Textination Newsline

from to
Reset
162 results
Nordic cooperation on circular innovation focusing on workwear Photo: Sven, pixabay
16.04.2024

Nordic cooperation on circular innovation focusing on workwear

The University of Borås, Aalborg University Business School and Circular Innovation Lab have just started the 'North-South Circular Value Chains Within Textiles' project - an explorative project that aims at bridging textile brands in the Nordics with a strong focus on sustainability with innovative producers in the South.

Focus areas are Circular Value Chains (CVCs), Circular and resource-efficient textiles economy, Workwear and technical clothing, Sectors such as construction, energy, electronics and IT, plastics, textiles, retail and metals.

Made possible by a grant from the Interreg ÖKS programme, the first step is to create a specific economic, legal and technological framework allowing Scandinavian workwear companies to enter into close collaboration on circular solutions in the overall textile value chain and to prepare, and adapt their global value chains to the upcoming EU regulations on circular economy.

The University of Borås, Aalborg University Business School and Circular Innovation Lab have just started the 'North-South Circular Value Chains Within Textiles' project - an explorative project that aims at bridging textile brands in the Nordics with a strong focus on sustainability with innovative producers in the South.

Focus areas are Circular Value Chains (CVCs), Circular and resource-efficient textiles economy, Workwear and technical clothing, Sectors such as construction, energy, electronics and IT, plastics, textiles, retail and metals.

Made possible by a grant from the Interreg ÖKS programme, the first step is to create a specific economic, legal and technological framework allowing Scandinavian workwear companies to enter into close collaboration on circular solutions in the overall textile value chain and to prepare, and adapt their global value chains to the upcoming EU regulations on circular economy.

Recently, the consortium partners convened for an initial meeting at The Swedish School of Textiles to discuss the project framework, which is a feasibility study intended to lead to a multi-year project involving workwear companies in the Öresund-Kattegat-Skagerrak (ÖKS) region, including their supply chains in Asia.

Kim Hjerrild, Strategic Partnerships Lead at the Danish think tank Circular Innovation Lab, Copenhagen, explained: "The goal is to assist workwear producers in Denmark, Sweden, and Norway in becoming more sustainable through circular product design, production, and service concepts. We are pleased to have The Swedish School of Textiles lead the project as they have a strong tradition of collaborating with textile companies."

Complex branch
The decision to focus specifically on workwear stems from it being a complex part of the textile industry, demanding strict standards, certifications, safety aspects, and specific functions depending on the application area, such as specific high-performance environments, healthcare, and hospitality. "To future-proof their operations, companies need to become more resource efficient and circular by producing durable and long lasting workwear that can be repaired and reused. Additionally, they must reduce their carbon footprint per product, as well as minimize problematic chemical usage, and increasingly use recycled materials" explained Kim Hjerrild.

Wants to provide companies with tools and knowledge
Apoorva Arya, founder and CEO of Circular Innovation Lab, elaborates: "Our first and primary goal is to equip Scandinavian workwear companies with tools and knowledge in order to comply with the upcoming EU directives and policies. This includes regulations on product-specific design requirements to labour conditions for employees, human rights, all the way from production to third-party suppliers. Ensuring these companies, especially their suppliers, can transition to a circular supply chain, and navigate the legislative landscape, while guaranteeing competitiveness in the global market."

Focus on new structures
Rudrajeet Pal, Professor of Textile Management at The Swedish School of Textiles, is pleased that the university can be the coordinator of the project. "From the perspective of my research group, this
is incredibly interesting given the focus on the examination and development of ‘new’ supply chain and business model structures that would enable sustainable value generation in textile enterprises, industry, and for the environment and society at large. We have conducted several projects where such global north-south value chain focus is eminent, and this time particularly in workwear companies’ value chain between Scandinavia and Asia. We are delighted to contribute expertise and our experience of working internationally."

About the pre-project North-South Circular Value Chains Within Textiles, NSCirTex
The project aims to support the circular transition in the Nordics by setting up a shared governance model to enable pre-competitive collaboration and the design of circular value chains between Scandinavian workwear companies in the ÖKS-region and producers in India, Bangladesh, Vietnam, and Türkiye.

The next step is to achieve a multi-year main project where workwear companies with their suppliers in Asian countries, can test tailored models for shared governance as a way to develop practical circular solutions, such as post-consumer recycling, circular material procurement, develop safe and resource efficient circular products, enhance social sustainability and due diligence, among others. The main project will thus develop solutions to reduce material footprint, and resource usage while generating both commercial viability and prepare for new regulation, reporting, and accountability.

Partners in this feasibility study: University of Borås, Aalborg University Business School, and Circular Innovation Lab. The feasibility study is funded by the EU through the Interreg Öresund-Kattegat-Skagerrak European Regional Development Fund.

Source:

University of Borås, Solveig Klug

Empa researcher Simon Annaheim is working to develop a mattress for newborn babies. Image: Empa
11.03.2024

Medical textiles and sensors: Smart protection for delicate skin

Skin injuries caused by prolonged pressure often occur in people who are unable to change their position independently – such as sick newborns in hospitals or elderly people. Thanks to successful partnerships with industry and research, Empa scientists are now launching two smart solutions for pressure sores.

If too much pressure is applied to our skin over a long period of time, it becomes damaged. Populations at high risk of such pressure injuries include people in wheelchairs, newborns in intensive care units and the elderly. The consequences are wounds, infections and pain.

Skin injuries caused by prolonged pressure often occur in people who are unable to change their position independently – such as sick newborns in hospitals or elderly people. Thanks to successful partnerships with industry and research, Empa scientists are now launching two smart solutions for pressure sores.

If too much pressure is applied to our skin over a long period of time, it becomes damaged. Populations at high risk of such pressure injuries include people in wheelchairs, newborns in intensive care units and the elderly. The consequences are wounds, infections and pain.

Treatment is complex and expensive: Healthcare costs of around 300 million Swiss francs are incurred every year. "In addition, existing illnesses can be exacerbated by such pressure injuries," says Empa researcher Simon Annaheim from the Biomimetic Membranes and Textiles laboratory in St. Gallen. According to Annaheim, it would be more sustainable to prevent tissue damage from occurring in the first place. Two current research projects involving Empa researchers are now advancing solutions: A pressure-equalizing mattress for newborns in intensive care units and a textile sensor system for paraplegics and bedridden people are being developed.

Optimally nestled at the start of life
The demands of our skin are completely different depending on age: In adults, the friction of the skin on the lying surface, physical shear forces in the tissue and the lack of breathability of textiles are the main risk factors. In contrast, the skin of newborns receiving intensive care is extremely sensitive per se, and any loss of fluid and heat through the skin can become a problem. "While these particularly vulnerable babies are being nursed back to health, the lying situation should not cause any additional complications," says Annaheim. He thinks conventional mattresses are not appropriate for newborns with very different weights and various illnesses. Annaheim's team is therefore working with researchers from ETH Zurich, the Zurich University of Applied Sciences (ZHAW) and the University Children's Hospital Zurich to find an optimal lying surface for babies' delicate skin. This mattress should be able to adapt individually to the body in order to help children with a difficult start in life.

In order to do this, the researchers first determined the pressure conditions in the various regions of the newborn's body. "Our pressure sensors showed that the head, shoulders and lower spine are the areas with the greatest risk of pressure sores," says Annaheim. These findings were incorporated into the development of a special kind of air-filled mattress: With the help of pressure sensors and a microprocessor, its three chambers can be filled precisely via an electronic pump so that the pressure in the respective areas is minimized. An infrared laser process developed at Empa made it possible to produce the mattress from a flexible, multi-layered polymer membrane that is gentle on the skin and has no irritating seams.

After a multi-stage development process in the laboratory, the first small patients were allowed to lie on the prototype mattress. The effect was immediately noticeable when the researchers filled the mattress with air to varying degrees depending on the individual needs of the babies: Compared to a conventional foam mattress, the prototype reduced the pressure on the vulnerable parts of the body by up to 40 percent.

Following this successful pilot study, the prototype is now being optimized in the Empa labs. Simon Annaheim and doctoral student Tino Jucker will soon be starting a larger-scale study with the new mattress with the Department of Intensive Care Medicine & Neonatology at University Children's Hospital Zurich.

Intelligent sensors prevent injuries
In another project, Empa researchers are working on preventing so-called pressure ulcer tissue damage in adults. This involves converting the risk factors of pressure and circulatory disorders into helpful warning signals.

If you lie in the same position for a long time, pressure and circulatory problems lead to an undersupply of oxygen to the tissue. While the lack of oxygen triggers a reflex to move in healthy people, this neurological feedback loop can be disrupted in people with paraplegia or coma patients, for example. Here, smart sensors can help to provide early warning of the risk of tissue damage.

In the ProTex project, a team of researchers from Empa, the University of Bern, the OST University of Applied Sciences and Bischoff Textil AG in St. Gallen has developed a sensor system made of smart textiles with associated data analysis in real time. "The skin-compatible textile sensors contain two different functional polymer fibers," says Luciano Boesel from Empa's Biomimetic Membranes and Textiles laboratory in St. Gallen. In addition to pressure-sensitive fibers, the researchers integrated light-conducting polymer fibers (POFs), which are used to measure oxygen. "As soon as the oxygen content in the skin drops, the highly sensitive sensor system signals an increasing risk of tissue damage," explains Boesel. The data is then transmitted directly to the patient or to the nursing staff. This means, for instance, that a lying person can be repositioned in good time before the tissue is damaged.

Patented technology
The technology behind this also includes a novel microfluidic wet spinning process developed at Empa for the production of POFs. It allows precise control of the polymer components in the micrometer range and smoother, more environmentally friendly processing of the fibers. The microfluidic process is one of three patents that have emerged from the ProTex project to date.

Another product is a breathable textile sensor that is worn directly on the skin. The spin-off Sensawear in Bern, which emerged from the project in 2023, is currently pushing ahead with the market launch. Empa researcher Boesel is also convinced: "The findings and technologies from ProTex will enable further applications in the field of wearable sensor technology and smart clothing in the future."

Source:

Dr. Andrea Six, Empa

(c) RMIT University
26.02.2024

Cooling down with Nanodiamonds

Researchers from RMIT University are using nanodiamonds to create smart textiles that can cool people down faster.

The study found fabric made from cotton coated with nanodiamonds, using a method called electrospinning, showed a reduction of 2-3 degrees Celsius during the cooling down process compared to untreated cotton. They do this by drawing out body heat and releasing it from the fabric – a result of the incredible thermal conductivity of nanodiamonds.

Published in Polymers for Advanced Technologies, project lead and Senior Lecturer, Dr Shadi Houshyar, said there was a big opportunity to use these insights to create new textiles for sportswear and even personal protective clothing, such as underlayers to keep fire fighters cool.

The study also found nanodiamonds increased the UV protection of cotton, making it ideal for outdoor summer clothing.

Researchers from RMIT University are using nanodiamonds to create smart textiles that can cool people down faster.

The study found fabric made from cotton coated with nanodiamonds, using a method called electrospinning, showed a reduction of 2-3 degrees Celsius during the cooling down process compared to untreated cotton. They do this by drawing out body heat and releasing it from the fabric – a result of the incredible thermal conductivity of nanodiamonds.

Published in Polymers for Advanced Technologies, project lead and Senior Lecturer, Dr Shadi Houshyar, said there was a big opportunity to use these insights to create new textiles for sportswear and even personal protective clothing, such as underlayers to keep fire fighters cool.

The study also found nanodiamonds increased the UV protection of cotton, making it ideal for outdoor summer clothing.

“While 2 or 3 degrees may not seem like much of a change, it does make a difference in comfort and health impacts over extended periods and in practical terms, could be the difference between keeping your air conditioner off or turning it on,” Houshyar said. “There’s also potential to explore how nanodiamonds can be used to protect buildings from overheating, which can lead to environmental benefits.”

The use of this fabric in clothing was projected to lead to a 20-30% energy saving due to lower use of air conditioning.

Based in the Centre for Materials Innovation and Future Fashion (CMIFF), the research team is made up of RMIT engineers and textile researchers who have strong expertise in developing next-generation smart textiles, as well as working with industry to develop realistic solutions.

Contrary to popular belief, nanodiamonds are not the same as the diamonds that adorn jewellery, said Houshyar. “They’re actually cheap to make — cheaper than graphene oxide and other types of carbon materials,” she said. “While they have a carbon lattice structure, they are much smaller in size. They’re also easy to make using methods like detonation or from waste materials.”

How it works
Cotton material was first coated with an adhesive, then electrospun with a polymer solution made from nanodiamonds, polyurethane and solvent.

This process creates a web of nanofibres on the cotton fibres, which are then cured to bond the two.

Lead researcher and research assistant, Dr Aisha Rehman, said the coating with nanodiamonds was deliberately applied to only one side of the fabric to restrict heat in the atmosphere from transferring back to the body.  

“The side of the fabric with the nanodiamond coating is what touches the skin. The nanodiamonds then transfer heat from the body into the air,” said Rehman, who worked on the study as part of her PhD. “Because nanodiamonds are such good thermal conductors, it does it faster than untreated fabric.”

Nanodiamonds were chosen for this study because of their strong thermal conductivity properties, said Rehman. Often used in IT, nanodiamonds can also help improve thermal properties of liquids and gels, as well as increase corrosive resistance in metals.

“Nanodiamonds are also biocompatible, so they’re safe for the human body. Therefore, it has great potential not just in textiles, but also in the biomedical field,” Rehman said.

While the research was still preliminary, Houshyar said this method of coating nanofibres onto textiles had strong commercial potential.
 
“This electrospinning approach is straightforward and can significantly reduce the variety of manufacturing steps compared to previously tested methods, which feature lengthy processes and wastage of nanodiamonds,” Houshyar said.

Further research will study the durability of the nanofibres, especially during the washing process.

Source:

Shu Shu Zheng, RMIT University

Researchers led by Bernd Nowack have investigated the release of nanoparticles during the washing of polyester textiles. Image: Empa Image: Empa
14.02.2024

Release of oligomers from polyester textiles

When nanoplastics are not what they seem ... Textiles made of synthetic fibers release micro- and nanoplastics during washing. Empa researchers have now been able to show: Some of the supposed nanoplastics do not actually consist of plastic particles, but of water-insoluble oligomers. The effects they have on humans and the environment are not yet well-understood.

Plastic household items and clothing made of synthetic fibers release microplastics: particles less than five millimetres in size that can enter the environment unnoticed. A small proportion of these particles are so small that they are measured in nanometers. Such nanoplastics are the subject of intensive research, as nanoplastic particles can be absorbed into the human body due to their small size – but, as of today, little is known about their potential toxicity.

When nanoplastics are not what they seem ... Textiles made of synthetic fibers release micro- and nanoplastics during washing. Empa researchers have now been able to show: Some of the supposed nanoplastics do not actually consist of plastic particles, but of water-insoluble oligomers. The effects they have on humans and the environment are not yet well-understood.

Plastic household items and clothing made of synthetic fibers release microplastics: particles less than five millimetres in size that can enter the environment unnoticed. A small proportion of these particles are so small that they are measured in nanometers. Such nanoplastics are the subject of intensive research, as nanoplastic particles can be absorbed into the human body due to their small size – but, as of today, little is known about their potential toxicity.

Empa researchers from Bernd Nowack's group in the Technology and Society laboratory have now joined forces with colleagues from China to take a closer look at nanoparticles released from textiles. Tong Yang, first author of the study, carried out the investigations during his doctorate at Empa. In earlier studies, Empa researchers were already able to demonstrate that both micro- and nanoplastics are released when polyester is washed. A detailed examination of the released nanoparticles released has now shown that not everything that appears to be nanoplastic at first glance actually is nanoplastic.

To a considerable extent, the released particles were in fact not nanoplastics, but clumps of so-called oligomers, i.e. small to medium-sized molecules that represent an intermediate stage between the long-chained polymers and their individual building blocks, the monomers. These molecules are even smaller than nanoplastic particles, and hardly anything is known about their toxicity either. The researchers published their findings in the journal Nature Water.

For the study, the researchers examined twelve different polyester fabrics, including microfiber, satin and jersey. The fabric samples were washed up to four times and the nanoparticles released in the process were analyzed and characterized. Not an easy task, says Bernd Nowack. "Plastic, especially nanoplastics, is everywhere, including on our devices and utensils," says the scientist. "When measuring nanoplastics, we have to take this 'background noise' into account."

Large proportion of soluble particles
The researchers used an ethanol bath to distinguish nanoplastics from clumps of oligomers. Plastic pieces, no matter how small, do not dissolve in ethanol, but aggregations of oligomers do. The result: Around a third to almost 90 percent of the nanoparticles released during washing could be dissolved in ethanol. "This allowed us to show that not everything that looks like nanoplastics at first glance is in fact nanoplastics," says Nowack.

It is not yet clear whether the release of so-called nanoparticulate oligomers during the washing of textiles has negative effects on humans and the environment. "With other plastics, studies have already shown that nanoparticulate oligomers are more toxic than nanoplastics," says Nowack. "This is an indication that this should be investigated more closely." However, the researchers were able to establish that the nature of the textile and the cutting method – scissors or laser – have no major influence on the quantity of particles released.

The mechanism of release has not been clarified yet either – neither for nanoplastics nor for the oligomer particles. The good news is that the amount of particles released decreases significantly with repeated washes. It is conceivable that the oligomer particles are created during the manufacturing of the textile or split off from the fibers through chemical processes during storage. Further studies are also required in this area.

Nowack and his team are focusing on larger particles for the time being: In their next project, they want to investigate which fibers are released during washing of textiles made from renewable raw materials and whether these could be harmful to the environment and health. "Semi-synthetic textiles such as viscose or lyocell are being touted as a replacement for polyester," says Nowack. "But we don't yet know whether they are really better when it comes to releasing fibers."

Source:

Empa

Photo: Walmart Inc.
15.01.2024

What is a Virtual Fitting Room? Advantages and Early Adopters

One of the major concerns of online shopping is a consumer’s inability to touch, feel and experience products. This concern is more problematic for fashion products, when the right fit is critical for purchase decisions. Virtual Fitting Room (VFR), a technology that allows consumers to test size and fit without having to try clothing on themselves, eases this concern.

What is a Virtual Fitting Room (VFR)?
A Virtual Fitting Room (VFR) is a function that shows and visualizes a shopper’s outfit without physically trying on and touching items. VFR utilizes Augmented Reality (AR) and Artificial Intelligence (AI). By using AR for VFR, a webcam scans the body shape of shoppers and creates a 360-degree, 3D model based on their body shape.

One of the major concerns of online shopping is a consumer’s inability to touch, feel and experience products. This concern is more problematic for fashion products, when the right fit is critical for purchase decisions. Virtual Fitting Room (VFR), a technology that allows consumers to test size and fit without having to try clothing on themselves, eases this concern.

What is a Virtual Fitting Room (VFR)?
A Virtual Fitting Room (VFR) is a function that shows and visualizes a shopper’s outfit without physically trying on and touching items. VFR utilizes Augmented Reality (AR) and Artificial Intelligence (AI). By using AR for VFR, a webcam scans the body shape of shoppers and creates a 360-degree, 3D model based on their body shape.

AI further operates VFR by using algorithms and machine learning to design a full-body 3D model of a shopper standing in front of the camera. A combination of AR and AI technology allows VFR to place items on real-time images as a live video so that customers can check the size, style and fit of the products they’re considering purchasing.

Shoppers can try on clothes and shoes at home without visiting a physical store. In order to do this, customers need to first make sure they have the right settings on their phone. Then, they download a brands’ mobile applications with the Virtual Fitting Room function or visit apparel brands’ websites that support this VFR function and upload a photo of their body shape. Some brands allow a customer to create an avatar using their body shape to test out the fashion items virtually, instead of uploading a photo of themselves.

How does using a Virtual Fitting Room benefit fashion retailers?

  • Provides a convenient shopping experience
    Research conducted by the National Retail Federation in 2020 stated that 97% of consumers have ended a shopping trip or stopped searching for the item they had in mind because the process was inconvenient.
    Shoppers surveyed not only said that in-person shopping was inconvenient but that online shopping felt even more inconvenient to them.
    VFR eliminates all of these processes. Shoppers can walk over to the VFR and see what the clothes look like quickly without needing to change them.
     
  • Overcomes the limitations of online shopping
    As of 2017, 62% of shoppers preferred to shop at physical apparel stores because they could see, touch, feel and experience products. This was a major problem that online shopping could not overcome.
    VFR solves this problem effectively. According to a Retail Perceptions Report, about 40% of buyers said they would be willing to pay more if they could experience the product through AR technology. By incorporating new technologies, VFR makes shopping fun and offers a personalized shopping experience to customers, which can attract more people to online channels.
     
  • Reduces the return rate
    High return rates are a big administrative headache for fashion brands. Moreover, it threatens to cut into the profits of fashion brands if they offer free returns. 30% of the return rate in e-commerce fashion shopping is due to purchases of small-sized products, and another 22% happens due to purchases of too large-sized products.
    However, VFR alleviates this problem. Whether in store or online, people can check the fit and size of items without having to wear them themselves.

Which brands are already using Virtual Fitting Room (VFR) technology?
Gucci

Gucci is the first luxury brand which adopted VFR. They partnered with Snapchat to launch an augmented reality shoe try-on campaign. It created a virtual lens that superimposed and overlaid a digital version of the shoe on the shopper’s foot when the foot was photographed using a cell phone camera.

Along with the Shop Now button, which guides shoppers to its online store, Gucci achieved 18.9 million Snapchat users and reported positive return on ad spend, which is a marketing metric that measures the amount of revenue earned on all dollars spent on advertising from this campaign.

Otero Menswear
Otero Menswear is a brand focused on apparel for men shorter than 5’10” (1,78 m). Otero added VFR software to its online store to provide perfect fitting sizes to its customers. First, it asks customers four quick questions about their height, leg length, waist size and body type. Then, it offers a virtual avatar corresponding with the answers. Shoppers then use this avatar to see how different sizes of Otero clothing would look on them.
 
Walmart
In May 2021, Walmart announced that they plan to acquire Zeekit, a virtual fitting room platform, to provide enhanced and social shopping experiences for customers during the pandemic.

When customers upload pictures of themselves and enter their body dimensions, Zeekit builds a virtual body and then customers can dress it accordingly. Customers will simply post their photos or choose virtual models on the platform that represent the best fitting of their height, body and skin tone. Shoppers can even share their virtual clothes with others to get various opinions. Walmart brings a comprehensive and social experience to digital shopping for customers through this acquisition of VFR.

According to research by Valuates Reports, it is expected that sales of the global virtual fitting room market will grow to $6.5 million by 2025. By adopting VFR, consumers will be able to experience convenience in an advanced shopping environment. At the same time, fashion retailers will be able to increase online sales and reduce return rates by offering customers personalized online shopping experiences using VFR technology.

Source:

Heekyeong Jo and B. Ellie Jin
This article was originally published by members of the Wilson College of Textiles’ Fashion Textile and Business Excellence Cooperative.

New conductive, cotton-based fiber developed for smart textiles Photo: Dean Hare, WSU Photo Services
29.12.2023

New conductive, cotton-based fiber developed for smart textiles

A single strand of fiber developed at Washington State University has the flexibility of cotton and the electric conductivity of a polymer, called polyaniline.

The newly developed material showed good potential for wearable e-textiles. The WSU researchers tested the fibers with a system that powered an LED light and another that sensed ammonia gas, detailing their findings in the journal Carbohydrate Polymers.

“We have one fiber in two sections: one section is the conventional cotton: flexible and strong enough for everyday use, and the other side is the conductive material,” said Hang Liu, WSU textile researcher and the study’s corresponding author. “The cotton can support the conductive material which can provide the needed function.”

A single strand of fiber developed at Washington State University has the flexibility of cotton and the electric conductivity of a polymer, called polyaniline.

The newly developed material showed good potential for wearable e-textiles. The WSU researchers tested the fibers with a system that powered an LED light and another that sensed ammonia gas, detailing their findings in the journal Carbohydrate Polymers.

“We have one fiber in two sections: one section is the conventional cotton: flexible and strong enough for everyday use, and the other side is the conductive material,” said Hang Liu, WSU textile researcher and the study’s corresponding author. “The cotton can support the conductive material which can provide the needed function.”

While more development is needed, the idea is to integrate fibers like these into apparel as sensor patches with flexible circuits. These patches could be part of uniforms for firefighters, soldiers or workers who handle chemicals to detect for hazardous exposures. Other applications include health monitoring or exercise shirts that can do more than current fitness monitors.

“We have some smart wearables, like smart watches, that can track your movement and human vital signs, but we hope that in the future your everyday clothing can do these functions as well,” said Liu. “Fashion is not just color and style, as a lot of people think about it: fashion is science.”

In this study, the WSU team worked to overcome the challenges of mixing the conductive polymer with cotton cellulose. Polymers are substances with very large molecules that have repeating patterns. In this case, the researchers used polyaniline, also known as PANI, a synthetic polymer with conductive properties already used in applications such as printed circuit board manufacturing.

While intrinsically conductive, polyaniline is brittle and by itself, cannot be made into a fiber for textiles. To solve this, the WSU researchers dissolved cotton cellulose from recycled t-shirts into a solution and the conductive polymer into another separate solution. These two solutions were then merged together side-by-side, and the material was extruded to make one fiber.

The result showed good interfacial bonding, meaning the molecules from the different materials would stay together through stretching and bending.

Achieving the right mixture at the interface of cotton cellulose and polyaniline was a delicate balance, Liu said.

“We wanted these two solutions to work so that when the cotton and the conductive polymer contact each other they mix to a certain degree to kind of glue together, but we didn’t want them to mix too much, otherwise the conductivity would be reduced,” she said.

Additional WSU authors on this study included first author Wangcheng Liu as well as Zihui Zhao, Dan Liang, Wei-Hong Zhong and Jinwen Zhang. This research received support from the National Science Foundation and the Walmart Foundation Project.

Source:

Sara Zaske, WSU News & Media Relations

Chemist Unlocks Plastic Alternatives Using Proteins and Clothing Scraps Photo: Challa Kumar, professor emeritus of chemistry, in his lab. (Contributed photo)
21.12.2023

Chemist Unlocks Plastic Alternatives Using Proteins and Clothing Scraps

Challa Kumar has developed methods to create novel plastic-like materials using proteins and fabric.

Every year, 400 million tons of plastic waste are generated worldwide. Between 19 and 23 million tons of that plastic waste makes its way into aquatic ecosystems, and the remaining goes into the ground. An additional 92 million tons of cloth waste is generated annually.

Challa Kumar, professor emeritus of chemistry, “fed up” with the tremendous amount of toxic waste people continually pump into the environment, felt compelled to do something. As a chemist, doing something meant using his expertise to develop new, sustainable materials.

“Everyone should think about replacing fossil fuel-based materials with natural materials anywhere they can to help our civilization to survive,” Kumar says. “The house is on fire, we can’t wait. If the house is on fire and you start digging a well – that is not going to work. It’s time to start pouring water on the house.”

Challa Kumar has developed methods to create novel plastic-like materials using proteins and fabric.

Every year, 400 million tons of plastic waste are generated worldwide. Between 19 and 23 million tons of that plastic waste makes its way into aquatic ecosystems, and the remaining goes into the ground. An additional 92 million tons of cloth waste is generated annually.

Challa Kumar, professor emeritus of chemistry, “fed up” with the tremendous amount of toxic waste people continually pump into the environment, felt compelled to do something. As a chemist, doing something meant using his expertise to develop new, sustainable materials.

“Everyone should think about replacing fossil fuel-based materials with natural materials anywhere they can to help our civilization to survive,” Kumar says. “The house is on fire, we can’t wait. If the house is on fire and you start digging a well – that is not going to work. It’s time to start pouring water on the house.”

Kumar has developed two technologies that use proteins and cloth, respectively, to create new materials. UConn’s Technology Commercialization Services (TCS) has filed provisional patents for both technologies.

Inspired by nature’s ability to construct a diverse array of functional materials, Kumar and his team developed a method to produce continuously tunable non-toxic materials.

“Chemistry is the only thing standing in our way,” Kumar says. “If we understand protein chemistry, we can make protein materials as strong as a diamond or as soft as a feather.”

The first innovation is a process to transform naturally occurring proteins into plastic-like materials. Kumar’s student, Ankarao Kalluri ’23 Ph.D., worked on this project.

Proteins have “reactor groups” on their surfaces which can react with substances with which they come into contact. Using his knowledge of how these groups work, Kumar and his team used a chemical link to bind protein molecules together.

This process creates a dimer – a molecule composed to two proteins. From there, the dimer is joined with another dimer to create tetramer, and so on until it becomes a large 3D molecule. This 3D aspect of the technology is unique, since most synthetic polymers are linear chains.

This novel 3D structure allows the new polymer to behave like a plastic. Just like the proteins of which it is made, the material can stretch, change shape, and fold. Thus, the material can be tailored via chemistry for a variety of specific applications.

Unlike synthetic polymers, because Kumar’s material is made of proteins and a bio-linking chemical, it can biodegrade, just like plant and animal proteins do naturally.

“Nature degrades proteins by ripping apart the amide bonds that are in them,” Kumar says. “It has enzymes to handle that sort of chemistry. We have the same amide linkages in our materials. So, the same enzymes that work in biology should also work on this material and biodegrade it naturally.”

In the lab, the team found that the material degrades within a few days in acidic solution. Now, they are investigating what happens if they bury this material in the ground, which is the fate of many post-consumer plastics.

They have demonstrated that the protein-based material can form a variety of plastic-like products, including coffee cup lids and thin transparent films. It could also be used to make fire-resistant roof tiles, or higher-end materials like, car doors, rocket cone tips, or heart valves.

The next steps for this technology are to continue testing their mechanical properties, like strength or flexibility, as well as toxicity.

“I think we need to have social consciousness that we cannot put out materials into the environment that are toxic,” Kumar says. “We just cannot. We have to stop doing that. And we cannot use materials derived from fossil fuels either.”

Kumar’s second technology uses a similar principle, but instead of just proteins, uses proteins reinforced with natural fibers, specifically cotton.

“We are creating a lot of textile waste each year due to the fast-changing fashion industry” Kumar says. “So why not use that waste to create useful materials – convert waste to wealth.”

Just like the plastic-like protein materials (called “Proteios,” derived from original Greek words), Kumar expects composite materials made from proteins and natural fibers will biodegrade without producing toxic waste.

In the lab, Kumar’s former student, doctoral candidate Adekeye Damilola, created many objects with protein-fabric composites, which include small shoes, desks, flowers, and chairs. This material contains textile fibers which serve as the linking agent with the proteins, rather than the cross-linking chemical Kumar uses for the protein-based plastics.

The crosslinking provides the novel material with the strength to withstand the weight that would be put on something like a chair or a table. The natural affinity between fibers and proteins is why it’s so hard to get food stains out of clothing. This same attraction makes strong protein-fabric materials.

While Kumar’s team has only worked with cotton so far, they expect other fiber materials, like hemp fibers or jute, would behave similarly due to their inherent but common chemical properties with cotton.

“The protein naturally adheres to the surface of the protein,” Kumar says. “We used that understanding to say ‘Hey, if it binds so tightly to cotton, why don’t we make a material out of it.’ And it works, it works amazingly.”

With the support of TCS, Professor Kumar is currently seeking industry partners to bring these technologies to market. For more information contact Michael Invernale at michael.invernale@uconn.edu.

Source:

Anna Zarra Aldrich '20 (CLAS), Office of the Vice President for Research

A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from. Photo: © Fraunhofer IPMS. A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from.
10.10.2023

Checking clothing using a smartphone, AI and infrared spectroscopy

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Infrared spectrometers are powerful measuring instruments when it comes to non-destructive analysis of organic materials. The Fraunhofer Institute for Photonic Microsystems IPMS in Dresden has recently developed a spectral analyzer system that recognizes and analyzes textile fabrics. The system can also reliably recognize mixed fabrics. Possible applications range from checking fabrics when out shopping to cleaning garments correctly, and even sustainable, sorted recycling. The spectrometer is so tiny, it can be integrated into a smartphone.

Researchers at Fraunhofer rely on near-infrared (NIR) spectroscopy to achieve the required reliability and accuracy when identifying textiles. The system works for wavelengths between 950 and 1900 nanometers, which is close to the visible spectrum. Advantages of near-infrared technology include being easy to use and having a wide range of applications. “We combine NIR spectroscopy with imaging and AI to achieve higher accuracy when recognizing and analyzing objects,” explains Dr. Heinrich Grüger, research scientist in the Sensoric Micromodules department at Fraunhofer IPMS.

How textile analysis works
Firstly, a conventional camera module captures an image of the garment. The AI selects a specific point from the fabric’s image data to be examined by the spectral analyzer module. Light reflected from the fabric is captured by the spectrometer module. There, it passes through an entrance slit, is transformed into parallel light beams using a collimating mirror and projected onto a grating using a scanning mirror. Depending on the angle of incidence and exit, the grating splits the light beams into different wavelengths. Light reflected from the grating is directed by the scanner mirror to a detector which captures the light as an electrical signal. An A/D converter then digitizes these signals, which are subsequently analyzed in the signal processor. The resulting spectrometric profile for the textile fabric reveals which fibers it is made from by comparing to a reference database.“ The optical resolution is 10 nanometers. This high resolution means the NIR spectrometer can also use AI to identify mixed fabrics such as items of clothing made from polyester and cotton,” says Grüger. Measuring just 10 mm × 10 mm and being 6.5 mm thick, the system is so compact it could easily be integrated into a standard smartphone.

Recycling old clothing
Grüger sees an important application for the AI-controlled spectrometer when it comes to recycling. According to the Federal Statistical Office of Germany, approximately 176,200 tons of textile and clothing waste was collected from private homes in Germany in 2021. NIR spectroscopy could improve recycling efficiency and reduce the mountain of old clothing. This would enable companies that recycle old clothing to sort it more efficiently and faster. Textiles that are still in one piece, for instance, go to the second-hand trade. Damaged textiles are sorted for recycling, and the fibers they are made from, such as linen, silk, cotton or lyocell, can be reused. Severely soiled textiles would be incinerated or processed into insulation mats, for example. Spectroscopic identifies and sorts textiles more accurately and much faster than a human can.

If NIR spectroscopy was to be integrated into a smartphone, end-users might also benefit from the Fraunhofer institute’s technology. When buying clothes, a quick check with a smartphone reveals whether that expensive silk scarf is genuinely made from silk, or whether that exclusive dress from the fashion label is not instead a counterfeit, exposed through an alternative mix of fabrics. And should the label with the cleaning instructions no longer be legible, the smartphone has a textile scanner to identify the fabric and so determine the appropriate wash cycle.

Food check and dermatology
Researchers at Fraunhofer IPMS can even envisage applications beyond the textile industry. Smartphones fitted with spectrometers might be used to provide information about the quality of groceries such as fruit and vegetables when out shopping. The technology might conceivably also be used to examine skin. A quick scan with the cell phone spectrometer could identify particularly dry or greasy patches. Perhaps applications in medical diagnostics might even be conceivable — examining patches of skin where a melanoma is suspected, for example — but this would need professional involvement too.

Source:

Fraunhofer Institute for Photonic Microsystems

sportswear Stocksnap, Pixabay
30.08.2023

Detecting exhaustion with smart sportswear

Researchers at ETH Zurich have developed an electronic yarn capable of precisely measuring how a person’s body moves. Integrated directly into sportswear or work clothing, the textile sensor predicts the wearer’s exhaustion level during physical exertion.

Exhaustion makes us more prone to injury when we’re exercising or performing physical tasks. A group of ETH Zurich researchers led by Professor Carlo Menon, Head of the Biomedical and Mobile Health Technology Lab, have now developed a textile sensor that produces real-time measurements of how exhausted a person gets during physical exertion. To test their new sensor, they integrated it into a pair of athletic leggings. Simply by glancing at their smartphone, testers were able to see when they were reaching their limit and if they ought to take a break.

Researchers at ETH Zurich have developed an electronic yarn capable of precisely measuring how a person’s body moves. Integrated directly into sportswear or work clothing, the textile sensor predicts the wearer’s exhaustion level during physical exertion.

Exhaustion makes us more prone to injury when we’re exercising or performing physical tasks. A group of ETH Zurich researchers led by Professor Carlo Menon, Head of the Biomedical and Mobile Health Technology Lab, have now developed a textile sensor that produces real-time measurements of how exhausted a person gets during physical exertion. To test their new sensor, they integrated it into a pair of athletic leggings. Simply by glancing at their smartphone, testers were able to see when they were reaching their limit and if they ought to take a break.

This invention, for which ETH Zurich has filed a patent, could pave the way for a new generation of smart clothing: many of the products currently on the market have electronic components such as sensors, batteries or chips retrofitted to them. In addition to pushing up prices, this makes these articles difficult to manufacture and maintain.

By way of contrast, the ETH researchers’ stretchable sensor can be integrated directly into the material fibres of stretchy, close-fitting sportswear or work clothing. This makes large-scale production both easier and cheaper. Menon highlights another benefit: “Since the sensor is located so close to the body, we can capture body movements very precisely without the wearer even noticing.”

An extraordinary yarn
When people get tired, they move differently – and running is no exception: strides shorten and become less regular. Using their new sensor, which is made of a special type of yarn, the ETH researchers can measure this effect. It’s all thanks to the yarn’s structure: the inner fibre is made of a conductive, elastic rubber. The researchers wrapped a rigid wire, which is clad in a thin layer of plastic, into a spiral around this inner fibre. “These two fibres act as electrodes and create an electric field. Together, they form a capacitor that can hold an electric charge,” says Tyler Cuthbert, a postdoc in Menon’s group, who was instrumental in the research and development that led to the invention.

Smart running leggings
Stitching this yarn into the thigh section of a pair of stretchy running leggings means that it will stretch and slacken at a certain rhythm as the wearer runs. Each movement alters the gap between the two fibres, and thus also the electric field and the capacitor’s charge.

Under normal circumstances, these charge fluctuations would be much too small to help measure the body’s movements. However, the properties of this yarn are anything but normal: “Unlike most other materials, ours actually becomes thicker when stretched,” Cuthbert says. As a result, the yarn is considerably more sensitive to minimal movements. Stretching it even a little produces distinctly measurable fluctuations in the sensor’s charge. This makes it possible to measure and analyse even subtle changes in running form.

But how can this be used to determine a person’s exhaustion level? In previous research, Cuthbert and Menon observed a series of testers, who ran while wearing athletic leggings equipped with a similar sensor. They recorded how the electric signals changed as the runners got more and more tired. Their next step was to turn this pattern into a model capable of predicting runners’ exhaustion which can now be used for their novel textile sensor.  But ensuring that the model can make accurate predictions outside the lab will require a lot of additional tests and masses of gait pattern data.

Textile antenna for wireless data transfer  
To enable the textile sensor to send electrical signals wirelessly to a smartphone, the researchers equipped it with a loop antenna made of conducting yarn, which was also sewn directly onto the leggings. “Together, the sensor and antenna form an electrical circuit that is fully integrated into the item of clothing,” says Valeria Galli, a doctoral student in Menon’s group.

The electrical signal travels from the stretchable sensor to the antenna, which transmits it at a certain frequency capable of being read by a smartphone. The wearer runs and the sensor moves, creating a signal pattern with a continuously fluctuating frequency, which a smartphone app then records and evaluates in real time. But the researchers still have quite a bit of development work to do to make this happen.

Applications include sport and workplace
At the moment, the researchers are working on turning their prototype into a market-ready product. To this end, they are applying for one of ETH Zurich’s sought-after Pioneer Fellowships. “Our goal is to make the manufacture of smart clothing cost-effective and thus make it available to a broader public,” Menon says. He sees the potential applications stretching beyond sport to the workplace – to prevent exhaustion-related injuries – as well as to rehabilitation medicine.

Point of View: Let’s end fast fashion, Prof Minna Halme. Photo: Veera Konsti / Aalto University
18.08.2023

Point of View: Let’s end fast fashion

Focusing on short-term profit isn’t sustainable. So what can we do to move in the right direction: favour resilience over efficiency in all industries.

We buy cheap products knowing we’ll need to replace them soon. We throw out used items rather than repairing or re-using them. Our employers plan in terms of financial quarters despite hoping to remain relevant and resilient longer-term. Even countries prioritise short-term economic output, focusing on gross domestic product (GDP) above any other indicator.

But does this way of living, working and weighing decisions make sense in the 21st century?

Our global obsession with economic short-term efficiency – and how to transform it – is a conundrum that Professor of Sustainability Management Minna Halme has been thinking about for most of her career. Even as a business school student, she felt flummoxed by how focused her classes were on short-term goals.

Focusing on short-term profit isn’t sustainable. So what can we do to move in the right direction: favour resilience over efficiency in all industries.

We buy cheap products knowing we’ll need to replace them soon. We throw out used items rather than repairing or re-using them. Our employers plan in terms of financial quarters despite hoping to remain relevant and resilient longer-term. Even countries prioritise short-term economic output, focusing on gross domestic product (GDP) above any other indicator.

But does this way of living, working and weighing decisions make sense in the 21st century?

Our global obsession with economic short-term efficiency – and how to transform it – is a conundrum that Professor of Sustainability Management Minna Halme has been thinking about for most of her career. Even as a business school student, she felt flummoxed by how focused her classes were on short-term goals.

'It was about selling more, about maximising shareholder profits, about economic growth – but not really asking, Why? What's the purpose of all this?'

Halme says. 'Even 20-year-old me somehow just felt that this was strange.

'What are we trying to do here? Are we trying to create a better economy for all, or most, people? Whose lives are we trying to improve when we are selling more differently-packaged types of yoghurt or clothes that quickly become obsolete?'

Halme has devoted her career to studying these questions. Today, she is a thought leader in innovative business practices, with recognitions including serving on Finland's National Expert Panel for Sustainable Development and on the United Nation's Panel on Global Sustainability.

Her ultimate goal? Pioneering, researching and advocating for alternative ways of thinking that prioritise values like long-term economic sustainability and resilience – alternatives that she and other experts believe would provide more lasting, widespread benefit to all.

How traditional indicators have failed
One way in which our preference for economic efficiency shapes how we measure a country's overall well-being or status is GDP. This isn't the fault of the originator of the modern concept of GDP, who specifically warned against using it in this way in the 1930s.

'GDP was never meant to tell us about the wellbeing of the citizens of a country,' Halme says. Seventy-five years ago, however, it was easy to conflate the two. Many countries were more committed to redistributing their wealth among their citizens, and population surveys show that until the 1970s, GDP often correlated with general wellbeing.

But with the rise of increasingly heedless free-market capitalism, this became less the case – and GDP's shortcomings became all the more apparent. 'We are in a situation where the wealth distribution is more and more trickling up to those who already have capital. Those who don't have it are in declining economic positions,' Halme says. In fact, the richest 1% of the global population now own nearly half of the world's wealth.

Some governments, such as Finland's, do take indicators of environmental and social progress into account. 'But none is considered as important for decision-making as GDP,' Halme says – and GDP is also considered the arbiter of a government's success. It is that attitude that, through her work advising the Finnish government on sustainability practises as well as in her own research, Halme is trying to shift.

Where industries have failed
Our often-exclusive focus on the economy – and, in particular, on making profits as quickly and efficiently as possible – doesn’t provide a clear picture of how everyone in a society is faring. Worse yet, it has encouraged industries to act with a short-term view that makes for longer-term problems.

Fast fashion is one example. At the moment, supply chains for clothing – as for most other goods – are linear. Raw materials come from one place and are transformed step by step, usually at different factories around the world, using materials, energy and transport that are “cheap” because their high environmental costs aren’t included. They are ultimately purchased by a consumer, who wears the product temporarily before discarding it. To expand profit margins, the industry pushes fast-changing trends. A shocking amount of this clothing ends up in landfill – some of it before it's even been worn.

As the COVID lockdowns showed, this kind of linear supply system isn't resilient. Nor is it sustainable.

Currently, fashion is estimated to be the world's second most polluting industry, accounting for up to 10% of all greenhouse gas emissions. Aalto University researchers have reported that the industry produces more than 92 million tonnes of landfill waste per year. By 2030, that is expected to rise to 134 million tonnes.

Cutting fashion's carbon footprint isn't just good for the environment; it will help the longer-term prospects of the industry itself. 'With this kind of wrong thinking about efficiency, you're eroding the basis of our long-term resilience both for ecology and for society,' Halme says.

Getting out of this trap, she and other researchers say, requires a complete paradigm shift. 'It's really difficult to just tweak around the edges,' she says.

Towards resilience
For several years, Halme researched and studied ecological efficiency, looking at ways that businesses could make more products with a smaller environmental impact. But gradually she realised this wasn't the answer. Although businesses could innovate to have more efficient products and technologies, their absolute use of natural resource use kept growing.

'I began to think, "If not efficiency, then what?"' Halme says. She realised the answer was resilience: fostering ways for systems, including the environment, to continue and even regenerate in the future, rather than continuing to degrade them in the present.

The solution isn’t more of anything, even ‘sustainable’ materials. It’s less.

'The only way to fix fast fashion is to end it,' Halme and her co-authors write. This means designing clothes to last, business models that make reuse and repair more accessible, and prioritising upcycling. Recycling systems also need to be overhauled for when an item really is at the end of its life – particularly regarding blended synthetic fibres, which are difficult to separate and break down.

This would upend the current focus on short-term revenue above all else. And, says Halme, it is one more example of how we need better ways to measure the success of these industries, taking into account factors like resilience and sustainability – rather than just short-term profits.

And while individuals can make an impact, these changes ultimately have to be industry-led.

'Textiles are a good example, because if they break quickly, and if you don't have repair services nearby, or if the fabrics are of such lousy quality that it doesn't make any sense to repair them, then it's too much trouble for most people,' Halme says. 'So most solutions should come from the business side. And the attempt should be to make it both fashionable and easy for consumers to make ecologically and socially sustainable choices.'

What will it take?
The ultimate challenge, says Lauri Saarinen, Assistant Professor at the Aalto University Department of Industrial Engineering and Management, is how to shift towards a more sustainable model while keeping companies competitive. But he believes there are ways.

One option is to keep production local. 'If we compete with low-cost, offshore manufacturing by doing things more locally, and in a closed loop, then we get the double benefit of actually providing some local work and moving towards a more sustainable supply chain,' Saarinen says. For example, if clothing were produced closer to consumers, it would be easier to send garments back for repair or for brands to take back used items and resell them.

Local production is yet another example of the need to rethink how we measure societal success. After all, outsourcing and offshoring in favour of cheaper production may appear to cut costs in short term, but this is done at the expense of what Halme and other experts argue really matters – longer-term economic viability, resilience and sustainability.

Shifting towards this kind of thinking isn't easy. Still, Saarinen and Halme have seen promising signs.

In Finland, for example, Halme points to the start-up Menddie, which makes it easy and convenient to send items away for repairs or alterations. She also highlights the clothing and lifestyle brand Marimekko, which re-sells its used items in an online secondhand shop, and the Anna Ruohonen label, a made-to-measurecollection and customer on-demand concept which creates no excess garments.

It's these kinds of projects that Halme finds interesting – and that, through her work, she hopes to both advocate for and pioneer.

At the moment, she says, these changes haven't yet added up to a true transformation. On a global scale, we remain far from a genuine shift towards longer-term resilience. But as she points out, that can change quickly. After all, it has in the past. Just look at what got us here.

'The pursuit of economic growth became such a dominant focus in a relatively short time – only about seven decades,' she says. 'The shift toward longer-term resilience is certainly possible. Scientists and decision-makers just need to change their main goal to long-term resilience. The key question is, are our most powerful economic players wise enough to do so?'

As part of her research, Halme has led projects pioneering the kinds of changes that the fashion industry could adapt. For example, along with her Aalto colleague Linda Turunen, she recently developed a measurement that the fashion industry could use to classify how sustainable a product really is – measuring things like its durability, how easily it can be recycled, and whether its production uses hazardous chemicals – which could help consumers to decide whether to buy. Her colleagues curated a recent exhibition that showcased what we might be wearing in a sustainable future, such as a leather alternative made from discarded flower cuttings, or modular designs to get multiple uses from the same garment – turning a skirt into a shirt, for example.
 
Because all of this requires longer-term thinking, innovation and investment, industry is reticent to make these shifts, Halme says. One way to encourage industries to change more quickly is with regulation. In the European Union, for example, an updated set of directives now requires companies with more than 500 employees to report on a number of corporate responsibility factors, ranging from environmental impact to the treatment of employees. These rules won't just help inform consumers, investors and other stakeholders about a company's role in global challenges. They’ll also help assess investment risks – weighing whether a company is taking the actions necessary to be financially resilient in the long-term.

Source:

Aalto University, Amanda Ruggeri

Ultra-thin smart textiles are being refined for their use in obstetric monitoring and will enable analysis of vital data via app for pregnancies. Photo: Pixabay, Marjon Besteman
24.07.2023

Intelligent Patch for Remote Monitoring of Pregnancy

During pregnancy, regular medical check-ups provide information about the health and development of the pregnant person and the child. However, these examinations only provide snapshots of their state, which can be dangerous, especially in high-risk cases. To enable convenient and continuous monitoring during this sensitive phase, an international research consortium is planning to further develop the technology of smart textiles. A patch equipped with highly sensitive electronics is meant to collect and evaluate vital data. In addition, the sensors will be integrated into baby clothing in order to improve the future of medical monitoring for newborns with the highest level of data security.

During pregnancy, regular medical check-ups provide information about the health and development of the pregnant person and the child. However, these examinations only provide snapshots of their state, which can be dangerous, especially in high-risk cases. To enable convenient and continuous monitoring during this sensitive phase, an international research consortium is planning to further develop the technology of smart textiles. A patch equipped with highly sensitive electronics is meant to collect and evaluate vital data. In addition, the sensors will be integrated into baby clothing in order to improve the future of medical monitoring for newborns with the highest level of data security.

The beginning of a pregnancy is accompanied by a period of intensive health monitoring of the baby and the pregnant person. Conventional prenatal examinations with ultrasound devices, however, only capture snapshots of the respective condition and require frequent visits to doctors, especially in high-risk pregnancies. With the help of novel wearables and smart textiles, researchers in the EU-funded project Newlife aim to enable continuous obstetric monitoring in everyday life.

One goal of the consortium, consisting of 25 partners, is the development of a biocompatible, stretchable, and flexible patch to monitor the progress of the pregnancy and the embryo. Similar to a band-aid, the patch will be applied to the pregnant person’s skin, continuously recording vital data using miniaturized sensors (e.g., ultrasound) and transmitting it via Bluetooth.

For some time now, modern medical technology has been relying on smart textiles and intelligent wearables to offer patients convenient, continuous monitoring at home instead of stationary surveillance. At the Fraunhofer Institute for Reliability and Microelectronics IZM, a team led by Christine Kallmayer is bringing this technology to application-oriented implementation, benefitting from the Fraunhofer IZM’s years of experience with integrating technologies into flexible materials. For the integrated patch, the researchers are using thermoplastic polyurethane as base materials, in which electronics and sensors are embedded. This ensures that the wearing experience is similar to that of a regular band-aid instead of a rigid film.

To ensure that the obstetric monitoring is imperceptible and comfortable for both pregnant individuals and the unborn child, the project consortium plans to integrate innovative MEMS-based ultrasound sensors directly into the PU material. The miniaturized sensors are meant to record data through direct skin contact. Stretchable conductors made of TPU material tracks will then transmit the information to the electronic evaluation unit and finally to a wireless interface, allowing doctors and midwives to view all relevant data in an app. In addition to ultrasound, the researchers are planning to integrate additional sensors such as microphones, temperature sensors, and electrodes.

Even after birth, the new integration technology can be of great benefit to medical technology: With further demonstrators, the Newlife team plans to enable the monitoring of newborns. Sensors for continuous ECG, respiration monitoring, and infrared spectroscopy to observe brain activity will be integrated into the soft textile of a baby bodysuit and a cap. "Especially for premature infants and newborns with health risks, remote monitoring is a useful alternative to hospitalization and wired monitoring. For this purpose, we must guarantee an unprecedented level of comfort provided by the ultra-thin smart textiles: no electronics should be noticeable. Additionally, the entire module has to be extremely reliable, as the smart textiles should easily withstand washing cycles," explains Christine Kallmayer, project manager at Fraunhofer IZM.

For external monitoring of the baby's well-being, the project is also researching ways to use camera data and sensor technology in the baby's bed. Once the hardware basis of the patch, the textile electronics, and the sensor bed is built and tested, the project partners will take another step forward. Through cloud-based solutions, AI and machine learning will be used to simplify the implementation for medical staff and ensure the highest level of data security.

The Newlife project is coordinated by Philips Electronics Nederland B.V. and will run until the end of 2025. It is funded by the European Union under the Horizon Europe program as part of Key Digital Technologies Joint Undertaking under grant number 101095792 with a total of 18.7 million euros.

Source:

Fraunhofer Institute for Reliability and Microintegration IZM

(c) Nadine Glad
18.07.2023

Promoting transparent supply chains and a more circular economy with digital product passports

Any prospective buyer interested in knowing more about the products they have set their eyes on will have to cope with limited information on print or online manuals or engage in time-consuming research. This may change soon, as the European Commission introduced a standardised digital product passport for the upcoming legislation. A project consortium has been formed with partners from industry and academia to set ground for the developments. The idea is for the proposed passports, supported by EU regulations, to make all product information available along the entire value chain and easily accessible e.g. by QR code.

Any prospective buyer interested in knowing more about the products they have set their eyes on will have to cope with limited information on print or online manuals or engage in time-consuming research. This may change soon, as the European Commission introduced a standardised digital product passport for the upcoming legislation. A project consortium has been formed with partners from industry and academia to set ground for the developments. The idea is for the proposed passports, supported by EU regulations, to make all product information available along the entire value chain and easily accessible e.g. by QR code.

ID cards and passports are usually the first things packed when one goes on a journey. They are internationally recognized and accepted documents with all the necessary information about the holder: Commonplace items for people that will soon become just as common for electronic devices, textiles, or batteries. But mobile phones, tablet computers, and their kin usually do not travel with a passport pouch, so their digital product passports with all their “personal details” will soon be accessible at every link in the value chain via a QR code or RFID chip.

Consumers looking to buy a new piece of clothing, a piece of electronics, or even furniture or toys should have more means to understand important information about their products, including their energy efficiency, the labor conditions during manufacturing, or their reparability, in order to make informed and sustainable purchasing choices.

Product passports also hold great potential for other actors, e.g. for repairs or recycling. Current electronic products, often highly miniaturized, make it hard to understand with materials, not least toxic substances are contained and how they could be separated from another. Use-specific certificates can regulate that this type of information is available to the people who need to know it.

No final decision has yet been made about the range of information that will be contained in the product passports. For the CIRPASS project, Eduard Wagner and his team at Fraunhofer ZM is currently surveying which types of information are already covered by current legal requirements and which additional information could be contained on a digital product passport. Their aim is to provide an information architecture that determines which types of information have added value for which actors in the value chain and at what cost this information could be provided. A reparability scale that shows how easily a product is to repair has been required in France since 2021 and might be a good inclusion in the digital, pan-European product passport. “Information about energy efficiency is already required, but this information still has to be prepared on a case-by-case basis, and there are no universal European disclosure requirements for other types of circularity related information. Meaningful standardization here is one of the top goals of the product passport. Imagine we could compare the durability of all t-shirts in the EU between each other,” says sustainability expert Eduard Wagner.

For the first product passports to be ready by 2026, many actors still need to be brought on board and a consensus be found for which information is most relevant. “Our project has identified 23 groups of stakeholders that we are including in our survey of requirements, in all three sectors”, Wagner explains. “We have suppliers of materials, manufacturers of electronics, and representatives of repair and recycling associations with us.” The results of these consultations will go to the European Commission to act as pointers for the political process en route to new legal requirements for the product passport. Small to medium-sized enterprises are given special attention and support in this, as providing the required information can mean a considerable effort on their part.

Source:

Fraunhofer Institute for Reliability and Microintegration IZM

Thread-like pumps can be woven into clothes (c) LMTS EPFL
27.06.2023

Thread-like pumps can be woven into clothes

Ecole Polytechnique Fédérale de Lausanne (EPFL) researchers have developed fiber-like pumps that allow high-pressure fluidic circuits to be woven into textiles without an external pump. Soft supportive exoskeletons, thermoregulatory clothing, and immersive haptics can therefore be powered from pumps sewn into the fabric of the devices themselves.

Many fluid-based wearable assistive technologies today require a large and noisy pump that is impractical – if not impossible – to integrate into clothing. This leads to a contradiction: wearable devices are routinely tethered to unearable pumps. Now, researchers at the Soft Transducers Laboratory (LMTS) in the School of Engineering have developed an elegantly simple solution to this dilemma.

Ecole Polytechnique Fédérale de Lausanne (EPFL) researchers have developed fiber-like pumps that allow high-pressure fluidic circuits to be woven into textiles without an external pump. Soft supportive exoskeletons, thermoregulatory clothing, and immersive haptics can therefore be powered from pumps sewn into the fabric of the devices themselves.

Many fluid-based wearable assistive technologies today require a large and noisy pump that is impractical – if not impossible – to integrate into clothing. This leads to a contradiction: wearable devices are routinely tethered to unearable pumps. Now, researchers at the Soft Transducers Laboratory (LMTS) in the School of Engineering have developed an elegantly simple solution to this dilemma.

“We present the world’s first pump in the form of a fiber; in essence, tubing that generates its own pressure and flow rate,” says LMTS head Herbert Shea. “Now, we can sew our fiber pumps directly into textiles and clothing, leaving conventional pumps behind.” The research has been published in the journal Science.

Lightweight, powerful…and washable
Shea’s lab has a history of forward-thinking fluidics. In 2019, they produced the world’s first stretchable pump.

“This work builds on our previous generation of soft pump,” says Michael Smith, an LMTS post-doctoral researcher and lead author of the study. “The fiber format allows us to make lighter, more powerful pumps that are inherently more compat-ible with wearable technology.”

The LMTS fiber pumps use a principle called charge injection electrohydrodynamics (EHD) to generate a fluid flow without any moving parts. Two helical electrodes embedded in the pump wall ionize and accelerate molecules of a special non-conductive liquid. The ion movement and electrode shape generate a net forward fluid flow, resulting in silent, vibration-free operation, and requiring just a palm-sized power supply and battery.

To achieve the pump’s unique structure, the researchers developed a novel fabrication technique that involves twisting copper wires and polyurethane threads together around a steel rod, and then fusing them with heat. After the rod is removed, the 2 mm fibers can be integrated into textiles using standard weaving and sewing techniques.

The pump’s simple design has a number of advantages. The materials required are cheap and readily available, and the manufacturing process can be easily scaled up. Because the amount of pressure generated by the pump is directly linked to its length, the tubes can be cut to match the application, optimizing performance while minimizing weight. The robust design can also be washed with conventional detergents.

From exoskeletons to virtual reality
The authors have already demonstrated how these fiber pumps can be used in new and exciting wearable technologies. For example, they can circulate hot and cold fluid through garments for those working in extreme temperature environments or in a therapeutic setting to help manage inflammation; and even for those looking to optimize athletic performance.

“These applications require long lengths of tubing anyway, and in our case, the tubing is the pump. This means we can make very simple and lightweight fluidic circuits that are convenient and comfortable to wear,” Smith says.

The study also describes artificial muscles made from fabric and embedded fiber pumps, which could be used to power soft exoskeletons to help patients move and walk.

The pump could even bring a new dimension to the world of virtual reality by simulating the sensation of temperature. In this case, users wear a glove with pumps filled with hot or cold liquid, allowing them to feel temperature changes in response to contact with a virtual object.

Pumped up for the future
The researchers are already looking to improve the performance of their device. “The pumps already perform well, and we’re confident that with more work, we can continue to make improvements in areas like efficiency and lifetime,” says Smith. Work has already started on scaling up the production of the fiber pumps, and the LMTS also has plans to embed them into more complex wearable devices.

“We believe that this innovation is a game-changer for wearable technology,” Shea says.

More information:
EPFL Fibers exoskeleton wearables
Source:

Celia Luterbacher, School of Engineering | STI

Photo: Unsplash
13.06.2023

The impact of textile production and waste on the environment

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

The textile sector was the third largest source of water degradation and land use in 2020. In that year, it took on average nine cubic metres of water, 400 square metres of land and 391 kilogrammes (kg) of raw materials to provide clothes and shoes for each EU citizen.

Water pollution
Textile production is estimated to be responsible for about 20% of global clean water pollution from dyeing and finishing products.

Laundering synthetic clothes accounts for 35% of primary microplastics released into the environment. A single laundry load of polyester clothes can discharge 700,000 microplastic fibres that can end up in the food chain.

The majority of microplastics from textiles are released during the first few washes. Fast fashion is based on mass production, low prices and high sales volumes that promotes many first washes.

Washing synthetic products has caused more than 14 million tonnes of microplastics to accumulate on the bottom of the oceans. In addition to this global problem, the pollution generated by garment production has a devastating impact on the health of local people, animals and ecosystems where the factories are located.

Greenhouse gas emissions
The fashion industry is estimated to be responsible for 10% of global carbon emissions – more than international flights and maritime shipping combined.

According to the European Environment Agency, textile purchases in the EU in 2020 generated about 270 kg of CO2 emissions per person. That means textile products consumed in the EU generated greenhouse gas emissions of 121 million tonnes.

Textile waste in landfills and low recycling rates
The way people get rid of unwanted clothes has also changed, with items being thrown away rather than donated. Less than half of used clothes are collected for reuse or recycling, and only 1% of used clothes are recycled into new clothes, since technologies that would enable clothes to be recycled into virgin fibres are only now starting to emerge.

Between 2000 and 2015, clothing production doubled, while the average use of an item of clothing has decreased.

Europeans use nearly 26 kilos of textiles and discard about 11 kilos of them every year. Used clothes can be exported outside the EU, but are mostly (87%) incinerated or landfilled.

The rise of fast fashion has been crucial in the increase in consumption, driven partly by social media and the industry bringing fashion trends to more consumers at a faster pace than in the past.

The new strategies to tackle this issue include developing new business models for clothing rental, designing products in a way that would make re-use and recycling easier (circular fashion), convincing consumers to buy fewer clothes of better quality (slow fashion) and generally steering consumer behaviour towards more sustainable options.

Work in progress: the EU strategy for sustainable and circular textiles
As part of the circular economy action plan, the European Commission presented in March 2022 a new strategy to make textiles more durable, repairable, reusable and recyclable, tackle fast fashion and stimulate innovation within the sector.

The new strategy includes new ecodesign requirements for textiles, clearer information, a Digital Product Passport and calls companies to take responsibility and act to minimise their carbon and environmental footprints

On 1 June 2023, MEPs set out proposals for tougher EU measures to halt the excessive production and consumption of textiles. Parliament’s report calls for textiles to be produced respecting human, social and labour rights, as well as the environment and animal welfare.

Existing EU measures to tackle textile waste
Under the waste directive approved by the Parliament in 2018, EU countries are obliged to collect textiles separately by 2025. The new Commission strategy also includes measures to, tackle the presence of hazardous chemicals, calls producers have to take responsibility for their products along the value chain, including when they become wasteand help consumers to choose sustainable textiles.

The EU has an EU Ecolabel that producers respecting ecological criteria can apply to items, ensuring a limited use of harmful substances and reduced water and air pollution.

The EU has also introduced some measures to mitigate the impact of textile waste on the environment. Horizon 2020 funds Resyntex, a project using chemical recycling, which could provide a circular economy business model for the textile industry.

A more sustainable model of textile production also has the potential to boost the economy. "Europe finds itself in an unprecedented health and economic crisis, revealing the fragility of our global supply chains," said lead MEP Huitema. "Stimulating new innovative business models will in turn create new economic growth and the job opportunities Europe will need to recover."

intelligent fabrics (c) Sanghyo Lee
24.04.2023

Cheaper method for making woven displays and smart fabrics

Researchers have developed next-generation smart textiles – incorporating LEDs, sensors, energy harvesting, and storage – that can be produced inexpensively, in any shape or size, using conventional industrial looms used to make the clothing worn every day.
 
An international team, led by the University of Cambridge, have previously demonstrated that woven displays can be made at large sizes, but these earlier examples were made using specialised manual laboratory equipment. Other smart textiles can be manufactured in specialised microelectronic fabrication facilities, but these are highly expensive and produce large volumes of waste.

Researchers have developed next-generation smart textiles – incorporating LEDs, sensors, energy harvesting, and storage – that can be produced inexpensively, in any shape or size, using conventional industrial looms used to make the clothing worn every day.
 
An international team, led by the University of Cambridge, have previously demonstrated that woven displays can be made at large sizes, but these earlier examples were made using specialised manual laboratory equipment. Other smart textiles can be manufactured in specialised microelectronic fabrication facilities, but these are highly expensive and produce large volumes of waste.

However, the team found that flexible displays and smart fabrics can be made much more cheaply, and more sustainably, by weaving electronic, optoelectronic, sensing and energy fibre components on the same industrial looms used to make conventional textiles. Their results, reported in the journal Science Advances, demonstrate how smart textiles could be an alternative to larger electronics in sectors including automotive, electronics, fashion and construction.

Despite recent progress in the development of smart textiles, their functionality, dimensions and shapes have been limited by current manufacturing processes.
“We could make these textiles in specialised microelectronics facilities, but these require billions of pounds of investment,” said Dr Sanghyo Lee from Cambridge’s Department of Engineering, the paper’s first author. “In addition, manufacturing smart textiles in this way is highly limited, since everything has to be made on the same rigid wafers used to make integrated circuits, so the maximum size we can get is about 30 centimetres in diameter.”

“Smart textiles have also been limited by their lack of practicality,” said Dr Luigi Occhipinti, also from the Department of Engineering, who co-led the research. “You think of the sort of bending, stretching and folding that normal fabrics have to withstand, and it’s been a challenge to incorporate that same durability into smart textiles.”
Last year, some of the same researchers showed that if the fibres used in smart textiles were coated with materials that can withstand stretching, they could be compatible with conventional weaving processes. Using this technique, they produced a 46-inch woven demonstrator display.

Now, the researchers have shown that smart textiles can be made using automated processes, with no limits on their size or shape. Multiple types of fibre devices, including energy storage devices, light-emitting diodes, and transistors were fabricated, encapsulated, and mixed with conventional fibres, either synthetic or natural, to build smart textiles by automated weaving. The fibre devices were interconnected by an automated laser welding method with electrically conductive adhesive.
 
The processes were all optimised to minimise damage to the electronic components, which in turn made the smart textiles durable enough to withstand the stretching of an industrial weaving machine. The encapsulation method was developed to consider the functionality of the fibre devices, and the mechanical force and thermal energy were investigated systematically to achieve automated weaving and laser-based interconnection, respectively.

The research team, working in partnership with textile manufacturers, were able to produce test patches of smart textiles of roughly 50x50 centimetres, although this can be scaled up to larger dimensions and produced in large volumes.
 
“These companies have well-established manufacturing lines with high throughput fibre extruders and large weaving machines that can weave a metre square of textiles automatically,” said Lee. “So when we introduce the smart fibres to the process, the result is basically an electronic system that is manufactured exactly the same way other textiles are manufactured.”
The researchers say it could be possible for large, flexible displays and monitors to be made on industrial looms, rather than in specialised electronics manufacturing facilities, which would make them far cheaper to produce. Further optimisation of the process is needed, however.

“The flexibility of these textiles is absolutely amazing,” said Occhipinti. “Not just in terms of their mechanical flexibility, but the flexibility of the approach, and to deploy sustainable and eco-friendly electronics manufacturing platforms that contribute to the reduction of carbon emissions and enable real applications of smart textiles in buildings, car interiors and clothing. Our approach is quite unique in that way.”

The research was supported in part by the European Union and UK Research and Innovation.

Source:

University of Cambridge

Vadim Zharkov: https://youtu.be/x9gCrhIPaPM
28.02.2023

‘Smart’ Coating Could Make Fabrics into Protective Gear

Precisely applied metal-organic technology detects and captures toxic gases in air.

A durable copper-based coating developed by Dartmouth researchers can be precisely integrated into fabric to create responsive and reusable materials such as protective equipment, environmental sensors, and smart filters, according to a recent study.
 
The coating responds to the presence of toxic gases in the air by converting them into less toxic substances that become trapped in the fabric, the team reports in Journal of the American Chemical Society.

Precisely applied metal-organic technology detects and captures toxic gases in air.

A durable copper-based coating developed by Dartmouth researchers can be precisely integrated into fabric to create responsive and reusable materials such as protective equipment, environmental sensors, and smart filters, according to a recent study.
 
The coating responds to the presence of toxic gases in the air by converting them into less toxic substances that become trapped in the fabric, the team reports in Journal of the American Chemical Society.

The findings hinge on a conductive metal-organic technology, or framework, developed in the laboratory of corresponding author Katherine Mirica, an associate professor of chemistry. First reported in JACS in 2017, the framework was a simple coating that could be layered onto cotton and polyester to create smart fabrics the researchers named SOFT—Self-Organized Framework on Textiles. Their paper demonstrated that SOFT smart fabrics could detect and capture toxic substances in the surrounding environment.

For the newest study, the researchers found that—instead of the simple coating reported in 2017—they can precisely embed the framework into fabrics using a copper precursor that allows them to create specific patterns and more effectively fill in the tiny gaps and holes between threads.

The researchers found that the framework technology effectively converted the toxin nitric oxide into nitrite and nitrate, and transformed the poisonous, flammable gas hydrogen sulfide into copper sulfide. They also report that the framework’s ability to capture and convert toxic materials withstood wear and tear, as well as standard washing.
 
The versatility and durability the new method provides would allow the framework to be applied for specific uses and in more precise locations, such as a sensor on protective clothing, or as a filter in a particular environment, Mirica said.

“This new method of deposition means that the electronic textiles could potentially interface with a broader range of systems because they’re so robust,” she said. “This technological advance paves the way for other applications of the framework’s combined filtration and sensing abilities that could be valuable in biomedical settings and environmental remediation.”
The technique also could eventually be a low-cost alternative to technologies that are cost prohibitive and limited in where they can be deployed by needing an energy source, or—such as catalytic converters in automobiles—rare metals, Mirica said.
 
“Here we’re relying on an Earth-abundant matter to detoxify toxic chemicals, and we’re doing it without any input of outside energy, so we don’t need high temperature or electric current to achieve that function,” Mirica said.

Co-first author Michael Ko, initially observed the new process in 2018 as he attempted to deposit the metal-organic framework onto thin-film copper-based electrodes, Mirica said. But the copper electrodes would be replaced by the framework.

“He wanted it on top of the electrodes, not to replace them,” Mirica said. “It took us four years to figure out what was happening and how it was beneficial. It’s a very straightforward process, but the chemistry behind it is not and it took us some time and additional involvement of students and collaborators to understand that.”

The team discovered that the metal-organic framework “grows” over copper, replacing it with a material with the ability to filter and convert toxic gases, Mirica said. Ko and co-author Lukasz Mendecki, a postdoctoral scholar in the Mirica Group from 2017-18, investigated methods for applying the framework material to fabric in specific designs and patterns.

Co-first author Aileen Eagleton, who is also in the Mirica Group, finalized the technique by optimizing the process for imprinting the metal-organic framework onto fabric, as well as identifying how its structure and properties are influenced by chemical exposure and reaction conditions.

Future work will focus on developing new multifunctional framework materials and scaling up the process of embedding the metal-organic coatings into fabric, Mirica said.

Source:

Dartmouth / Textination

Photo unsplash
21.02.2023

Consortium for enzymatic textile recycling gains new supporters

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

The two-year cooperation project will not only enable the biological recycling of polyester articles on an industrial scale, but also develop thorough sorting and disassembly technologies for complex textile waste. Existing members voted unanimously for PVH Corp. to join the consortium, saying the common goal is to support the development of viable solutions that address the fashion industry's contribution to climate change..

Carbios has developed a technology using highly selective enzymes that can recycle mixed feedstocks, reducing the laborious sorting required by current thermomechanical recycling processes. For textiles made from blended fibres, the patented enzyme acts only on the PET polyester contained within. This innovative process produces recycled PET (r-PET) that is equivalent in quality to virgin PET and can be used to produce new textile fibres.

Textile waste treatment and recycling
Globally, only 13% of textile waste is currently recycled, mainly for low-value applications such as upholstery, insulation or rags. The remaining 87% is destined for landfill or incineration. To work on improving textile recycling technologies, consortium members will supply feedstock in the form of clothing, underwear, footwear and sportswear. In 2023, a new PET textile waste facility will be commissioned at the Carbios demonstration plant, notably as part of the LIFE Cycle of PET project co-funded by the European Union.  This is in anticipation of future regulations, such as the separate collection of textile waste, which will be mandatory in Europe from 1 January 2025.

From fibre to fibre: circularity of textiles
Today, the textile industry relies largely on non-renewable resources to produce fibres and fabrics, partly turning to recycled PET bottles for recycled polyester fibres. However, this resource will become scarce as PET bottles are used exclusively for the production of new bottles in the food and beverage industry. In a circular economy, the materials used to produce textiles are obtained from recycled or renewable raw materials produced by regenerative processes. In addition to supplying raw materials for the demonstration plant, the consortium members also aim to produce new products from r-PET fibres using the company's biorecycling process.

"Partnering with Carbios and its consortium members demonstrates our continued commitment to incorporating more circular materials into our collections," said Esther Verburg, EVP, Sustainable Business and Innovation, Tommy Hilfiger Global and PVH Europe. "We are excited to support the development of Carbios' enzymatic recycling technology and to leverage new solutions that can help us drive fashion sustainably."

More information:
Carbios textile recycling enzymatic
Source:

Carbios / Textination

In the future, one will be able to use their phone to read the clothing woven-in labels made with inexpensive photonic fibers. (c) Marcin Szczepanski/Lead Multimedia Storyteller, University of Michigan College of Engineering. In the future, one will be able to use their phone to read the clothing woven-in labels made with inexpensive photonic fibers.
15.02.2023

The new butterfly effect: A ‘game changer’ for clothing recycling?

Photonic fibers borrow from butterfly wings to enable invisible, indelible sorting labels

Less than 15% of the 92 million tons of clothing and other textiles discarded annually are recycled—in part because they are so difficult to sort. Woven-in labels made with inexpensive photonic fibers, developed by a University of Michigan-led team, could change that.
 
“It’s like a barcode that’s woven directly into the fabric of a garment,” said Max Shtein, U-M professor of materials science and engineering and corresponding author of the study in Advanced Materials Technologies. “We can customize the photonic properties of the fibers to make them visible to the naked eye, readable only under near-infrared light or any combination.”

Photonic fibers borrow from butterfly wings to enable invisible, indelible sorting labels

Less than 15% of the 92 million tons of clothing and other textiles discarded annually are recycled—in part because they are so difficult to sort. Woven-in labels made with inexpensive photonic fibers, developed by a University of Michigan-led team, could change that.
 
“It’s like a barcode that’s woven directly into the fabric of a garment,” said Max Shtein, U-M professor of materials science and engineering and corresponding author of the study in Advanced Materials Technologies. “We can customize the photonic properties of the fibers to make them visible to the naked eye, readable only under near-infrared light or any combination.”

Ordinary tags often don’t make it to the end of a garment’s life—they may be cut away or washed until illegible, and tagless information can wear off. Recycling could be more effective if a tag was woven into the fabric, invisible until it needs to be read. This is what the new fiber could do.
 
Recyclers already use near-infrared sorting systems that identify different materials according to their naturally occurring optical signatures—the PET plastic in a water bottle, for example, looks different under near-infrared light than the HDPE plastic in a milk jug. Different fabrics also have different optical signatures, but Brian Iezzi, a postdoctoral researcher in Shtein’s lab and lead author of the study, explains that those signatures are of limited use to recyclers because of the prevalence of blended fabrics.

“For a truly circular recycling system to work, it’s important to know the precise composition of a fabric—a cotton recycler doesn’t want to pay for a garment that’s made of 70% polyester,” Iezzi said. “Natural optical signatures can’t provide that level of precision, but our photonic fibers can.”

The team developed the technology by combining Iezzi and Shtein’s photonic expertise—usually applied to products like displays, solar cells and optical filters—with the advanced textile capabilities at MIT’s Lincoln Lab. The lab worked to incorporate the photonic properties into a process that would be compatible with large-scale production.
 
They accomplished the task by starting with a preform—a plastic feedstock that comprises dozens of alternating layers. In this case, they used acrylic and polycarbonate. While each individual layer is clear, the combination of two materials bends and refracts light to create optical effects that can look like color. It’s the same basic phenomenon that gives butterfly wings their shimmer.

The preform is heated and then mechanically pulled—a bit like taffy—into a hair-thin strand of fiber. While the manufacturing process method differs from the extrusion technique used to make conventional synthetic fibers like polyester, it can produce the same miles-long strands of fiber. Those strands can then be processed with the same equipment already used by textile makers.

By adjusting the mix of materials and the speed at which the preform is pulled, the researchers tuned the fiber to create the desired optical properties and ensure recyclability. While the photonic fiber is more expensive than traditional textiles, the researchers estimate that it will only result in a small increase in the cost of finished goods.

“The photonic fibers only need to make up a small percentage—as little as 1% of a finished garment,” Iezzi said. “That might increase the cost of the finished product by around 25 cents—similar to the cost of those use-and-care tags we’re all familiar with.”

Shtein says that in addition to making recycling easier, the photonic labeling could be used to tell consumers where and how goods are made, and even to verify the authenticity of brand-name products. It could be a way to add important value for customers.

“As electronic devices like cell phones become more sophisticated, they could potentially have the ability to read this kind of photonic labeling,” Shtein said. “So I could imagine a future where woven-in labels are a useful feature for consumers as well as recyclers.”

The team has applied for patent protection and is evaluating ways to move forward with the commercialization of the technology.
The research was supported by the National Science Foundation and the Under Secretary of Defense for Research and Engineering.

Source:

Gabe Cherry, College of Engineering, University of Michigan / Textination

Photo: pixabay
08.02.2023

6 out of 10 consumers pay attention to sustainability criteria when shopping

ESG aspects are most important to consumers when it comes to food and clothing. Young people in particular demand information and transparency: sustainability labels, certifications and reports ensure trust. For retailers and manufacturers, sustainability is becoming a must.

Under what conditions are the cows kept whose milk I drink? Does the manufacturer of my new T-shirt tolerate child labor? Does the retailer I trust deal fairly with employees and business partners? The majority of Germans ask themselves questions like these before making a purchasing decision. When shopping, 59 percent of consumers always or at least frequently pay attention to the ecological, economic or social sustainability of retailers and manufacturers. Among those under 35, the figure is even hugher with two-thirds, and among those over 55, one in two. These are the findings of a representative survey of 1,000 people in Germany commissioned by the auditing and consulting firm PwC Germany.

ESG aspects are most important to consumers when it comes to food and clothing. Young people in particular demand information and transparency: sustainability labels, certifications and reports ensure trust. For retailers and manufacturers, sustainability is becoming a must.

Under what conditions are the cows kept whose milk I drink? Does the manufacturer of my new T-shirt tolerate child labor? Does the retailer I trust deal fairly with employees and business partners? The majority of Germans ask themselves questions like these before making a purchasing decision. When shopping, 59 percent of consumers always or at least frequently pay attention to the ecological, economic or social sustainability of retailers and manufacturers. Among those under 35, the figure is even hugher with two-thirds, and among those over 55, one in two. These are the findings of a representative survey of 1,000 people in Germany commissioned by the auditing and consulting firm PwC Germany.

Sustainability is no longer a question of "if", but "how".
"Sustainability has become mainstream in recent years. For companies, paying attention to sustainability in their supply chains has already become a must," comments Dr. Christian Wulff. The Head of Retail and Consumer Goods at PwC Germany is convinced that companies will already have to give good reasons in the near future if they do not pay attention to the environment, social aspects and good corporate governance when producing a product. "The issue of sustainability is therefore no longer a question of whether, but of how," the retail expert continues.

Sustainability includes various aspects in the three areas of environment, social and sustainable governance (ESG). In the case of environmental sustainability, the focus is on issues relating to animal welfare - such as the conditions in which animals are kept or animal testing - and the use of recyclable materials. 40 percent of Germans would like to be informed about this before making a purchase. In the social sphere, the majority of respondents would like to know whether retailers and manufacturers comply with human rights (58 percent) - for example, whether they tolerate forced or child labor in their value chains. In terms of governance, one in two respondents would like to know about supply chains and be able to trace products before making a purchase.

Sustainability is particularly important for food
How closely consumers look at sustainability also depends on the product: For example, sustainability is particularly important to them when it comes to food. 81 percent of Germans pay attention to at least one of the three ESG criteria when buying food, i.e. environment, social issues or good corporate governance. But these criteria are also relevant when buying textiles: As many as 63 percent say they look at how sustainably the item was produced when buying clothing or shoes. While environmental aspects play the biggest role for food (62 percent), consumers are paying more attention to social aspects for clothing, shoes and accessories (52 percent).

Almost every second person has recently switched to sustainable products
The growing importance of ESG aspects in the purchasing behavior of German consumers is also evidenced by the shifts toward buying sustainable products. The trend toward sustainable products is clearest in the case of food: 45 percent of respondents state that they have consciously switched to more sustainable products within the past two years. By contrast, only 17 percent admit to switching (back) to less sustainable products, with one in three stating a lack of financial resources as the reason.

For just under half of those surveyed, a possible switch to more sustainable products would be supported by better availability in stationary retail. Legal regulations are also seen as helpful, both in terms of product labeling (38 percent) and for the production process (37 percent). More eye-catching product placement in stores would also help (37 percent).

Young people in particular demand transparency and education
Consumers' need for transparency in ESG matters is significant: According to the survey, almost three quarters of Germans obtain information about environmental sustainability issues at least occasionally. Two-thirds research aspects of social sustainability. A good half regularly find out about sustainable corporate governance.

Age has a major influence on how intensively people deal with the issue: While 80 percent of 16- to 24-year-olds find out about the environmental aspects of a product before buying it, only 59 percent of those over 65 do. "Younger people in particular are actively informing themselves and demanding transparency around ESG criteria," sums up Christian Wulff.

Consumers want information on packaging and online
To meet this need for information, the PwC expert advises manufacturers and retailers to provide detailed information about ESG aspects of products, especially online. "Keeping the associated, significantly increasing flood of data up to date at all times is increasingly becoming a challenge for companies that can only be solved by significant investments in new technologies."

Consumers agree on what companies can do to lend more credibility to their sustainability activities: A solid two-thirds consider recognized sustainability labels, certifications or independently audited sustainability reports to be suitable for credibly communicating activities in terms of ESG. "The results of our survey show that labels and independent certifications are very important in gaining the trust of customers. It is therefore worthwhile to have ESG measures confirmed by external organizations," says Christian Wulff.

Retailers and manufacturers should focus on transparency
"Manufacturers and retailers are faced with the task of ensuring a high level of transparency with regard to the sustainability of their products. This calls for honesty, but also creativity: In the case of fashion, for example, it is conceivable to trace the individual stages of the supply chain in detail and to show the costs incurred in the process. In this way, consumers can understand exactly how a price comes about," concludes Christian Wulff.

Source:

PwC / Textination

Aerogel (c) Outlast Technologies GmbH
31.01.2023

Aerogel: Frozen Smoke for Clothing and Work Safety

Comprised of up to 99.8 percent air, aerogel is the lightest solid in the world. The material, which is also called “frozen smoke” due to its appearance and physical properties, exhibits extremely low heat conductivity which exceeds other insulations many times over. This is why NASA has already been using aerogel for aerospace projects for many years.

Despite this, it has not been possible to bind the material to textiles in a high concentration and enable straightforward further processing over the roughly 90-year history of the material. Outlast Technologies GmbH has developed an innovative process - a patent has already been filed for -  for permanently adhering large amounts of aerogel to different media, like nonwoven fabric, felt and composites materials. Their original properties are retained throughout, so they can easily be further processed using conventional production methods.

Comprised of up to 99.8 percent air, aerogel is the lightest solid in the world. The material, which is also called “frozen smoke” due to its appearance and physical properties, exhibits extremely low heat conductivity which exceeds other insulations many times over. This is why NASA has already been using aerogel for aerospace projects for many years.

Despite this, it has not been possible to bind the material to textiles in a high concentration and enable straightforward further processing over the roughly 90-year history of the material. Outlast Technologies GmbH has developed an innovative process - a patent has already been filed for -  for permanently adhering large amounts of aerogel to different media, like nonwoven fabric, felt and composites materials. Their original properties are retained throughout, so they can easily be further processed using conventional production methods.

The fabrics sold under the Aersulate name are only 1 to 3 mm thick and achieve very high insulation values which are largely retained even under pressure and in moist conditions. Despite their high performance, they are still soft and can be used for shoes, clothing and work safety products, as well as for sleeping bags and technical applications.
 
“Thanks to its extraordinary physical properties, NASA has already been using aerogel for many years,” remarked Volker Schuster, Head of Research and Development at Outlast Technologies. “For example, for the insulation of its Mars rovers and for capturing dust from the tail of a comet during the Stardust mission,” he continued. Since the development of aerogel by American scientist and chemical engineer Samuel Stephens Kistler in 1931, no-one had been able to apply the versatile material to textiles in large amounts without changing their original properties, despite intensive research. This means that the products were often not only very rigid, but made processing with conventional production methods impossible due to their high degree of dust abrasion. With the newly developed Aersulate technology, which was presented for the first time in June 2022, the Heidenheim-based specialist for textile thermoregulation is opening a different chapter in insulation history.

High-performance insulation just 1 to 3 mm thick
“The consistency of aerogel can be best described as liquid dust particles which spread uncontrollably throughout a room within seconds thanks to their minimal thickness,” explained Schuster. “This is why processing is a big challenge.” Outlast Technologies has managed, after a development period of around five years, to bring an innovative process involving the adhering of aerogel between multiple layers of material to market maturity. Depending on the area of application, nonwoven fabric, felt and different composite materials can be used as the media. What is special here is that the properties of the respective textiles are not adversely affected by the Aersulate technology, meaning that they can easily be further processed with conventional means and under industrial conditions despite their acquired thermal properties.
 
As a silicate-based solid, aerogel is obtained from natural quartz sand, yet exhibits a density over 1,000 times lower than glass manufactured from the same raw material. The extraordinary thermo-insulating properties of the material are thanks to its extremely porous structure, which enables it to be composed of up to 99.8 percent air.
 
“One liter of aerogel weighs just 50 g,” explained Schuster. “Just 10 g of the material has the same surface area as a soccer field, though.” Thanks to these properties, Aersulate textiles exceed all other previously known insulation materials in terms of performance, despite the fact that they are only 1 to 3 mm thick. Tests carried out by the German Institute for Textile and Fiber Research in Denkendorf (DITF) using the Alambeta method showed that the thermal resistance of an Aersulate fleece is more than double that of a conventional fleece of the same thickness. Add to this the fact that the thermo-insulating properties of Aersulate products remain high despite pressure and wetness, while they decrease enormously with other conventional materials like felt and polyurethane foam (PU) under these conditions.

Work safety and functional clothing with Aersulate
Thanks to the textile medium, thin Aersulate products are especially suitable for the shoe and clothing industry, as well as all areas of work safety. The user benefits from different properties, depending on the intended use. “With a glove made of Aersulate just 1 mm thick, you can put your hand into boiling water without being scalded, for example,” explained Schuster. “The material’s extremely hydrophobic properties play quite literally into our hands here.” In the case of knee patches on work and functional pants, as well as shoes and soles, on the other hand, the material properties also become relevant when compression occurs. This is because the thermo-insulation properties of other materials would be reduced little by little due to moisture from the outside and sweat from the inside on the one hand, and by the continual influence of body weight on the other.
          
In addition to the human body, luggage and technical devices can also be protected from extreme temperatures and the effects of weather with Aersulate. For this purpose, corresponding cell phone or equipment pockets could be sewn into garments, for example, to maintain their battery life even at very cold outside temperatures and to safeguard the devices from overheating in case of high heat exposure. “With the broad range of possible textile medium materials, Aersulate is suitable for all applications requiring high thermal resistance on the one hand, where only a little space is available and both compression and moisture can be expected on the other,” said Schuster in summary.

Source:

Outlast Technologies / Textination