Textination Newsline

from to
Zurücksetzen
3 Ergebnisse
Federn und Daunen von Wassergeflügel (c) Daunen- und Federnverbände Mainz
05.03.2024

Klebstoffe: Federn statt Erdöl

Klebstoffe beruhen fast immer auf fossilen Rohstoffen wie Erdöl. Fraunhofer-Forschende haben nun ein Verfahren entwickelt, mit dem der biobasierte Rohstoff Keratin erschlossen wird. Die leistungsfähige Protein-Verbindung ist beispielsweise in Hühnerfedern enthalten. Damit kann man nicht nur eine Vielzahl unterschiedlicher Klebstoffe für verschiedene Anwendungsbereiche herstellen. Die Verfahren und Endprodukte sind vielmehr nachhaltig und orientieren sich am Grundprinzip einer bioinspirierten Kreislaufwirtschaft. Das gemeinsame Projekt mit der Henkel AG & Co. KGaA adressiert einen Milliardenmarkt.

Klebstoffe beruhen fast immer auf fossilen Rohstoffen wie Erdöl. Fraunhofer-Forschende haben nun ein Verfahren entwickelt, mit dem der biobasierte Rohstoff Keratin erschlossen wird. Die leistungsfähige Protein-Verbindung ist beispielsweise in Hühnerfedern enthalten. Damit kann man nicht nur eine Vielzahl unterschiedlicher Klebstoffe für verschiedene Anwendungsbereiche herstellen. Die Verfahren und Endprodukte sind vielmehr nachhaltig und orientieren sich am Grundprinzip einer bioinspirierten Kreislaufwirtschaft. Das gemeinsame Projekt mit der Henkel AG & Co. KGaA adressiert einen Milliardenmarkt.

Klebstoffe sind fast überall: in Sportschuhen, im Smartphone, im Bodenbelag, in Möbeln, in Textilien oder in Verpackungen. Sogar die Frontscheiben von Autos werden eingeklebt. Experten kennen mehr als 1000 unterschiedliche Klebstoff-Varianten. Diese verbinden fast alle denkbaren Materialien miteinander. Klebstoffe wiegen nicht viel und sind deshalb für den Leichtbau geeignet. Zudem verziehen sich geklebte Flächen nicht, da der Druck anders als bei Schraubverbindungen gleichmäßig verteilt wird. Klebstoff rostet nicht und dichtet gegen Feuchtigkeit ab. Zudem sind mit Klebstoff verbundene Flächen weniger empfindlich gegen Schwingungen. Und Klebstoffe sind preiswert und relativ einfach zu verarbeiten.

Federn aus der Geflügelfleischproduktion
Bisher werden Klebstoffe fast immer aus fossilen Rohstoffen wie Erdöl hergestellt. Das Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB geht nun einen anderen Weg. Die Forscherinnen und Forscher nutzen Federn als Ausgangsmaterial statt Erdöl. Federn fallen bei der Geflügelfleischherstellung als Abfälle an. Sie werden vernichtet oder in Tierfutter gemischt. Doch für Abfall sind die Federn viel zu schade, denn Federn enthalten das Strukturprotein Keratin. Dieses Biopolymer wird von Tieren für Krallen, Klauen, Hufe oder eben Federn gebildet. Seine Faserstruktur verleiht hohe Festigkeit.

Warum Keratin ideal für die Klebstoff-Herstellung ist
Keratin ist ein umweltfreundlicher, weil biologisch abbaubarer Stoff, der darüber hinaus durch seine Struktur jene Eigenschaften besitzt, die ihn für die Herstellung von Klebstoffen besonders geeignet machen. Die Polymer-Struktur, also die besonders langkettigen Moleküle, in Verbindung mit der Eigenschaft, über seine funktionellen Gruppen Vernetzungsreaktionen einzugehen, prädestiniert Keratin für die Herstellung von Klebstoffen aller Art. »Die für Klebstoffe erforderlichen Merkmale sind im Ausgangsmaterial gewissermaßen schon angelegt und müssen nur freigelegt, modifiziert und formuliert werden«, erklärt Projektleiter Dr. Michael Richter.

Plattform-Chemikalie und Spezialklebstoffe
Beim Projekt KERAbond »Spezialchemikalien aus maßgeschneiderten funktionalen Keratin-Proteinen« – Kera steht für Keratin, das englische Wort bond für Kleben – hat das Fraunhofer IGB in den letzten drei Jahren mit der Henkel AG & Co. KGaA zusammengearbeitet. Das Unternehmen ist Weltmarktführer im Klebstoff-Bereich.

Dabei haben die Projektpartner ein neues Verfahren entwickelt und optimiert. Im ersten Schritt werden die vom Schlachtbetrieb angelieferten Federn sterilisiert, gewaschen und mechanisch zerkleinert. Anschließend erfolgt ein enzymatischer Prozess, bei dem die langkettigen Polymere bzw. Protein-Ketten via Hydrolyse in kurzkettige Polymere gespalten werden.

Im Ergebnis soll eine Plattform-Chemikalie entstehen, die als Ausgangsstoff für die Weiterentwicklung speziell formulierter Klebstoffe dienen kann. „Wir nutzen das Verfahren und die Plattform-Chemikalie wie eine Toolbox, mit der wir die gewünschten Merkmale des Endprodukts herstellen“, sagt Richter. Auf diese Weise könnte man Parameter wie Aushärtezeit, Elastizität, Temperaturverhalten oder Festigkeit des gewünschten Spezialklebers festlegen. Daneben lassen sich nicht nur einfach Klebstoffe, sondern auch verwandte Substanzen wie Härter, Beschichtungen oder Grundierungen produzieren.

Im nächsten Schritt peilte das Fraunhofer-Team die Konversion der Federn im Großmaßstab an. Diese Hochskalierung fand am Fraunhofer-Zentrum für Chemisch-Biotechnologische Prozesse CBP in Leuna statt. Ziel war es zu beweisen, dass die Herstellung der Plattform-Chemikalien auf Keratin-Basis auch im industriellen Maßstab kostengünstig realisierbar ist. Dabei wurden mehrere Kilogramm Hühnerfedern verarbeitet, und das dabei produzierte Material konnte für erste vielversprechende Materialtests am Fraunhofer IGB und bei Henkel eingesetzt werden.

Baustein für eine bioinspirierte Ökonomie
Für die Fraunhofer-Gesellschaft hat diese bioinspirierte Verfahrenstechnik eine besondere Bedeutung. Biotechnologie zählt zu den zentralen Forschungsfeldern der Fraunhofer-Gesellschaft: „Wir lassen uns von Funktionen oder Eigenschaften inspirieren, die in der Natur oder in natürlichen Rohstoffen bereits vorhanden sind. Und wir versuchen, diese Eigenschaften durch innovative Herstellungsprozesse in die Produkte zu übersetzen. So entsteht ein bioinspirierter Kreislauf der wertvollen Rohstoffe,“ so Richter.

Ökonomisch hat das Projekt Gewicht. Nach Angaben von Statista wurden allein in Deutschland im Jahr 2019 rund eine Million Tonnen Klebstoffe produziert. Deren Gesamtwert beträgt etwa 1,87 Milliarden Euro.

Zum neuen Verfahren wurde eine Patentanmeldung eingereicht sowie eine Veröffentlichung in einem wissenschaftlichen Fachjournal publiziert. Zwei Doktoranden, die bei Henkel und Fraunhofer intensiv an dem Projekt forschten, werden ihre Doktorarbeiten voraussichtlich im ersten Quartal 2024 abschließen können. Mit der neuen Technologie auf Keratin-Basis werden sich viele Plattform-Chemikalien nachhaltig und bioinspiriert produzieren lassen.

Das KERAbond-Projekt wurde über drei Jahre von der Fachagentur Nachwachsende Rohstoffe (FNR) in Gülzow im Auftrag des Bundesministeriums für Ernährung und Landwirtschaft aus dem Förderprogramm „Nachwachsende Rohstoffe“ gefördert und unterstützt (Förderkennzeichen 22014218).

Quelle:

Fraunhofer IBG

Die Plasma-Atmosphäre wird im Reaktor durch das charakteristische Leuchten und das Entladen von Blitzen deutlich sichtbar. © Fraunhofer IGB Die Plasma-Atmosphäre wird im Reaktor durch das charakteristische Leuchten und das Entladen von Blitzen deutlich sichtbar.
16.05.2023

Abwasserreinigung: Plasma gegen toxische PFAS-Chemikalien

Die gesundheitsschädlichen Chemikalien PFAS sind mittlerweile in vielen Böden und Gewässern nachweisbar. Die Beseitigung mit herkömmlichen Filtertechniken ist sehr aufwendig und kaum realisierbar. Forschende des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB setzen im Verbundprojekt AtWaPlas erfolgreich auf eine plasmabasierte Technologie. Kontaminiertes Wasser wird in einen kombinierten Glas- und Edelstahlzylinder eingeleitet und dort mit ionisiertem Gas – dem Plasma – behandelt. Das reduziert die Molekülketten von PFAS und ermöglicht so eine kostengünstige Beseitigung der toxischen Substanz.

Die gesundheitsschädlichen Chemikalien PFAS sind mittlerweile in vielen Böden und Gewässern nachweisbar. Die Beseitigung mit herkömmlichen Filtertechniken ist sehr aufwendig und kaum realisierbar. Forschende des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB setzen im Verbundprojekt AtWaPlas erfolgreich auf eine plasmabasierte Technologie. Kontaminiertes Wasser wird in einen kombinierten Glas- und Edelstahlzylinder eingeleitet und dort mit ionisiertem Gas – dem Plasma – behandelt. Das reduziert die Molekülketten von PFAS und ermöglicht so eine kostengünstige Beseitigung der toxischen Substanz.

Per- und polyfluorierte Alkylverbindungen, kurz: PFAS (engl.: per- and polyfluoroalkyl substances), haben viele Talente. Sie sind thermisch und chemisch stabil, dabei wasser-, fett- und schmutzabweisend. Dementsprechend findet man sie in vielen alltäglichen Produkten: Pizzakartons und Backpapier sind damit beschichtet, auch Shampoos und Cremes enthalten PFAS. In der Industrie finden sie Verwendung als Lösch- und Netzmittel. In der Landwirtschaft werden sie in Pflanzenschutzmitteln verwendet. Mittlerweile lassen sich Spuren von PFAS auch da nachweisen, wo sie nicht hingehören: im Boden, in Flüssen und im Grundwasser, in Lebensmitteln und im Trinkwasser. So gelangen die schädlichen Stoffe am Ende auch in den menschlichen Körper. Wegen ihrer chemischen Stabilität ist die Beseitigung dieser auch als »Ewigkeitschemikalien« bezeichneten Substanzen bisher mit vertretbarem Aufwand kaum möglich.

Das Verbundprojekt AtWaPlas soll das ändern. Das Akronym steht für Atmosphären-Wasserplasma-Behandlung. Das innovative Projekt wird derzeit am Fraunhofer IGB in Stuttgart gemeinsam mit dem Industriepartner HYDR.O. Geologen und Ingenieure GbR aus Aachen vorangetrieben. Ziel ist die Aufbereitung und Rückgewinnung PFAS-belasteter Wässer mittels Plasma-Behandlung.
Das Forschenden-Team um Dr. Georg Umlauf, Experte für funktionale Oberflächen und Materialien, macht sich dabei die Fähigkeit von Plasma zu Nutze, die Molekülketten von Substanzen anzugreifen. Erzeugt wird das elektrisch leitfähige Gas aus Elektronen und Ionen durch Anlegen von Hochspannung. »In unseren Versuchen mit Plasma ist es gelungen, die Molekülketten von PFAS im Wasser zu verkürzen. Das ist ein wichtiger Schritt hin zu einer effizienten Beseitigung dieser hartnäckigen Schadstoffe«, freut sich Umlauf.

Wasserkreislauf im Edelstahlzylinder
Für das Verfahren nutzen die Fraunhofer-Forschenden einen zylinderförmigen Aufbau. Im Inneren befindet sich ein Edelstahlrohr und dieses dient als Masse-Elektrode des Stromkreises. Ein äußeres Kupfernetz fungiert als Hochspannungselektrode und wird zur Innenseite hin durch ein Dielektrikum aus Glas abgeschirmt. Dazwischen bleibt ein winziger Spalt, der mit einem Luft-Gemisch gefüllt ist. Durch Anlegen von mehreren Kilovolt Spannung verwandelt sich dieses Luft-Gemisch in Plasma. Für das menschliche Auge wird es durch das charakteristische Leuchten und das Entladen in Form von Blitzen sichtbar.

Im Reinigungsprozess wird das mit PFAS kontaminierte Wasser am Boden des Stahltanks eingeleitet und nach oben gepumpt. Im Spalt zwischen den Elektroden fließt es nach unten und durchquert dabei die elektrisch aktive Plasma-Atmosphäre. Beim Entladen bricht das Plasma die PFAS-Molekülketten auf und verkürzt sie. Das Wasser wird in einem geschlossenen Kreislauf immer wieder durch den stählernen Reaktor und die Plasma-Entladezone im Spalt gepumpt, jedes Mal werden die PFAS-Molekülketten weiter reduziert bis zu einer vollständigen Mineralisierung. »Im Idealfall werden die schädlichen PFAS-Stoffe so gründlich beseitigt, dass sie in massenspektrometischen Messungen nicht mehr nachweisbar sind. Damit werden auch die strengen Regularien der Trinkwasserverordnung in Bezug auf die PFAS-Konzentration erfüllt«, sagt Umlauf.

Gegenüber herkömmlichen Methoden wie beispielsweise der Filterung mit Aktivkohle weist die am Fraunhofer IGB entwickelte Technologie einen entscheidenden Vorteil auf: »Aktivkohlefilter können die schädlichen Stoffe zwar binden, sie aber nicht beseitigen. Somit müssen die Filter regelmäßig ausgetauscht und entsorgt werden. Die AtWaPlas-Technologie dagegen kann die schädlichen Substanzen rückstandsfrei eliminieren und arbeitet dabei sehr effizient und wartungsarm«, erläutert Fraunhofer-Experte Umlauf.

Echte Wasserproben statt synthetischer Laborprobe
Um echte Praxisnähe zu gewährleisten, testen die Fraunhofer-Forschenden die Plasma-Reinigung gewissermaßen unter erschwerten Bedingungen. Konventionelle Testverfahren arbeiten mit perfekt sauberem Wasser und im Labor synthetisch angerührten PFAS-Lösungen. Das Forschenden-Team in Stuttgart dagegen verwendet echte Wasserproben, die aus PFAS-kontaminierten Gebieten stammen. Die Proben werden vom Projektpartner HYDR.O. Geologen und Ingenieure GbR aus Aachen zugeliefert. Das Unternehmen hat sich auf Altlastensanierung spezialisiert und führt daneben hydrodynamische Simulationen durch.

Die realen Wasserproben, mit denen Umlauf und sein Team arbeiten, enthalten daher neben PFAS auch weitere Partikel, Schwebstoffe und organische Trübungen. »Auf diese Weise stellen wir sicher, dass AtWaPlas seinen Reinigungseffekt nicht nur mit synthetischen Laborproben, sondern auch unter realen Bedingungen mit wechselnden Wasserqualitäten unter Beweis stellt. Zugleich können wir die Prozessparameter laufend anpassen und weiterentwickeln«, erklärt Umlauf.

Die Plasma-Methode lässt sich auch für den Abbau anderer schädlicher Substanzen einsetzen. Darunter fallen etwa Rückstände von Medikamenten im Abwasser, Pestizide und Herbizide, aber auch Industriechemikalien wie Cyanide. Daneben kommt AtWaPlas auch für die umweltschonende und kostengünstige Aufbereitung von Trinkwasser in mobilen Anwendungen infrage.

Das Verbundprojekt AtWaPlas startete im JuIi 2021. Nach den erfolgreichen Versuchsreihen im Technikums-Maßstab mit einem 5-Liter-Reaktor arbeitet das Fraunhofer-Team gemeinsam mit dem Verbundpartner daran, das Verfahren weiter zu optimieren. Georg Umlauf sagt: »Unser Ziel ist es jetzt, toxische PFAS durch verlängerte Prozesszeiten und mehr Umläufe im Tank vollständig zu eliminieren und die AtWaPlas-Technologie auch für die praktische Anwendung im größeren Maßstab verfügbar zu machen.« Zukünftig könnten entsprechende Anlagen auch als eigenständige Reinigungsstufe in Klärwerken aufgestellt werden oder in transportablen Containern auf kontaminierten Freilandflächen zum Einsatz kommen.

Quelle:

Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Foto: pixabay
20.04.2021

Biomoleküle aus nachwachsenden Rohstoffen für die Textilindustrie

Wasserabweisend und mehr: Textilien mit Chitosan nachhaltig beschichten

Textilien können mit dem Biopolymer Chitosan beschichtet und so durch Anbindung hydrophober Moleküle wasserabweisend ausgerüstet werden. Das Gute daran ist, dass dadurch auch toxische und erdölbasierte Stoffe ersetzt werden können, die man aktuell für die Textilveredlung verwendet. Wie dies funktionieren kann, hat das Fraunhofer IGB mit Partnern im Projekt HydroFichi in den letzten Jahren erforscht: Entwickelt wurde eine Technologie, um Fasern mithilfe biotechnologischer Prozesse und Chitosan mit gewünschten Eigenschaften versehen zu können.

Wasserabweisend und mehr: Textilien mit Chitosan nachhaltig beschichten

Textilien können mit dem Biopolymer Chitosan beschichtet und so durch Anbindung hydrophober Moleküle wasserabweisend ausgerüstet werden. Das Gute daran ist, dass dadurch auch toxische und erdölbasierte Stoffe ersetzt werden können, die man aktuell für die Textilveredlung verwendet. Wie dies funktionieren kann, hat das Fraunhofer IGB mit Partnern im Projekt HydroFichi in den letzten Jahren erforscht: Entwickelt wurde eine Technologie, um Fasern mithilfe biotechnologischer Prozesse und Chitosan mit gewünschten Eigenschaften versehen zu können.

Die Herstellung von Textilien ist dieser Tage noch stark chemisch geprägt: Biotechnologische Verfahren, Enzyme und nachwachsende Rohstoffe spielen bislang eine eher untergeordnete Rolle. Beispielsweise kommen bei der Ausrüstung von Textilien mit wasser- und ölabweisenden Eigenschaften aktuell vor allem perfluorierte Chemikalien zum Einsatz. Diese sind gesundheitsschädlich und zudem kaum abbaubar, weshalb sie lange Zeit in der Umwelt verbleiben.

Das Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB forscht schon seit einiger Zeit an nachhaltigen biobasierten Alternativen: Im Projekt HydroFichi – kurz für: Hydrophobic Finishing with Chitosan –, das Ende Januar 2021 abgeschlossen wurde, haben Forschende des Instituts eine Möglichkeit entwickelt, um Chitosan aus Abfallströmen produzieren zu können und das Biopolymer nicht nur als Schlichtemittel bei der Verarbeitung von Garnen, sondern oder auch zur Funktionalisierung von Textilien bei der Veredlung einzusetzen.

Chitosan aus Abfällen für Umweltschutz, Medizin oder Textilien
Chitosan ist ein nachwachsender Rohstoff, der sich von Chitin ableitet – dem nach Cellulose zweithäufigsten in der Natur vorkommenden Biopolymer. Quellen für das stickstoffhaltige Polysaccharid können Krabbenschalen aus Fischereiabfällen, Insektenhäute und -panzer, die beispielsweise bei der Herstellung von Tierfutter anfallen, oder auch – als vegane Variante – die Zellwände von Pilzen sein. Die Struktur der beiden Moleküle ist sehr ähnlich; einziger Unterschied ist eine Acetylgruppe, die bei der Umwandlung zu Chitosan entfernt wird. Chitin ist unlöslich in Wasser und den meisten organischen Lösemitteln. Chitosan ist ebenfalls schwer löslich – durch Zugabe milder Säuren kann das Biopolymer jedoch in Wasser gelöst und damit als Textilhilfsmittel eingesetzt werden.

Um Chitosan aus dem jeweiligen Abfallstrom zu isolieren, muss zunächst Chitin aus den Ausgangsstoffen durch Demineralisierung und Deproteinisierung und anschließend sein Derivat Chitosan gewonnen werden. Dabei können die Eigenschaften von Chitosan durch die Wahl der jeweiligen Konditionen individuell angepasst werden. Das so produzierte Biomolekül kann dann direkt den verschiedensten praktischen Anwendungen eingesetzt werden – beispielsweise als Flockungshilfsmittel in der Abwasserbehandlung oder als Wirkstoffträger in der Medizin.

Auch in der Textilindustrie gibt es zahlreiche denkbare Einsatzmöglichkeiten für Chitosan. Beim Schlichten beispielsweise überzeugte die Effizienz des Naturstoffs in Technikumsversuchen der Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) bereits: Hier zeigte sich die Wirksamkeit in einer wesentlich geringeren Rauigkeit der Garne nach dem Weben zu textilem Gewebe. Dabei waren die erzielten Werte mit Chitosan aus Insekten vergleichbar mit denen aus kommerziellen Krabbenschalen. Diese Tatsache ermöglicht zukünftig ganz neue Möglichkeiten der Gewinnung im Sinne der Bioökonomie.

Chitosan als nachwachsender Rohstoff ersetzt fossile Chemikalien
»Unser Anliegen im Projekt HydroFichi war es, der Textilindustrie einen Rohstoff für verschiedenste Anwendungen zur Verfügung zu stellen, der einerseits aus nachwachsenden Edukten gewonnen werden kann, aber auch Chemikalien vermeidet, die die Umwelt und Gesundheit schädigen«, erklärt Projektleiter Dr. Achim Weber, stellvertretender Leiter des Innovationsfelds Funktionale Oberflächen und Materialien am IGB. »Neben einer einfachen Beschichtung mit Chitosan, bei der die Fasern geschützt werden, konnten wir die Substanz auch als Ankermolekül nutzen, um Vernetzungspunkte für verschiedenste funktionelle Gruppen zu schaffen und damit Textilien ganz gezielt mit bestimmten Eigenschaften zu versehen, zum Beispiel wasserabweisend zu machen. Chitosan kann also gleichzeitig als Matrixmaterial oder Templat fungieren – und dies bei den unterschiedlichsten Fasermaterialien.«

Bewertet wurden die Veredlungen mittels standardisierter Tests, aber auch mit eigens dafür entworfenen Testständen und Methoden. Hier zeigten beispielsweise Messungen auf behandelten Textilien Kontaktwinkel von über 140°. Dies bedeutet eine sehr gute Wasserabweisung der Stoffe und bestätigt die erfolgreiche Bearbeitung der Textilien. In einem nächsten Schritt soll die am IGB entwickelte Technologie vom Labormaßstab auf den wesentlich größeren Pilotmaßstab übertragen werden, um das nachhaltige Biomolekül möglichst schnell in die Marktreife überführen zu können, beispielsweise für den Einsatz im Sport- und Outdoorbereich.

Erstmals biotechnologische Prozesse in der Textilveredlung
Im Projekt konnten die IGB-Wissenschaftler gemeinsam mit vier Partnern aus der Textilindustrie – die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF), J.G. Knopf´s Sohn, Helmbrechts, und der Textilchemie Dr. Petry, Reutlingen – erstmals biotechnologische Prozesse in der Rohstoffgewinnung und Veredlung etablieren, die sich als kompatibel mit allen Textilprozessen erwiesen. Dies ist bislang ein Alleinstellungsmerkmal in der Veredlung von Textilien. »Wir alle haben das große Potenzial von Chitosan zur effizienten Hydrophobierung und als Funktionsträger erkannt und konnten dank der guten Zusammenarbeit Techniken für eine maßgeschneiderte Funktionalisierung von Textilien erfolgreich etablieren«, ergänzt Dr. Thomas Hahn, der im Innovationsfeld Industrielle Biotechnologie am IGB forscht. »Darüber hinaus sind weitere Einsatzgebiete des Biopolymers vielversprechend. Deshalb haben wir sofort im Anschluss an HydroFichi das Folgeprojekt ExpandChi initiiert, in dem gemeinsam mit den Partnern Techniken entwickelt werden sollen, um biobasiertes Chitosan als Funktionsträger zum Ersatz weiterer synthetischer Polymere zu verwenden, beispielsweise für eine spezielle Anti-Falten- oder eine flammenhemmende Beschichtung. Die Textilindustrie ist sehr daran interessiert, dass ein solch nachhaltiges Biomolekül möglichst schnell eingesetzt wird.«

Das Projekt »HydroFichi« wurde vom Bundesministerium für Bildung und Forschung (BMBF) unter Förderkennzeichen 031B0341A, das Folgeprojekt »ExpandChi«, das im Februar 2021 begonnen hat, wird unter Förderkennzeichen 031B1047A gefördert.