Textination Newsline

from to
Zurücksetzen
5 Ergebnisse
Foto Pixabay
28.06.2022

Individuelles Plastikbudget - Fraunhofer UMSICHT präsentiert Studienergebnisse

Wenn Kunststoffe in die Umwelt gelangen, bringt das viele negative Auswirkungen mit sich: Diese reichen von erstickenden Lebewesen über den Transfer innerhalb der Nahrungskette bis zu den physikalischen Auswirkungen auf ein Ökosystem. Hinzu kommen Gefahren durch Freisetzung von Additiven, Monomeren und kritischen Zwischenprodukten von Stoffwechselvorgängen, den Metaboliten. Wie groß die langfristige Tragweite der Kunststoffemissionen tatsächlich ist, steht zum aktuellen Zeitpunkt noch nicht fest. Um eine politische Entscheidungsgrundlage für den Umgang mit Kunststoffemissionen zu schaffen, haben Forschende des Fraunhofer UMSICHT und der Ruhr-Universität Bochum daher von Dezember 2017 bis Ende August 2021 im Projekt »PlastikBudget« einen Budgetansatz und eine LCA-Wirkungsabschätzungsmethodik entwickelt. Jetzt haben die Forschenden das Projekt abgeschlossen.

Wenn Kunststoffe in die Umwelt gelangen, bringt das viele negative Auswirkungen mit sich: Diese reichen von erstickenden Lebewesen über den Transfer innerhalb der Nahrungskette bis zu den physikalischen Auswirkungen auf ein Ökosystem. Hinzu kommen Gefahren durch Freisetzung von Additiven, Monomeren und kritischen Zwischenprodukten von Stoffwechselvorgängen, den Metaboliten. Wie groß die langfristige Tragweite der Kunststoffemissionen tatsächlich ist, steht zum aktuellen Zeitpunkt noch nicht fest. Um eine politische Entscheidungsgrundlage für den Umgang mit Kunststoffemissionen zu schaffen, haben Forschende des Fraunhofer UMSICHT und der Ruhr-Universität Bochum daher von Dezember 2017 bis Ende August 2021 im Projekt »PlastikBudget« einen Budgetansatz und eine LCA-Wirkungsabschätzungsmethodik entwickelt. Jetzt haben die Forschenden das Projekt abgeschlossen. Das Ergebnis: Allein beim Autofahren emittiert ein Mensch durch den Reifenabrieb mehr als die Hälfte seines individuellen Plastik-Emissions-Budgets.

Sechs Prozent des globalen Erdölverbrauchs fließen in die Kunststoffindustrie – Tendenz steigend. Während die Kunststoffindustrie in vielen Ländern einen wichtigen Wirtschaftsfaktor darstellt, gelangen immer mehr Kunststoffabfälle in Böden und Ozeane. Meist in Form hochmobiler, kleiner bis großer Plastikfragmente können die Kunststoffemissionen nicht mehr aus der Umwelt zurückgewonnen werden. Gleichzeitig sind die langfristigen Auswirkungen von Plastik in der Umwelt kaum vorhersehbar.

Aufgrund der globalen und generationsübergreifenden Dimension des Problems ist es wichtig, dass Wissenschaft, Wirtschaft und Konsumierende gemeinsam an einer Lösung arbeiten. Ein Ziel des Verbundprojekts PlastikBudget ist deshalb, die heutigen Plastikemissionen zu quantifizieren und ein Plastik-Emissions-Budget abzuleiten. Auf dieser Grundlage können die Forschenden quantitative Emissionsziele formulieren, die zur Legitimation von politischen Entscheidungen dienen. Besonders der Weg aus empirisch gesicherten Daten und normativen Wertvorstellungen zu einem konkreten Emissionsbudget bildet dabei das Kernziel des Projektes.

Von der Recherche zum Pro-Kopf-Emissionsbudget
Gestartet mit einer grundlegenden Recherche zu Plastikmengen in der Umwelt adressiert das Projekt daher zwei große Themen: Die Entwicklung eines Budgetansatzes und die Entwicklung einer Wirkungsabschätzungsmethode, die in Ökobilanzen genutzt werden kann, um potenzielle Umweltwirkungen von Plastikemissionen zu berücksichtigen. Partizipative Formate runden das Vorhaben ab. So verankern sich die Ergebnisse in politischen und wissenschaftlichen Diskursen. Im Projektverlauf beantworten die Forschenden folgende Fragen: Welche Mengen Kunststoff werden aktuell eingetragen und welche Mengen haben sich bereits akkumuliert? Welche Mengen an Kunststoff in der Umwelt ist gerade noch akzeptabel? Wie lange dauert der Abbau von Kunststoffen in realen Umweltkompartimenten? Wie werden die Risiken durch verschiedene Kunststoffemissionen adäquat abgebildet? Aus den Antworten berechnen sie schließlich einen Wert für die aktuellen Emissionen und das aus ihrer Sicht akzeptable Emissionsbudget.

250 Millionen Tonnen PPE für 7,8 Mrd. Menschen
Um Kunststoffverschmutzung zu messen, haben die Forschenden im Projekt PlastikBudget das persistenzgewichtete Plastikemissionsäquivalent (kurz: PPE) entwickelt. Dieses stellt eine virtuelle Masse dar, die den Zeitraum berücksichtigt, bis eine spezifische Kunststoffemission z. B. in Boden, Süßwasser oder Meerwasser abgebaut ist. Relevante Eigenschaften dafür sind der Ort der Emission, der Materialtyp, die Form der Kunststoffemission sowie die Größe des emittierten Kunststoffteils und das finale Umweltkompartiment, in dem der Kunststoff verbleibt. Im Falle von Kunststoffen, die innerhalb eines Jahres vollständig abbauen, entspricht das Plastikemissionsäquivalent der realen Masse. Ist die Abbauzeit länger, vergrößert es sich entsprechend.

»Ausgehend von der These, dass die bereits heute in der Umwelt akkumulierte Gesamtmenge der Kunststoffe gerade eine kritische Menge erreicht hat, konnten wir ein globales Plastikemissionsbudget von 250 Millionen Tonnen PPE berechnen«, erklärt Jürgen Bertling, Projektleiter des Vorhabens und Wissenschaftler am Fraunhofer UMSICHT. »Wenn jedem der 7,8 Mrd. Menschen die gleichen Emissionsrechte zugesprochen werden, ergibt sich so ein Individualbudget von 31,9 Kilogramm PPE pro Person und Jahr«.

Autofahren verbraucht die Hälfte des individuellen Plastikbudgets
Allein der Reifenabrieb beim Autofahren entspricht aber schon einem Plastikemissionsäquivalent von 16,5 kg PPE pro Jahr und verbraucht damit über 50 Prozent des individuellen Budgets. Auch das Littern von zehn Coffee-to-go-Einwegbechern würde mit 13,5 kg PPE im Jahr mehr als ein Drittel des eigenen Budgets verbrauchen. »Das liegt daran, dass die verwendeten Kunststoffe bei Einwegbechern schwerer abbaubar sind als der Kautschuk des Reifens«, erläutert Jan Blömer vom Fraunhofer UMSICHT, der wesentlich an der Entwicklung der Berechnungsmethodik beteiligt war. Auch der Verbrauch einer Spule Polyamids für einen Rasentrimmer, die bei der Verwendung Mikroplastik freisetzt, fällt mit 5,1 Kilogramm PPE erheblich ins Gewicht. Mikrobeads in Kosmetik oder das einmalige Abschleifen einer Haustür verbrauchen mit 1,1 kg PPE und 0,5 kg PPE hingegen deutlich weniger vom individuellen Emissionsbudget, sind aber dennoch in der Gesamtbilanz durchaus relevant.

Auch viele andere alltägliche Tätigkeiten führen zu Kunststoffemissionen. Trotzdem zeigen die Forschenden, dass in verschiedenen Szenarien die berechneten Budgetgrenzen eingehalten werden können. Ein solches Szenario bringt allerdings auch erheblichen Aufwand und massive Änderungen unseres heutigen Umgangs mit Kunststoffen mit sich. Ein mögliches Szenario zur Einhaltung des Budgets wäre eine Reduktion der Emissionen um mehr als 50 Prozent, wenn zeitgleich mindestens 50 Prozent aller Emissionen aus gut abbaubaren Kunststoffen bestehen würden.
Weitere Arbeit zur Berücksichtigung von Kunststoffemissionen in Ökobilanzen

Das im Projekt PlastikBudget entwickelte persistenzgewichtete Plastikemissionsäquivalent könnte zukünftig auch eine neue Wirkungskategorie in Ökobilanzen darstellen. »Mit Hilfe von Faktoren, die die Persistenz von Kunststoffen in der Umwelt wiederspiegeln, lassen sich so zukünftig verschiedene Produktalternativen hinsichtlich ihres Plastikemissions-Footprints vergleichen« so Dr. Daniel Maga, der die entsprechende Weiterentwicklung der Ökobilanzmethodik beim Fraunhofer UMSICHT koordiniert. Hier findet ein entsprechender Austausch mit Unternehmen statt. Die Implementierung in der Ökobilanzmethodik und den zugehörigen Softwarelösungen erfordert aber eine breite Akzeptanz in der wissenschaftlichen Community und muss in entsprechenden Normungsgremien vorbereitet werden.

Quelle:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Foto: Unsplash, Bastian Pudill
17.05.2022

Die Industriezukunft braucht klimaneutrale Prozesswärme

IN4climate.NRW veröffentlicht Impulspapier

Nicht nur private Haushalte, sondern vor allem Industriebetriebe haben einen hohen Wärmebedarf. Auf dem Weg zur Klimaneutralität muss die Prozesswärmeversorgung der Industrie stärker in den Fokus rücken – besonders im Industrieland Nordrhein-Westfalen. Das zeigt das Impulspapier des Klimaschutz-Thinktanks IN4climate.NRW.

Prozesswärme machte 2020 einen Großteil des industriellen Energiebedarfs aus - 67 Prozent des Energieverbrauchs der deutschen Industrie - und wird heute noch überwiegend aus fossilen Energieträgern gedeckt (BMWi 2021a). Das sind fast 20 Prozent des gesamten deutschlandweiten Energiebedarfs. Kein Wunder: Egal ob Glas, Metall, Zement oder Papier geschmolzen, geschmiedet, gebrannt oder getrocknet werden – all diese Verfahren benötigen Prozesswärme. Und das teilweise bis zu einer Temperatur von 3 000 °C.

IN4climate.NRW veröffentlicht Impulspapier

Nicht nur private Haushalte, sondern vor allem Industriebetriebe haben einen hohen Wärmebedarf. Auf dem Weg zur Klimaneutralität muss die Prozesswärmeversorgung der Industrie stärker in den Fokus rücken – besonders im Industrieland Nordrhein-Westfalen. Das zeigt das Impulspapier des Klimaschutz-Thinktanks IN4climate.NRW.

Prozesswärme machte 2020 einen Großteil des industriellen Energiebedarfs aus - 67 Prozent des Energieverbrauchs der deutschen Industrie - und wird heute noch überwiegend aus fossilen Energieträgern gedeckt (BMWi 2021a). Das sind fast 20 Prozent des gesamten deutschlandweiten Energiebedarfs. Kein Wunder: Egal ob Glas, Metall, Zement oder Papier geschmolzen, geschmiedet, gebrannt oder getrocknet werden – all diese Verfahren benötigen Prozesswärme. Und das teilweise bis zu einer Temperatur von 3 000 °C.

IN4climate.NRW formuliert in dem Impulspapier »Prozesswärme für eine klimaneutrale Industrie« Ansätze und Handlungsempfehlungen für eine Prozesswärmewende. Insgesamt dreizehn Partner der Initiative haben das Papier mitgezeichnet.

Samir Khayat, Geschäftsführer von NRW.Energy4–Climate: »Die Umstellung auf eine nachhaltige Prozesswärmebereitstellung ist einer der entscheidenden Hebel, damit die Transformation der Industrie gelingen kann. Mit der Initiative IN4climate.NRW bringen wir die Kompetenzen aus Wissenschaft, Politik und Wirtschaft an einen Tisch und entwickeln konkrete Strategien, um Klimaneutralität in der Industrie in die Praxis umzusetzen.«

Verschiedene Zahlen verdeutlichen den notwendigen Handlungsbedarf: Nur 6 Prozent des Energiebedarfs für Prozesswärme werden bislang durch Erneuerbare Energien gedeckt. Auch Strom macht derzeit nur einen Anteil von 8 Prozent aus – als Energiequelle ist er im heutigen Strommix noch längst nicht emissionsfrei, muss es aber durch die Umstellung auf 100 Prozent Erneuerbare perspektivisch werden.

40 Prozent des Prozesswärmebedarfs von ganz Deutschland benötigt allein NRW
Tania Begemann, Projektmanagerin Industrie und Produktion bei NRW.Energy4Climate und Autorin des Papiers: »Die nachhaltige Umstellung von Prozesswärme war bei IN4climate.NRW schon immer ein wichtiges und dringendes Thema, wird in Zeiten einer globalen Energiekrise aber noch brisanter. Schätzungsweise 40 Prozent des Prozesswärmebedarfs von ganz Deutschland benötigt allein NRW. Um langfristig wirtschaftsstark und Industrieland zu bleiben, ist es für NRW daher von ganz besonderer Bedeutung, zeitnah unabhängig von fossilen Prozesswärmequellen zu werden. Darauf möchten wir mit dem Papier aufmerksam machen. Gleichzeitig bietet sich mit dieser enormen Herausforderung für NRW auch die Chance, Vorreiter zu werden.«

Wie das gehen kann? Das Impulspapier zeigt zentrale Ansätze und Handlungsempfehlungen auf:

  • Effizienz steigern: Die Entwicklung und der Einsatz von Hochtemperatur-Wärmepumpen sollte im Rahmen von Pilotanlagen und -konzepten gezielt gefördert werden. Zudem sollten Unternehmen bei der Erstellung und Umsetzung von Konzepten unterstützt werden, die Prozesstemperaturen minimieren und innerbetrieblich Abwärme nutzen.
  • Erneuerbare Wärmequellen fördern: Lokale, erneuerbare Energiequellen wie Tiefengeothermie und Solarthermie können ein wichtiger Baustein zur klimaneutralen Prozesswärmeversorgung sein und gleichzeitig die Abhängigkeit von Energieimporten reduzieren. Dort, wo Erneuerbare industrielle Wärmebedarfe decken können, sollten sie auch genutzt werden. Diese Energieformen sollten deswegen durch Erkundungen und Ausschreibungen gezielt unterstützen werden.
  • Erneuerbaren Strom erhöhen: Die Elektrifizierung von Prozessen und Anwendungen ist die Voraussetzung für die Energiewende. Die erneuerbare Stromerzeugung mitsamt einem soliden Stromnetz auszubauen, wettbewerbsfähige Preise für grünen Strom zu schaffen und flexible Systeme zu entwickeln, sind somit zentrale Aufgaben.
  • Speicherbare alternative Energieträger forcieren: Um Prozesswärme auch dann erzeugen zu können, wenn Erneuerbare Energien nicht zur Verfügung stehen, benötigt die Industrie große Mengen an speicherbaren Energieträgern. Insbesondere nachhaltiger Wasserstoff muss zu wettbewerbsfähigen Preisen verfügbar sein und die dafür nötigen Voraussetzungen wie zum Beispiel eine Transport- und Speicherinfrastruktur geschaffen werden. Neben Wasserstoff ist Biomasse ein wertvoller und speicherbarer Energieträger und zugleich Rohstoff. Diese limitierte Ressource gilt es daher gezielt und effizient einzusetzen.

Prozesswärme klimaneutral zu erzeugen, ist für ganz Deutschland, aber besonders für das Industrieland NRW von hoher Bedeutung und gleichzeitig eine große Herausforderung. Die Wärmewende der Industrie erfordert eine gesamtsystemische und überregionale Betrachtung und Strategieentwicklung. Einerseits sollten solche Strategien das Zusammenspiel verschiedener Sektoren berücksichtigen. Andererseits sollten sie alle Wärmebedarfe – von Gebäuden bis zur Industrie – miteinbeziehen. Entscheiderinnen und Entscheider aus Politik, Wirtschaft und Gesellschaft finden in diesem Papier erste Anhaltspunkte und Impulse für diese wichtige, gemeinsame Aufgabe.

Das Papier hat die Initiative IN4climate.NRW unter dem Dach der Landesgesellschaft NRW.Energy4Climate erarbeitet. Mitgetragen wird es von den Instituten Fraunhofer UMSICHT, RWTH Aachen (Lehrstuhl Technische Thermodynamik), der Forschungseinrichtung des VDZ sowie dem Wuppertal Institut, den Unternehmen Amprion, Currenta, Deutsche Rohstofftechnik (RHM-Gruppe), Georgsmarienhütte, Kabel Premium Pulp and Paper, Lhoist, Pilkington Deutschland (NSG Group) und Speira sowie dem Bundesverband Glasindustrie.

Quelle:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Foto: pixabay
20.07.2021

Pilotprojekt zum Closed-Loop-Recycling von Einweg-Gesichtsmasken

  • Kunststoffe im Kreislauf halten: Fraunhofer, SABIC und Procter & Gamble kooperieren

Der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE und das Fraunhofer Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT haben ein innovatives Recyclingverfahren für Altkunststoffe entwickelt. Das Pilotprojekt, an dem auch SABIC und Procter & Gamble beteiligt sind, soll zeigen, dass Einweg-Gesichtsmasken für das sogenannte Closed-Loop-Recycling geeignet sind.

Der Übergang von einer Linear- zu einer Kreislaufwirtschaft in der Kunststoffproduktion kann dann gelingen, wenn die beteiligten Akteure und Akteurinnen zusammenarbeiten. Der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE bündelt die Kompetenzen von sechs Fraunhofer-Instituten und setzt auf eine enge Zusammenarbeit mit Partnern aus der Industrie.

  • Kunststoffe im Kreislauf halten: Fraunhofer, SABIC und Procter & Gamble kooperieren

Der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE und das Fraunhofer Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT haben ein innovatives Recyclingverfahren für Altkunststoffe entwickelt. Das Pilotprojekt, an dem auch SABIC und Procter & Gamble beteiligt sind, soll zeigen, dass Einweg-Gesichtsmasken für das sogenannte Closed-Loop-Recycling geeignet sind.

Der Übergang von einer Linear- zu einer Kreislaufwirtschaft in der Kunststoffproduktion kann dann gelingen, wenn die beteiligten Akteure und Akteurinnen zusammenarbeiten. Der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE bündelt die Kompetenzen von sechs Fraunhofer-Instituten und setzt auf eine enge Zusammenarbeit mit Partnern aus der Industrie.

Durch den Transfer von wissenschaftlichen Erkenntnissen in die Wirtschaft, Gesellschaft und Politik zählt das Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT zu den Vorreitern beim nachhaltigen Umgang mit Energieträgern und Rohstoffen. Gemeinsam mit verschiedenen Partnern und Partnerinnen erforschen und entwickeln die Wissenschaftlerinnen und Wissenschaftler am Fraunhofer UMSICHT spannende Produkte, Prozesse und Dienstleistungen zum Thema Nachhaltigkeit.  

Das Fraunhofer-Institut UMSICHT, SABIC und Procter & Gamble (P&G) arbeiten im Rahmen eines innovativen Pilotprojekts zur Kreislaufwirtschaft zusammen, das die Möglichkeiten zur Rückführung von Einweg-Gesichtsmasken in den Verwertungskreislauf aufzeigen soll.

Die milliardenfache Verwendung von Einweg-Gesichtsmasken zum Schutz vor dem Coronavirus birgt große Gefahren für die Umwelt, insbesondere wenn die Masken in der Öffentlichkeit, z.B. in Parks, bei Open-Air-Veranstaltungen oder an Stränden, gedankenlos weggeworfen werden. Neben der Herausforderung, eine nachhaltige Lösung für derart große Mengen unverzichtbarer Hygieneartikel zu finden, bedeutet die bloße Entsorgung der gebrauchten Masken auf Mülldeponien oder in Verbrennungsanlagen einen Verlust an wertvollem Rohstoff, mit dem sich neue Materialien herstellen ließen.

»Vor diesem Hintergrund haben wir untersucht, wie gebrauchte Gesichtsmasken wieder zurück in die Wertschöpfungskette der Maskenproduktion gelangen könnten«, so Dr. Peter Dziezok, Director R&D Open Innovation bei P&G. »Doch für eine echte Kreislauflösung, die sowohl nachhaltige als auch wirtschaftliche Kriterien erfüllt, braucht es Partner. Deshalb haben wir uns mit den Expertinnen und Experten vom Fraunhofer CCPE und Fraunhofer UMSICHT sowie den Technologie- und Innovations-Fachleuten von SABIC zusammengetan, um Lösungen zu finden.«

Im Rahmen des Pilotprojekts sammelte P&G an seinen Produktions- und Forschungsstandorten in Deutschland gebrauchte Gesichtsmasken von Mitarbeitenden und Besuchenden ein. Auch wenn diese Masken immer ordnungsgemäß entsorgt werden, fehlte es doch an Möglichkeiten, diese effizient zu recyceln. Um hierbei alternative Herangehensweisen aufzuzeigen, wurden extra dafür vorgesehene Sammelbehälter aufgestellt und die eingesammelten Altmasken an Fraunhofer zur Weiterverarbeitung in einer speziellen Forschungspyrolyseanlage geschickt.

»Einmal-Medizinprodukte wie Gesichtsmasken haben hohe Hygieneanforderungen, sowohl in Bezug auf die Entsorgung als auch hinsichtlich der Produktion. Mechanisches Recycling wäre hier keine Lösung«, erklärt Dr. Alexander Hofmann, Abteilungsleiter Kreislaufwirtschaft am Fraunhofer UMSICHT. »Unser Konzept sieht zunächst die automatische Zerkleinerung und anschließend die thermochemische Umwandlung in Pyrolyseöl vor.

Unter Druck und Hitze wird der Kunststoff bei der Pyrolyse in molekulare Fragmente zerlegt, wodurch unter anderem Rückstände von Schadstoffen oder Krankheitserregern wie dem Coronavirus zerstört werden. Im Anschluss können daraus neuwertige Rohstoffe für die Kunststoffproduktion gewonnen werden, die zudem die Anforderungen an Medizinprodukte erfüllen«, ergänzt Hofmann, der auch Leiter der Forschungsabteilung Advanced Recycling am Fraunhofer CCPE ist.

Das Pyrolyseöl wurde im nächsten Schritt an SABIC weitergereicht, wo es als Ausgangsmaterial für die Herstellung von neuwertigem Polypropylen (PP) zum Einsatz kam. Das Polymer wurde nach dem allgemein anerkannten Massenbilanz-Prinzip hergestellt, bei dem das alternative Ausgangsmaterial im Produktionsprozess mit fossilen Rohstoffen kombiniert wird. Das Massenbilanz-Prinzip gilt als wichtige Brückenlösung zwischen der heutigen Linearwirtschaft und der nachhaltigeren Kreislaufwirtschaft der Zukunft.

»Das in diesem Pilotprojekt gewonnene, hochwertige zirkuläre PP-Polymer zeigt deutlich, dass Closed-Loop-Recycling durch die aktive Zusammenarbeit von Akteuren aus der gesamten Wertschöpfungskette erreicht werden kann«, betont Mark Vester, Global Circular Economy Leader bei SABIC. »Das Kreislaufmaterial ist Teil unseres TRUCIRCLE™-Portfolios, mit dem wertvolle Altkunststoffe wiederverwertet und fossile Ressourcen eingespart werden sollen.«

Mit der abschließenden Lieferung des PP-Polymers an P&G, das dort zu Faservliesstoffen verarbeitet wurde, schloss sich der Kreis. »Durch dieses Pilotprojekt konnten wir besser beurteilen, ob der Kreislaufansatz auch für Kunststoffe, die bei der Herstellung von Hygiene- und Medizinprodukten zum Einsatz kommen, geeignet wäre«, so Hansjörg Reick, Senior Director Open Innovation bei P&G. »Natürlich muss das Verfahren noch verbessert werden. Die bisherigen Ergebnisse sind jedoch durchaus vielversprechend.«

Das gesamte Kreislaufprojekt – von der Einsammlung der Gesichtsmasken bis hin zur Produktion – wurde innerhalb von nur sieben Monaten entwickelt und umgesetzt. Der Einsatz innovativer Recyclingverfahren bei der Verarbeitung anderer Materialien und chemischer Produkte wird im Fraunhofer CCPE weiter erforscht.

03.12.2019

INDUSTRIE UND WISSENSCHAFT FÜR FÖRDERUNG VON WASSERSTOFFTECHNOLOGIEN

Der Schutz des Klimas ist eine der größten Herausforderungen unserer Zeit. Immer deutlicher wird, dass eine erhebliche Transformation von industriellen Wertschöpfungsketten und Produktionsprozessen erforderlich ist, um die Pariser Klimaziele einzuhalten. Dabei wird CO2-frei erzeugter Wasserstoff eine entscheidende Rolle spielen: Das Diskussionspapier, das Industrieakteure nun gemeinsam mit Wissenschaftlerinnen und Wissenschaftlern veröffentlichen, zeigt die essenzielle Funktion des Energieträgers für die Energiewende, skizziert die Herausforderungen, die im Aufbau der nötigen Infrastruktur liegen, und richtet sich mit klaren Handlungsempfehlungen auch an die Politik.

Diskussionsbeitrag der AG Wasserstoff von IN4climate.NRW zur Entwicklung der nationalen Wasserstoffstrategie.

Der Schutz des Klimas ist eine der größten Herausforderungen unserer Zeit. Immer deutlicher wird, dass eine erhebliche Transformation von industriellen Wertschöpfungsketten und Produktionsprozessen erforderlich ist, um die Pariser Klimaziele einzuhalten. Dabei wird CO2-frei erzeugter Wasserstoff eine entscheidende Rolle spielen: Das Diskussionspapier, das Industrieakteure nun gemeinsam mit Wissenschaftlerinnen und Wissenschaftlern veröffentlichen, zeigt die essenzielle Funktion des Energieträgers für die Energiewende, skizziert die Herausforderungen, die im Aufbau der nötigen Infrastruktur liegen, und richtet sich mit klaren Handlungsempfehlungen auch an die Politik.

Diskussionsbeitrag der AG Wasserstoff von IN4climate.NRW zur Entwicklung der nationalen Wasserstoffstrategie.

Nationale und globale Energie- und Klimaschutzszenarien machen deutlich, dass CO2-frei erzeugter Wasserstoff in Zukunft eine tragende Säule der Energiewende wird. Für eine klimaneutrale Produktion in der Chemie- und Stahlindustrie ist Wasserstoff von entscheidender Bedeutung. Zudem kann er sowohl in der Industrie, aber auch im Verkehrs- und Mobilitätssektor fossile Energieträger ersetzen. Er lässt sich gut transportieren und speichern, und leistet so einen wesentlichen Beitrag zur Sektorenkopplung. Deshalb ist zukünftig mit einem hohen Wasserstoffbedarf zu rechnen – dieser kann aktuellen Szenarien zufolge bei über 600 Terrawattstunden pro Jahr liegen.

»Nordrhein-Westfalen ist durch seine zentrale Lage in Europa und dank seiner Potenziale in Industrie und Forschung die ideale Modellregion und Ausgangspunkt in Deutschland und Europa für den Aufbau einer Wasserstoffwirtschaft«, erläutert Prof. Manfred Fischedick, Vizepräsident des Wuppertal Institutes und Leiter der Arbeitsgruppe Wasserstoff bei IN4climate.NRW. Acht Industrieunternehmen (AirLiquide, Amprion, BP, Covestro, Open Grid Europe, RWE, Shell und thyssenkrupp) und vier Forschungsinstitute (Wuppertal Institut, Fraunhofer UMSICHT, BFI sowie das IW Köln) haben das Papier gemeinsam erarbeitet. Die Autorinnen und Autoren sehen Wasserstoff als Schlüssel für eine erfolgreiche Industrietransformation und klimaneutrale Zukunft. Gleichzeitig bietet Wasserstoff auch große Chancen für die wirtschaftliche Entwicklung in NRW und Deutschland – zu rechnen ist mit einem Wertschöpfungspotenzial in Milliardenhöhe und großen Potenzialen für zukunftsfähige Arbeitsplätze.

Alle am Papier beteiligten Unternehmen engagieren sich bereits in Projekten, die Wasserstofftechnologien voranbringen und den Einstieg in eine Wasserstoffzukunft ermöglichen. So befassen sich die Projekte mit einer CO2-freien Stahlproduktion, der Erzeugung von Wasserstoff durch Elektrolyse im industriellen Maßstab, dem Aufbau der Transportinfrastruktur durch die Umwandlung von Erdgaspipelines, dem Einsatz von grünem Wasserstoff in Raffinerien und dem Voranbringen der Sektorenkopplung.

Neue Wasserstoffstrategie
»Wir brauchen nun die notwendigen regulatorischen Voraussetzungen und positive wirtschaftliche Anreize, um klimaneutral erzeugten Wasserstoff für die gesamte Industrie zugänglich zu machen«, erklärt Klaus Kesseler, Leiter Klimaschutz, CO2, Genehmigungen bei der thyssenkrupp Steel AG. »Wir begrüßen es, dass die Bundesregierung die Bedeutung von Wasserstoff im Klimaschutzprogramm 2030 hervorhebt und eine nationale Wasserstoffstrategie erarbeitet, wobei aus unserer Sicht die Gestaltung einer leistungsfähigen Transportinfrastruktur von entscheidender Bedeutung ist. Derzeit ist klimaneutral erzeugter Wasserstoff nicht wettbewerbsfähig – die Wasserstoffstrategie muss das ändern. Zudem brauchen wir zusätzliche Kapazitäten für die Produktion von Strom aus erneuerbaren Energien für die Herstellung von Wasserstoff«, so Kesseler weiter.

Entstanden ist das Papier im Rahmen der Arbeitsgruppe Wasserstoff von IN4climate.NRW. Hier entwickeln die Teilnehmenden branchenübergreifend neue Ideen, um industrielle, klimafreundliche Prozesse und Produkte voranzubringen. Das Diskussionspapier zum Thema Wasserstoff ist die erste Veröffentlichung aus IN4climate.NRW.

 

Weitere Informationen:
Wasserstoff
Quelle:

Quelle: Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Das neue AddiTex-Compound kommt als Filament für den 3D-Druck aus dem Extruder. © Fraunhofer UMSICHT
12.11.2019

FRAUNHOFER UMSICHT: COMPOUNDS FÜR ADDITIVE FERTIGUNG, GEOTEXTILIEN UND WEARABLES

Ob biologisch abbaubare Geotextilien, Wearables aus thermoplastischen Elastomeren oder Funktions-Textilien aus dem 3D-Drucker – die Bandbreite der am Fraunhofer Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT entwickelten Kunststoffe ist groß.

Einblicke in diese Projekte gab es vom 16. bis 23. Oktober in Düsseldorf: Auf der K stellten Wissenschaftlerinnen und Wissenschaftler ihre Arbeit an thermisch und elektrisch leitfähigen, biologisch abbaubaren, biobasierten sowie für die additive Fertigung geeigneten Compounds vor.

Ob biologisch abbaubare Geotextilien, Wearables aus thermoplastischen Elastomeren oder Funktions-Textilien aus dem 3D-Drucker – die Bandbreite der am Fraunhofer Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT entwickelten Kunststoffe ist groß.

Einblicke in diese Projekte gab es vom 16. bis 23. Oktober in Düsseldorf: Auf der K stellten Wissenschaftlerinnen und Wissenschaftler ihre Arbeit an thermisch und elektrisch leitfähigen, biologisch abbaubaren, biobasierten sowie für die additive Fertigung geeigneten Compounds vor.

Textile Verbundwerkstoffe aus dem 3D-Drucker
Im Projekt »AddiTex« sind Kunststoffe entstanden, die mit Hilfe des 3D-Drucks schichtweise auf Textilien aufgetragen werden und diesen funktionale Eigenschaften verleihen. Eine besondere Herausforderung bei der Entwicklung war die permanente Haftung: Der aufgedruckte Kunststoff sollte sowohl eine feste Verbindung mit dem Textil eingehen als auch ausreichend flexibel sein, um Bewegungen und Drehungen mitmachen zu können.

Entwickelt wurden ein flexibles und flammgeschütztes Compound, das sich besonders für die Anwendung im Bereich des textilen Sonnen- und Schallschutzes eignet, sowie ein steifes Compound, das u. a. bei der Formverstärkung für Schutz- und Funktionsbekleidung zum Einsatz kommt.

Geotextilfilter für die technisch-biologische Ufersicherung
Geotextilfilter für die technisch-biologische Ufersicherung stehen im Zentrum des Projektes »Bioshoreline«. Dahinter verbergen sich stufenweise biologisch abbaubare Vliese, die eine naturnahe Ufergestaltung von Binnenwasserstraßen mit Pflanzen ermöglichen. Sie bestehen aus nachwachsenden Rohstoffen und sollen im Anfangszustand den Boden im Uferbereich stabilisieren, bis die Pflanzenwurzeln ausreichend gewachsen sind, und sowohl Filter- als auch Rückhaltefunktionen übernehmen. Die Alterung und der biologische Abbau der Vliese beginnen unmittelbar nach der Installation, bis die Vliese nach und nach vollständig abgebaut sind.

Aktuell werden Prototypen der Geotextilfilter geprüft. Wissenschaftlerinnen bewerten die ober- und unterirdisch gebildete Pflanzenmasse mit und ohne Geotextilfilter sowie den Einfluss des Bodentyps auf das Pflanzenwachstum und den biologischen Abbau des Filters.

Wearables aus thermoplastischen Elastomeren
Darüber hinaus werden am Fraunhofer UMSICHT neuartige, elektrisch leitfähig eingestellte und flexible Compounds entwickelt, die zu Thermoplast-basierten Bipolarplatten verarbeitet werden können. Diese Kunststoffe sind elektrisch hochleitfähig, flexibel, mechanisch stabil, gasdicht und chemisch resistent sowie – in Abhängigkeit des Füllgrades an elektrisch leitfähigen Additiven – vielfältig nutzbar. Zum Beispiel in elektrochemischen Speichern (Batterien), in Energiewandlern (Brennstoffzellen), in chemikalienresistenten Wärmeübertragern oder als Widerstandsheizelemente.

Ein weiteres mögliches Einsatzgebiet dieser Kunststoffe: Wearables. Diese tragbaren Materialien lassen sich mit den neuen Compounds nämlich einfach und günstig herstellen. Denkbar ist u. a., Kleidungsstücke wie eine Weste mit Hilfe von Widerstandsheizelementen zu formen. Der Gedanke dahinter heißt Power-to-Heat und ermöglicht die direkte Umwandlung von Energie in Wärme.

FÖRDERHINWEISE
»AddiTex« wird gefördert mit einer Zuwendung des Landes Nordrhein-Westfalen unter Einsatz von Mitteln aus dem Europäischen Fonds für regionale Entwicklung (EFRE) 2014-2020 »Investitionen in Wachstum und Beschäftigung«. Projektträger: LeitmarktAgentur.NRW • Projektträger Jülich.
Die Förderung des Vorhabens »Bioshoreline« (Förderkennzeichen: 22000815) erfolgt aus Mitteln des Bundesministeriums für Ernährung und Landwirtschaft (BMEL) aufgrund eines Beschlusses des deutschen Bundestages.

Nähere Informationen online unter: https://www.umsicht.fraunhofer.de/de/referenzen/additex.html

 

Weitere Informationen:
Fraunhofer-Institute UMSICHT K 2019
Quelle:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT