Textination Newsline

Zurücksetzen
14 Ergebnisse
Foto: TheDigitalArtist, Pixabay
31.01.2024

Vliesstoff-Nanokomposit-Folien für tragbare Elektronik, Fahrzeuge und Gebäude

  • Kleine, leichte, dehnbare und kosteneffiziente thermoelektrische Komponenten bedeuten einen Durchbruch in der nachhaltigen Energieentwicklung und Abwärme-Rückgewinnung.
  • Flexible Energiegewinnungssysteme der nächsten Generation werden ihre Effizienz der Integration von Graphen-Nanoröhren verdanken. Sie bieten einfache Verarbeitbarkeit, stabile thermoelektrische Leistung, Flexibilität und robuste mechanische Eigenschaften.
  • Nanokomposite haben ein hohes Marktpotenzial bei der Herstellung von Generatoren für medizinische und intelligente Wearables, Fahrzeugsensoren und effizientes Gebäudemanagement.

Etwa die Hälfte der weltweit nutzbaren Energie wird aufgrund der begrenzten Effizienz von Energieumwandlungsgeräten als Wärme verschwendet. So geht zum Beispiel ein Drittel der Energie eines Fahrzeugs als Abwärme in den Abgasen verloren. Gleichzeitig enthalten die Fahrzeuge immer mehr elektronische Geräte, die elektrische Energie benötigen.

  • Kleine, leichte, dehnbare und kosteneffiziente thermoelektrische Komponenten bedeuten einen Durchbruch in der nachhaltigen Energieentwicklung und Abwärme-Rückgewinnung.
  • Flexible Energiegewinnungssysteme der nächsten Generation werden ihre Effizienz der Integration von Graphen-Nanoröhren verdanken. Sie bieten einfache Verarbeitbarkeit, stabile thermoelektrische Leistung, Flexibilität und robuste mechanische Eigenschaften.
  • Nanokomposite haben ein hohes Marktpotenzial bei der Herstellung von Generatoren für medizinische und intelligente Wearables, Fahrzeugsensoren und effizientes Gebäudemanagement.

Etwa die Hälfte der weltweit nutzbaren Energie wird aufgrund der begrenzten Effizienz von Energieumwandlungsgeräten als Wärme verschwendet. So geht zum Beispiel ein Drittel der Energie eines Fahrzeugs als Abwärme in den Abgasen verloren. Gleichzeitig enthalten die Fahrzeuge immer mehr elektronische Geräte, die elektrische Energie benötigen. Ein weiteres Beispiel sind leichte, am Körper zu tragende Sensoren für die Gesundheits- und Umweltüberwachung, die ebenfalls zunehmend gefragt sind. Die Möglichkeit, Abwärme oder Sonnenenergie in nutzbare elektrische Energie umzuwandeln, hat sich als Chance für ein nachhaltigeres Energiemanagement erwiesen. Praktische thermoelektrische Generatoren (TEGs) haben derzeit nur einen geringen Wirkungsgrad und sind relativ groß und schwer. Sie bestehen aus teuren oder korrosionsanfälligen Materialien, sind starr und enthalten oft giftige Elemente.
 
Kürzlich entwickelte, leicht zu verarbeitende, selbsttragende und flexible Vliesstoff-Nanokomposit-Folien zeigen hervorragende thermoelektrische Eigenschaften in Kombination mit guter mechanischer Robustheit. In einem aktuellen Artikel in ACS Applied Nano Materials wird erläutert, wie die Forscher ein thermoplastisches Polyurethan (TPU) mit TUBALLTM Graphen-Nanoröhrchen kombinieren, um ein Nanokompositmaterial herzustellen, das elektrische Energie aus Abwärmequellen gewinnen kann.
 
Dank ihres hohen Aspektverhältnisses und ihrer spezifischen Oberfläche verleihen Graphen-Nanoröhrchen dem TPU elektrische Leitfähigkeit, wodurch eine hohe thermoelektrische Leistung bei gleichbleibenden oder verbesserten mechanischen Eigenschaften erreicht werden kann. "Steifigkeit, Festigkeit und Zugzähigkeit wurden im Vergleich zu Bucky Papers um das 7-, 25- bzw. 250-fache verbessert. Die Nanokompositfolie zeigt einen niedrigen elektrischen Widerstand von 7,5*10-3 Ohm×cm, einen hohen E-Modul von 1,8 GPa, eine Bruchfestigkeit von 80 MPa und eine Bruchdehnung von 41%", sagt Dr. Beate Krause, Gruppenleiterin am Leibniz-Institut für Polymerforschung Dresden e. V.

Da es sich bei Graphen-Nanoröhren um ein grundlegend neues Material handelt, bietet sich die Möglichkeit, die derzeitigen TEG-Materialien durch umweltfreundlichere zu ersetzen. Die von solch thermoelektrischen Generatoren betriebenen Sensoren könnten als "intelligente Haut" für Fahrzeuge und Gebäude fungieren, indem sie Sensorfunktionen zur Leistungsüberwachung und Vermeidung potenzieller Probleme bereitstellen, bevor diese zu Ausfällen führen, und so eine optimale Betriebseffizienz gewährleisten. In Flugzeugen könnten drahtlose Nanokomposite als eigenständige Sensoren zur Überwachung von Enteisungssystemen dienen, wodurch ein umfangreiches Netz von elektrischen Kabeln überflüssig würde. Die hohe Flexibilität, Festigkeit und Zuverlässigkeit der mit Graphen-Nanoröhrchen ausgestatteten thermoelektrischen Materialien ermöglichen auch Anwendungen im Bereich der intelligenten tragbaren und medizinischen Geräte.

Quelle:

Leibniz-Institut für Polymerforschung Dresden e. V. / OCSiAl

TiHive gewinnt RISE® Innovationspreis für seine SAPMonit Technologie Foto INDA
03.10.2023

TiHive gewinnt RISE® Innovationspreis für SAPMonit Technologie

Auf der RISE®-Konferenz (Research, Innovation & Science for Engineered Fabrics) am 26. und 27. September in Raleigh, NC, trafen sich Führungskräfte aus der Wirtschaft, Produktentwickler und Technologie-Scouts, um zwei Tage lang wertvolle Einblicke in Materialwissenschaft, Prozess- und Nachhaltigkeitsinnovationen zu erhalten. Die RISE wird gemeinsam von der INDA und dem Nonwovens Institute der North Carolina State University organisiert.

Experten aus Industrie, Hochschulen und Behörden tauschten ihr Fachwissen zu folgenden Schlüsselbereichen aus:

Auf der RISE®-Konferenz (Research, Innovation & Science for Engineered Fabrics) am 26. und 27. September in Raleigh, NC, trafen sich Führungskräfte aus der Wirtschaft, Produktentwickler und Technologie-Scouts, um zwei Tage lang wertvolle Einblicke in Materialwissenschaft, Prozess- und Nachhaltigkeitsinnovationen zu erhalten. Die RISE wird gemeinsam von der INDA und dem Nonwovens Institute der North Carolina State University organisiert.

Experten aus Industrie, Hochschulen und Behörden tauschten ihr Fachwissen zu folgenden Schlüsselbereichen aus:

  • Die Zukunft der Vliesstoffherstellung
  • Praktische Anwendungen und Fortschritte bei Filtermedien
  • rPolymere und Nachhaltigkeit
  • Innovative Strategien und Kreislauflösungen
  • Fortschritte bei nachhaltigen Vliesstoffanwendungen
  • Marktstatistiken und Datentrends

Ein Highlight war eine Posterpräsentation der grundlegenden Vliesstoff-Forschung durch die Studenten des Nonwovens Institute. Als zusätzliches Angebot offerierte das Nonwovens Institute den RISE-Teilnehmern eine Führung durch seine weltweit anerkannten Einrichtungen auf dem Centennial Campus der North Carolina State University, die über die umfangreichste Ausstattung im Labor- und Pilotmaßstab verfügen, einschließlich aller Vliesstoffplattformen und Testtechnologien.

Gewinner des RISE®-Innovationspreises
TiHive hat den RISE Innovation Award 2023 für seine SAPMonit-Technologie gewonnen. Die Innovation von TiHive, SAPMonit - ein technologischer Durchbruch - prüft wöchentlich Millionen von Windeln. SAPMonit ermöglicht eine blitzschnelle Inline-Inspektion von Gewicht und Verteilung der Superabsorber, optimiert die Ressourcen, erkennt Fehler und beschleunigt Forschung und Entwicklung. SAPMonit nutzt fortschrittliche, intelligente Kameras, Hochgeschwindigkeits-Vision-Algorithmen und eine sichere Cloud-Integration und revolutioniert damit die Industrienormen. SAPMonit hat ein großes Potenzial für Nachhaltigkeit, Kostensenkung und verbesserte Kundenzufriedenheit, da pro Maschine Hunderte von Tonnen Kunststoffabfall pro Jahr vermieden werden.

Zu den Finalisten des RISE Innovation Award gehörten Curt. G. Joa, Inc. für ihren ESC-8 - The JOA® Electronic Size Change, Fiberpartner Aps für ihre BicoBio Fiber und Reifenhäuser REICOFIL GmbH & Co. KG für ihr Reifenhäuser Reicofil RF5 XHL.  Zusammen haben die Innovationen dieser Finalisten das Potenzial, den Kunststoffabfall um Millionen von Kilogramm zu reduzieren.

DiaperRecycle erhielt den RISE® Innovation Award 2022 für seine innovative Technologie zur Wiederverwertung gebrauchter Windeln zu saugfähigem und spülbarem Katzenstreu. Durch die Rücknahme gebrauchter Windeln aus Haushalten und Einrichtungen und die Trennung von Plastik und Fasern ist DiaperRecycle in der Lage, die klimaschädlichen Emissionen von Windeln aus Mülldeponien zu verringern.

2023 INDA Lifetime Technical Achievement Award
Ed Thomas, Präsident von Nonwoven Technology Associates, LLC, erhielt den INDA Lifetime Technical Achievement Award 2023 für seine jahrzehntelangen Beiträge zum Wachstum und Erfolg der Vliesstoffindustrie.

RISE 2024 findet vom 1. bis 2. Oktober 2024 in der James B. Hunt Jr. Library der North Carolina State University in Raleigh, NC, statt.

Weitere Informationen:
INDA RISE® Vliesstoffe
Quelle:

INDA

Foto Freudenberg Performance Materials
10.01.2023

Fraunhofer: Optimierte Produktion von Vliesstoffmasken

Die Produktion von Infektionsschutzkleidung ist material- und energieintensiv. Fraunhofer-Forschende haben nun eine Technologie entwickelt, die bei der Produktion von Vliesstoffen hilft, Material und Energie zu sparen. Auf Basis einer mathematischen Modellierung steuert ein Digitaler Zwilling wesentliche Prozessparameter der Herstellung. Neben der Verbesserung der Maskenherstellung eignet sich die Lösung ProQuIV auch dazu, die Produktionsparameter für andere Anwendungen der vielseitig einsetzbaren technischen Textilien zu optimieren. Die Hersteller können so flexibel auf Kundenwünsche und Marktveränderungen reagieren.

Die Produktion von Infektionsschutzkleidung ist material- und energieintensiv. Fraunhofer-Forschende haben nun eine Technologie entwickelt, die bei der Produktion von Vliesstoffen hilft, Material und Energie zu sparen. Auf Basis einer mathematischen Modellierung steuert ein Digitaler Zwilling wesentliche Prozessparameter der Herstellung. Neben der Verbesserung der Maskenherstellung eignet sich die Lösung ProQuIV auch dazu, die Produktionsparameter für andere Anwendungen der vielseitig einsetzbaren technischen Textilien zu optimieren. Die Hersteller können so flexibel auf Kundenwünsche und Marktveränderungen reagieren.

Infektionsschutzmasken aus Vlies sind nicht erst seit der Corona-Pandemie millionenfach verbreitet und gelten als simpler Massenartikel. Doch ihre Herstellung stellt hohe Anforderungen an Präzision und Zuverlässigkeit des Produktionsprozesses. Der Vliesstoff in der Maske muss bei der FFP-2-Maske nach DIN mindestens 94 Prozent, bei der FFP-3-Variante sogar 99 Prozent der Aerosole herausfiltern. Gleichzeitig muss die Maske ausreichend Luft durchlassen, damit der Mensch noch gut atmen kann. Viele Hersteller suchen nach Wegen, die Herstellung zu optimieren. Außerdem soll die Produktion flexibler werden, so dass Unternehmen in der Lage sind, die vielseitig verwendbaren Vliesstoffe für ganz unterschiedliche Anwendungen und Branchen zu bearbeiten und zu liefern.

Nun hat das Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern mit ProQuIV eine Lösung vorgestellt, die beides leistet. Das Kürzel ProQuIV steht für »Produktions- und Qualitätsoptimierung von Infektionsschutzkleidung aus Vliesstoffen«. Die Grundidee: Prozessparameter der Herstellung werden bezüglich ihrer Auswirkungen auf die Gleichmäßigkeit des Vliesstoffs charakterisiert und diese wiederum mit Eigenschaften des Endprodukts, beispielsweise einer Schutzmaske, in Verbindung gesetzt. Diese Modellkette verknüpft alle relevanten Parameter mit einer Bildanalyse und bildet einen Digitalen Zwilling der Produktion. Mit dessen Hilfe lässt sich die Vliesstoffherstellung in Echtzeit überwachen, automatisch steuern und somit das Optimierungspotenzial nutzen.

Dr. Ralf Kirsch aus der Abteilung Strömungs- und Materialsimulation und Teamleiter Filtration und Separation erklärt: »Mit ProQuIV benötigen die Hersteller insgesamt weniger Material und sparen Energie. Dabei ist die Qualität des Endprodukts jederzeit gewährleistet.«

Vliesherstellung mit Hitze und Luftströmung
Vliesstoffe für Filtrationsanwendungen werden im sogenannten Meltblown-Prozess hergestellt. Dabei werden Kunststoffe wie Polypropylen geschmolzen, durch Düsen getrieben und kommen in Form von Fäden heraus, den sogenannten Filamenten. Diese werden auf zwei Seiten von Luftströmen erfasst, die sie mit annähernder Schallgeschwindigkeit nach vorne treiben und gleichzeitig verwirbeln, bevor sie auf ein Auffangband fallen. So werden die Fäden nochmals dünner. Die Dicke der Filamente liegt im Mikrometer- oder sogar Sub-Mikrometer-Bereich. Durch Abkühlung und Zugabe von Bindestoffen bildet sich der Vliesstoff. Je besser Temperatur, Luft- und Bandgeschwindigkeit aufeinander abgestimmt sind, desto gleichmäßiger sind am Ende die Fasern verteilt und desto homogener erscheint das Material dann bei der Prüfung im Durchlichtmikroskop. Hier lassen sich hellere und dunklere Stellen ausmachen. Fachleute sprechen von Wolkigkeit. Das Fraunhofer-Team hat eine Methode entwickelt, um einen Wolkigkeits-Index anhand von Bilddaten zu messen. Die hellen Stellen besitzen einen niedrigen Faservolumenanteil, sind also nicht so dicht und weisen eine niedrigere Filtrationsrate auf. Dunklere Stellen haben ein höheres Faservolumen und daher eine höhere Filtrationsrate. Andererseits führt der in diesen Bereichen erhöhte Luftwiderstand dazu, dass sie einen geringeren Anteil der Atemluft filtern. Der größere Anteil strömt durch die offeneren Bereiche, die eine geringere Filterwirkung haben.

Produktionsprozess mit Echtzeit-Steuerung
Die Durchlichtaufnahmen aus dem Mikroskop dienen bei ProQuIV für die Kalibrierung der Modelle vor dem Einsatz. Die Expertinnen und Experten analysieren den Ist-Zustand der Textilprobe und ziehen daraus Rückschlüsse, wie die Anlage optimiert werden kann. So könnten sie beispielsweise die Temperatur erhöhen, die Bandgeschwindigkeit senken oder die Stärke der Luftströme anpassen. »Ein wesentliches Ziel unseres Forschungsprojekts war, zentrale Parameter wie Filtrationsrate, Strömungswiderstand und Wolkigkeit eines Materials miteinander zu verknüpfen und darauf basierend eine Methode zu generieren, die alle Variablen im Produktionsprozess mathematisch modelliert«, sagt Kirsch. Der Digitale Zwilling überwacht und steuert die laufende Produktion in Echtzeit. Kleine Abweichungen der Anlage, wie etwa eine zu hohe Temperatur, werden in Sekunden automatisch korrigiert.

Schnelle und effiziente Herstellung
»Es ist dann nicht notwendig, die Produktion zu unterbrechen, Materialproben zu nehmen und die Maschinen neu einzustellen. Wenn die Modelle kalibriert sind, kann sich der Hersteller darauf verlassen, dass der Vliesstoff, der vom Band läuft, die Spezifikationen und Qualitätsnormen einhält«, erklärt Kirsch. Mit ProQuIV wird die Produktion deutlich effizienter. Es gibt weniger Ausschuss beim Material, und der Energieverbrauch sinkt ebenfalls. Ein weiterer Vorteil besteht darin, dass Hersteller schnell neue Produkte auf Vliesbasis entwickeln können. Dazu müssen lediglich die Zielvorgaben in der Modellierung geändert und die Parameter angepasst werden. So können produzierende Unternehmen flexibel auf Kundenwünsche oder Markttrends reagieren.

Was logisch klingt, ist in der Entwicklung komplex. Die Werte für Filtrationsleistung und Strömungswiderstand steigen nämlich keineswegs linear an und verhalten sich auch nicht proportional zum Faservolumenanteil. Eine doppelt so hohe Filament-Dichte bedeutet also nicht, dass auch Filtrationsleistung und Strömungswiderstand doppelt so hoch sind. Das Verhältnis zwischen den Parametern ist wesentlich komplexer. »Genau deshalb ist die mathematische Modellierung so wichtig. Sie hilft uns, das komplexe Verhältnis zwischen den einzelnen Prozessparametern zu verstehen«, sagt Fraunhofer-ITWM-Forscher Kirsch. Dabei kommt den Forschenden ihre langjährige Expertise bei Simulation und Modellierung zugute.

Weitere Anwendungen sind möglich
Der nächste Schritt besteht für das Fraunhofer-Team darin, den Atemwiderstand der Vliesstoffe für den Menschen bei gleicher Schutzwirkung zu reduzieren. Möglich wird dies durch die elektrische Aufladung der Fasern. Das Prinzip erinnert an die Arbeitsweise eines Staubwedels. Durch die elektrische Ladung zieht das Textilgewebe winzigste Partikel an, die andernfalls durch die Poren schlüpfen könnten. Die Stärke der elektrostatischen Ladung wird hierfür als Parameter in die Modellierung integriert.

Die Fraunhofer-Forschenden beschränken sich bei der Anwendung der Methode keineswegs nur auf Masken und Luftfilter. Ihre Technologie lässt sich ganz allgemein in der Produktion von Vliesstoffen einsetzen, beispielsweise auch bei Stoffen für die Filtration von Flüssigkeiten. Auch die Herstellung von schalldämmenden Vliesstoffen lässt sich mit ProQuIV-Methoden optimieren.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

(c) MAI Carbon
24.05.2022

Vom Abfall zum Sekundärrohstoff – Nassvliese aus recycelten Carbonfasern

MAI Scrap SeRO | From Scrap to Secondary Ressources – Highly Orientated Wet-Laid-Nonwovens from CFRP-Waste

Das Projekt »Scrap SeRO« ist als internationales Verbundvorhaben im Themengebiet »Recycling von Carbonfasern« angesiedelt.

Als technisches Projektziel ist die Demonstration einer durchgehenden Prozessroute zur Verarbeitung von pyrolytisch recycelten Carbonfasern (rCF) in leistungsfähigen Second-Life-Bauteilstrukturen definiert. Neben der technologischen Ebene steht insbesondere der internationale Transfer-Charakter im Fokus des Projekts, im Sinne einer Cross-Cluster Initiative zwischen Spitzencluster MAI Carbon (Deutschland) und CVC (Südkorea).    

MAI Scrap SeRO | From Scrap to Secondary Ressources – Highly Orientated Wet-Laid-Nonwovens from CFRP-Waste

Das Projekt »Scrap SeRO« ist als internationales Verbundvorhaben im Themengebiet »Recycling von Carbonfasern« angesiedelt.

Als technisches Projektziel ist die Demonstration einer durchgehenden Prozessroute zur Verarbeitung von pyrolytisch recycelten Carbonfasern (rCF) in leistungsfähigen Second-Life-Bauteilstrukturen definiert. Neben der technologischen Ebene steht insbesondere der internationale Transfer-Charakter im Fokus des Projekts, im Sinne einer Cross-Cluster Initiative zwischen Spitzencluster MAI Carbon (Deutschland) und CVC (Südkorea).    

Durch eine direkte Zusammenarbeit marktführender Unternehmen und Forschungseinrichtungen der teilnehmenden Cluster-Mitglieder erfolgt die technische Projektbearbeitung im Kontext der global geprägten Herausforderung des Recyclings, sowie der Notwendigkeit zu erhöhter Ressourceneffizienz, mit Bezug auf den wirtschaftsstrategischen Werkstoff Carbonfasern.

Effiziente Verarbeitung von recycelten Carbonfasern
Die technologische Prozessroute innerhalb des Projektes verläuft entlang der industriellen Nassvliestechnologie, die mit der klassischen Papierherstellung vergleichbar ist. Diese ermöglicht eine robuste Herstellung von hochqualitativen rCF-Vliesstoffen, die sich u.a. durch besonders hohe Homogenität und Kennwertstabilität auszeichnen.

Besonderer Entwicklungsfokus liegt auf einer spezifischen Prozessführung, welche die Erzeugung einer Orientierung der Einzelfaserfilamente im Vlieswerkstoff erlaubt.

Die gegebene Faservorzugsrichtung der diskontinuierlichen Faserstruktur eröffnet neben einer lastpfadgerechten Mechanik zusätzlich starke Synergieeffekte in Bezug auf erhöhte Packungsdichten, d.h. Faservolumengehalte, sowie ein deutlich optimiertes Verarbeitungsverhalten in Bezug auf Imprägnierung, Umformung und Konsolidierung.

Die innovativen Nassvliesstoffe werden im Folgenden unter Einsatz großserienfähiger Imprägnierverfahren jeweils zu duromeren sowie thermoplastischen Halbzeugen, d.h. Prepregs bzw. Organoblechen, weiterverarbeitet. Durch einen Slitting-Zwischenschritt werden hieraus rCF-Tapes hergestellt. Mittels automatisiertem Fibre-Placement können somit lastpfadoptimierte Preforms abgelegt werden, die abschließend zu komplexen Demonstrator-Bauteilen konsolidiert werden.

Die Prozesskette wird an entscheidenden Schnittstellen von innovativer zerstörungsfreier Messtechnik überwacht und durch umfangreiche Charakterisierungsmethodik ergänzt.

Explizit für die Verarbeitung von pyrolytisch recycelten Carbonfasern, die beispielsweise aus End-of-Life-Abfällen oder PrePreg-Verschnittresten zurückgewonnen wurden, ergeben sich für die hier dargestellte Gesamt-Prozessroute vollkommen neue Potentiale mit signifikantem Mehrwert gegenüber dem aktuellen Stand der Technik.

Internationaler Transfer
Die grundlegend global ausgerichtete Herausforderung des Recyclings bzw. das Bestreben nach gesteigerter Nachhaltigkeit wird stark durch nationale Verwertungsstrategien infolge länderspezifischer Rahmenbedingungen beeinflusst. Die globalisierte Handlungsweise von Unternehmen im Umgang mit hochvolumigen Materialströmen stellt zusätzliche Anforderungen an eine funktionierende Kreislaufwirtschaft. Nur auf Basis und unter Beachtung der jeweiligen Richtlinien und Strukturfaktoren kann eine vernetzte Lösung entstehen.

Im Falle des Hochleistungswerkstoffes Carbonfaser besteht ein besonders hoher technischer Anspruch für eine ökologisch wie ökonomisch tragfähige Recyclingwirtschaft. Gleichzeitig eröffnet die spezifische Marktgröße bereits interessante Skalierungseffekte und Potentiale zur Marktdurchdringung.

Das Projekt ScrapSeRO verbindet dabei zwei der weltweit führenden Spitzencluster im Bereich Carbon Composites aus den Ländern Südkorea und Deutschland auf Basis einer Cross-Cluster Initiative. Im Rahmen dieses ersten aussichtsreichen Technologieprojekts soll dabei der Grundstein für eine zukünftige Zusammenarbeit entstehen, die ein effektives Recycling von Carbonfasern unterstützt.
 
Das Projekt leistet hierbei einen wichtigen Beitrag zur Schließung des Stoffkreislaufs für Carbonfasern und ebnet damit den Weg für einen erneuten Einsatz im Rahmen weiterer Lebenszyklen dieses hochwertigen und energieintensiven Werkstoffs.

Info »Scrap SeRO«

  • Laufzeit: 05/2019 – 10/2022
  • Förderung: BMBF
  • Fördersumme: 2.557.000 €

Konsortium:

  • Fraunhofer Institut für Gießerei-,
  • Composites- und Verarbeitungstechnik IGCV
  • ELG Carbon Fibre
  • J.M. Voith SE & Co. KG
  • Neenah Gessner
  • SURAGUS GmbH
  • LAMILUX Composites GmbH
  • Covestro Deutschland AG
  • BA Composites GmbH
  • SGL Carbon
  • ELG Carbon Fibre
  • Procotex
  • Gen2Carbon
  • KCarbon
  • Hyundai
  • Sangmyung University
  • TERA Engineering
Quelle:

Fraunhofer Institut für Gießerei-, Composites- und Verarbeitungstechnik IGCV

(c) A3/Christian Strohmayr
10.05.2022

Fraunhofer reduziert CO2-Footprint und recycelt Trendleichtbauwerkstoff Carbon

Neo-Ökologie mittels innovativer Papiertechnik

Neo-Ökologie mittels innovativer Papiertechnik

Carbonfaserverbundwerkstoffe sind u. a. aufgrund ihres Leichtbaupotenzials überall im Einsatz, z. B. in der Luftfahrtindustrie, in Windkraftenergieanlagen, im Automotive-Bereich und bei der Herstellung von Sportgeräten. Entlang der Prozesskette und am Ende der Nutzungsphase entstehen verschiedene Arten von Abfällen, die man eigentlich wiederverwenden kann. Mit einer hochmodernen Nassvliesanlage forscht das Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV in Augsburg nun an der Rückführung rezyklierter Carbonfasern. Die Anlagenprozesse ähneln der einer Papierherstellungsanlage. Der entscheidende Unterschied: nicht Papierfasern werden zu Papier, sondern recycelte Carbonfasern werden zu Vliesstoff-Rollwaren verarbeitet. Die Carbonfaser bekommt somit ein zweites Leben und findet sich umweltfreundlich in Form von Vliesstoffen z. B. in Türverkleidungen, Motorhauben, Dachstrukturen, als Unterbodenschutz (Automobil), Hitzeschilder (Helikopter-Heckausleger) sowie im Flugzeug-Interieur wieder.

»Die Nassvliestechnologie für die Verarbeitung technischer Fasern erfährt derzeit eine Revolution, die auf eine jahrhundertealte Tradition der Papierherstellung zurückgeht.«
Michael Sauer; Forscher am Fraunhofer IGCV

Die angewendete Technologie, die Nassvliestechnologie, ist eines der ältesten Vliesbildungsverfahren (um 140 v. Chr. bis 100 n. Chr.). Als bedeutender Industriezweig mit vielseitigen Anwendungsfeldern finden sich Nassvliesstoffe längst nicht mehr nur in klassischem Papier. Vielmehr erstrecken sich die Anwendungsfelder beispielsweise von Klebstoff-Trägerfilmen über Verpackungsmaterial bis hin zu Banknoten sowie deren prozessintegrierten Wasserzeichen und Sicherheitsmerkmalen. Zukünftig kommen besonders nachhaltige Technologiefelder rund um Batteriekomponenten, Brennstoffzellenelemente, Filtrations-Schichten, bis hin zu funktionsintegrierten Werkstofflösungen z. B. mit EMI-Abschirmfunktion hinzu.

Die Nassvliesanlage am Augsburger Standort kann jegliche Fasermaterialien wie Natur-, Regenerat- und Synthetikfasern – vor allem recycelte Carbonfasern – zu innovativen und neuartigen Vliesstoffen verarbeiten. Dabei ist die Anlage gezielt als Pilot-Linie im Technikums-Maßstab ausgelegt und bietet größtmögliche Flexibilität hinsichtlich Materialvarianten und Prozessparametern. Zudem wird eine ausreichend hohe Produktivität gewährleistet, um nachfolgend skalierte Verarbeitungsversuche (z. B. Demonstrator-Fertigung) zu ermöglichen.

Der Hauptarbeitsbereich der Nassvliesanlage bezieht sich auf folgende Kenngrößen:

  • Prozessgeschwindigkeit bis zu 30 m/min
  • Rollenbreite von 610 mm
  • Flächengewichte realisierbar zwischen 20 und 300 gsm
  • Gesamtanlage in der Schutzklasse ≥ IP65 für die Verarbeitung z. B. leitfähiger Faserwerkstoffe
  • Anlagen-Design auf Basis einer Schrägsieb-Anordnung mit hoher Entwässerungsleistung (u. a. für die Verarbeitung stark verdünnter Faser-suspensionen oder für Materialvarianten mit hohem Wasserrückhaltevermögen)
  • Modulares Anlagendesign mit höchstmöglicher Flexibilität für schnellen Wechsel der Materialvariante oder der Prozessparameter

Forschungsschwerpunkt: Carbonrecycling am Ende des Lebenszyklus
Im Bereich technischer Stapelfasern wird an der Verarbeitung recycelter Carbonfasern geforscht. Weitere aktuelle Forschungsinhalte umfassen in diesem Zusammenhang die Erforschung, Optimierung und Weiterentwicklung von Bindermittelsystemen, Faserlängen bzw. Faserlängenverteilungen, Faserorientierung sowie Vliesstoffhomogenität. Zudem steht die Integration von digitalen sowie KI-gestützten Methoden im Rahmen eines Online-Prozess-Monitorings im Fokus. Weitere Forschungsthemen, wie die Herstellung von Gasdiffusionsschichten für Brennstoffzellenkomponenten, die Weiterentwicklung von Batterieelementen sowie Filtrationsanwendungen (Medizintechnik) befinden sich derzeit im Aufbau.

Quelle:

Fraunhofer-Institut für Giesserei-, Composite- und Verarbeitungstechnik IGCV

Foto: Pixabay
09.11.2021

NGST - Next Generation Schutztextilien

  • Effiziente Produktion neuartiger, qualitativ hochwertiger Infektions-Schutztextilien

 
Bei Schutztextilien, insbesondere bei Atemschutzmasken, traten während der SARS-CoV-2-Pandemie beträchtliche Engpässe auf, die dadurch verschärft wurden, dass es zu dieser Zeit keine ausreichenden Produktionskapazitäten in Deutschland und der EU gab. Kurzfristig erfolgte Umrüstungen bei EU-Unternehmen sowie der Import von Ware führten oftmals nicht zum Erfolg, da diese Schutztextilien von stark schwankender Qualität waren, die sich negativ auf die Sicherheit auswirkte.

Die Initiative »Next Generation Schutztextilien« möchte hier Abhilfe schaffen, indem sie an neuen Ansätzen für die Produktion qualitativ hochwertiger Schutztextilien forscht.

Das Projekt »NGST« gliedert sich in mehrere Teilaufgaben
Das Projekt umfasst:

  • Effiziente Produktion neuartiger, qualitativ hochwertiger Infektions-Schutztextilien

 
Bei Schutztextilien, insbesondere bei Atemschutzmasken, traten während der SARS-CoV-2-Pandemie beträchtliche Engpässe auf, die dadurch verschärft wurden, dass es zu dieser Zeit keine ausreichenden Produktionskapazitäten in Deutschland und der EU gab. Kurzfristig erfolgte Umrüstungen bei EU-Unternehmen sowie der Import von Ware führten oftmals nicht zum Erfolg, da diese Schutztextilien von stark schwankender Qualität waren, die sich negativ auf die Sicherheit auswirkte.

Die Initiative »Next Generation Schutztextilien« möchte hier Abhilfe schaffen, indem sie an neuen Ansätzen für die Produktion qualitativ hochwertiger Schutztextilien forscht.

Das Projekt »NGST« gliedert sich in mehrere Teilaufgaben
Das Projekt umfasst:

  • qualifizierte Auswahl der Grundmaterialien
  • Untersuchungen zur Hochskalierung, um die Voraussetzungen für eine rasche Ausweitung von Produktionskapazitäten zu schaffen
  • Entwicklung neuartiger antiviraler Beschichtungen
  • umfassende biologische und materialwissenschaftliche Analytik, die zur Verifizierung der verbesserten Eigenschaften dient und zudem neue Methoden der Qualitätskontrolle erschließt.

Die im Projekt zu entwickelnden Schutztextilien haben über den Einsatz im medizinischen Bereich und beim Bevölkerungsschutz hinaus vielfältige Einsatzmöglichkeiten. Prinzipiell überall dort, wo eine unmittelbare Reinigung und Desinfektion schwierig oder spezielle Filtrationsaufgaben notwendig sind, wie beispielsweise bei mobilen oder stationären Filteranlagen zur Luftreinigung oder für den individuellen Personenschutz.

Im Projekt forscht das Fraunhofer IGCV an der Entwicklung eines Herstellungsprozesses für Vliesstoffe als Basis von Infektionsschutz- und Filtrationsmedien auf Basis der Nassvliestechnologie. Gegenüber dem Stand der Technik (Meltblown-Technologie) zeichnet sich diese potentiell durch deutlich erhöhte Produktionskapazitäten sowie eine erhöhte Flexibilität bzgl. Materialvielfalt aus. Die wichtigsten Herausforderungen bestehen hierbei insbesondere in den sehr hohen Qualitätsanforderungen auf Basis niedriger Flächengewichte für die Verarbeitung möglichst feiner Mikro-Stapelfasern.
          
Verfolgung neuartiger Ansätze zur Steigerung der Qualität und Produktivität in der Produktion von Schutztextilien
Ziel ist die Bereitstellung optimierter Vlieswerkstoffe als Ausgangsstoff für die nachfolgenden antiviralen Beschichtungen sowie die Abschätzung und Demonstration des hohen Technologiepotentials der Nassvliestechnologie in diesem Anwendungsfeld.

Dazu wurde eine bestehende Pilot-Nassvliesanlage im Technikums-Maßstab gezielt modifiziert. Somit ist es möglich Vlieswerkstoffe aus Mikro-Stapelfasern in der geforderten sehr hohen Qualität in Bezug auf Gleichmäßigkeit, Flächengewicht, Durchmischung und Dickenprofil mit hoher Reproduzierbarkeit herzustellen. Als Vergleichssystem wurde ein Standard-PP-Vlies herangezogen, welches gemäß aktuellem Stand der Technik mittels Meltblown-Technologie produziert wurde. Neben den PP-Vergleichsvarianten wurde jedoch auch die Verarbeitung von u.a. PLA-, Viskose- und PET-Stapelfasern untersucht. Der Fokus liegt hier jeweils auf einer maximalen Faserfeinheit (Mikrofasern), um eine möglichst große spezifische Faseroberfläche bzw. Wirkfläche im Vliesstoff zu erzielen. Um die deutlich erhöhte Flexibilität der Nassvliestechnologie hervorzuheben werden auch besonders innovative Varianten auf Basis von modifizierten Bi-Komponenten-Fasern mit maximierter Faser-Oberfläche sowie Split-Fasern konzeptionell geprüft.

Neben Aspekten der direkten Material- und Prozessentwicklung ergeben sich auf Basis des Maßstabs der Pilotanlage umfangreiche Datengrundlagen zur Abschätzung einer späteren Skalierung in eine industrielle Serie. Damit soll eine technologische Ausgangsbasis für den Ramp-up einer effizienten, nationalen Produktion von vliesbasierten Infektionsschutzmaterialien auf Basis der Wet-Laying-Technologie geschaffen werden.

Weitere Informationen:
Coronakrise Schutzkleidung Fraunhofer
Quelle:

Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV

Foto: pixabay
19.10.2021

Mikromechanische Simulation der Resilienz von Vliesstoffen

Vliesstoffe sind ein wichtiger Bestandteil in diversen Produkten mit verschiedenen Anwendungsgebieten, z.B. Hygieneprodukte, Dämmstoffe oder Filter. In der Regel werden sie auf einer Reihe großer Anlagen hergestellt; daher gestalteten sich experimentelle Designstudien zur Optimierung dieser Vliesstoffstrukturen sehr aufwändig.

Einfluss Designparameter
Es gibt sehr viele Designparameter, wie z.B. Fasern, Flächengewicht oder Vliesverfestigungstyp, welche die Vliesstoffeigenschaften beeinflussen. Zum Austausch eines einzelnen Parameters, beispielsweise des Fasermaterials, muss der vollständige Produktionsprozess vom Faserspinnen über die Faserablage bis hin zur Vliesverfestigung umgestellt werden.

Vliesstoffe sind ein wichtiger Bestandteil in diversen Produkten mit verschiedenen Anwendungsgebieten, z.B. Hygieneprodukte, Dämmstoffe oder Filter. In der Regel werden sie auf einer Reihe großer Anlagen hergestellt; daher gestalteten sich experimentelle Designstudien zur Optimierung dieser Vliesstoffstrukturen sehr aufwändig.

Einfluss Designparameter
Es gibt sehr viele Designparameter, wie z.B. Fasern, Flächengewicht oder Vliesverfestigungstyp, welche die Vliesstoffeigenschaften beeinflussen. Zum Austausch eines einzelnen Parameters, beispielsweise des Fasermaterials, muss der vollständige Produktionsprozess vom Faserspinnen über die Faserablage bis hin zur Vliesverfestigung umgestellt werden.

Im Anschluss an die Produktion eines solchen Prototyps wird eine aufwändige experimentelle Charakterisierung der Vliesstoffeigenschaften benötigt. Aufgrund dieser kostenintensiven Produktion und Charakterisierung sind detaillierte Studien mit mehreren Designparametern unwirtschaftlich.

Daher werden bei uns im Projekt mikromechanische Simulationsmodelle entwickelt. Mithilfe dieser Modelle können die effektiven Vliesstoffeigenschaften numerisch für verschiedenste Designparameter vorhergesagt werden. Zum virtuellen Austausch einzelner Parameter werden in diesem Ansatz lediglich die entsprechenden Eingangsgrößen im Modell angepasst.

Schnelle Vorhersagen möglich
Der Fokus der numerischen Vorhersagen liegt hierbei vor allem auf dem zeitabhängigen Verhalten der Vliesstoffe. Die dynamischen Eigenschaften können durch numerische Nachbildung von zyklischen Messungen bestimmt werden. Dabei wird eine gute Übereinstimmung von Simulation und Messungen erzielt.

Im Gegensatz zu Experimenten verlängert sich die benötigte Simulationszeit für das Verhalten bei niedrigen Frequenzen nicht. Somit sind durch die numerischen Modelle schnelle Vorhersagen für das Langzeitverhalten (Monate bis Jahre) und die entsprechende Resilienz von Vliesstoffen möglich. Sehr viele Varianten können innerhalb weniger Stunden simuliert und studiert werden.

Ein weiterer Vorteil des mikromechanischen Ansatzes besteht darin, dass nicht nur effektive (makroskopische) Vliesstoffeigenschaften berechnet werden, sondern auch lokale Größen wie Spannungsverteilungen in Binder und Fasern bestimmt werden. Somit trägt die Simulation zum besseren Verständnis von Vliesstoffeigenschaft bei.

Zukünftige Entwicklungen beschäftigen sich mit der Erweiterung der Modelle in Richtung der Simulation des Herstellungsprozesses. Dies ermöglicht eine vollständige digitalisierte Auslegung von Vliesstoffen vom Herstellungsprozess bis hin zur Optimierung der Funktionalität.

 

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Foto: pixabay
21.09.2021

Virtuelle Qualitätsprüfung optimiert Produktion von Filtervliesstoffen

Die Vliesstoffproduktion bekam zu Corona-Zeiten in der breiten Öffentlichkeit so viel Aufmerksamkeit wie selten zuvor, denn das technische Textil ist entscheidend für den Infektionsschutz. Die Feinst-Vliesstoffprodukte werden in sogenannten Meltblown-Verfahren hergestellt. Ein abteilungsübergreifendes Team des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern optimiert im Projekt »ProQuIV« die gesamte Produktionskette. Dabei helfen Simulationen die Produktqualität des Filtermaterials trotz Schwankungen in der Herstellung zu garantieren.

Die Vliesstoffproduktion bekam zu Corona-Zeiten in der breiten Öffentlichkeit so viel Aufmerksamkeit wie selten zuvor, denn das technische Textil ist entscheidend für den Infektionsschutz. Die Feinst-Vliesstoffprodukte werden in sogenannten Meltblown-Verfahren hergestellt. Ein abteilungsübergreifendes Team des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern optimiert im Projekt »ProQuIV« die gesamte Produktionskette. Dabei helfen Simulationen die Produktqualität des Filtermaterials trotz Schwankungen in der Herstellung zu garantieren.

Das Kürzel »ProQuIV« steht für »Produktions- und Qualitätsoptimierung von Infektionsschutzkleidung aus Vliesstoffen«. Denn gerade zu Beginn der Covid-19-Krise waren Engpässe bei der Produktion dieser Materialien zu beobachten. Für die Klasse der Meltblown-Vliesstoffe gestaltet sich diese Optimierung der Produktqualität zudem besonders schwierig, weil die Prozesse sehr sensitiv auf Schwankungen und Materialunreinheiten reagieren.

Digitaler Zwilling hat das große Ganze im Blick
»Meltblown« heißt der industrielle Herstellungsprozess, dessen Feinstfaser-Vliesstoffe dafür verantwortlich sind, dass z.B. in Gesichtsmasken die entscheidende Filterfunktion gegeben ist. Dabei wird das geschmolzene Polymer durch Düsen gepresst, und zwar in einen vorwärts strömenden Hochgeschwindigkeitsstrom. Es wird in einer stark turbulenten Luftströmung gedehnt und abgekühlt.

»Der Gesamtprozess der Filtervliesherstellung – von der Polymerschmelze bis zum Filtermedium – stellt in der Simulation eine große Herausforderung dar«, erklärt Dr. Konrad Steiner, Leiter der Abteilung »Strömungs- und Materialsimulation«. »Wir haben im Projekt das große Ganze im Blick und eine komplett durchgängige Bewertungskette als digitalen Zwilling entwickelt. Dabei berücksichtigen wir gleich mehrere Schlüsselkomponenten: Wir simulieren die typischen Produktionsprozesse von Vliesstoffen, die darauf basierende Entstehung der Faserstrukturen und anschließend die Materialeigenschaften – hier insbesondere die Filtereffizienz. Damit lassen sich dann die Einflüsse des Herstellungsprozesses auf die Produkteigenschaften quantitativ bewerten.« In jedem dieser Einzelbereiche gehört das Fraunhofer ITWM mit seinen Expertinnen und Experten international zu den führenden Forschungsgruppen.

Homogenität des Materials – weniger Wolken am Simulationshimmel
Beim Meltblown-Verfahren liegt ein Schlüsselfaktor auf dem Verhalten der Filamente im turbulenten, heißen und schnellen Luftstrom. Die Fäden werden durch diese Luftströmung stark in ihren Eigenschaften beeinflusst. Die Qualität der Filamente – und damit am Ende der Vliesstoffe –  wird durch viele Faktoren beeinflusst. Was das in der Praxis genauer heißt, weiß Dr. Dietmar Hietel, Leiter der Abteilung »Transportvorgänge«. Sein Team beschäftigt sich am Fraunhofer ITWM schon seit Jahren mit der Simulation von verschiedenen Prozessen rund um Filamente, Fäden und Fasern. »Im Fokus des Projekts steht die sogenannte Wolkigkeit, d.h. die Ungleichmäßigkeit, mit der die Fasern im Vliesstoff verteilt sind«, erklärt Hietel. »Wir gehen der Frage nach: Wie homogen ist der Stoff? Denn die Qualität der Produkte kann stark verbessert werden, wenn wir solche Ungleichmäßigkeiten optimieren. Unsere Simulationen helfen dabei herauszufinden, wie das gelingt.«

Objektive Bewertung der Homogenität der Vliesstoffe
Zur Quantifizierung dieser Wolkigkeit setzen die Forschenden zudem passende Bildanalysetechniken ein. Das Powerspektrum spielt dabei eine besondere Rolle. »Der Wolkigkeitsindex, abgekürzt CLI, beschreibt die Homogenität komplementär zu lokalem Flächengewicht und seiner Varianz,« beschreibt Dr. Katja Schladitz. Sie bringt ihre Expertise in der Bildverarbeitung in das Projekt mit ein. »Unser CLI stellt eine robuste Bewertung der Homogenität sicher und kann somit für verschiedene Materialklassen und Abbildungstechniken als objektives Maß genutzt werden« Die Frequenzen, die in die CLI-Berechnung eingehen, können so gewählt werden, dass der CLI aussagekräftig für das jeweilige Anwendungsgebiet ist.

Filtration: Wie effizient sind die Filter
Bei der Hochskalierung auf Industrieprozesse wie bei der Maskenproduktion fließt zudem die ITWM-Expertise rund um Filter in das Projekt mit ein. Das Team »Filtration und Separation« um Dr. Ralf Kirsch beschäftigt sich schon seit Jahren mit dem mathematischen Modellieren und Simulieren verschiedenster Trennprozesse.

»Das Besondere an diesem Projekt: Wir berechnen die Effizienz der Filter für unterschiedlich stark ausgeprägte Schwankungen des Faseranteils im Filtervlies«, betont Kirsch. »Dadurch können wir angeben, bis zu welchem Wolkigkeitsgrad die geforderte Filtereffizienz überhaupt erreichbar ist.« Als aktuelles Beispiel hierfür sieht man in der Grafik die Effizienz eines Filtermaterials für N95-Masken in Abhängigkeit von der Inhomogenität des Vliesstoffes.

ITMW-Methoden unterstützen über die ganze Prozesskette hinweg
Digitale Zwillinge und Berechnungen aus dem Hause Fraunhofer ITWM unterstützen in »ProQuIV« die Prozesse ganzheitlich zu überschauen und besser zu verstehen. Die Produktion der technischen Textilien wird damit nicht nur effizienter, sondern die Vliesstoffe lassen sich virtuell entwickeln, ohne dies vorab in einer Versuchsstätte zu realisieren. So können Produktionskapazitäten bei gleichbleibender Qualität gesteigert werden. Gemeinsam mit langjährigen Partnern aus der Industrie kann die Forschung schnell und effizient in der Praxis zum Einsatz kommen.

Simulationen sparen Textil-Unternehmen Experimente, erlauben neue Einblicke, ermöglichen systematische Parametervariationen und lösen Upscaling-Probleme, die sonst zu Fehlinvestitionen beim Übergang von der Laboranlage zur Industrieanlage führen können. Die virtuelle Umsetzung der Vliesstoffproduktion eröffnet aber auch neue Möglichkeiten zur Optimierung auf anderen Ebenen. So können auch akustische dämmende Vliesstoffe oder auch Hygiene-Vliesstoffe hinsichtlich ihrer Produktgüte genau auf die zu erzielende Materialeigenschaften hin optimiert werden – und das unter Berücksichtigung der auftretenden Prozessschwankungen.

Das Projekt ist Teil des Programms »Fraunhofer versus Corona« der Fraunhofer-Gesellschaft und wurde im April 2021 abgeschlossen. Die Ergebnisse fließen in mehrere Folgeprojekte mit der Vliesstoffindustrie ein.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Foto: pixabay
24.08.2021

Luft, Wasser, Öl: Was PLA-Biokunststoff gut filtern kann - und was nicht

Luftfilter sind im Kampf gegen die Pandemie in aller Munde. Mit Filtermaterial aus Vliesstoff versperren sie virenbehafteten Aerosolen den Weg zurück in Räume. Doch wie können diese Geräte nicht nur die Gesundheit schützen, sondern auch mit möglichst umweltfreundlichem Filtermaterial betrieben werden?

Luftfilter sind im Kampf gegen die Pandemie in aller Munde. Mit Filtermaterial aus Vliesstoff versperren sie virenbehafteten Aerosolen den Weg zurück in Räume. Doch wie können diese Geräte nicht nur die Gesundheit schützen, sondern auch mit möglichst umweltfreundlichem Filtermaterial betrieben werden?

Dafür eignet sich unter klar definierten Bedingungen der Biokunststoff Polylactid (PLA), auch als Polymilchsäure bekannt. Das lässt sich aus Ergebnissen von Forschenden der Zuse-Gemeinschaft im kürzlich abgeschlossenen Forschungsprojekt „BioFilter“ ableiten. Die Schlüsselfrage für diesen und andere mögliche Anwendungsbereiche der Bio-Filter lautet: Wie wirken sich die besonderen Eigenschaften von PLA auf Filterleistung und Haltbarkeit der Filter aus? Denn gegenüber seinen fossilen Konkurrenten kann PLA in der Praxis Nachteile haben. Das Material neigt zur Sprödigkeit und es mag hohe Temperaturen jenseits von 60 Grad Celsius nicht besonders. Als biogener Stoff ist Polymilchsäure auch potenziell anfälliger für Abnutzung und organische Abbauprozesse. Das kann bei Nutzung von Filtern z.B. in Kläranlagen eine noch größere Rolle spielen als bei Luftfiltern. Industriekunden indes wollen aber naturgemäß ein beständiges, verlässliches Produkt.

Vom Monofilament zum Vliesstoff
Vor diesem Hintergrund untersuchten die Forschenden die PLA-Eigenschaften, um auf dieser Basis Vliesstoffe für Bio-Filter zu erproben. Beteiligt waren das Deutsche Textilforschungszentrum Nord-West (DTNW) und das Sächsische Textilforschungsinstitut (STFI), wo die Vliesstoffe hergestellt wurden. Verwendet wurde Granulat verschiedener marktgängiger Hersteller. Am Anfang der Untersuchungen standen jedoch nicht die Vliesstoffe, in denen die Fasern dicht aneinander in verschiedenen Schichten abgelegt sind, sondern so genannte Monofilamente, also mit Fäden vergleichbare Fasern aus PLA. An diesen Monofilamenten führten das DTNW und das STFI zunächst Tests durch, so z.B. im Klimaschrank auf Alterung und Haltbarkeit.

Wie im Bild zu sehen ist, wurden die Monofilamente bei höheren Temperaturen ab 70 Grad Celsius bereits nach zwei Wochen brüchig, worüber die DTNW-Autorinnen und -Autoren kürzlich im Journal Applied Polymer Materials berichteten. Unter Normbedingungen indes weisen die Monofilamente auch nach fast drei Jahren keine messbar verringerte Stabilität auf und auch die PLA-Vliesstoffe standen, ihren auf fossiler Basis hergestellten Pendants in Punkto Filterleistung in nichts nach. „Der Fokus für die Nutzung von PLA als Filtermaterial wird meiner Ansicht nach auf Anwendungen liegen, bei denen relativ geringe Temperaturen vorliegen, mit denen PLA sehr gut zurechtkommt.“, sagt DTNW-Wissenschaftlerin Christina Schippers.

Neben Temperatur und Luftfeuchtigkeit weitere Faktoren beachten
Für die Forschenden ging es in dem vom Bundeswirtschaftsministerium geförderten Projekt allerdings nicht nur um die Eignung von Polylactid für Luftfilter, sondern auch um andere Umgebungen, z.B. für das Filtern von Wasser. Zudem ergaben die Untersuchungen, dass es bei der Bewertung der Filtermedien aus biobasierten und bio-abbaubaren Vliesstoffen neben der Temperatur und der Luftfeuchtigkeit weitere Einflussfaktoren wie mechanische Belastungen durch Luftströme zu beachten gilt. „Der innovative Kern des Projekts bestand darin, die Möglichkeiten und Einsatzgrenzen von PLA-Vliesstoffen als Filtermedien mit ausreichenden mechanischen Eigenschaften und Langzeitstabilität zu bewerten“, sagt Projektleiterin Dr. Larisa Tsarkova. Wie ihre Kollegen vom STFI, so ist das DTNW engagiert im Cluster Bioökonomie der Zuse-Gemeinschaft, in dem die Forschenden der gemeinnützigen Institute unter dem Leitsatz „Forschen mit der Natur“ kooperieren. „Für uns ist die Bioökonomie ein branchenübergreifendes Top-Thema, das zahlreiche Institute der Zuse-Gemeinschaft verbindet und durch Kooperationen wie beim ‚Bio-Filter‘ gelebt wird“, erklärt die künftige STFI-Geschäftsführerin Dr. Heike Illing-Günther.

Kooperation im Cluster Bioökonomie
Mit den erzielten Ergebnissen aus dem Projekt „Bio-Filter“ wollen das DTNW und das STFI nun weiterarbeiten, um künftig Ableitungen für klar beschriebene Einsatzgebiete der PLA-Vliesstoff-Filter treffen zu können. Diese möglichen Einsatzfelder reichen weit über Raumluftfilter und damit über die Pandemie hinaus. So ist die wasserabweisende Eigenschaft von PLA potenziell interessant für Filter in Großküchen zur Wasser-Öl-Filtration oder auch in der Industrie bei Motorenölen.

Die Forschung ist auch deshalb so wichtig, weil PLA in einzelnen verbrauchernahen Segmenten - Stichwort Tragebeutel - schon recht gut eingeführt ist. Traditionell nutzte man Milchsäure zur Haltbarmachung von Lebensmitteln, so bei Sauerkraut. Heute gewinnt man PLA über eine mehrstufige Synthese aus Zucker, der zu Milchsäure fermentiert und diese zu PLA polymerisiert, wie Kunststoffe.de erklärt. PLA gehört zu den bekanntesten Biokunststoffen, ist jedoch aufgrund der starken Nachfrage in den vergangenen Jahren nicht immer gut verfügbar gewesen. Das in den Niederlanden ansässige Unternehmen Total Corbion hat angekündigt, bis 2024 im französischen Grandpuits eine PLA-Anlage mit einer Jahreskapazität von 100.000 t in Betrieb zu nehmen. Es wäre die größte Anlage dieser Art in Europa, bisher ist Asien führend.

Quelle:

Deutsche Industrieforschungsgemeinschaft Konrad Zuse e.V.

Foto: pixabay
17.08.2021

Innovative Wundversorgung: Maßgeschneiderte Wundauflagen aus Tropoelastin

Maßgeschneiderte, biomedizinisch einsetzbare Materialien auf der Basis von Tropoelastin entwickeln die Skinomics GmbH aus Halle, die Martin-Luther-Universität Halle-Wittenberg und das Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS in einem gemeinsamen Projekt. Das Material vereint biologische Verträglichkeit, Haltbarkeit, biologische Abbaubarkeit und günstige mechanische Eigenschaften, die denen der Haut ähneln. Präklinische Tests haben bestätigt, dass es sich zur Verwendung als Wundauflagematerial eignet, das bei der Versorgung chronischer und komplexer Wunden zum Einsatz kommt.

Maßgeschneiderte, biomedizinisch einsetzbare Materialien auf der Basis von Tropoelastin entwickeln die Skinomics GmbH aus Halle, die Martin-Luther-Universität Halle-Wittenberg und das Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS in einem gemeinsamen Projekt. Das Material vereint biologische Verträglichkeit, Haltbarkeit, biologische Abbaubarkeit und günstige mechanische Eigenschaften, die denen der Haut ähneln. Präklinische Tests haben bestätigt, dass es sich zur Verwendung als Wundauflagematerial eignet, das bei der Versorgung chronischer und komplexer Wunden zum Einsatz kommt.

Insbesondere vor dem Hintergrund einer alternden Gesellschaft gewinnen spezielle Wundauflagen an Bedeutung. Die Behandlung komplexer Wunderkrankungen, wie »Ulcus Cruris«, im Volksmund »offenes Bein« genannt, oder diabetischer Wunden stellt für medizinisches Personal eine schwierige, für die Betroffenen eine langfristige und schmerzhafte sowie für das Gesundheitswesen eine kostspielige Aufgabe dar. Für die Versorgung solcher Wunden kommen inzwischen auch innovative proteinbasierte Materialien zum Einsatz, die jedoch aufgrund ihrer Herstellung aus tierischen Geweben erhöhte Infektionsrisiken bergen oder unerwünschte Immunreaktionen zur Folge haben können. Hinzu kommen zunehmende Vorbehalte in der Bevölkerung gegenüber Medizinprodukten tierischer Herkunft.

Im gemeinsamen Forschungsprojekt entwickeln die Projektpartner derzeit maßgeschneiderte, biomedizinisch einsetzbare Materialien auf der Basis von humanem Tropoelastin. Dieses Vorläufermaterial wird im Körper zu Elastin umgewandelt, einem lebensnotwendigen und langlebigen Strukturprotein, das über außergewöhnliche mechanische Eigenschaften verfügt und damit der Haut und weiteren Organen die für deren Funktion erforderliche Elastizität und Spannkraft verleiht.

»Elastin ist chemisch und enzymatisch äußerst stabil, biokompatibel und erzeugt bei der Anwendung als Biomaterial bei Menschen keine immunologischen Abstoßungen. Daher wollen wir auf Basis des humanen Tropoelastins neue und innovative Lösungen für die Behandlung komplexer Wunden schaffen«, sagt Dr. Christian Schmelzer, Leiter des Geschäftsfeldes Biologische und makromolekulare Materialien am Fraunhofer IMWS.

Individuelle Wundbehandlung
Zunächst ist es im Rahmen des Forschungsprojekts unter der Leitung von Prof. Dr. Markus Pietzsch von der Martin-Luther-Universität Halle-Wittenberg gelungen, ein biotechnologisches Verfahren zur Modifizierung von Tropoelastin zu entwickeln. Die Verarbeitung des modifizierten Tropoelastins erfolgt am Fraunhofer IMWS. Hier werden mittels eines Elektrospinnverfahrens hauchdünne Nanofasern hergestellt, deren Durchmesser nur wenige Hundert Nanometer betragen. Diese Fasern werden zu Nanofaservliesen gesponnen. Über chemische Quervernetzungsschritte werden die Vliese für ihre spätere Anwendung stabilisiert. Die entwickelten Verfahren wurden dahingehend optimiert, dass biomedizinische Parameter wie Porengröße, Stabilität und mechanische Eigenschaften variabel sind und damit individuell und maßgeschneidert den Erfordernissen der jeweiligen Wundbehandlung angepasst werden können. Die mit den neuen Verfahren hergestellten Materialien werden durch die Skinomics GmbH in ersten präklinischen Tests hinsichtlich ihrer Hautverträglichkeit untersucht und erzielten bereits vielversprechende Ergebnisse.

Zum Abschluss des Projektes am Ende dieses Jahres sollen Schutzrechtsanmeldungen als Grundlage für eine anschließende Produktentwicklungsphase für zertifizierte Medizinprodukte erfolgen.

Foto: pixabay
20.07.2021

Pilotprojekt zum Closed-Loop-Recycling von Einweg-Gesichtsmasken

  • Kunststoffe im Kreislauf halten: Fraunhofer, SABIC und Procter & Gamble kooperieren

Der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE und das Fraunhofer Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT haben ein innovatives Recyclingverfahren für Altkunststoffe entwickelt. Das Pilotprojekt, an dem auch SABIC und Procter & Gamble beteiligt sind, soll zeigen, dass Einweg-Gesichtsmasken für das sogenannte Closed-Loop-Recycling geeignet sind.

Der Übergang von einer Linear- zu einer Kreislaufwirtschaft in der Kunststoffproduktion kann dann gelingen, wenn die beteiligten Akteure und Akteurinnen zusammenarbeiten. Der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE bündelt die Kompetenzen von sechs Fraunhofer-Instituten und setzt auf eine enge Zusammenarbeit mit Partnern aus der Industrie.

  • Kunststoffe im Kreislauf halten: Fraunhofer, SABIC und Procter & Gamble kooperieren

Der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE und das Fraunhofer Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT haben ein innovatives Recyclingverfahren für Altkunststoffe entwickelt. Das Pilotprojekt, an dem auch SABIC und Procter & Gamble beteiligt sind, soll zeigen, dass Einweg-Gesichtsmasken für das sogenannte Closed-Loop-Recycling geeignet sind.

Der Übergang von einer Linear- zu einer Kreislaufwirtschaft in der Kunststoffproduktion kann dann gelingen, wenn die beteiligten Akteure und Akteurinnen zusammenarbeiten. Der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE bündelt die Kompetenzen von sechs Fraunhofer-Instituten und setzt auf eine enge Zusammenarbeit mit Partnern aus der Industrie.

Durch den Transfer von wissenschaftlichen Erkenntnissen in die Wirtschaft, Gesellschaft und Politik zählt das Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT zu den Vorreitern beim nachhaltigen Umgang mit Energieträgern und Rohstoffen. Gemeinsam mit verschiedenen Partnern und Partnerinnen erforschen und entwickeln die Wissenschaftlerinnen und Wissenschaftler am Fraunhofer UMSICHT spannende Produkte, Prozesse und Dienstleistungen zum Thema Nachhaltigkeit.  

Das Fraunhofer-Institut UMSICHT, SABIC und Procter & Gamble (P&G) arbeiten im Rahmen eines innovativen Pilotprojekts zur Kreislaufwirtschaft zusammen, das die Möglichkeiten zur Rückführung von Einweg-Gesichtsmasken in den Verwertungskreislauf aufzeigen soll.

Die milliardenfache Verwendung von Einweg-Gesichtsmasken zum Schutz vor dem Coronavirus birgt große Gefahren für die Umwelt, insbesondere wenn die Masken in der Öffentlichkeit, z.B. in Parks, bei Open-Air-Veranstaltungen oder an Stränden, gedankenlos weggeworfen werden. Neben der Herausforderung, eine nachhaltige Lösung für derart große Mengen unverzichtbarer Hygieneartikel zu finden, bedeutet die bloße Entsorgung der gebrauchten Masken auf Mülldeponien oder in Verbrennungsanlagen einen Verlust an wertvollem Rohstoff, mit dem sich neue Materialien herstellen ließen.

»Vor diesem Hintergrund haben wir untersucht, wie gebrauchte Gesichtsmasken wieder zurück in die Wertschöpfungskette der Maskenproduktion gelangen könnten«, so Dr. Peter Dziezok, Director R&D Open Innovation bei P&G. »Doch für eine echte Kreislauflösung, die sowohl nachhaltige als auch wirtschaftliche Kriterien erfüllt, braucht es Partner. Deshalb haben wir uns mit den Expertinnen und Experten vom Fraunhofer CCPE und Fraunhofer UMSICHT sowie den Technologie- und Innovations-Fachleuten von SABIC zusammengetan, um Lösungen zu finden.«

Im Rahmen des Pilotprojekts sammelte P&G an seinen Produktions- und Forschungsstandorten in Deutschland gebrauchte Gesichtsmasken von Mitarbeitenden und Besuchenden ein. Auch wenn diese Masken immer ordnungsgemäß entsorgt werden, fehlte es doch an Möglichkeiten, diese effizient zu recyceln. Um hierbei alternative Herangehensweisen aufzuzeigen, wurden extra dafür vorgesehene Sammelbehälter aufgestellt und die eingesammelten Altmasken an Fraunhofer zur Weiterverarbeitung in einer speziellen Forschungspyrolyseanlage geschickt.

»Einmal-Medizinprodukte wie Gesichtsmasken haben hohe Hygieneanforderungen, sowohl in Bezug auf die Entsorgung als auch hinsichtlich der Produktion. Mechanisches Recycling wäre hier keine Lösung«, erklärt Dr. Alexander Hofmann, Abteilungsleiter Kreislaufwirtschaft am Fraunhofer UMSICHT. »Unser Konzept sieht zunächst die automatische Zerkleinerung und anschließend die thermochemische Umwandlung in Pyrolyseöl vor.

Unter Druck und Hitze wird der Kunststoff bei der Pyrolyse in molekulare Fragmente zerlegt, wodurch unter anderem Rückstände von Schadstoffen oder Krankheitserregern wie dem Coronavirus zerstört werden. Im Anschluss können daraus neuwertige Rohstoffe für die Kunststoffproduktion gewonnen werden, die zudem die Anforderungen an Medizinprodukte erfüllen«, ergänzt Hofmann, der auch Leiter der Forschungsabteilung Advanced Recycling am Fraunhofer CCPE ist.

Das Pyrolyseöl wurde im nächsten Schritt an SABIC weitergereicht, wo es als Ausgangsmaterial für die Herstellung von neuwertigem Polypropylen (PP) zum Einsatz kam. Das Polymer wurde nach dem allgemein anerkannten Massenbilanz-Prinzip hergestellt, bei dem das alternative Ausgangsmaterial im Produktionsprozess mit fossilen Rohstoffen kombiniert wird. Das Massenbilanz-Prinzip gilt als wichtige Brückenlösung zwischen der heutigen Linearwirtschaft und der nachhaltigeren Kreislaufwirtschaft der Zukunft.

»Das in diesem Pilotprojekt gewonnene, hochwertige zirkuläre PP-Polymer zeigt deutlich, dass Closed-Loop-Recycling durch die aktive Zusammenarbeit von Akteuren aus der gesamten Wertschöpfungskette erreicht werden kann«, betont Mark Vester, Global Circular Economy Leader bei SABIC. »Das Kreislaufmaterial ist Teil unseres TRUCIRCLE™-Portfolios, mit dem wertvolle Altkunststoffe wiederverwertet und fossile Ressourcen eingespart werden sollen.«

Mit der abschließenden Lieferung des PP-Polymers an P&G, das dort zu Faservliesstoffen verarbeitet wurde, schloss sich der Kreis. »Durch dieses Pilotprojekt konnten wir besser beurteilen, ob der Kreislaufansatz auch für Kunststoffe, die bei der Herstellung von Hygiene- und Medizinprodukten zum Einsatz kommen, geeignet wäre«, so Hansjörg Reick, Senior Director Open Innovation bei P&G. »Natürlich muss das Verfahren noch verbessert werden. Die bisherigen Ergebnisse sind jedoch durchaus vielversprechend.«

Das gesamte Kreislaufprojekt – von der Einsammlung der Gesichtsmasken bis hin zur Produktion – wurde innerhalb von nur sieben Monaten entwickelt und umgesetzt. Der Einsatz innovativer Recyclingverfahren bei der Verarbeitung anderer Materialien und chemischer Produkte wird im Fraunhofer CCPE weiter erforscht.

(c) Pixabay
15.12.2020

Schutz vor Corona: Fortschritte in der Materialforschung an Instituten der Zuse-Gemeinschaft

Mit dem Jahresende wachsen die Erwartungen an einen baldigen Impfschutz gegen COVID-19. Bis es für weite Teile der Bevölkerung so weit ist, bieten 2020 in Forschung und Industrie erzielte Erfolge zum Schutz vor dem Virus eine gute Ausgangsbasis im Kampf gegen Corona und darüber hinaus. An Instituten der Zuse-Gemeinschaft wurden Fortschritte nicht nur in der Medizin-, sondern auch in der Materialforschung erzielt.

Mit dem Jahresende wachsen die Erwartungen an einen baldigen Impfschutz gegen COVID-19. Bis es für weite Teile der Bevölkerung so weit ist, bieten 2020 in Forschung und Industrie erzielte Erfolge zum Schutz vor dem Virus eine gute Ausgangsbasis im Kampf gegen Corona und darüber hinaus. An Instituten der Zuse-Gemeinschaft wurden Fortschritte nicht nur in der Medizin-, sondern auch in der Materialforschung erzielt.

Zu diesen Erfolgen in der der Materialforschung gehören Neuerungen in der Beschichtung von Oberflächen. „Im Zuge der Pandemie ist die Nachfrage nach antiviral und antimikrobiell ausgestatteten Oberflächen stark gestiegen, und wir haben unsere Forschung in diesem Bereich erfolgreich intensiviert“, erklärt Dr. Sebastian Spange, Bereichsleiter Oberflächentechnik beim Jenaer Forschungsinstitut INNOVENT. Er rechnet künftig zunehmend mit Produkten, die über antiviral ausgestattete Oberflächen verfügen „Unsere Tests mit Modellorganismen zeigen, dass eine entsprechende Beschichtung von Oberflächen wirkt“, betont Spange. Zum Spektrum der von INNOVENT genutzten Techniken gehören Beflammung, Plasmabeschichtung und das sogenannte Sol-Gel-Verfahren, bei dem organische und anorganische Stoffe bei relativ niedrigen Temperaturen in einer Schicht verbunden werden können. Als Material für die Beschichtungen kommen laut Spange antibakteriell wirkende Metallverbindungen ebenso infrage wie Naturstoffe mit antiviralem Potenzial.

Vliesstoffe für Maskenhersteller produziert
Die textile Expertise zahlreicher Institute der Zuse-Gemeinschaft hat 2020 dafür gesorgt, dass anwendungsnahe Forschung sich in der Praxis der Pandemiebekämpfung bewähren konnte. Nach der in Deutschland zu Beginn der Pandemie aufgetretenen Knappheit bei der Versorgung mit Masken reagierten Textilforschungseinrichtungen, um in die Bresche zu springen. So stellte das Sächsische Textilforschungsinstitut (STFI) seine Forschungsanlagen auf die Produktion von Vliesstoff zur Belieferung deutscher und europäischer Hersteller von partikelfilternden Schutzmasken um. „Von März bis November 2020 haben wir Vliesstoff an verschiedene Hersteller geliefert, um die Maskenproduktion bestmöglich zu unterstützen und somit zur Eindämmung der Pandemie beizutragen. In einer für Industrie und Bevölkerung kritischen Zeit konnten wir zur Entlastung kritischer Produktionskapazität beitragen - für ein Forschungsinstitut eine ungewohnte Rolle, die wir aber in ähnlichen Situationen erneut annehmen würden“, erklärt Andreas Berthel, Geschäfts-führender Kaufmännischer Direktor des STFI.

Entwicklung wiederverwendbarer medizinischer Gesichtsmasken
Zur Verbesserung von Alltags- wie auch medizinischen Gesichtsmasken arbeiten die Deutschen Institute für Textil- und Faserforschung (DITF). In Kooperation mit einem Industriepartner entwickelt man in Denkendorf aktuell u.a. wiederverwendbare, medizinische Gesichtsmasken aus leistungsfähigem Präzisionsgewebe in Jacquard-Webtechnik. Die Mehrfachnutzung vermeidet Abfall und etwaige Lieferengpässe.
Für alle Arten von Masken gibt es Regularien, nun auch für Alltagsmasken. Bei Hohenstein wird die Einhaltung von Standards für Masken überprüft. Ein neuer europäischer Leitfaden legt Mindestanforderungen für Konstruktion, Leistungsbeurteilung, Kennzeichnung und Verpackung von Alltagsmasken fest. „Als Prüflabor für Medizinprodukte testen wir die Funktionalität medizinischer Gesichtsmasken unter mikrobiologisch-hygienischen und physikalischen Gesichtspunkten“, erläutert Hohenstein-Geschäftsführer Prof. Dr. Stefan Mecheels. Hohenstein unterstützt damit Hersteller u.a. bei der technischen Dokumentation zum Nachweis der Wirksamkeit und Sicherheit.
Atemschutzmasken (FFP 1, FFP 2 und FFP 3) werden seit Mitte dieses Jahres am Kunststoff-Zentrum (SKZ) in Würzburg geprüft. Getestet werden u.a. Einatem- und Ausatemwiderstand und der Durchlass von Partikeln. Zudem ist das SKZ selbst in die Maskenforschung eingestiegen. In Zusammenarbeit mit einem Medizintechnikspezialisten entwickelt das SKZ eine innovative Maske, die aus einem reinig- und sterilisierbaren Maskenträger und austauschbaren Filterelementen besteht.

ILK-Tests: Bei „Nase raus“ gelangen 90 Prozent der Partikel in die Umgebung
Der Kampf gegen Corona wird durch die Beiträge der Menschen gewonnen: Von Forschenden in Laboren, von Entwicklern und Herstellern in der Industrie sowie von den Bürgerinnen und Bürgern auf der Straße. Das Institut für Luft- und Kältetechnik (ILK) in Dresden hat vor diesem Hintergrund Untersuchungen zur Durchlässigkeit des Mund-Nasenschutzes (MNS) durchgeführt, und zwar zu   möglichen Beeinträchtigungen beim Atmen durch die Maske ebenso wie zur Schutzfunktion von Alltagsmasken.
Ergebnis: Obwohl die eingesetzten Materialien des Mund-Nasenschutzes rund 95 Prozent der ausgeatmeten Tröpfchen zurückhalten können ist „unter praktischen Gesichtspunkten und Berücksichtigung von Leckagen“ davon auszugehen, dass etwa 50 Prozent bis 70 Prozent der Tröpfchen in den Raum gelangen, so das ILK. Werde die Maske nur unterhalb der Nase getragen, so sei aufgrund des großen Anteils der Nasenatmung sogar davon auszugehen, dass ca. 90 Prozent der abgeatmeten Partikel in den Raum gelangen. Das verdeutlicht die Bedeutung des eng anliegenden und richtig getragenen Mund- und Nasenschutzes. „Hingegen sprechen aus physikalischer Sicht keine Gründe gegen das Tragen einer Maske“, betont ILK-Geschäftsführer Prof. Dr. Uwe Franzke. Die Forschenden untersuchten den CO2-Gehalt in der Atemluft ebenso wie den höheren Aufwand für die Atmung und legten dafür das Überwinden des Druckverlustes als Kriterium zugrunde. „Die Untersuchungen zum Druckverlust zeigten einen geringen, praktisch aber nicht relevanten Anstieg“, erläutert Franzke.

Der komplette ILK-Bericht „Untersuchungen zur Wirkung des Mund- und Nasenschutzes (MNS)“ ist hier abrufbar.

 

Ägyptens Textilverarbeiter investieren auch in harten Zeiten © Rainer Sturm/ pixelio.de
19.04.2016

ÄGYPTENS TEXTILVERARBEITER INVESTIEREN AUCH IN HARTEN ZEITEN

  • Konkurrenzdruck erfordert Modernisierungen
  • Rückläufige Exporte aufgrund von Energie- und Devisenmangel

Kairo (gtai) - Ägypten verfügt mit einer vertikal integrierten Textil- und Bekleidungsindustrie über eine starke Basis. Zum Erhalt der Wettbewerbsfähigkeit sind aber modernere Ausrüstungen und innovative Produkte erforderlich. Auch die Kooperation mit lokalen Zulieferern ist ausbaufähig. Regierungspläne sehen zwei neue Textilindustriezonen vor. Die Importe von Textil- und Ledermaschinen lagen in den ersten drei Quartalen 2015 bei 135 Mio. US$. Davon entfielen 17% auf deutsche Lieferungen. 

  • Konkurrenzdruck erfordert Modernisierungen
  • Rückläufige Exporte aufgrund von Energie- und Devisenmangel

Kairo (gtai) - Ägypten verfügt mit einer vertikal integrierten Textil- und Bekleidungsindustrie über eine starke Basis. Zum Erhalt der Wettbewerbsfähigkeit sind aber modernere Ausrüstungen und innovative Produkte erforderlich. Auch die Kooperation mit lokalen Zulieferern ist ausbaufähig. Regierungspläne sehen zwei neue Textilindustriezonen vor. Die Importe von Textil- und Ledermaschinen lagen in den ersten drei Quartalen 2015 bei 135 Mio. US$. Davon entfielen 17% auf deutsche Lieferungen. 

Die Situation der Textil- und Bekleidungsindustrie in Ägypten bietet reichlich Stoff sowohl für Optimisten als auch für Schwarzmaler. Technische Modernisierungen der Betriebe und eine Fokussierung auf Produkte mit höherer Wertschöpfung bieten Chancen. Potenzial hat auch eine bessere Verzahnung der Fertigungsstufen. Hierzu gehören Webanlagen und Wäschereien für Jeansstoff, Spinnereien und Webereien. Als ausbaufähige Produktgruppen gelten Unterwäsche, hochwertige Strickwaren und Stoffe. So könnten die Vorteile Ägyptens besser zur Geltung kommen. Dazu zählen eine günstige geografische Lage, die Nähe zu wichtigen Absatzmärkten und eine Vielzahl von Handelsabkommen. Laut der American Chamber of Commerce liefern ägyptische Hersteller bereits Bekleidung für internationale Marken wie Calvin Klein, Disney, Gap, Timberland und Zara.

Den Chancen stehen jedoch etliche Schwierigkeiten gegenüber. Auch die Textil- und Bekleidungsbranche wurde von der Energiekrise und dem Devisenmangel getroffen. Viele Unternehmen verfügen nur über eine geringe Liquidität. Forschung und Entwicklung kommen seit Jahren zu kurz, obwohl es auch positive Beispiele innovativer Firmen gibt. Viele Produzenten mussten in den letzten Jahren schließen. Aufgrund der Risiken im Sektor halten sich Banken bei der Kreditvergabe zumeist zurück.

Besonders notwendig wären moderne Technologie und Produktinnovationen angesichts des Konkurrenzdrucks aus dem Ausland. Das vergleichsweise geringe Lohnniveau in Ägypten ist höher als bei asiatischen Wettbewerbern. Daraus erwachsen Probleme hinsichtlich der Exportchancen und auch mit Blick auf den inländischen Absatzmarkt. Hier gewinnt Importware an Boden, zumal ägyptische Hersteller in den vergangenen Jahren Preise angehoben haben. Als Verstärker wirken der relativ hohe Außenwert des ägyptischen Pfundes und die Inflationsrate von dauerhaft rund 10%.   

Der Kostendruck erschwert es den Fabriken, gut ausgebildete Arbeitnehmer anzuziehen, was sich auch in einer hohen Fluktuation ausdrückt. Mehrfach legten seit 2008 Streiks Produktionsstätten lahm. Branchenexperten beklagen ein niedriges Ausbildungsniveau und mangelnde Effizienz. Eine Gegenmaßnahme der Unternehmen sind Kurse für ihre Mitarbeiter.

Lokaler Anbau deckt nicht den Baumwollbedarf der Textilhersteller

Obwohl in Ägypten im großen Stil Baumwolle angebaut wird, passen die Sorten nicht zum Bedarf der meisten lokalen Spinnereien. Das Land ist berühmt für hochwertige, weiche und haltbare langstapelige Baumwolle, während die Fabriken mittlerweile kurz- und mittelstapelige Baumwolle nachfragen. Die Exporte sehen sich starker Konkurrenz seitens der US-amerikanischen Pima-Baumwolle gegenüber. Ägyptische Textil- und Bekleidungsunternehmen importieren hingegen meistens ihren Rohstoff, vor allem aus Griechenland, den USA, Burkina Faso und Benin. Im Ergebnis wird hochwertige Rohbaumwolle exportiert und nicht wertschöpfungsintensiv im Inland verarbeitet, während knappe Devisen in den Import ausländischer Baumwolle fließen.

Für Unruhe in der Branche sorgen kurzfristige gesetzgeberische Veränderungen. So wurde im Sommer 2015 der Import von Baumwolle verboten, nach einer Woche jedoch wieder erlaubt. Inländische Baumwollfarmer leiden besonders unter dem Subventionsabbau, der den Anbau selbst und Düngemittel betrifft. Zahlreiche Bauern weichen auf andere Feldfrüchte aus, da sich Baumwolle oft nicht mehr rechnet und hohe Lagerbestände aufgelaufen sind.

Ägypten verfügt über eine vertikal integrierte Textil- und Bekleidungsindustrie. Diese steht für etwa 25% der Industrieproduktion des Landes und ebenfalls ein Viertel der Arbeitsplätze im verarbeitenden Gewerbe. Die größte Produktgruppe ist Bekleidung, außerdem spielen Stoffe sowie Filamentgarn und -fasern eine wichtige Rolle. Etwa 50 bis 60% der Spinnerei-, Weberei- und Falzkapazitäten befinden sich in öffentlicher Hand, während Privatunternehmen zu 90% die Bekleidungsproduktion dominieren. Regionale Schwerpunkte sind der Großraum Kairo, das Nildelta und Alexandria. Im Februar 2015 zählte die General Authority for Investment and Free Zones 4.594 Textil- und Bekleidungsunternehmen mit Gesamtinvestitionen von knapp 6 Mrd. US$. Davon entfielen 4.399 auf das Inland und 196 auf spezielle Freizonen.

Große Textil- und Bekleidungshersteller in Ägypten (Auswahl)
Name      Internetadresse
Abo El Sebaa Weaving Company http://abo-elsebaa.com
Al-Arafa Investment and Consulting http://arafaholding.com  
Alexandria Spinning & Weaving Co. (SPINALEX) http://spinalex.com  
Chourbagi Moderne for Clothing and Textiles S.A.E. "Charmaine" http://www.charmaine.com.eg
Egyptian Spinning & Weaving Company (ESW)   http://egyptianspinning.com  
El-Nasr Clothes and Textiles (KABO) http://www.kabo.com.eg
Misr Spinning and Weaving (El Mahala el Kobra)    http://www.misrhelwantextile.com
Oriental Weavers http://www.orientalweavers.com

Quellen: Invest in Egypt, Recherchen von Germany Trade & Invest

Schwächere Exportergebnisse für Textilien und Bekleidung in 2015

Mit einem Exportvolumen von zuletzt knapp 2,7 Mrd. US$ in 2014 stellen Textilien und Bekleidung das viertwichtigste Ausfuhrgut Ägyptens. Auf der Basis der ersten neun Monate 2015 ist allerdings ein schwächeres Jahresergebnis als 2014 zu erwarten. Größte Zielmärkte sind mit weitem Abstand die EU und die USA.

Ägyptische Exporte von Textilien und Bekleidung (HS 52, 54, 55, 57 und 60-63; in Mio. US$)
2013 2014 2015
2.843 2.695 1.848

*) Januar bis Ende September // Quelle: UN Comtrade

Allen Widrigkeiten zum Trotz investieren die ägyptischen Textil- und Bekleidungsunternehmen weiterhin in ihre Ausrüstungen. ESW kündigte im September 2015 an, acht Tochterunternehmen circa 19 Mio. US$ für reaktivierte und neue Produktionslinien zur Verfügung zu stellen. Die tschechische Pegas Nonwovens hat eine weitere Fertigungsanlage für ihr ägyptisches Werk in Auftrag gegeben. Die Importe von Textil- und Ledermaschinen aus Deutschland sind stabiler als die gesamten Einfuhren. Nach den ersten drei Quartalsergebnissen steht fest, dass die deutschen Lieferungen 2015 höher als 2014 ausfallen werden.

Einfuhr von Textil- und Ledermaschinen nach Ägypten (HS 8444-49 und HS 8451-53; in Mio. US$)
Land 2013 2014 2015
Importe gesamt 203,6 151,6 135,0
davon aus Deutschland 27,2 22,3 22,9

*) Januar bis Ende September
Quelle: UN Comtrade

Die ägyptische Regierung hat angekündigt, zwei Industriezonen für Textilien in Borg El Arab und der 6th of October City bei Kairo aufzubauen. Im August 2015 führte die chinesische Gondong Group erste Gespräche über eine mögliche Investition in Ägypten.

Internetadressen

Cotton Research Institute
Internet: http://www.arc.sci.eg
Egyptian Textile Development Association
Internet: http://www.etda-egypt.org
Egy Stitch & Tex (internationale Ausstellung in Kairo)
Internet: http://www.egystitchandtex.com
Industrial Development Authority
Internet: http://www.ida.gov.eg
Industrial Modernisation Centre
Internet: http://www.imc-egypt.org
Industrial Union of Garments - Chamber of Textiles Industries
(im Dachverband Federation of Egyptian Industries)
Internet: http://www.fei.org.eg
Home Textile Export Council
Internet: http://www.egyptianhometextiles.org
National Research Center (mit Textile Industries Division)
Internet: http://www.nrc.sci.eg
Ready Made Garments Export Council
Internet: http://www.rmgec-egypt.com
Textile Export Council
Internet: http://www.textile-egypt.org

Tschechische Textil- und Bekleidungsindustrie investiert © W. Behrends/ pixelio.de
01.03.2016

TSCHECHISCHE TEXTIL- UND BEKLEIDUNGSINDUSTRIE INVESTIERT

  • Umsätze erreichen 2015 Achtjahreshoch
  • Besonders Hersteller von technischen Textilien erfolgreich

Prag (gtai) - Die tschechische Textil- und Bekleidungsindustrie ist weiter im Aufwind. Besonders in Nischensegmenten und mit technischen Textilien erzielen die Hersteller seit Jahren steigende Umsätze. Das Investitionsklima in der Branche hat sich daher verbessert, wovon Ausrüstungslieferanten profitieren. Deutsche Hersteller von Maschinen für die Textil und Bekleidungsindustrie konnten ihre Exporte nach Tschechien 2015 um ein Fünftel ausweiten.

  • Umsätze erreichen 2015 Achtjahreshoch
  • Besonders Hersteller von technischen Textilien erfolgreich

Prag (gtai) - Die tschechische Textil- und Bekleidungsindustrie ist weiter im Aufwind. Besonders in Nischensegmenten und mit technischen Textilien erzielen die Hersteller seit Jahren steigende Umsätze. Das Investitionsklima in der Branche hat sich daher verbessert, wovon Ausrüstungslieferanten profitieren. Deutsche Hersteller von Maschinen für die Textil und Bekleidungsindustrie konnten ihre Exporte nach Tschechien 2015 um ein Fünftel ausweiten.

Mit rund 52,4 Mrd. Tschechischen Kronen (Kc; 1,9 Mrd. Euro) erzielte Tschechiens Textilindustrie 2015 so viel Umsatz wie seit acht Jahren nicht mehr. Laut Statistikamt legte der Ausstoß der Bekleidungshersteller um 11% zu, der Textilhersteller um 3%. Gut gefüllt sind auch die Orderbücher. Bei Unternehmen der Bekleidungsindustrie stieg das Volumen der Neuaufträge 2015 um über 13%, bei den Textilbetrieben um 4%.

Wie der Fachverband ATOK mitteilte, hätte sich die Branche noch besser entwickelt, wenn nicht die Wachstumsmärkte in Asien und Afrika geschwächelt hätten. Der Ausfall wurde von den traditionellen Abnehmern Deutschland, Italien, Polen, Slowakei, Österreich und Frankreich kompensiert. Im Textilsegment exportierte Tschechien 2015 laut ATOK Waren im Wert von umgerechnet fast 2,5 Mrd. Euro, was einem Handelsüberschuss von knapp 30 Mio. Euro entsprach. Bei Bekleidung erzielte das Land einen Negativsaldo. Hier wurden Waren für 2 Mrd. Euro importiert und für 1,3 Mrd. Euro exportiert.

Umsatzentwicklung der tschechischen Textil-, Bekleidungs- und Lederindustrie *)
Jahr Umsätze in Mrd. Kc Veränderung gegenüber
dem Vorjahr (in %)
2007 55,0 1,5
2008 46,1 -16,2
2009 41,1 -10,8
2010 41,3 0,5
2011 46,2 11,9
2012 45,9 -0,6
2013 47,1 2,6
2014 51,0 8,3
2015 52,4 2,7
2007 55,0 1,5

Quelle: Verband der Textil-, Bekleidungs- und Lederindustrie (ATOK, http://www.atok.cz)

Besonders in Nischensegmenten können sich die Bekleidungshersteller behaupten. Triola aus dem nordböhmischen Horni Jiretin zum Beispiel ist auf Damenunterwäsche spezialisiert und erfolgreich mit Übergrößen. Auch Hersteller wie Timo, Pleas, Upavan oder Linia bestehen mit Unterwäscheprodukten am Markt. Timo verkauft nach Berichten der Wirtschaftszeitung Hospodarske noviny 200.000 Stück pro Jahr. Das Unternehmen bietet unter anderem prothetische Wäsche bei Tumorerkrankungen der Brust an. In den kommenden zwei Jahren will der familiengeführte Betrieb am Produktionsstandort Litomerice (Nordböhmen) über 700.000 Euro in neue Technologien investieren.

Mützen und Kapuzen gefragt in 30 Ländern

Ein anderes Familienunternehmen, Kama aus Prag, ist auf Kopfbedeckungen spezialisiert. Mit Mützen, Schals, Stirnbändern, Handschuhen oder Kapuzen macht es inzwischen mehr als eine Mio. Euro Umsatz pro Jahr und liefert in 30 Länder. In Mährisch-Schlesien investiert Sky Paragliders aus Frydlant nad Ostravici rund vier Mio. Euro in eine Webfabrik inklusive Forschungszentrum zur Entwicklung neuer Materialien. Das Unternehmen produziert Gleit- und Rettungsschirme und gehört mit einem Jahresumsatz von 2,7 Mio. Euro (2014) zu den zehn wichtigsten Herstellern weltweit. Es verarbeitet jährlich 200 Kilometer Stoffbahnen.

Dank günstiger Löhne und der Nähe zu kaufkräftigen Märkten haben sich kleinere Anbieter von Maßanfertigungen gehalten. Das Unternehmen Janek aus Roznov pod Radhostem im Bezirk Zlin fertigt zum Beispiel 30.000 individuell geschneiderte Hemden pro Jahr. Auch Anzüge und Kostüme gehören zum Sortiment. Die Garne kauft Janek bei einem deutschen Hersteller ein, der in Tschechien produziert.

Tschechiens größte Textil- und Bekleidungshersteller (Umsätze in Mrd. Kc) 1)
Unternehmen/Sitz Produktportfolio Umsatz
2013
Umsatz
2014
Veränderung
1)
Webseite
Borgers CS/Plzen Vliesstoffe für Kfz-
Industrie
5.038 10.879 115,9 http://borgers.cz
Juta/Dvur Kralovenad Labem Geotextilien,
Dämmstoffe, Verpackungsmaterial
5.568 6.618 18,8 http://www.juta.cz
Nova Mosilana /Brno Kostümstoffe 2.952 3.285 11,3 http://www.novamosilana.cz
Pegas Nonwovens/Znojmo Vliesstoffe 2.273 2.388 5,1 http://www.pegas.cz
Kordarna Plus/Velka nad Velickou Kordgewebe, technische
Gewebe für
Fließbänder
2.195 2.287 4,2 http://www.kordarna.cz
Veba, textilni zavody/Broumov Wohn- und Bekleidungsstoffe,
Brokat
2.124 2.160 1,7 http://www.veba.cz/cs/
Johnson Controls/
Strakonice 2)
Textilbezüge für Autositze 1.722 1.865 8,3 http://www.johnsoncontrols.cz
Fibertex Nonwovens/
Svitavy
Vliesstoffe 958 1.128 17,7 http://www.fibertex.com
Pleas / Havlickuv
Brod
Unter- und Nachtwäsche 1.073 1.123 4,6 http://www.pleas.cz
Mehler Texnologies/
Lomnice nad
Popelkou 3)
Stoffe für Zelte,
Boote, Planen, Sonnenschirme
895 975 8,9 http://www.mehlertexnologies.
cz
Nejdecka cesarna
vlny/Nejdek 4)
Verarbeitung von
Rohwolle
800 692 -13,5 http://www.ncv.cz
Lanex/Bolatice Seile, Fäden, Kunstrasen 627 670 6,7 http://www.lanex.cz
Trevos/Kostalov Polypropylen-
Stapelfasern
576 639 10,9 http://www.monticekia.cz
Tessitura Monti Cekia/
Borovnice u Stare
Paky
Baumwollhemdewebe 609 568 -6,7 http://www.monticekia.cz
Svitap J.H.J./Svitavy Zelte, Planen, Mikrofasern,
Filter
497 436 -12,3 http://www.svitap.cz

1) Veränderung 2014/13 in %; 2) Geschäftsjahr Oktober 2012, 2013 bis September. 2013, 2014; 3) Dezember 2012, 2013 bis November 2013, 2014; 4) April 2013, 2014 bis März 2014, 2015
Quellen: Jahresberichte der Unternehmen, Handelsregister, Hospodarske noviny, Zeitschrift Ekonom, CzechInvest, Verband ATOK

Die umsatzstärksten Betriebe der Textilbranche produzieren meist für industrielle Abnehmer. Größter Branchenvertreter ist der Bocholter Kfz-Zulieferer Borgers, der an vier Standorten in der Nähe von Plzen textile Formteile, Verkleidungen, Isolationen und Vorhänge für Fahrzeuge produziert. Das zweitgrößte Textilunternehmen Juta erzielt die Hälfte seiner Erlöse mit Baumaterialien wie Drainagematten, Erosionsschutzgewebe oder Dachdämmungen. Außerdem macht Juta gute Geschäfte mit Verpackungsnetzen für Kartoffeln oder Weihnachtsbäume. Ein Wachstumsfeld ist Kunstrasen. Jedes Jahr investiert die Firma fast 20 Mio. Euro, überwiegend in neue Produktionsanlagen.

Maschinen für eine viertel Milliarde Euro gekauft
Andere Unternehmen bauen ebenfalls aus. Der Hersteller von Arbeitskleidung Waibel hat 2015 seinen Standort erweitert. In Zdar nad Sazavou bei Jihlava werden Eigenkollektionen und Sonderanfertigungen
hergestellt. Bekleidungshersteller Pleas steckt pro Jahr nach eigenen Angaben über 1 Mio. Euro in Maschinen. Er gehört zu den Top 10 der Branche und fertigt jährlich 15 Mio. Stück Unter- und Nachtwäsche der Marken Schiesser und Pleas. Der deutsche Ausrüstungshersteller Mayer & Cie. baut im Vsetin eine Fabrik für Strickmaschinen. Im Sommer 2016 soll die Produktion starten. Die Maschinen sind für die Großindustrie vor allem in Asien vorgesehen. Maschinenlieferanten konnten schon 2015 vom Aufschwung in der Textilindustrie profitieren. Die Einfuhren wichtiger Produktionsausrüstungen sind um über ein Fünftel auf über 260 Mio. Euro gestiegen. Mehr als die Hälfte entfiel auf deutsche Hersteller.

Einfuhr wichtiger Textilmaschinen nach Tschechien (1.000 Euro)
Maschinengruppe / HS-Position 2014 2015 Veränderung in %
Düsenspinnmaschinen / 8444 177 15.369 8.583,1
.darunter aus Deutschland 59 9.829 16.559,3
Spinnmaschinen / 8445 12.780 8.838 -30,8
.darunter aus Deutschland 6.591 5.017 -23,9
Webmaschinen / 8446 13.357 12.778 -4,3
.darunter aus Deutschland 7.498 2.166 -71,1
Wirk- und Strickmaschinen / 8447 10.556 11.332 7,4
.darunter aus Deutschland 2.872 6.092 112,1
Hilfsmaschinen / 8448 75.082 72.178 -3,9
.darunter aus Deutschland 48.245 51.765 7,3
Maschinen für Filz- und Vliesstoffe / 8449 3.349 16.306 386,9
.darunter aus Deutschland 949 6.741 610,3
Reinigungs-, Färbe- und Bügelmaschinen / 8451 83.874 105.825 26,2
.darunter aus Deutschland 44.671 50.234 12,5
Nähmaschinen / 8452 14.718 17.834 21,2
.darunter aus Deutschland 4.780 6.319 32,2
Maschinen zur Fell- und Lederbearbeitung bzw. Schuhproduktion /
8453
2.867 3.704 29,2
.darunter aus Deutschland 278 347 24,8
Gesamt 216.760 264.164 21,9
.darunter aus Deutschland 115.943 138.510 19,5

Quelle: Tschechisches Statistikamt