protein. Surprisingly, they found that their newly developed bacteria could make the silk protein at a yield rivaling some bacteria strains that are more conventionally used in biomanufacturing.

The underlying biological process behind this innovation is something people have employed for millennia.

“Essentially, the bacteria are fermenting the plastic. Fermentation is used to make and preserve all sorts of foods, like cheese, bread, and wine, and in biochemical industries it’s used to make antibiotics, amino acids, and organic acids,” said Mattheos Koffas, Ph.D., Dorothy and Fred Chau ʼ71 Career Development Constellation Professor in Biocatalysis and Metabolic Engineering, and the other researcher leading the project, and who, along with Zha, is a member of the Center for Biotechnology and Interdisciplinary Studies at Rensselaer.

To get bacteria to ferment polyethylene, the plastic is first “predigested,” Zha said. Just like humans need to cut and chew our food into smaller pieces before our bodies can use it, the bacteria has difficulty eating the long molecule chains, or polymers, that comprise polyethylene.

In the study, Zha and Koffas collaborated with researchers at Argonne National Laboratory, who depolymerized the plastic by heating it under pressure, producing a soft, waxy substance. Next, the team put a layer of the plastic-derived wax on the bottoms of flasks, which served as the nutrient source for the bacteria culture. This contrasts with typical fermentation, which uses sugars as the nutrient source.

“It’s as if, instead of feeding the bacteria cake, we’re feeding it the candles on the cake,” Zha said.

Then, as a warming plate gently swirled the flasks’ contents, the bacteria went to work. After 72 hours, the scientists strained out the bacteria from the liquid culture, purified the silk protein, and freeze dried it. At that stage, the protein, which resembled torn up cotton balls, could potentially be spun into thread or made into other useful forms.

“What’s really exciting about this process is that, unlike the way plastics are produced today, our process is low energy and doesn’t require the use of toxic chemicals,” Zha said. “The best chemists in the world could not convert polyethylene into spider silk, but these bacteria can. We’re really harnessing what nature has developed to do manufacturing for us.”

However, before upcycled spider silk products become a reality, the researchers will first need to find ways to make the silk protein more efficiently.

“This study establishes that we can use these bacteria to convert plastic to spider silk. Our future work will investigate whether tweaking the bacteria or other aspects of the process will allow us to scale up production,” Koffas said.

“Professors Zha and Koffas represent the new generation of chemical and biological engineers merging biological engineering with materials science to manufacture ecofriendly products. Their work is a novel approach to protecting the environment and reducing our reliance on nonrenewable resources,” said Shekhar Garde, Ph.D., dean of RPI’s School of Engineering.

The study, which was conducted by first author Alexander Connor, who earned his doctorate from RPI in 2023, and co-authors Jessica Lamb and Massimiliano Delferro with Argonne National Laboratory, is published in the journal “Microbial Cell Factories.”

Source:

Samantha Murray, Rensselaer